1
|
Khan YT, Tsompanidis A, Radecki MA, Dorfschmidt L, Austin T, Suckling J, Allison C, Lai MC, Bethlehem RAI, Baron-Cohen S. Sex Differences in Human Brain Structure at Birth. Biol Sex Differ 2024; 15:81. [PMID: 39420417 PMCID: PMC11488075 DOI: 10.1186/s13293-024-00657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Sex differences in human brain anatomy have been well-documented, though remain significantly underexplored during early development. The neonatal period is a critical stage for brain development and can provide key insights into the role that prenatal and early postnatal factors play in shaping sex differences in the brain. METHODS Here, we assessed on-average sex differences in global and regional brain volumes in 514 newborns aged 0-28 days (236 birth-assigned females and 278 birth-assigned males) using data from the developing Human Connectome Project. We also assessed sex-by-age interactions to investigate sex differences in early postnatal brain development. RESULTS On average, males had significantly larger intracranial and total brain volumes, even after controlling for birth weight. After controlling for total brain volume, females showed significantly greater total cortical gray matter volumes, whilst males showed greater total white matter volumes. After controlling for total brain volume in regional comparisons, females had significantly increased white matter volumes in the corpus callosum and increased gray matter volumes in the bilateral parahippocampal gyri (posterior parts), left anterior cingulate gyrus, bilateral parietal lobes, and left caudate nucleus. Males had significantly increased gray matter volumes in the right medial and inferior temporal gyrus (posterior part) and right subthalamic nucleus. Effect sizes ranged from small for regional comparisons to large for global comparisons. Significant sex-by-age interactions were noted in the left anterior cingulate gyrus and left superior temporal gyrus (posterior parts). CONCLUSIONS Our findings demonstrate that sex differences in brain structure are already present at birth and remain comparatively stable during early postnatal development, highlighting an important role of prenatal factors in shaping sex differences in the brain.
Collapse
Affiliation(s)
- Yumnah T Khan
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Marcin A Radecki
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Social and Affective Neuroscience Group, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, 19139, USA
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Peterborough Foundation NHS Trust, Cambridge, CB2 8SZ, UK
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
2
|
Takatani T, Shiohama T, Takatani R, Hattori S, Yokota H, Hamada H. Brain morphometric changes in children born as small for gestational age without catch up growth. Front Neurosci 2024; 18:1441563. [PMID: 39268030 PMCID: PMC11390431 DOI: 10.3389/fnins.2024.1441563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Most infants born as small for gestational age (SGA) demonstrate catch up growth by 2-4 years, but some fail to do so. This failure is associated with several health risks, including neuropsychological development issues. However, data on the morphological characteristics of the brains of infants born as SGA without achieving catch up growth are lacking. This study aims to determine the structural aspects of the brains of children born as SGA without catch up growth. Methods We conducted voxel- and surface-based morphometric analyses of 1.5-T T1-weighted brain images scanned from eight infants born as SGA who could not achieve catch up growth by 3 years and sixteen individuals with idiopathic short stature (ISS) to exclude body size effects. Growth hormone (GH) secretion stimulation tests were used to rule out GH deficiency in all SGA and ISS cases. The magnetic resonance imaging data were assessed using Levene's test for equality of variances and a two-tailed unpaired t-test for equality of means. The Benjamini-Hochberg procedure was used to apply discovery rate correction for multiple comparisons. Results Morphometric analyses of both t-statical map and surface-based analyses using general linear multiple analysis determined decreased left insula thickness and volume in SGA without catch up growth compared with ISS. Conclusion The brain scans of patients with SGA who lack catch up growth indicated distinct morphological disparities when compared to those with ISS. The discernible features of brain morphology observed in patients born as SGA without catch up growth may improve understanding of the association of SGA without catch up growth with both intellectual and psychological outcomes.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rieko Takatani
- Faculty of Education, Graduate School of Education, Chiba University, Chiba, Japan
| | - Shinya Hattori
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Handschuh PA, Reed MB, Murgaš M, Vraka C, Kaufmann U, Nics L, Klöbl M, Ozenil M, Konadu ME, Patronas EM, Spurny-Dworak B, Hahn A, Hacker M, Spies M, Baldinger-Melich P, Kranz GS, Lanzenberger R. Effects of gender-affirming hormone therapy on gray matter density, microstructure and monoamine oxidase A levels in transgender subjects. Neuroimage 2024; 297:120716. [PMID: 38955254 DOI: 10.1016/j.neuroimage.2024.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024] Open
Abstract
MAO-A catalyzes the oxidative degradation of monoamines and is thus implicated in sex-specific neuroplastic processes that influence gray matter (GM) density (GMD) and microstructure (GMM). Given the exact monitoring of plasma hormone levels and sex steroid intake, transgender individuals undergoing gender-affirming hormone therapy (GHT) represent a valuable cohort to potentially investigate sex steroid-induced changes of GM and concomitant MAO-A density. Here, we investigated the effects of GHT over a median time period of 4.5 months on GMD and GMM as well as MAO-A distribution volume. To this end, 20 cisgender women, 11 cisgender men, 20 transgender women and 10 transgender men underwent two MRI scans in a longitudinal design. PET scans using [11C]harmine were performed before each MRI session in a subset of 35 individuals. GM changes determined by diffusion weighted imaging (DWI) metrics for GMM and voxel based morphometry (VBM) for GMD were estimated using repeated measures ANOVA. Regions showing significant changes of both GMM and GMD were used for the subsequent analysis of MAO-A density. These involved the fusiform gyrus, rolandic operculum, inferior occipital cortex, middle and anterior cingulum, bilateral insula, cerebellum and the lingual gyrus (post-hoc tests: pFWE+Bonferroni < 0.025). In terms of MAO-A distribution volume, no significant effects were found. Additionally, the sexual desire inventory (SDI) was applied to assess GHT-induced changes in sexual desire, showing an increase of SDI scores among transgender men. Changes in the GMD of the bilateral insula showed a moderate correlation to SDI scores (rho = - 0.62, pBonferroni = 0.047). The present results are indicative of a reliable influence of gender-affirming hormone therapy on 1) GMD and GMM following an interregional pattern and 2) sexual desire specifically among transgender men.
