1
|
Garcia Moreno SI, Limani F, Ludwig I, Gilbert C, Pifl C, Hnasko TS, Steinkellner T. Viral overexpression of human alpha-synuclein in mouse substantia nigra dopamine neurons results in hyperdopaminergia but no neurodegeneration. Exp Neurol 2024; 382:114959. [PMID: 39288832 DOI: 10.1016/j.expneurol.2024.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how and if it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any dopaminergic neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Sofia Ines Garcia Moreno
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabian Limani
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Iina Ludwig
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Catherine Gilbert
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Veterans Affairs, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Peng L, Wang T. Histamine synthesis and transport are coupled in axon terminals via a dual quality control system. EMBO J 2024; 43:4472-4491. [PMID: 39242788 PMCID: PMC11480334 DOI: 10.1038/s44318-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals. This process requires HDC anchoring to synaptic vesicles via interactions with N-ethylmaleimide-sensitive fusion protein 1 (NSF1). Disassociating HDC from synaptic vesicles disrupts visual synaptic transmission and causes somatic accumulation of histamine, which leads to retinal degeneration. We further identified a proteasome degradation system mediated by the E3 ubiquitin ligase, purity of essence (POE), which clears mislocalized HDC from the soma, thus eliminating the cytotoxic effects of histamine. Taken together, our results reveal a dual mechanism for translocation and degradation of HDC that ensures restriction of histamine synthesis to axonal terminals and at the same time rapid loading into synaptic vesicles. This is crucial for sustaining neurotransmission and protecting against cytotoxic monoamines.
Collapse
Affiliation(s)
- Lei Peng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
3
|
Moreno SIG, Limani F, Ludwig I, Gilbert C, Pifl C, Hnasko TS, Steinkellner T. Viral overexpression of human alpha-synuclein in mouse substantia nigra dopamine neurons results in hyperdopaminergia but no neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592188. [PMID: 38746104 PMCID: PMC11092628 DOI: 10.1101/2024.05.03.592188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any DA neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute DA neurodegeneration.
Collapse
|
4
|
Abstract
The vesicular monoamine transporter 2 (VMAT2) is a proton-dependent antiporter responsible for loading monoamine neurotransmitters into synaptic vesicles. Dysregulation of VMAT2 can lead to several neuropsychiatric disorders including Parkinson's disease and schizophrenia. Furthermore, drugs such as amphetamine and MDMA are known to act on VMAT2, exemplifying its role in the mechanisms of actions for drugs of abuse. Despite VMAT2's importance, there remains a critical lack of mechanistic understanding, largely driven by a lack of structural information. Here, we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of VMAT2 complexed with tetrabenazine (TBZ), a non-competitive inhibitor used in the treatment of Huntington's chorea. We find TBZ interacts with residues in a central binding site, locking VMAT2 in an occluded conformation and providing a mechanistic basis for non-competitive inhibition. We further identify residues critical for cytosolic and lumenal gating, including a cluster of hydrophobic residues which are involved in a lumenal gating strategy. Our structure also highlights three distinct polar networks that may determine VMAT2 conformational dynamics and play a role in proton transduction. The structure elucidates mechanisms of VMAT2 inhibition and transport, providing insights into VMAT2 architecture, function, and the design of small-molecule therapeutics.
Collapse
Affiliation(s)
- Michael P Dalton
- Department of Structural Biology, University of PittsburghPittsburghUnited States
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook UniversityStony BrookUnited States
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook UniversityStony BrookUnited States
| | - Jonathan A Coleman
- Department of Structural Biology, University of PittsburghPittsburghUnited States
| |
Collapse
|
5
|
Dalton MP, Cheng MH, Bahar I, Coleman JA. Structural mechanisms for VMAT2 inhibition by tetrabenazine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556211. [PMID: 37732203 PMCID: PMC10508774 DOI: 10.1101/2023.09.05.556211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The vesicular monoamine transporter 2 (VMAT2) is a proton-dependent antiporter responsible for loading monoamine neurotransmitters into synaptic vesicles. Dysregulation of VMAT2 can lead to several neuropsychiatric disorders including Parkinson's disease and schizophrenia. Furthermore, drugs such as amphetamine and MDMA are known to act on VMAT2, exemplifying its role in the mechanisms of actions for drugs of abuse. Despite VMAT2's importance, there remains a critical lack of mechanistic understanding, largely driven by a lack of structural information. Here we report a 3.1 Å resolution cryo-EM structure of VMAT2 complexed with tetrabenazine (TBZ), a non-competitive inhibitor used in the treatment of Huntington's chorea. We find TBZ interacts with residues in a central binding site, locking VMAT2 in an occluded conformation and providing a mechanistic basis for non-competitive inhibition. We further identify residues critical for cytosolic and lumenal gating, including a cluster of hydrophobic residues which are involved in a lumenal gating strategy. Our structure also highlights three distinct polar networks that may determine VMAT2 conformational dynamics and play a role in proton transduction. The structure elucidates mechanisms of VMAT2 inhibition and transport, providing insights into VMAT2 architecture, function, and the design of small-molecule therapeutics.
Collapse
Affiliation(s)
- Michael P Dalton
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
6
|
Pidathala S, Liao S, Dai Y, Li X, Long C, Chang CL, Zhang Z, Lee CH. Mechanisms of neurotransmitter transport and drug inhibition in human VMAT2. Nature 2023; 623:1086-1092. [PMID: 37914936 DOI: 10.1038/s41586-023-06727-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.
Collapse
Affiliation(s)
- Shabareesh Pidathala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuyun Liao
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
| | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changkun Long
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China.
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Jain S, Yee AG, Maas J, Gierok S, Xu H, Stansil J, Eriksen J, Nelson AB, Silm K, Ford CP, Edwards RH. Adaptor protein-3 produces synaptic vesicles that release phasic dopamine. Proc Natl Acad Sci U S A 2023; 120:e2309843120. [PMID: 37812725 PMCID: PMC10589613 DOI: 10.1073/pnas.2309843120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.
Collapse
Affiliation(s)
- Shweta Jain
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Andrew G. Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO80045
| | - James Maas
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Sarah Gierok
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Hongfei Xu
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Jasmine Stansil
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Jacob Eriksen
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Alexandra B. Nelson
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Katlin Silm
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO80045
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Robert H. Edwards
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
8
|
Arakawa I, Muramatsu I, Uwada J, Sada K, Matsukawa N, Masuoka T. Acetylcholine release from striatal cholinergic interneurons is controlled differently depending on the firing pattern. J Neurochem 2023; 167:38-51. [PMID: 37653723 DOI: 10.1111/jnc.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
How is the quantal size in neurotransmitter release adjusted for various firing levels? We explored the possible mechanisms that regulate acetylcholine (ACh) release from cholinergic interneurons using an ultra-mini superfusion system. After preloading [3 H]ACh in rat striatal cholinergic interneurons, the release was elicited by electrical stimulation under a condition in which presynaptic cholinergic and dopaminergic feedback was inhibited. [3 H]ACh release was reproducible at intervals of more than 10 min; shorter intervals resulted in reduced levels of ACh release. Upon persistent stimulation for 10 min, ACh release transiently increased, before gradually decreasing. Vesamicol, an inhibitor of the vesicular ACh transporter (VAChT), had no effect on the release induced by the first single pulse, but it reduced the release caused by subsequent pulses. Vesamicol also reduced the [3 H]ACh release evoked by multiple pulses, and the inhibition was enhanced by repetitive stimulation. The decreasing phase of [3 H]ACh release during persistent stimulation was accelerated by vesamicol treatment. Thus, it is likely that releasable ACh was slowly compensated for via VAChT during and after stimulation, changing the vesicular ACh content. In addition, ACh release per pulse decreased under high-frequency stimulation. The present results suggest that ACh release from striatal cholinergic interneurons may be adjusted by changes in the quantal size due to slow replenishment via VAChT, and by a reduction in release probability upon high-frequency stimulation. These two distinct processes likely enable the fine tuning of neurotransmission and neuroprotection/limitation against excessive output and have important physiological roles in the brain.