Collapse
Affiliation(s)
- P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - U Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - L Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - E M Patronas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
4
|
Luders E, Gaser C, Spencer D, Thankamony A, Hughes I, Simpson H, Srirangalingam U, Gleeson H, Hines M, Kurth F. Cortical gyrification in women and men and the (missing) link to prenatal androgens. Eur J Neurosci 2024; 60:3995-4003. [PMID: 38733283 PMCID: PMC11260240 DOI: 10.1111/ejn.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Previous studies have reported sex differences in cortical gyrification. Since most cortical folding is principally defined in utero, sex chromosomes as well as gonadal hormones are likely to influence sex-specific aspects of local gyrification. Classic congenital adrenal hyperplasia (CAH) causes high levels of androgens during gestation in females, whereas levels in males are largely within the typical male range. Therefore, CAH provides an opportunity to study the possible effects of prenatal androgens on cortical gyrification. Here, we examined the vertex-wise absolute mean curvature-a common estimate for cortical gyrification-in individuals with CAH (33 women and 20 men) and pair-wise matched controls (33 women and 20 men). There was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex in five cortical regions, where gyrification was increased in women compared to men. These regions were located on the lateral surface of the brain, specifically left middle frontal (rostral and caudal), right inferior frontal, left inferior parietal, and right occipital. There was no cortical region where gyrification was increased in men compared to women. Our findings do not only confirm prior reports of increased cortical gyrification in female brains but also suggest that cortical gyrification is not significantly affected by prenatal androgen exposure. Instead, cortical gyrification might be determined by sex chromosomes either directly or indirectly-the latter potentially by affecting the underlying architecture of the cortex or the size of the intracranial cavity, which is smaller in women.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Women’s and Children’s Health, Uppsala University, Uppsala 75237, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala 75238, Sweden
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07747, Germany
- German Center for Mental Health (DZPG), Germany
| | - Debra Spencer
- Department of Psychology, University of Cambridge, Cambridge CB23RQ, UK
| | - Ajay Thankamony
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
- Weston Centre for Paediatric Endocrinology & Diabetes, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - Ieuan Hughes
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - Helen Simpson
- Department of Endocrinology and Diabetes, University College Hospital London, London NW12BU, UK
| | | | | | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge CB23RQ, UK
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Departments of Neuroradiology and Radiology, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
5
|
Anger JT, Case LK, Baranowski AP, Berger A, Craft RM, Damitz LA, Gabriel R, Harrison T, Kaptein K, Lee S, Murphy AZ, Said E, Smith SA, Thomas DA, Valdés Hernández MDC, Trasvina V, Wesselmann U, Yaksh TL. Pain mechanisms in the transgender individual: a review. FRONTIERS IN PAIN RESEARCH 2024; 5:1241015. [PMID: 38601924 PMCID: PMC11004280 DOI: 10.3389/fpain.2024.1241015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/25/2024] [Indexed: 04/12/2024] Open
Abstract
Specific Aim Provide an overview of the literature addressing major areas pertinent to pain in transgender persons and to identify areas of primary relevance for future research. Methods A team of scholars that have previously published on different areas of related research met periodically though zoom conferencing between April 2021 and February 2023 to discuss relevant literature with the goal of providing an overview on the incidence, phenotype, and mechanisms of pain in transgender patients. Review sections were written after gathering information from systematic literature searches of published or publicly available electronic literature to be compiled for publication as part of a topical series on gender and pain in the Frontiers in Pain Research. Results While transgender individuals represent a significant and increasingly visible component of the population, many researchers and clinicians are not well informed about the diversity in gender identity, physiology, hormonal status, and gender-affirming medical procedures utilized by transgender and other gender diverse patients. Transgender and cisgender people present with many of the same medical concerns, but research and treatment of these medical needs must reflect an appreciation of how differences in sex, gender, gender-affirming medical procedures, and minoritized status impact pain. Conclusions While significant advances have occurred in our appreciation of pain, the review indicates the need to support more targeted research on treatment and prevention of pain in transgender individuals. This is particularly relevant both for gender-affirming medical interventions and related medical care. Of particular importance is the need for large long-term follow-up studies to ascertain best practices for such procedures. A multi-disciplinary approach with personalized interventions is of particular importance to move forward.
Collapse
Affiliation(s)
- Jennifer T. Anger
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Laura K. Case
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| | - Andrew P. Baranowski
- Pelvic Pain Medicine and Neuromodulation, University College Hospital Foundation Trust, University College London, London, United Kingdom
| | - Ardin Berger
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Rebecca M. Craft
- Department of Psychology, Washington State University, Pullman, WA, United States
| | - Lyn Ann Damitz
- Division of Plastic and Reconstructive Surgery, University of North Carolina, Chapel Hill, NC, United States
| | - Rodney Gabriel
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Tracy Harrison
- Department of OB/GYN & Reproductive Sciences, University of California San Diego, San Diego, CA, United States
| | - Kirsten Kaptein
- Division of Plastic Surgery, University of California San Diego, San Diego, CA, United States
| | - Sanghee Lee
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Engy Said
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Stacey Abigail Smith
- Division of Infection Disease, The Hope Clinic of Emory University, Atlanta, GA, United States
| | - David A. Thomas
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD, United States
| | - Maria del C. Valdés Hernández
- Department of Neuroimaging Sciences, Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor Trasvina
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Ursula Wesselmann
- Departments of Anesthesiology and Perioperative Medicine/Division of Pain Medicine, Neurology and Psychology, and Consortium for Neuroengineering and Brain-Computer Interfaces, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Dumitru ML. Brain asymmetry is globally different in males and females: exploring cortical volume, area, thickness, and mean curvature. Cereb Cortex 2023; 33:11623-11633. [PMID: 37851852 PMCID: PMC10724869 DOI: 10.1093/cercor/bhad396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Brain asymmetry is a cornerstone in the development of higher-level cognition, but it is unclear whether and how it differs in males and females. Asymmetry has been investigated using the laterality index, which compares homologous regions as pairwise weighted differences between the left and the right hemisphere. However, if asymmetry differences between males and females are global instead of pairwise, involving proportions between multiple brain areas, novel methodological tools are needed to evaluate them. Here, we used the Amsterdam Open MRI collection to investigate sexual dimorphism in brain asymmetry by comparing laterality index with the distance index, which is a global measure of differences within and across hemispheres, and with the subtraction index, which compares pairwise raw values in the left and right hemisphere. Machine learning models, robustness tests, and group analyses of cortical volume, area, thickness, and mean curvature revealed that, of the three indices, distance index was the most successful biomarker of sexual dimorphism. These findings suggest that left-right asymmetry in males and females involves global coherence rather than pairwise contrasts. Further studies are needed to investigate the biological basis of local and global asymmetry based on growth patterns under genetic, hormonal, and environmental factors.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020 Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Postboks 7807, 5020 Bergen, Norway
| |
Collapse
|
7
|
Kabbej N, Ashby FJ, Riva A, Gamlin PD, Mandel RJ, Kunta A, Rouse CJ, Heldermon CD. Sex differences in brain transcriptomes of juvenile Cynomolgus macaques. RESEARCH SQUARE 2023:rs.3.rs-3422091. [PMID: 38045237 PMCID: PMC10690328 DOI: 10.21203/rs.3.rs-3422091/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background: Behavioral, social, and physical characteristics are posited to distinguish the sexes, yet research on transcription-level sexual differences in the brain is limited. Here, we investigated sexually divergent brain transcriptomics in prepubertal cynomolgus macaques, a commonly used surrogate species to humans. Methods: A transcriptomic profile using RNA sequencing was generated for the temporal lobe, ventral midbrain, and cerebellum of 3 female and 3 male cynomolgus macaques previously treated with an Adeno-associated virus vector mix. Statistical analyses to determine differentially expressed protein-coding genes in all three lobes were conducted using DeSeq2 with a false discovery rate corrected P value of .05. Results: We identified target genes in the temporal lobe, ventral midbrain, and cerebellum with functions in translation, immunity, behavior, and neurological disorders that exhibited statistically significant sexually divergent expression. Conclusions: We provide potential mechanistic insights to the epidemiological differences observed between the sexes with regards to mental health and infectious diseases, such as COVID19. Our results provide pre-pubertal information on sexual differences in non-human primate brain transcriptomics and may provide insight to health disparities between the biological sexes in humans.
Collapse
|
8
|
Castro-Fonseca E, Morais V, da Silva CG, Wollner J, Freitas J, Mello-Neto AF, Oliveira LE, de Oliveira VC, Leite REP, Alho AT, Rodriguez RD, Ferretti-Rebustini REL, Suemoto CK, Jacob-Filho W, Nitrini R, Pasqualucci CA, Grinberg LT, Tovar-Moll F, Lent R. The influence of age and sex on the absolute cell numbers of the human brain cerebral cortex. Cereb Cortex 2023; 33:8654-8666. [PMID: 37106573 PMCID: PMC10321098 DOI: 10.1093/cercor/bhad148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The human cerebral cortex is one of the most evolved regions of the brain, responsible for most higher-order neural functions. Since nerve cells (together with synapses) are the processing units underlying cortical physiology and morphology, we studied how the human neocortex is composed regarding the number of cells as a function of sex and age. We used the isotropic fractionator for cell quantification of immunocytochemically labeled nuclei from the cerebral cortex donated by 43 cognitively healthy subjects aged 25-87 years old. In addition to previously reported sexual dimorphism in the medial temporal lobe, we found more neurons in the occipital lobe of men, higher neuronal density in women's frontal lobe, but no sex differences in the number and density of cells in the other lobes and the whole neocortex. On average, the neocortex has ~10.2 billion neurons, 34% in the frontal lobe and the remaining 66% uniformly distributed among the other 3 lobes. Along typical aging, there is a loss of non-neuronal cells in the frontal lobe and the preservation of the number of neurons in the cortex. Our study made possible to determine the different degrees of modulation that sex and age evoke on cortical cellularity.
Collapse
Affiliation(s)
- Emily Castro-Fonseca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Viviane Morais
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila G da Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Wollner
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline Freitas
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arthur F Mello-Neto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vilson C de Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata E P Leite
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Ana T Alho
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Roberta D Rodriguez
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata E L Ferretti-Rebustini
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Medical Surgical Nursing, University of São Paulo School of Nursing, São Paulo, Brazil
| | - Claudia K Suemoto
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Medical Research in Aging (LIM-66), University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Nitrini
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos A Pasqualucci
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Lea T Grinberg
- Biobank for Aging Studies, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- National Institute of Translational Neuroscience, Ministry of Science and Technology, São Paulo, Brazil
| |
Collapse
|
9
|
Bogolepova IN, Krotenkova MV, Konovalov RN, Agapov PA, Malofeeva IG, Bikmeev AT. [Gender morphology of Broca's motor speech area]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:96-100. [PMID: 37796074 DOI: 10.17116/jnevro202312309196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To study the general patterns and differences in the macroscopic structure of Broca's motor speech area in the left and right hemispheres of male and female brains. MATERIAL AND METHODS The study was conducted on MRI images of the brains of 9 men and 9 women (36 hemispheres in total). All the people were between the ages of 20 and 30, without any mental or neurological disorders. The localization and structure of the main sulci and gyri of Broca's area, namely the pars triangularis and pars opercularis, were studied. In addition, the topography of the main sulci in Broca's motor speech area, namely their shape, length, and relative position to the other sulci, was analyzed. RESULTS The features of the localization of the sulci in Broca's area, the differences in the number of additional sulci in the pars triangularis and pars opercularis of male and female brains, as well as the degree of asymmetry of Broca's area in the left and right hemispheres of the brains of men and women were established.In modern neuroscience a new scientific direction of genderology, which studies the behavior and cognitive functions of males and females, is rapidly developing. CONCLUSION Broca's motor speech area of the brain of men and women differs in macroscopic structure.