Collapse
Affiliation(s)
- Itsumi Arakawa
- Department of Neurology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
- Kimura Hospital, Fukui, Japan
| | - Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Kiyonao Sada
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
9
|
Xia X, Li H, Xu X, Zhao G, Du M. Facilitating Pro-survival Mitophagy for Alleviating Parkinson's Disease via Sequence-Targeted Lycopene Nanodots. ACS NANO 2023; 17:17979-17995. [PMID: 37714739 DOI: 10.1021/acsnano.3c04308] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The pathogenesis of Parkinson's disease is closely linked to impaired mitochondrial function and abnormal mitophagy. Biocompatible natural antioxidants effectively protect dopaminergic neurons. However, the main challenge in using natural antioxidants for Parkinson's disease therapy is creating a delivery platform to achieve neuron-targeted enrichment. Herein, we synthesized rationally sequence-targeted lycopene nanodots using recombinant human H-ferritin nanocages with lycopene loading into the cavity and lipophilic triphenylphosphonium (TPP) coupling on the outer surface. The nanodots allow for the neural enrichment and mitochondrial regulation of lycopene through blood-brain barrier transcytosis and neuronal mitochondria-targeting capability. These anti-ROS nanodots protect neuronal mitochondrial function and promote PINK1/Parkin-mediated mitophagy in MPTP toxicity-induced neurons in vivo and in vitro, which favors the secretory efflux of pathogenic α-synuclein and the survival of dopaminergic neurons. Moreover, these nanodots restore the Parkinson-like motor symptoms in Parkinson's model mice. This noninvasive sequence-targeted delivery strategy with excellent biocompatibility for pro-survival mitophagy-mediated pathology alleviation makes it a promising approach for treating and preventing Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| | - Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| |
Collapse
|
10
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Jain S, Yee AG, Maas J, Gierok S, Xu H, Stansil J, Eriksen J, Nelson A, Silm K, Ford CP, Edwards RH. Adaptor Protein-3 Produces Synaptic Vesicles that Release Phasic Dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552338. [PMID: 37609166 PMCID: PMC10441354 DOI: 10.1101/2023.08.07.552338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a novel population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.
Collapse
Affiliation(s)
- Shweta Jain
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Andrew G. Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora USA
| | - James Maas
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Sarah Gierok
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Hongfei Xu
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Jasmine Stansil
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Jacob Eriksen
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Alexandra Nelson
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Katlin Silm
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora USA
| | - Robert H. Edwards
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| |
Collapse
|
12
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
13
|
Chuhma N, Oh SJ, Rayport S. The dopamine neuron synaptic map in the striatum. Cell Rep 2023; 42:112204. [PMID: 36867530 PMCID: PMC10657204 DOI: 10.1016/j.celrep.2023.112204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Dopamine neurons project to the striatum to control movement, cognition, and motivation via slower volume transmission as well as faster dopamine, glutamate, and GABA synaptic actions capable of conveying the temporal information in dopamine neuron firing. To define the scope of these synaptic actions, recordings of dopamine-neuron-evoked synaptic currents were made in four major striatal neuron types, spanning the entire striatum. This revealed that inhibitory postsynaptic currents are widespread, while excitatory postsynaptic currents are localized to the medial nucleus accumbens and the anterolateral-dorsal striatum, and that all synaptic actions are weak in the posterior striatum. Synaptic actions in cholinergic interneurons are the strongest, variably mediating inhibition throughout the striatum and excitation in the medial accumbens, capable of controlling their activity. This mapping shows that dopamine neuron synaptic actions extend throughout the striatum, preferentially target cholinergic interneurons, and define distinct striatal subregions.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Soo Jung Oh
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Quinpirole ameliorates nigral dopaminergic neuron damage in Parkinson's disease mouse model through activating GHS-R1a/D 2R heterodimers. Acta Pharmacol Sin 2023:10.1038/s41401-023-01063-0. [PMID: 36899113 PMCID: PMC10374575 DOI: 10.1038/s41401-023-01063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a) is an important G protein-coupled receptor (GPCR) that regulates a variety of functions by binding to ghrelin. It has been shown that the dimerization of GHS-R1a with other receptors also affects ingestion, energy metabolism, learning and memory. Dopamine type 2 receptor (D2R) is a GPCR mainly distributed in the ventral tegmental area (VTA), substantia nigra (SN), striatum and other brain regions. In this study we investigated the existence and function of GHS-R1a/D2R heterodimers in nigral dopaminergic neurons in Parkinson's disease (PD) models in vitro and in vivo. By conducting immunofluorescence staining, FRET and BRET analyses, we confirmed that GHS-R1a and D2R could form heterodimers in PC-12 cells and in the nigral dopaminergic neurons of wild-type mice. This process was inhibited by MPP+ or MPTP treatment. Application of QNP (10 μM) alone significantly increased the viability of MPP+-treated PC-12 cells, and administration of quinpirole (QNP, 1 mg/kg, i.p. once before and twice after MPTP injection) significantly alleviated motor deficits in MPTP-induced PD mice model; the beneficial effects of QNP were abolished by GHS-R1a knockdown. We revealed that the GHS-R1a/D2R heterodimers could increase the protein levels of tyrosine hydroxylase in the SN of MPTP-induced PD mice model through the cAMP response element binding protein (CREB) signaling pathway, ultimately promoting dopamine synthesis and release. These results demonstrate a protective role for GHS-R1a/D2R heterodimers in dopaminergic neurons, providing evidence for the involvement of GHS-R1a in PD pathogenesis independent of ghrelin.
Collapse
|
15
|
Borges R, Gu C, Machado JD, Ewing AG. The dynamic nature of exocytosis from large secretory vesicles. A view from electrochemistry and imaging. Cell Calcium 2023; 110:102699. [PMID: 36708611 DOI: 10.1016/j.ceca.2023.102699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
In this brief review, we discuss the factors that modulate the quantum size and the kinetics of exocytosis. We also discuss the determinants which motivate the type of exocytosis from the so-called kiss-and-run to full fusion and along the intermediate mode of partial release. Kiss-and-run release comprises the transient opening of a nanometer (approx. 2 nm diameter) fusion pore between vesicle and plasma membrane allowing a small amount of release. Partial release comprises a larger more extended opening of the pore to allow a larger fraction of released vesicle content and is what is observed as normal full release in most electrochemical measurements. Partial release appears to be dominant in dense core vesicles and perhaps synaptic vesicles. The concept of partial release leads to the fraction released as a plastic component of exocytosis. Partial vesicular distension and the kinetics of exocytosis can be modulated by second messengers, physiological modulators, and drugs. This concept adds a novel point of regulation for the exocytotic process.