Collapse
Affiliation(s)
| | | | | | - P A Agapov
- Research Center of Neurology, Moscow, Russia
| | | | - A T Bikmeev
- Bashkir State Medical University, Ufa, Russia
| |
Collapse
|
10
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
11
|
Cha M, Eum YJ, Kim K, Kim L, Bak H, Sohn JH, Cheong C, Lee BH. Diffusion tensor imaging reveals sex differences in pain sensitivity of rats. Front Mol Neurosci 2023; 16:1073963. [PMID: 36937048 PMCID: PMC10017469 DOI: 10.3389/fnmol.2023.1073963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Studies on differences in brain structure and function according to sex are reported to contribute to differences in behavior and cognition. However, few studies have investigated brain structures or used tractography to investigate gender differences in pain sensitivity. The identification of tracts involved in sex-based structural differences that show pain sensitivity has remained elusive to date. Here, we attempted to demonstrate the sex differences in pain sensitivity and to clarify its relationship with brain structural connectivity. In this study, pain behavior test and brain diffusion tensor imaging (DTI) were performed in male and female rats and tractography was performed on the whole brain using fiber tracking software. We selected eight brain regions related to pain and performed a tractography analysis of these regions. Fractional anisotropy (FA) measurements using automated tractography revealed sex differences in the anterior cingulate cortex (ACC)-, prefrontal cortex (PFC)-, and ventral posterior thalamus-related brain connections. In addition, the results of the correlation analysis of pain sensitivity and DTI tractography showed differences in mean, axial, and radial diffusivities, as well as FA. This study revealed the potential of DTI for exploring circuits involved in pain sensitivity. The behavioral and functional relevance's of measures derived from DTI tractography is demonstrated by their relationship with pain sensitivity.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Ji Eum
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Leejeong Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hun Sohn
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
- *Correspondence: Chaejoon Cheong,
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Bae Hwan Lee,
| |
Collapse
|
12
|
The Impact of Gender-affirming Hormone Therapy on Anatomic Structures of the Brain Among Transgender Individuals. J Psychiatr Pract 2022; 28:328-334. [PMID: 35797690 DOI: 10.1097/pra.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the growing numbers of individuals who identify as transgender, this population continues to face worse mental health outcomes compared with the general population. Transgender individuals attempt suicide at a rate that is almost 9 times that of the general population. Few studies have reported on the positive effect of gender-affirming hormone therapy on mental health outcomes in transgender individuals. It is likely that this effect is due in part to the physiological responses that occur as a result of hormone therapy that mitigate incongruencies between one's gender identity and assigned sex. To our knowledge, only limited studies have shown a connection between gender-affirming hormone therapy, its effect on the brain's structure, and long-term effects that this may have on mental health outcomes. The authors propose that, in addition to the physiological responses that occur as a direct result of hormone therapy and the validation that results from receiving gender-affirming medical care, mental health outcomes in transgender individuals may also improve due to the role that hormone therapy plays in altering the brain's structure, possibly shaping the brain to become more like that of the gender with which an individual identifies. In this article, the authors review the current literature on the effects that gender-affirming hormone therapy has on mental health outcomes and anatomic structures of the brain in transgender individuals.
Collapse
|
13
|
Bhattacharjee S, Kashyap R, Goodwill AM, O'Brien BA, Rapp B, Oishi K, Desmond JE, Chen SHA. Sex difference in tDCS current mediated by changes in cortical anatomy: A study across young, middle and older adults. Brain Stimul 2022; 15:125-140. [PMID: 34826627 PMCID: PMC9041842 DOI: 10.1016/j.brs.2021.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The observed variability in the effects of transcranial direct current stimulation (tDCS) is influenced by the amount of current reaching the targeted region-of-interest (ROI). Age and sex might affect current density at target ROI due to their impact on cortical anatomy. The present tDCS simulation study investigates the effects of cortical anatomical parameters (volumes, dimension, and torque) on simulated tDCS current density in healthy young, middle-aged, and older males and females. METHODOLOGY Individualized head models from 240 subjects (120 males, 18-87 years of age) were used to identify the estimated current density (2 mA current intensity, 25 cm2 electrode) from two simulated tDCS montages (CP5_CZ and F3_FP2) targeting the inferior parietal lobule (IPL) and middle frontal gyrus (MFG), respectively. Cortical parameters including segmented brain volumes (cerebrospinal fluid [CSF], grey and white matter), cerebral-dimensions (length/width &length/height) and brain-torque (front and back shift, petalia, and bending) were measured using the magnetic resonance images (MRIs) from each subject. The present study estimated sex differences in current density at these target ROIs mediated by these cortical parameters within each age group. RESULTS For both tDCS montages, females in the older age group received higher current density than their male counterparts at the target ROIs. No sex differences were observed in the middle-aged group. Males in the younger age group had a higher current density than females, only for the parietal montage. Across all age groups, CSF, and grey matter volumes significantly predicted the current intensity estimated at the target sites. In the older age group only, brain-torque was a significant mediator of the sex difference. CONCLUSIONS Our findings demonstrate the presence of sex differences in the simulated tDCS current density, however this pattern differed across age groups and stimulation locations. Future studies should consider influence of age and sex on individual cortical anatomy and tailor tDCS stimulation parameters accordingly.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore.
| | - Alicia M Goodwill
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore; Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore.
| | - Beth Ann O'Brien
- Centre for Research in Child Development (CRCD), National Institute of Education, Singapore.
| | - Brenda Rapp
- The Johns Hopkins University, Krieger School of Arts and Sciences, Baltimore, United States.
| | - Kenichi Oishi
- The Johns Hopkins University School of Medicine, Baltimore, United States.
| | - John E Desmond
- The Johns Hopkins University School of Medicine, Baltimore, United States.