Collapse
Affiliation(s)
- Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de la Laguna, Tenerife. Spain
| | - Chaoyi Gu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - José-David Machado
- Pharmacology Unit, Medical School, Universidad de la Laguna, Tenerife. Spain
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.
| |
Collapse
|
16
|
Saida K, Maroofian R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, Zaki MS, O'Brien TJ, Karimiani EG, Kaiyrzhanov R, Takizawa M, Ohori S, Leong HY, Akay G, Galehdari H, Zamani M, Romy R, Carroll CJ, Toosi MB, Ashrafzadeh F, Imannezhad S, Malek H, Ahangari N, Tomoum H, Gowda VK, Srinivasan VM, Murphy D, Dominik N, Elbendary HM, Rafat K, Yilmaz S, Kanmaz S, Serin M, Krishnakumar D, Gardham A, Maw A, Rao TS, Alsubhi S, Srour M, Buhas D, Jewett T, Goldberg RE, Shamseldin H, Frengen E, Misceo D, Strømme P, Magliocco Ceroni JR, Kim CA, Yesil G, Sengenc E, Guler S, Hull M, Parnes M, Aktas D, Anlar B, Bayram Y, Pehlivan D, Posey JE, Alavi S, Madani Manshadi SA, Alzaidan H, Al-Owain M, Alabdi L, Abdulwahab F, Sekiguchi F, Hamanaka K, Fujita A, Uchiyama Y, Mizuguchi T, Miyatake S, Miyake N, Elshafie RM, Salayev K, Guliyeva U, Alkuraya FS, Gleeson JG, Monaghan KG, Langley KG, Yang H, Motavaf M, Safari S, Alipour M, Ogata K, Brown AEX, Lupski JR, Houlden H, Matsumoto N. Brain monoamine vesicular transport disease caused by homozygous SLC18A2 variants: A study in 42 affected individuals. Genet Med 2023; 25:90-102. [PMID: 36318270 DOI: 10.1016/j.gim.2022.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.
Collapse
Affiliation(s)
- Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Thomas J O'Brien
- MRC London Institute of Medical Sciences, London, United Kingdom; Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Marina Takizawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Huey Yin Leong
- Genetics Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ratna Romy
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Christopher J Carroll
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadis Malek
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Najmeh Ahangari
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Hoda Tomoum
- Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Natalia Dominik
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Hasnaa M Elbendary
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Karima Rafat
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Sanem Yilmaz
- Division of Pediatric Neurology, Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Seda Kanmaz
- Division of Pediatric Neurology, Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Mine Serin
- Division of Pediatric Neurology, Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Deepa Krishnakumar
- North West Thames Regional Genetics Service, Northwick Park Hospital, London, United Kingdom
| | - Alice Gardham
- North West Thames Regional Genetics Service, Northwick Park Hospital, London, United Kingdom
| | - Anna Maw
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Tekki Sreenivasa Rao
- Department of Paediatrics, Luton and Dunstable University Hospital, Luton, United Kingdom
| | - Sarah Alsubhi
- Division of Pediatric Neurology, Departments of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Departments of Pediatrics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Center (MUHC), Montreal, Quebec, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Center (MUHC), Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tamison Jewett
- Department of Pediatrics, Section on Medical Genetics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Rachel E Goldberg
- Department of Pediatrics, Section on Medical Genetics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Hanan Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Petter Strømme
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Chong Ae Kim
- Genetic Unit, Instituto da Crianca, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gozde Yesil
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Esma Sengenc
- Department of Pediatric Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Serhat Guler
- Department of Child Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | - Dilek Aktas
- Damagen Genetic Diagnostic Center, Ankara, Turkey
| | - Banu Anlar
- Department of Pediatric Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Shahryar Alavi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lama Alabdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ferdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Kamran Salayev
- Department of Neurology, Azerbaijan Medical University, Baku, Azerbaijan
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, San Diego, CA; Rady Children's Institute for Genomic Medicine, San Diego, CA
| | | | | | | | - Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Alipour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - André E X Brown
- MRC London Institute of Medical Sciences, London, United Kingdom; Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
17
|
Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A 2022; 119:e2122552119. [PMID: 36161926 DOI: 10.1073/pnas.2122552119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9-mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Collapse
|
18
|
Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum. Int J Mol Sci 2022; 23:ijms23158543. [PMID: 35955676 PMCID: PMC9369307 DOI: 10.3390/ijms23158543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is a Gs protein-coupled, intracellularly located metabotropic receptor. Trace and classic amines, amphetamines, act as agonists on TAAR1; they activate downstream signal transduction influencing neurotransmitter release via intracellular phosphorylation. Our aim was to check the effect of the catecholaminergic activity enhancer compound ((−)BPAP, (R)-(−)-1-(benzofuran-2-yl)-2-propylaminopentane) on neurotransmitter release via the TAAR1 signaling. Rat striatal slices were prepared and the resting and electrical stimulation-evoked [3H]dopamine release was measured. The releaser (±)methamphetamine evoked non-vesicular [3H]dopamine release in a TAAR1-dependent manner, whereas (−)BPAP potentiated [3H]dopamine release with vesicular origin via TAAR1 mediation. (−)BPAP did not induce non-vesicular [3H]dopamine release. N-Ethylmaleimide, which inhibits SNARE core complex disassembly, potentiated the stimulatory effect of (−)BPAP on vesicular [3H]dopamine release. Subsequent analyses indicated that the dopamine-release stimulatory effect of (−)BPAP was due to an increase in PKC-mediated phosphorylation. We have hypothesized that there are two binding sites present on TAAR1, one for the releaser and one for the enhancer compounds, and they activate different PKC-mediated phosphorylation leading to the evoking of non-vesicular and vesicular dopamine release. (−)BPAP also increased VMAT2 operation enforcing vesicular [3H]dopamine accumulation and release. Vesicular dopamine release promoted by TAAR1 evokes activation of D2 dopamine autoreceptor-mediated presynaptic feedback inhibition. In conclusion, TAAR1 possesses a triggering role in both non-vesicular and vesicular dopamine release, and the mechanism of action of (−)BPAP is linked to the activation of TAAR1 and the signal transduction attached.
Collapse
|
19
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
20
|
Melani R, Tritsch NX. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep 2022; 39:110716. [PMID: 35443174 PMCID: PMC9097974 DOI: 10.1016/j.celrep.2022.110716] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA)-releasing neurons in the substantia nigra pars compacta (SNcDA) inhibit target cells in the striatum through postsynaptic activation of γ-aminobutyric acid (GABA) receptors. However, the molecular mechanisms responsible for GABAergic signaling remain unclear, as SNcDA neurons lack enzymes typically required to produce GABA or package it into synaptic vesicles. Here, we show that aldehyde dehydrogenase 1a1 (Aldh1a1), an enzyme proposed to function as a GABA synthetic enzyme in SNcDA neurons, does not produce GABA for synaptic transmission. Instead, we demonstrate that SNcDA axons obtain GABA exclusively through presynaptic uptake using the membrane GABA transporter Gat1 (encoded by Slc6a1). GABA is then packaged for vesicular release using the vesicular monoamine transporter Vmat2. Our data therefore show that presynaptic transmitter recycling can substitute for de novo GABA synthesis and that Vmat2 contributes to vesicular GABA transport, expanding the range of molecular mechanisms available to neurons to support inhibitory synaptic communication. Melani and Tritsch demonstrate that inhibitory co-transmission from midbrain dopaminergic neurons does not depend on cell-autonomous GABA synthesis but instead on presynaptic import from the extracellular space through the membrane transporter Gat1 and that GABA loading into synaptic vesicles relies on the vesicular monoamine transporter Vmat2.
Collapse
Affiliation(s)
- Riccardo Melani
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
21
|
Marino G, Calabresi P, Ghiglieri V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:153-166. [PMID: 35034731 DOI: 10.1016/b978-0-12-819410-2.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alpha-synuclein (α-synuclein) is a small, acidic protein containing 140 amino acids, highly expressed in the brain and primarily localized in the presynaptic terminals. It is found in high concentrations in Lewy Bodies, proteinaceous aggregates that constitute a typical histopathologic hallmark of Parkinson's disease. Altered environmental conditions, genetic mutations and post-translational changes can trigger abnormal aggregation processes with the increased frequency of oligomers, protofibrils, and fibrils formation that perturbs the neuronal homeostasis leading to cell death. Relevant to neuronal activity, a function of α-synuclein that has been extensively detailed is its regulatory actions in the trafficking of synaptic vesicles, including the processes of exocytosis, endocytosis and neurotransmitter release. Most recently, increasing attention has been paid to the possible role that α-synuclein plays at a postsynaptic level by interacting with selective subunits of the glutamate N-methyl-d-aspartate receptor, altering the corticostriatal plasticity of distinct neuronal populations.
Collapse
Affiliation(s)
- Gioia Marino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
22
|
Baronio D, Chen YC, Decker AR, Enckell L, Fernández-López B, Semenova S, Puttonen HAJ, Cornell RA, Panula P. Vesicular monoamine transporter 2 (SLC18A2) regulates monoamine turnover and brain development in zebrafish. Acta Physiol (Oxf) 2022; 234:e13725. [PMID: 34403568 DOI: 10.1111/apha.13725] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023]
Abstract
AIM We aimed at identifying potential roles of vesicular monoamine transporter 2, also known as Solute Carrier protein 18 A2 (SLC18A2) (hereafter, Vmat2), in brain monoamine regulation, their turnover, behaviour and brain development using a novel zebrafish model. METHODS A zebrafish strain lacking functional Vmat2 was generated with the CRISPR/Cas9 system. Larval behaviour and heart rate were monitored. Monoamines and their metabolites were analysed with high-pressure liquid chromatography. Amine synthesising and degrading enzymes, and genes essential for brain development, were analysed with quantitative PCR, in situ hybridisation and immunocytochemistry. RESULTS The 5-bp deletion in exon 3 caused an early frameshift and was lethal within 2 weeks post-fertilisation. Homozygous mutants (hereafter, mutants) displayed normal low locomotor activity during night-time but aberrant response to illumination changes. In mutants dopamine, noradrenaline, 5-hydroxytryptamine and histamine levels were reduced, whereas levels of dopamine and 5-hydroxytryptamine metabolites were increased, implying elevated monoamine turnover. Consistently, there were fewer histamine, 5-hydroxytryptamine and dopamine immunoreactive cells. Cellular dopamine immunostaining, in wild-type larvae more prominent in tyrosine hydroxylase 1 (Th1)-expressing than in Th2-expressing neurons, was absent in mutants. Despite reduced dopamine levels, mutants presented upregulated dopamine-synthesising enzymes. Further, in mutants the number of histidine decarboxylase-expressing neurons was increased, notch1a and pax2a were downregulated in brain proliferative zones. CONCLUSION Lack of Vmat2 increases monoamine turnover and upregulates genes encoding amine-synthesising enzymes, including histidine decarboxylase. Notch1a and pax2a, genes implicated in stem cell development, are downregulated in mutants. The zebrafish vmat2 mutant strain may be a useful model to study how monoamine transport affects brain development and function, and for use in drug screening.
Collapse
Affiliation(s)
- Diego Baronio
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Amanda R Decker
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Louise Enckell
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | | | | | | | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Wang H. Roles of vesicular monoamine transporter 2 in neuronal development and histaminergic signalling-Insights from zebrafish. Acta Physiol (Oxf) 2022; 234:e13739. [PMID: 34741795 DOI: 10.1111/apha.13739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Han Wang
- Center for Circadian Clocks Soochow University Suzhou China
- School of Biology & Basic Medical Sciences Medical College, Soochow University Suzhou China
| |
Collapse
|
24
|
Baronio D, Chen YC, Panula P. Abnormal brain development of monoamine oxidase mutant zebrafish and impaired social interaction of heterozygous fish. Dis Model Mech 2021; 15:273667. [PMID: 34881779 PMCID: PMC8891935 DOI: 10.1242/dmm.049133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Monoamine oxidase (MAO) deficiency and imbalanced levels of brain monoamines have been associated with developmental delay, neuropsychiatric disorders and aggressive behavior. Animal models are valuable tools to gain mechanistic insight into outcomes associated with MAO deficiency. Here, we report a novel genetic model to study the effects of mao loss of function in zebrafish. Quantitative PCR, in situ hybridization and immunocytochemistry were used to study neurotransmitter systems and expression of relevant genes for brain development in zebrafish mao mutants. Larval and adult fish behavior was evaluated through different tests. Stronger serotonin immunoreactivity was detected in mao+/− and mao−/− larvae compared with their mao+/+ siblings. mao−/− larvae were hypoactive, and presented decreased reactions to visual and acoustic stimuli. They also had impaired histaminergic and dopaminergic systems, abnormal expression of developmental markers and died within 20 days post-fertilization. mao+/− fish were viable, grew until adulthood, and demonstrated anxiety-like behavior and impaired social interactions compared with adult mao+/+ siblings. Our results indicate that mao−/− and mao+/− mutants could be promising tools to study the roles of MAO in brain development and behavior. This article has an associated First Person interview with the first author of the paper. Summary: We assessed developmental, neurochemical and behavioral alterations displayed by mao+/− and mao−/− zebrafish, establishing that these model organisms are promising tools to study the consequences of MAOA/B deficiency.
Collapse
Affiliation(s)
- Diego Baronio
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Genetic basis of variation in cocaine and methamphetamine consumption in outbred populations of Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:2104131118. [PMID: 34074789 PMCID: PMC8201854 DOI: 10.1073/pnas.2104131118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We used Drosophila melanogaster to map the genetic basis of naturally occurring variation in voluntary consumption of cocaine and methamphetamine. We derived an outbred advanced intercross population (AIP) from 37 sequenced inbred wild-derived lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), which are maximally genetically divergent, have minimal residual heterozygosity, are not segregating for common inversions, and are not infected with Wolbachia pipientis We assessed consumption of sucrose, methamphetamine-supplemented sucrose, and cocaine-supplemented sucrose and found considerable phenotypic variation for consumption of both drugs, in both sexes. We performed whole-genome sequencing and extreme quantitative trait locus (QTL) mapping on the top 10% of consumers for each replicate, sex, and condition and an equal number of randomly selected flies. We evaluated changes in allele frequencies among high consumers and control flies and identified 3,033 variants significantly (P < 1.9 × 10-8) associated with increased consumption, located in or near 1,962 genes. Many of these genes are associated with nervous system development and function, and 77 belong to a known gene-gene interaction subnetwork. We assessed the effects of RNA interference (RNAi) on drug consumption for 22 candidate genes; 17 had a significant effect in at least one sex. We constructed allele-specific AIPs that were homozygous for alternative candidate alleles for 10 single-nucleotide polymorphisms (SNPs) and measured average consumption for each population; 9 SNPs had significant effects in at least one sex. The genetic basis of voluntary drug consumption in Drosophila is polygenic and implicates genes with human orthologs and associated variants with sex- and drug-specific effects.
Collapse
|
26
|
Liu C, Goel P, Kaeser PS. Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci 2021; 22:345-358. [PMID: 33837376 PMCID: PMC8220193 DOI: 10.1038/s41583-021-00455-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pragya Goel
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Eskenazi D, Malave L, Mingote S, Yetnikoff L, Ztaou S, Velicu V, Rayport S, Chuhma N. Dopamine Neurons That Cotransmit Glutamate, From Synapses to Circuits to Behavior. Front Neural Circuits 2021; 15:665386. [PMID: 34093138 PMCID: PMC8170480 DOI: 10.3389/fncir.2021.665386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.