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.
| |
Collapse
|
14
|
Peterson MR, Cherukuri V, Paulson JN, Ssentongo P, Kulkarni AV, Warf BC, Monga V, Schiff SJ. Normal childhood brain growth and a universal sex and anthropomorphic relationship to cerebrospinal fluid. J Neurosurg Pediatr 2021; 28:458-468. [PMID: 34243147 PMCID: PMC8594737 DOI: 10.3171/2021.2.peds201006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The study of brain size and growth has a long and contentious history, yet normal brain volume development has yet to be fully described. In particular, the normal brain growth and cerebrospinal fluid (CSF) accumulation relationship is critical to characterize because it is impacted in numerous conditions of early childhood in which brain growth and fluid accumulation are affected, such as infection, hemorrhage, hydrocephalus, and a broad range of congenital disorders. The authors of this study aim to describe normal brain volume growth, particularly in the setting of CSF accumulation. METHODS The authors analyzed 1067 magnetic resonance imaging scans from 505 healthy pediatric subjects from birth to age 18 years to quantify component and regional brain volumes. The volume trajectories were compared between the sexes and hemispheres using smoothing spline ANOVA. Population growth curves were developed using generalized additive models for location, scale, and shape. RESULTS Brain volume peaked at 10-12 years of age. Males exhibited larger age-adjusted total brain volumes than females, and body size normalization procedures did not eliminate this difference. The ratio of brain to CSF volume, however, revealed a universal age-dependent relationship independent of sex or body size. CONCLUSIONS These findings enable the application of normative growth curves in managing a broad range of childhood diseases in which cognitive development, brain growth, and fluid accumulation are interrelated.
Collapse
Affiliation(s)
- Mallory R. Peterson
- Center for Neural Engineering, The Pennsylvania State University, University Park
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Venkateswararao Cherukuri
- Center for Neural Engineering, The Pennsylvania State University, University Park
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park
| | - Joseph N. Paulson
- Department of Biostatistics, Product Development, Genentech Inc., South San Francisco, California
| | - Paddy Ssentongo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park
| | - Abhaya V. Kulkarni
- Department of Neurosurgery, University of Toronto
- Department of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin C. Warf
- Department of Neurosurgery, Harvard Medical School
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts
| | - Vishal Monga
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park
| | - Steven J. Schiff
- Center for Neural Engineering, The Pennsylvania State University, University Park
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park
- Department of Neurosurgery, The Pennsylvania State University, University Park
- Department of Physics, The Pennsylvania State University, University Park
| |
Collapse
|
15
|
Mehrabinejad MM, Rafei P, Sanjari Moghaddam H, Sinaeifar Z, Aarabi MH. Sex Differences are Reflected in Microstructural White Matter Alterations of Musical Sophistication: A Diffusion MRI Study. Front Neurosci 2021; 15:622053. [PMID: 34366766 PMCID: PMC8339302 DOI: 10.3389/fnins.2021.622053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human-specified ability to engage with different kinds of music in sophisticated ways is named “Musical Sophistication.” Herein, we investigated specific white matter (WM) tracts that are associated with musical sophistication and musicality in both genders, separately, using Diffusion MRI connectometry approach. We specifically aimed to explore potential sex differences regarding WM alterations correlated with musical sophistication. Methods: 123 healthy participants [70 (56.9%) were male, mean age = 36.80 ± 18.86 year], who were evaluated for musical sophistication using Goldsmiths Musical Sophistication Index (Gold-MSI) self-assessment instrument from the LEMON database, were recruited in this study. The WM correlates of two Gold-MSI subscales (active engagement and music training) were analyzed. Images were prepared and analyzed with diffusion connectometry to construct the local connectome. Multiple regression models were then fitted to address the correlation of local connectomes with Gold-MSI components with the covariates of age and handedness. Results: a significant positive correlation between WM integrity in the corpus callosum (CC), right corticospinal tract (CST), cingulum, middle cerebellar peduncle (MCP), bilateral parieto-pontine tract, bilateral cerebellum, and left arcuate fasciculus (AF) and both active engagement [false discovery rate (FDR) = 0.008] and music training (FDR = 0.057) was detected in males. However, WM integrity in the body of CC, MCP, and cerebellum in females showed an inverse association with active engagement (FDR = 0.046) and music training (FDR = 0.032). Conclusion: WM microstructures with functional connection with motor and somatosensory areas (CST, cortico-pontine tracts, CC, cerebellum, cingulum, and MCP) and language processing area (AF) have significant correlation with music engagement and training. Our findings show that these associations are different between males and females, which could potentially account for distinctive mechanisms related to musical perception and musical abilities across genders.
Collapse
Affiliation(s)
| | - Parnian Rafei
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | | | - Zeinab Sinaeifar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
16
|
Luo L, Xie F, Wang Y, Qin LQ, Yin JY, Wan Z. Taller adult height is associated with better performance of cognitive trajectories in Chinese over 45 years old: Evidence from the China Health and Retirement Longitudinal Study. Geriatr Gerontol Int 2021; 21:732-740. [PMID: 34134174 DOI: 10.1111/ggi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
AIM The association between adult height and follow-up cognition requires an update in China. We aimed to examine the association between baseline height and follow-up cognitive trajectories in Chinese subjects from the China Health and Retirement Longitudinal Study (CHARLS). METHODS A total of 6508 adults aged 45 years or older from the CHARLS were included for analysis. Latent class growth modeling was used to determine cognitive trajectories of 2011, 2013 and 2015. Multivariable linear regression and logistic regression models were used to examine the association between baseline adult height and cognitive performance and trajectories, respectively. RESULTS At baseline, an increment of 1 SD (8.3 cm) of height was associated with a higher global cognitive score (β = 0.492, 95% CI, 0.348-0.636), verbal episodic memory (β = 0.155, 95% CI, 0.086-0.224) and mental status (β = 0.337, 95% CI, 0.225-0.449). These associations were still observed even when stratified by sex. Prospectively, for females, the third quartile of height level (i.e., 155 to 158 cm) was associated with a better global cognitive function trajectory (OR = 1.627, P = 0.001, P for trend = 0.009) and mental status trajectory (OR = 1.456, P = 0.012, P for trend = 0.047); and the tallest height level (i.e., 159 cm or taller) was related to a better verbal episodic memory trajectory (OR = 1.574, P = 0.017). For males, no associations were observed. CONCLUSION Increased stature might be associated with better cognitive trajectories for subjects in China. Geriatr Gerontol Int 2021; 21: 732-740.