Collapse
Affiliation(s)
- Daniel Eskenazi
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Lauren Malave
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, United States
| | - Leora Yetnikoff
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, United States
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| | - Samira Ztaou
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Vlad Velicu
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
28
|
Black CA, Bucher ML, Bradner JM, Jonas L, Igarza K, Miller GW. Assessing Vesicular Monoamine Transport and Toxicity Using Fluorescent False Neurotransmitters. Chem Res Toxicol 2020; 34:1256-1264. [PMID: 33378168 DOI: 10.1021/acs.chemrestox.0c00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Impairments in the vesicular packaging of dopamine result in an accumulation of dopamine in the cytosol. Cytosolic dopamine is vulnerable to two metabolic processes-enzymatic catabolism and enzymatic- or auto-oxidation-that form toxic metabolites and generate reactive oxygen species. Alterations in the expression or activity of the vesicular monoamine transporter 2 (VMAT2), which transports monoamines such as dopamine from the cytosol into the synaptic vesicle, result in dysregulated dopamine packaging. Here, we developed a series of assays using the fluorescent false neurotransmitter 206 (FFN206) to visualize VMAT2-mediated vesicular packaging at baseline and following pharmacological and toxicological manipulations. As a proof of principle, we observed a significant reduction in vesicular FFN206 packaging after treatment with the VMAT2 inhibitors reserpine (IC50: 73.1 nM), tetrabenazine (IC50: 30.4 nM), methamphetamine (IC50: 2.4 μM), and methylphenidate (IC50: 94.3 μM). We then applied the assay to investigate the consequences on vesicular packaging by environmental toxicants including the pesticides paraquat, rotenone, and chlorpyrifos, as well as the halogenated compounds unichlor, perfluorooctanesulfonic acid, Paroil, Aroclor 1260, and hexabromocyclododecane. Several of the environmental toxicants showed minor impairment of the vesicular FFN206 loading, suggesting that the toxicants are weak VMAT2 inhibitors at the concentrations tested. The assay presented here can be applied to investigate the effect of additional pharmacological compounds and environmental toxicants on vesicular function, which will provide insight into how exposures to such factors are involved in the pathogenesis of monoaminergic diseases such as Parkinson's disease, and the assay can be used to identify pharmacological agents that influence VMAT2 activity.
Collapse
Affiliation(s)
- Carlie A Black
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Lauren Jonas
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Kenny Igarza
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
29
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
30
|
Vesicular neurotransmitter transporters in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183308. [PMID: 32305263 DOI: 10.1016/j.bbamem.2020.183308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Drosophila melanogaster express vesicular transporters for the storage of neurotransmitters acetylcholine, biogenic amines, GABA, and glutamate. The large array of powerful molecular-genetic tools available in Drosophila enhances the use of this model organism for studying transporter function and regulation.
Collapse
|
31
|
König N, Bimpisidis Z, Dumas S, Wallén-Mackenzie Å. Selective Knockout of the Vesicular Monoamine Transporter 2 ( Vmat2) Gene in Calbindin2/Calretinin-Positive Neurons Results in Profound Changes in Behavior and Response to Drugs of Abuse. Front Behav Neurosci 2020; 14:578443. [PMID: 33240055 PMCID: PMC7680758 DOI: 10.3389/fnbeh.2020.578443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
The vesicular monoamine transporter 2 (VMAT2) has a range of functions in the central nervous system, from sequestering toxins to providing conditions for the quantal release of monoaminergic neurotransmitters. Monoamine signaling regulates diverse functions from arousal to mood, movement, and motivation, and dysregulation of VMAT2 function is implicated in various neuropsychiatric diseases. While all monoamine-releasing neurons express the Vmat2 gene, only a subset is positive for the calcium-binding protein Calbindin 2 (Calb2; aka Calretinin, 29 kDa Calbindin). We recently showed that about half of the dopamine neurons in the mouse midbrain are positive for Calb2 and that Calb2 is an early developmental marker of midbrain dopamine cells. Calb2-positive neurons have also been identified in other monoaminergic areas, yet the role of Calb2-positive monoaminergic neurons is poorly understood. To selectively address the impact of Calb2-positive monoaminergic neurons in behavioral regulation, we took advantage of the Cre-LoxP system to create a new conditional knockout (cKO) mouse line in which Vmat2 expression is deleted selectively in Calb2-Cre-positive neurons. In this Vmat2lox/lox;Calb2−Cre cKO mouse line, gene targeting of Vmat2 was observed in several distinct monoaminergic areas. By comparing control and cKO mice in a series of behavioral tests, specific dissimilarities were identified. In particular, cKO mice were smaller than control mice and showed heightened sensitivity to the stereotypy-inducing effects of amphetamine and slight reductions in preference toward sucrose and ethanol, as well as a blunted response in the elevated plus maze test. These data uncover new knowledge about the role of genetically defined subtypes of neurons in the brain’s monoaminergic systems.
Collapse
Affiliation(s)
- Niclas König
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Zisis Bimpisidis
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Åsa Wallén-Mackenzie
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Kong Y, Zhou H, Feng H, Zhuang J, Wen T, Zhang C, Sun B, Wang J, Guan Y. Elucidating the Relationship Between Diabetes Mellitus and Parkinson's Disease Using 18F-FP-(+)-DTBZ, a Positron-Emission Tomography Probe for Vesicular Monoamine Transporter 2. Front Neurosci 2020; 14:682. [PMID: 32760240 PMCID: PMC7372188 DOI: 10.3389/fnins.2020.00682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/03/2020] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson’s disease (PD) have been and will continue to be two common chronic diseases globally that are difficult to diagnose during the prodromal phase. Current molecular genetics, cell biological, and epidemiological evidences have shown the correlation between PD and DM. PD shares the same pathogenesis pathways and pathological factors with DM. In addition, β-cell reduction, which can cause hyperglycemia, is a striking feature of DM. Recent studies indicated that hyperglycemia is highly relevant to the pathologic changes in PD. However, further correlation between DM and PD remains to be investigated. Intriguingly, polycystic monoamine transporter 2 (VMAT2), which is co-expressed in dopaminergic neurons and β cells, is responsible for taking up dopamine into the presynaptic vesicles and can specifically bind to the β cells. Furthermore, we have summarized the specific molecular and diagnostic functions of VMAT2 for the two diseases reported in this review. Therefore, VMAT2 can be applied as a target probe for positron emission tomography (PET) imaging to detect β-cell and dopamine level changes, which can contribute to the diagnosis of DM and PD during the prodromal phase. Targeting VMAT2 with the molecular probe 18F-FP-(+)-DTBZ can be an entry point for the β cell mass (BCM) changes in DM at the molecular level, to clarify the potential relationship between DM and PD. VMAT2 has promising clinical significance in investigating the pathogenesis, early diagnosis, and treatment evaluation of the two diseases.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hu Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
34
|
Qiu X, Matsuyama Y, Furuse M, Shimasaki Y, Oshima Y. Effects of Chattonella antiqua on the swimming behavior and brain monoamine metabolism of juvenile yellowtail (Seriola quinqueradiata). MARINE POLLUTION BULLETIN 2020; 152:110896. [PMID: 31957673 DOI: 10.1016/j.marpolbul.2020.110896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Being the precursor of serotonin and melatonin, dietary supplementation with tryptophan (TRP) may modulates behavior, stress responses, and antioxidant capacity in fish. In this study, effects of Chattonella exposure on the swimming behavior and brain monoamine metabolism of yellowtail fed a commercial diet (control diet) or that enriched by 1.5% L-TRP (TRP + diet) were investigated. A 7-day dietary TRP supplementation elevated spontaneous swimming speed of yellowtail and mitigated their behavioral response to Chattonella (250 cells/mL) exposure. A 30-day dietary TRP supplementation elevated growth of juvenile yellowtail. Lethal exposure to Chattonella (1000 cells/mL) significantly elevated the turnover rates of serotonin, dopamine, and norepinephrine metabolism in fish fed control diet, but did not alter the serotonin turnover rate in fish fed TRP + diet. Our results suggested that dietary supplementation with TRP had potential to mitigate the stress response in yellowtail to Chattonella, partly via mediating their brain monoamine metabolism.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukihiko Matsuyama
- Seikai National Fisheries Research Institute, Fisheries Research and Education Agency, Taira-machi 1551-8, Nagasaki 851-2213, Japan