Collapse
Affiliation(s)
- Lan Luo
- School of Public Health, Soochow University, Suzhou, China
| | - Fangfei Xie
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yun Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Li-Qiang Qin
- School of Public Health, Soochow University, Suzhou, China
| | - Jie-Yun Yin
- School of Public Health, Soochow University, Suzhou, China
| | - Zhongxiao Wan
- School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Besson P, Parrish T, Katsaggelos AK, Bandt SK. Geometric deep learning on brain shape predicts sex and age. Comput Med Imaging Graph 2021; 91:101939. [PMID: 34082280 DOI: 10.1016/j.compmedimag.2021.101939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
The complex relationship between the shape and function of the human brain remains elusive despite extensive studies of cortical folding over many decades. The analysis of cortical gyrification presents an opportunity to advance our knowledge about this relationship, and better understand the etiology of a variety of pathologies involving diverse degrees of cortical folding abnormalities. Hypothesis-driven surface-based approaches have been shown to be particularly efficient in their ability to accurately describe unique features of the folded sheet topology of the cortical ribbon. However, the utility of these approaches has been blunted by their reliance on manually defined features aiming to capture the relevant geometric properties of cortical folding. In this paper, we propose an entirely novel, data-driven deep-learning based method to analyze the brain's shape that eliminates this reliance on manual feature definition. This method builds on the emerging field of geometric deep-learning and uses traditional convolutional neural network architecture uniquely adapted to the surface representation of the cortical ribbon. This method is a complete departure from prior brain MRI CNN investigations, all of which have relied on three dimensional MRI data and interpreted features of the MRI signal for prediction. MRI data from 6410 healthy subjects obtained from 11 publicly available data repositories were used for analysis. Ages ranged from 6 to 89 years. Both inner and outer cortical surfaces were extracted using Freesurfer and then registered into MNI space. For purposes of method development, both a classification and regression challenge were introduced for network learning including sex and age prediction, respectively. Two independent graph convolutional neural networks (gCNNs) were trained, the first of which to predict subject's self-identified sex, the second of which to predict subject's age. Class Activation Maps (CAM) and Regression Activation Maps (RAM) were constructed respectively to map the topographic distribution of the most influential brain regions involved in the decision process for each gCNN. Using this approach, the gCNN was able to predict a subject's sex with an average accuracy of 87.99 % and achieved a Person's coefficient of correlation of 0.93 with an average absolute error 4.58 years when predicting a subject's age. We believe this shape-based convolutional classifier offers a novel, data-driven approach to define biomedically relevant features from the brain at both the population and single subject levels and therefore lays a critical foundation for future precision medicine applications.
Collapse
Affiliation(s)
- Pierre Besson
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago IL, United States
| | - Todd Parrish
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Aggelos K Katsaggelos
- Department of Electrical Engineering & Computer Science, Northwestern University, McCormick School of Engineering, Evanston, IL, United States
| | - S Kathleen Bandt
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago IL, United States.
| |
Collapse
|
18
|
Chabrun F, Dieu X, May-Panloup P, Chupin S, Bourreau J, Henrion D, Letournel F, Procaccio V, Bonneau D, Lenaers G, Mirebeau-Prunier D, Chao de la Barca JM, Reynier P. Metabolomic Sexual Dimorphism of the Mouse Brain is Predominantly Abolished by Gonadectomy with a Higher Impact on Females. J Proteome Res 2021; 20:2772-2779. [PMID: 33851846 DOI: 10.1021/acs.jproteome.1c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The importance of sexual dimorphism of the mouse brain metabolome was recently highlighted, in addition to a high regional specificity found between the frontal cortex, the cerebellum, and the brain stem. To address the origin of this dimorphism, we performed gonadectomy on both sexes, followed by a metabolomic study targeting 188 metabolites in the three brain regions. While sham controls, which underwent the same surgical procedure without gonadectomy, reproduced the regional sexual dimorphism of the metabolome previously identified, no sex difference was identifiable after gonadectomy, through both univariate and multivariate analyses. These experiments also made it possible to identify which sex was responsible for the dimorphism for 35 metabolites. The female sex contributed to the difference for more than 80% of them. Our results show that gonads are the main contributors to the brain sexual dimorphism previously observed, especially in females.
Collapse
Affiliation(s)
- Floris Chabrun
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Xavier Dieu
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Pascale May-Panloup
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biologie de la Reproduction, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Jennifer Bourreau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Daniel Henrion
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Franck Letournel
- Laboratoire de Neurobiologie et Neuropathologie, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MINT, Centre National de la Recherche Scientifique (CNRS) 6021, Institut National de la Santé et de la Recherche Médicale (INSERM) U1066, Université d'Angers, 49933 Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Dominique Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Delphine Mirebeau-Prunier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Juan Manuel Chao de la Barca
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| |
Collapse
|
19
|
Dump the "dimorphism": Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev 2021; 125:667-697. [PMID: 33621637 DOI: 10.1016/j.neubiorev.2021.02.026] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/01/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
With the explosion of neuroimaging, differences between male and female brains have been exhaustively analyzed. Here we synthesize three decades of human MRI and postmortem data, emphasizing meta-analyses and other large studies, which collectively reveal few reliable sex/gender differences and a history of unreplicated claims. Males' brains are larger than females' from birth, stabilizing around 11 % in adults. This size difference accounts for other reproducible findings: higher white/gray matter ratio, intra- versus interhemispheric connectivity, and regional cortical and subcortical volumes in males. But when structural and lateralization differences are present independent of size, sex/gender explains only about 1% of total variance. Connectome differences and multivariate sex/gender prediction are largely based on brain size, and perform poorly across diverse populations. Task-based fMRI has especially failed to find reproducible activation differences between men and women in verbal, spatial or emotion processing due to high rates of false discovery. Overall, male/female brain differences appear trivial and population-specific. The human brain is not "sexually dimorphic."
Collapse
|
20
|
Wang X, Cheng B, Wang S, Lu F, Luo Y, Long X, Kong D. Distinct grey matter volume alterations in adult patients with panic disorder and social anxiety disorder: A systematic review and voxel-based morphometry meta-analysis. J Affect Disord 2021; 281:805-823. [PMID: 33243552 DOI: 10.1016/j.jad.2020.11.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/18/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The paradox of similar diagnostic criteria but potentially different neuropathologies in panic disorder (PD) and social anxiety disorder (SAD) needs to be clarified. METHODS We performed a qualitative systematic review and a quantitative whole-brain voxel-based morphometry (VBM) meta-analysis with an anisotropic effect-size version of seed-based D mapping (AES-SDM) to explore whether the alterations of grey matter volume (GMV) in PD are similar to or different from those in SAD, together with potential confounding factors. RESULTS A total of thirty-one studies were eligible for inclusion, eighteen of which were included in the meta-analysis. Compared to the respective healthy controls (HC), qualitative and quantitative analyses revealed smaller cortical-subcortical GMVs in PD patients in brain areas including the prefrontal and temporal-parietal cortices, striatum, thalamus and brainstem, predominantly right-lateralized regions, and larger GMVs in the prefrontal and temporal-parietal-occipital cortices, and smaller striatum and thalamus in SAD patients. Quantitatively, the right inferior frontal gyrus (IFG) deficit was specifically implicated in PD patients, whereas left striatum-thalamus deficits were specific to SAD patients, without shared GMV alterations in both disorders. Sex, the severity of clinical symptoms, psychiatric comorbidity, and concomitant medication use were negatively correlated with smaller regional GMV alterations in PD patients. CONCLUSION PD and SAD may represent different anxiety sub-entities at the neuroanatomical phenotypes level, with different specific neurostructural deficits in the right IFG of PD patients, and the left striatum and thalamus of SAD patients. This combination of differences and specificities can potentially be used to guide the development of diagnostic biomarkers for these disorders.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China.
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fengmei Lu
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China
| | - Ya Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Di Kong
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China
| |
Collapse
|
21
|
Gaillard A, Fehring DJ, Rossell SL. Sex differences in executive control: A systematic review of functional neuroimaging studies. Eur J Neurosci 2021; 53:2592-2611. [PMID: 33423339 DOI: 10.1111/ejn.15107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 01/21/2023]
Abstract
The number of studies investigating sex differences in executive functions, particularly those using human functional neuroimaging techniques, has risen dramatically in the past decade. However, the influences of sex on executive function are still underexplored and poorly characterized. To address this, we conducted a systematic literature review of functional neuroimaging studies investigating sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Following the application of exclusion criteria, 21 studies were included, with a total of 677 females and 686 males. Ten of these studies were fMRI and PET, eight were EEG, and three were NIRS. At present, there is evidence for sex differences in the neural networks underlying all tasks of executive control included in this review suggesting males and females engage different strategies depending on task demands. There was one task exception, the 2-Back task, which showed no sex differences. Due to methodological variability and the involvement of multiple neural networks, a simple overarching statement with regard to gender differences during executive control cannot be provided. As such, we discuss limitations within the current literature and methodological considerations that should be employed in future research. Importantly, sex differences in neural mechanisms are present in the majority of tasks assessed, and thus should not be ignored in future research. PROSPERO registration information: CRD42019124772.
Collapse
Affiliation(s)
- Alexandra Gaillard
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia
| | - Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC., Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC., Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia.,Psychiatry, St Vincent's Hospital, Melbourne, VIC., Australia
| |
Collapse
|
22
|
Schmitt JE, Raznahan A, Liu S, Neale MC. The Heritability of Cortical Folding: Evidence from the Human Connectome Project. Cereb Cortex 2020; 31:702-715. [PMID: 32959043 DOI: 10.1093/cercor/bhaa254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying cortical folding are incompletely understood. Prior studies have suggested that individual differences in sulcal depth are genetically mediated, with deeper and ontologically older sulci more heritable than others. In this study, we examine FreeSurfer-derived estimates of average convexity and mean curvature as proxy measures of cortical folding patterns using a large (N = 1096) genetically informative young adult subsample of the Human Connectome Project. Both measures were significantly heritable near major sulci and primary fissures, where approximately half of individual differences could be attributed to genetic factors. Genetic influences near higher order gyri and sulci were substantially lower and largely nonsignificant. Spatial permutation analysis found that heritability patterns were significantly anticorrelated to maps of evolutionary and neurodevelopmental expansion. We also found strong phenotypic correlations between average convexity, curvature, and several common surface metrics (cortical thickness, surface area, and cortical myelination). However, quantitative genetic models suggest that correlations between these metrics are largely driven by nongenetic factors. These findings not only further our understanding of the neurobiology of gyrification, but have pragmatic implications for the interpretation of heritability maps based on automated surface-based measurements.