| | - Mitsuhiro Furuse
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yohei Shimasaki
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
35
|
Dorninger F, König T, Scholze P, Berger ML, Zeitler G, Wiesinger C, Gundacker A, Pollak DD, Huck S, Just WW, Forss-Petter S, Pifl C, Berger J. Disturbed neurotransmitter homeostasis in ether lipid deficiency. Hum Mol Genet 2020; 28:2046-2061. [PMID: 30759250 PMCID: PMC6548223 DOI: 10.1093/hmg/ddz040] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/21/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022] Open
Abstract
Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis. Throughout the study, focusing on adult male animals, we found reduced brain levels of various neurotransmitters. In the dopaminergic nigrostriatal tract, synaptic endings but not neuronal cell bodies were affected. Neurotransmitter turnover was altered in ether lipid-deficient murine as well as human post-mortem brain tissue. A generalized loss of synapses did not account for the neurotransmitter deficits, since the levels of several presynaptic proteins appeared unchanged. However, reduced amounts of vesicular monoamine transporter indicate a compromised vesicular uptake of neurotransmitters. As exemplified by norepinephrine, the release of neurotransmitters from Gnpat KO brain slices was diminished in response to strong electrical and chemical stimuli. Finally, addressing potential phenotypic correlates of the disturbed neurotransmitter homeostasis, we show that ether lipid deficiency manifests as hyperactivity and impaired social interaction. We propose that the lack of ether lipids alters the properties of synaptic vesicles leading to reduced amounts and release of neurotransmitters. These features likely contribute to the behavioral phenotype of Gnpat KO mice, potentially modeling some human neurodevelopmental disorders like autism or attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Theresa König
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Michael L Berger
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Wilhelm W Just
- Biochemistry Center Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| |
Collapse
|
36
|
Petrelli F, Dallérac G, Pucci L, Calì C, Zehnder T, Sultan S, Lecca S, Chicca A, Ivanov A, Asensio CS, Gundersen V, Toni N, Knott GW, Magara F, Gertsch J, Kirchhoff F, Déglon N, Giros B, Edwards RH, Mothet JP, Bezzi P. Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Mol Psychiatry 2020; 25:732-749. [PMID: 30127471 PMCID: PMC7156348 DOI: 10.1038/s41380-018-0226-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023]
Abstract
Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Petrelli
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Glenn Dallérac
- 0000 0001 2176 4817grid.5399.6Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344 Marseille, Cedex 15 France
| | - Luca Pucci
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Corrado Calì
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland ,0000 0001 1926 5090grid.45672.32BESE division, King Abdullah University of Science and Technology, 23955-69000 Thuwal, Saudi Arabia
| | - Tamara Zehnder
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Sébastien Sultan
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Salvatore Lecca
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Andrea Chicca
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Andrei Ivanov
- “Biophotonics and Synapse Physiopathology” Team, UMR9188 CNRS – ENS Paris Saclay, 91405 Orsay, France
| | - Cédric S. Asensio
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Vidar Gundersen
- 0000 0004 1936 8921grid.5510.1CMBN, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Nicolas Toni
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Graham William Knott
- 0000000121839049grid.5333.6BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fulvio Magara
- 0000 0001 2165 4204grid.9851.5Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jürg Gertsch
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Frank Kirchhoff
- 0000 0001 2167 7588grid.11749.3aDepartment of Molecular Physiology, University of Saarland, D-66421 Homburg, Germany
| | - Nicole Déglon
- 0000 0001 0423 4662grid.8515.9Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Neuroscience Research Center, Lausanne University Hospital, CH-1011 Lausanne, Switzerland
| | - Bruno Giros
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H1R3 Canada ,0000 0001 2112 9282grid.4444.0INSERM, UMRS 1130; CNRS, UMR 8246; Sorbonne University UPMC, Neuroscience Paris-Seine, F-75005 Paris, France
| | - Robert H. Edwards
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Jean-Pierre Mothet
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344, Marseille, Cedex 15, France. .,"Biophotonics and Synapse Physiopathology" Team, UMR9188 CNRS - ENS Paris Saclay, 91405, Orsay, France.
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
37
|
Lebowitz JJ, Khoshbouei H. Heterogeneity of dopamine release sites in health and degeneration. Neurobiol Dis 2019; 134:104633. [PMID: 31698055 DOI: 10.1016/j.nbd.2019.104633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Despite comprising only ~ 0.001% of all neurons in the human brain, ventral midbrain dopamine neurons exert a profound influence on human behavior and cognition. As a neuromodulator, dopamine selectively inhibits or enhances synaptic signaling to coordinate neural output for action, attention, and affect. Humans invariably lose brain dopamine during aging, and this can be exacerbated in disease states such as Parkinson's Disease. Further, it is well established in multiple disease states that cell loss is selective for a subset of highly sensitive neurons within the nigrostriatal dopamine tract. Regional differences in dopamine tone are regulated pre-synaptically, with subcircuits of projecting dopamine neurons exhibiting distinct molecular and physiological signatures. Specifically, proteins at dopamine release sites that synthesize and package cytosolic dopamine, modulate its release and reuptake, and alter neuronal excitability show regional differences that provide linkages to the observed sensitivity to neurodegeneration. The aim of this review is to outline the major components of dopamine homeostasis at neurotransmitter release sites and describe the regional differences most relevant to understanding why some, but not all, dopamine neurons exhibit heightened vulnerability to neurodegeneration.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
38
|
Liu C, Kaeser PS. Mechanisms and regulation of dopamine release. Curr Opin Neurobiol 2019; 57:46-53. [PMID: 30769276 PMCID: PMC6629510 DOI: 10.1016/j.conb.2019.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/17/2023]
Abstract
Dopamine controls motor functions, motivation, and reward-related learning through G-protein coupled receptor signaling. The current working model is that upon release, dopamine diffuses to influence many target cells via wide-spread receptors. Recent studies, however, suggest that dopamine release is fast and generates small signaling hotspots. In this review, we summarize progress on the understanding of the dopamine release apparatus and evaluate how its properties may shape dopamine signaling during firing. We discuss how mechanisms of regulation may act through this machinery and propose that striatal architecture for dopamine signaling may have evolved to support rapid dopamine coding.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Neurobiology, Harvard Medical School, United States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, United States.
| |
Collapse
|
39
|
Matthes S, Mosienko V, Popova E, Rivalan M, Bader M, Alenina N. Targeted Manipulation of Brain Serotonin: RNAi-Mediated Knockdown of Tryptophan Hydroxylase 2 in Rats. ACS Chem Neurosci 2019; 10:3207-3217. [PMID: 30977636 DOI: 10.1021/acschemneuro.8b00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of the biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT). Two existing TPH isoforms are responsible for the generation of two distinct serotonergic systems in vertebrates. TPH1, predominantly expressed in the gastrointestinal tract and pineal gland, mediates 5-HT biosynthesis in non-neuronal tissues, while TPH2, mainly found in the raphe nuclei of the brain stem, is accountable for the production of 5-HT in the brain. Neuronal 5-HT is a key regulator of mood and behavior and its deficiency has been implicated in a variety of neuropsychiatric disorders, e.g., depression and anxiety. To gain further insights into the complexity of central 5-HT modulations of physiological and pathophysiological processes, a new transgenic rat model, allowing an inducible gene knockdown of Tph2, was established based on doxycycline-inducible shRNA-expression. Biochemical phenotyping revealed a functional knockdown of Tph2 mRNA expression following oral doxycycline administration, with subsequent reductions in the corresponding levels of TPH2 enzyme expression and activity. Transgenic rats showed also significantly decreased tissue levels of 5-HT and its degradation product 5-Hydroxyindoleacetic acid (5-HIAA) in the raphe nuclei, hippocampus, hypothalamus, and cortex, while peripheral 5-HT concentrations in the blood remained unchanged. In summary, this novel transgenic rat model allows inducible manipulation of 5-HT biosynthesis specifically in the brain and may help to elucidate the role of 5-HT in the pathophysiology of affective disorders.
Collapse
Affiliation(s)
- Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Valentina Mosienko
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Hatherly Building, Prince of Wales Rd., EX4 4PS Exeter, United Kingdom
| | - Elena Popova
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Marion Rivalan
- Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany
- Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
40
|
Silm K, Yang J, Marcott PF, Asensio CS, Eriksen J, Guthrie DA, Newman AH, Ford CP, Edwards RH. Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron 2019; 102:786-800.e5. [PMID: 31003725 PMCID: PMC6541489 DOI: 10.1016/j.neuron.2019.03.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Abstract
In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca2+ channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.
Collapse
Affiliation(s)
- Kätlin Silm
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jing Yang
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Pamela F Marcott
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cedric S Asensio
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Halberstadt AL, Brandt SD, Walther D, Baumann MH. 2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α 2-adrenergic receptors. Psychopharmacology (Berl) 2019; 236:989-999. [PMID: 30904940 PMCID: PMC6848746 DOI: 10.1007/s00213-019-05207-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE Over the last decade, many new psychostimulant analogues have appeared on the recreational drug market and most are derivatives of amphetamine or cathinone. Another class of designer drugs is derived from the 2-aminoindan structural template. Several members of this class, including the parent compound 2-aminoindan (2-AI), have been sold as designer drugs. Another aminoindan derivative, 5-methoxy-2-aminoindan (5-MeO-AI or MEAI), is the active ingredient in a product marketed online as an alcohol substitute. METHODS Here, we tested 2-AI and its ring-substituted derivatives 5-MeO-AI, 5-methoxy-6-methyl-2-aminoindan (MMAI), and 5,6-methylenedioxy-2-aminoindan (MDAI) for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We also compared the binding affinities of the aminoindans at 29 receptor and transporter binding sites. RESULTS 2-AI was a selective substrate for NET and DAT. Ring substitution increased potency at SERT while reducing potency at DAT and NET. MDAI was moderately selective for SERT and NET, with tenfold weaker effects on DAT. 5-MeO-AI exhibited some selectivity for SERT, having sixfold lower potency at NET and 20-fold lower potency at DAT. MMAI was highly selective for SERT, with 100-fold lower potency at NET and DAT. The aminoindans had relatively high affinity for α2-adrenoceptor subtypes. 2-AI had particularly high affinity for α2C receptors (Ki = 41 nM) and slightly lower affinity for the α2A (Ki = 134 nM) and α2B (Ki = 211 nM) subtypes. 5-MeO-AI and MMAI also had moderate affinity for the 5-HT2B receptor. CONCLUSIONS 2-AI is predicted to have (+)-amphetamine-like effects and abuse potential whereas the ring-substituted derivatives may produce 3,4-methylenedioxymethamphetamine (MDMA)-like effects but with less abuse liability.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA, 92161, USA.
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Donna Walther
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
42
|
Ahmad MF, Ferland D, Ayala-Lopez N, Contreras GA, Darios E, Thompson J, Ismail A, Thelen K, Moeser AJ, Burnett R, Anantharam A, Watts SW. Perivascular Adipocytes Store Norepinephrine by Vesicular Transport. Arterioscler Thromb Vasc Biol 2019; 39:188-199. [PMID: 30567483 PMCID: PMC6344267 DOI: 10.1161/atvbaha.118.311720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Objective- Perivascular adipose tissue (PVAT) contains an independent adrenergic system that can take up, metabolize, release, and potentially synthesize the vasoactive catecholamine norepinephrine. Norepinephrine has been detected in PVAT, but the mechanism of its protection within this tissue is unknown. Here, we investigate whether PVAT adipocytes can store norepinephrine using VMAT (vesicular monoamine transporter). Approach and Results- High-performance liquid chromatography identified norepinephrine in normal male Sprague Dawley rat aortic, superior mesenteric artery, and mesenteric resistance vessel PVATs, and retroperitoneal fat. Real-time polymerase chain reaction revealed VMAT1 and VMAT2 mRNA expression in the adipocytes and stromal vascular fraction of mesenteric resistance vessel PVAT. Immunofluorescence demonstrated the presence of VMAT1 and VMAT2, and the colocalization of VMAT2 with norepinephrine, in the cytoplasm of adipocytes in mesenteric resistance vessel PVAT. A protocol was developed to capture real-time uptake of Mini 202-a functional and fluorescent VMAT probe-in live rat PVAT adipocytes. Mini 202 was taken up by freshly isolated and differentiated adipocytes from mesenteric resistance vessel PVAT and adipocytes from thoracic aortic and superior mesenteric artery PVATs. In adipocytes freshly isolated from mesenteric resistance vessel PVAT, addition of rose bengal (VMAT inhibitor), nisoxetine (norepinephrine transporter inhibitor), or corticosterone (organic cation 3 transporter inhibitor) significantly reduced Mini 202 signal. Immunofluorescence supports that neither VMAT1 nor VMAT2 is present in retroperitoneal adipocytes, suggesting that PVAT adipocytes may be unique in storing norepinephrine. Conclusions- This study supports a novel function of PVAT adipocytes in storing amines in a VMAT-dependent manner. It provides a foundation for future studies exploring the purpose and mechanisms of norepinephrine storage by PVAT in normal physiology and obesity-related hypertension.
Collapse
Affiliation(s)
- Maleeha F Ahmad
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - David Ferland
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Nadia Ayala-Lopez
- Department of Laboratory Medicine, Yale University, New Haven, CT (N.A.-L.)
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Emma Darios
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Janice Thompson
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Alexander Ismail
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Kyan Thelen
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Robert Burnett
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Arun Anantharam
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor (A.A.)
| | - Stephanie W Watts
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| |
Collapse
|
43
|
Lohoff FW, Carr GV, Brookshire B, Ferraro TN, Lucki I. Deletion of the vesicular monoamine transporter 1 (vmat1/slc18a1) gene affects dopamine signaling. Brain Res 2019; 1712:151-157. [PMID: 30685272 DOI: 10.1016/j.brainres.2019.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
The vesicular monoamine transporter is involved in presynaptic catecholamine storage and neurotransmission. Two isoforms of the transporter exist, VMAT1 and VMAT2, and both are expressed in the brain, though VMAT2 expression is more robust and has been more widely studied. In this study we investigated the role of VMAT1 KO on markers of dopaminergic function and neurotransmission, and dopamine-related behaviors. Null-mutant VMAT1 mice were studied behaviorally using the tail suspension test, elevated zero maze and locomotor activity assessments. Tissue monoamines were measured both ex vivo and by using in vivo microdialysis. Protein expression of tyrosine hydroxylase and D2 dopamine receptors was measured using western blot analysis. Results show that VMAT1 KO mice have decreased dopamine levels in the frontal cortex, increased postsynaptic D2 expression, and lower frontal cortex tyrosine hydroxylase expression compared to WT mice. VMAT1 KO mice also show an exaggerated behavioral locomotor response to acute amphetamine treatment. We conclude that dopaminergic signaling is robustly altered in the frontal cortex of VMAT1 null-mutant mice and suggest that VMAT1 may be relevant to the pathogenesis and/or treatment of psychiatric illnesses including schizophrenia and bipolar disease.
Collapse
Affiliation(s)
- Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Gregory V Carr
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bethany Brookshire
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine Translational Research Laboratories, Philadelphia, PA, USA
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Rowan University, Camden, NJ, USA
| | - Irwin Lucki
- Department of Pharmacology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
44
|
Abstract
There is a plethora of amphetamine derivatives exerting stimulant, euphoric, anti-fatigue, and hallucinogenic effects; all structural properties allowing these effects are contained within the amphetamine structure. In the first part of this review, the interaction of amphetamine with the dopamine transporter (DAT), crucially involved in its behavioral effects, is covered, as well as the role of dopamine synthesis, the vesicular monoamine transporter VMAT2, and organic cation 3 transporter (OCT3). The second part deals with requirements in amphetamine's effect on the kinases PKC, CaMKII, and ERK, whereas the third part focuses on where we are in developing anti-amphetamine therapeutics. Thus, treatments are discussed that target DAT, VMAT2, PKC, CaMKII, and OCT3. As is generally true for the development of therapeutics for substance use disorder, there are multiple preclinically promising specific compounds against (meth)amphetamine, for which further development and clinical trials are badly needed.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Margaret E Gnegy
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Zsilla G, Hegyi DE, Baranyi M, Vizi ES. 3,4-Methylenedioxymethamphetamine, mephedrone, and β-phenylethylamine release dopamine from the cytoplasm by means of transporters and keep the concentration high and constant by blocking reuptake. Eur J Pharmacol 2018; 837:72-80. [DOI: 10.1016/j.ejphar.2018.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023]
|
46
|
Isolation of mouse chromaffin secretory vesicles and their division into 12 fractions. Anal Biochem 2017; 536:1-7. [DOI: 10.1016/j.ab.2017.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/14/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
|
47
|
Isingrini E, Guinaudie C, C Perret L, Rainer Q, Moquin L, Gratton A, Giros B. Genetic elimination of dopamine vesicular stocks in the nigrostriatal pathway replicates Parkinson's disease motor symptoms without neuronal degeneration in adult mice. Sci Rep 2017; 7:12432. [PMID: 28963508 PMCID: PMC5622135 DOI: 10.1038/s41598-017-12810-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 11/17/2022] Open
Abstract
The type 2 vesicular monoamine transporter (VMAT2), by regulating the storage of monoamines transmitters into synaptic vesicles, has a protective role against their cytoplasmic toxicity. Increasing evidence suggests that impairment of VMAT2 neuroprotection contributes to the pathogenesis of Parkinson’s disease (PD). Several transgenic VMAT2 mice models have been developed, however these models lack specificity regarding the monoaminergic system targeting. To circumvent this limitation, we created VMAT2-KO mice specific to the dopamine (DA) nigrostriatal pathway to analyze VMAT2’s involvement in DA depletion-induced motor features associated to PD and examine the relevance of DA toxicity in the pathogenesis of neurodegeneration. Adult VMAT2 floxed mice were injected in the substancia nigra (SN) with an adeno-associated virus (AAV) expressing the Cre-recombinase allowing VMAT2 removal in DA neurons of the nigrostriatal pathway solely. VMAT2 deletion in the SN induced both DA depletion exclusively in the dorsal striatum and motor dysfunction. At 16 weeks post-injection, motor symptoms were accompanied with a decreased in food and water consumption and weight loss. However, despite an accelerating death, degeneration of nigrostriatal neurons was not observed in this model during this time frame. This study highlights a non-cytotoxic role of DA in our genetic model of VMAT2 deletion exclusively in nigrostriatal neurons.
Collapse
Affiliation(s)
- Elsa Isingrini
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Chloé Guinaudie
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Léa C Perret
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Quentin Rainer
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Luc Moquin
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Alain Gratton
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada. .,Sorbonne Universités, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
48
|
How intravesicular composition affects exocytosis. Pflugers Arch 2017; 470:135-141. [PMID: 28779472 DOI: 10.1007/s00424-017-2035-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/26/2022]
Abstract
Large dense core vesicles and chromaffin granules accumulate solutes at large concentrations (for instance, catecholamines, 0.5-1 M; ATP, 120-300 mM; or Ca2+, 40 mM (12)). Solutes seem to aggregate to a condensed protein matrix, which is mainly composed of chromogranins, to elude osmotic lysis. This association is also responsible for the delayed release of catecholamines during exocytosis. Here, we compile experimental evidence, obtained since the inception of single-cell amperometry, demonstrating how the alteration of intravesicular composition promotes changes in the quantum characteristics of exocytosis. As chromaffin cells are large and their vesicles contain a high concentration of electrochemically detectable species, most experimental data comes from this cell model.
Collapse
|
49
|
Spencer WC, Deneris ES. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function. Front Cell Neurosci 2017; 11:215. [PMID: 28769770 PMCID: PMC5515867 DOI: 10.3389/fncel.2017.00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons.
Collapse
Affiliation(s)
- William C Spencer
- Department of Neurosciences, Case Western Reserve UniversityCleveland, OH, United States
| | - Evan S Deneris
- Department of Neurosciences, Case Western Reserve UniversityCleveland, OH, United States
| |
Collapse
|
50
|
de Oliveira MR, Chenet AL, Duarte AR, Scaini G, Quevedo J. Molecular Mechanisms Underlying the Anti-depressant Effects of Resveratrol: a Review. Mol Neurobiol 2017; 55:4543-4559. [PMID: 28695536 DOI: 10.1007/s12035-017-0680-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
Abstract
Major depression is a public health problem, affecting 121 million people worldwide. Patients suffering from depression present high rates of morbidity, causing profound economic and social impacts. Furthermore, patients with depression present cognitive impairments, which could influence on treatment adherence and long-term outcomes. The pathophysiology of major depression is not completely understood yet but involves reduced levels of monoamine neurotransmitters, bioenergetics, and redox disturbances, as well as inflammation and neuronal loss. Treatment with anti-depressants provides a complete remission of symptoms in approximately 50% of patients with major depression. However, these drugs may cause side effects, as sedation and weight gain. In this context, there is increasing interest in studies focusing on the anti-depressant effects of natural compounds found in the diet. Resveratrol is a polyphenolic phytoalexin (3,4',5-trihydroxystilbene; C14H12O3; MW 228.247 g/mol) and has been found in peanuts, berries, grapes, and wine and induces anti-oxidant, anti-inflammatory, and anti-apoptotic effects in several mammalian cell types. Resveratrol also elicits anti-depressant effects, as observed in experimental models using animals. Therefore, resveratrol may be viewed as a potential anti-depressant agent, as well as may serve as a model of molecule to be modified aiming to ameliorate depressive symptoms in humans. In the present review, we describe and discuss the anti-depressant effects of resveratrol focusing on the mechanism of action of this phytoalexin in different experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Programa de Pós-Graduação em Química, Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiabá, MT, CEP 78060-900, Brazil.
| | - Aline Lukasievicz Chenet
- Programa de Pós-Graduação em Química, Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiabá, MT, CEP 78060-900, Brazil
| | - Adriane Ribeiro Duarte
- Programa de Pós-Graduação em Química, Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiabá, MT, CEP 78060-900, Brazil
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, |The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|