Collapse
Affiliation(s)
- J Eric Schmitt
- Departments of Radiology and Psychiatry, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Michael C Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298-980126, USA
| |
Collapse
|
23
|
Adeli E, Zhao Q, Zahr NM, Goldstone A, Pfefferbaum A, Sullivan EV, Pohl KM. Deep learning identifies morphological determinants of sex differences in the pre-adolescent brain. Neuroimage 2020; 223:117293. [PMID: 32841716 PMCID: PMC7780846 DOI: 10.1016/j.neuroimage.2020.117293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The application of data-driven deep learning to identify sex differences in developing brain structures of pre-adolescents has heretofore not been accomplished. Here, the approach identifies sex differences by analyzing the minimally processed MRIs of the first 8144 participants (age 9 and 10 years) recruited by the Adolescent Brain Cognitive Development (ABCD) study. The identified pattern accounted for confounding factors (i.e., head size, age, puberty development, socioeconomic status) and comprised cerebellar (corpus medullare, lobules III, IV/V, and VI) and subcortical (pallidum, amygdala, hippocampus, parahippocampus, insula, putamen) structures. While these have been individually linked to expressing sex differences, a novel discovery was that their grouping accurately predicted the sex in individual pre-adolescents. Another novelty was relating differences specific to the cerebellum to pubertal development. Finally, we found that reducing the pattern to a single score not only accurately predicted sex but also correlated with cognitive behavior linked to working memory. The predictive power of this score and the constellation of identified brain structures provide evidence for sex differences in pre-adolescent neurodevelopment and may augment understanding of sex-specific vulnerability or resilience to psychiatric disorders and presage sex-linked learning disabilities.
Collapse
Affiliation(s)
- Ehsan Adeli
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Qingyu Zhao
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Natalie M Zahr
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Aimee Goldstone
- Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
24
|
DeCasien AR, Higham JP. Relative Cerebellum Size Is Not Sexually Dimorphic across Primates. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:93-101. [PMID: 32791505 DOI: 10.1159/000509070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Substantive sex differences in behavior and cognition are found in humans and other primates. However, potential sex differences in primate neuroanatomy remain largely unexplored. Here, we investigate sex differences in the relative size of the cerebellum, a region that has played a major role in primate brain evolution and that has been associated with cognitive abilities that may be subject to sexual selection in primates. METHODS We compiled individual volumetric and sex data from published data sources and used MCMC generalized linear mixed models to test for sex effects in relative cerebellar volume while controlling for phylogenetic relationships between species. Given that the cerebellum is a functionally heterogeneous structure involved in multiple complex cognitive processes that may be under selection in males or females within certain species, and that sexual selection pressures vary so greatly across primate species, we predicted there would be no sex difference in the relative size of the cerebellum across primates. RESULTS Our results support our prediction, suggesting there is no consistent sex difference in relative cerebellum size. CONCLUSION This work suggests that the potential for sex differences in relative cerebellum size has been subject to either developmental constraint or lack of consistent selection pressures, and highlights the need for more individual-level primate neuroanatomical data to facilitate intra- and inter-specific study of brain sexual dimorphism.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, New York, USA, .,New York Consortium in Evolutionary Primatology, New York, New York, USA,
| | - James P Higham
- Department of Anthropology, New York University, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| |
Collapse
|
25
|
Zhang T, Chen C, Chen C, Wei W. Gender differences in the development of semantic and spatial processing of numbers. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2020; 38:391-414. [PMID: 32212402 DOI: 10.1111/bjdp.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2020] [Indexed: 01/29/2023]
Abstract
This study recruited kindergarteners and first graders to investigate gender and grade differences in semantic and spatial processing of number magnitude. Results based on the Bayesian statistics showed that (1) there was extreme evidence in favour of grade differences in both semantic processing and spatial processing; (2) there were no gender differences in semantic processing; and (3) boys developed earlier than girls in spatial processing of numbers, especially for the more difficult task. These results are discussed in terms of gender differences in cognitive mechanisms underlying semantic and spatial processing of number magnitude.
Collapse
Affiliation(s)
- Tingyan Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, California
| | - Chen Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou, China
| | - Wei Wei
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou, China
| |
Collapse
|
26
|
Inkelis SM, Moore EM, Bischoff-Grethe A, Riley EP. Neurodevelopment in adolescents and adults with fetal alcohol spectrum disorders (FASD): A magnetic resonance region of interest analysis. Brain Res 2020; 1732:146654. [PMID: 31930998 DOI: 10.1016/j.brainres.2020.146654] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The neurodevelopmental trajectory in individuals with fetal alcohol spectrum disorders (FASD) has not been well characterized. We examined age-related differences in the volume of the corpus callosum, basal ganglia, and cerebellum across adolescence and young adulthood, due to the sensitivity of these regions to prenatal alcohol exposure. T1-weighted anatomical magnetic resonance images (MRI) were acquired from a cross-sectional sample of subjects 13-30 years old who had received an alcohol-related diagnosis (FASD, n = 107) and typically developing controls (CON, n = 56). FreeSurfer v5.3 was used to obtain volumetric data for the corpus callosum, caudate, putamen, pallidum, and cerebellum. Analysis of variance (ANOVA) was used to examine the effects of group (FASD, CON), sex, and age on region volume. Data were analyzed with and without correction for intracranial volume (ICV). All subregions were significantly smaller in the FASD group compared to controls, and these findings persisted even after ICV correction. Furthermore, the FASD and control groups differed in their relationship between age and total volume of the corpus callosum, caudate, and cerebellum. Specifically, older FASD individuals had smaller total volume in these regions; this relationship was not seen in the control group. Control males demonstrated larger volumes than control females in all regions prior to ICV correction; however, sex differences were attenuated in the FASD group in both the pallidum and cerebellum. Sex differences remained after ICV correction in the pallidum and cerebellum. These cross-sectional findings suggest that at least some brain regions may become smaller at an earlier than expected age in individuals with FASD, and that sex is an important factor to consider when examining neural structures in FASD. Further evaluation is necessary using longitudinal methods and including older ages.
Collapse
Affiliation(s)
- Sarah M Inkelis
- Center for Behavioral Teratology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA.
| | - Eileen M Moore
- Center for Behavioral Teratology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA.
| | | | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA.
| |
Collapse
|
27
|
Metabolomics reveals highly regional specificity of cerebral sexual dimorphism in mice. Prog Neurobiol 2020; 184:101698. [DOI: 10.1016/j.pneurobio.2019.101698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/25/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
|
28
|
Hammerl M, Zagler M, Griesmaier E, Janjic T, Gizewski ER, Kiechl-Kohlendorfer U, Neubauer V. Reduced Cerebellar Size at Term-Equivalent Age Is Related to a 17% Lower Mental Developmental Index in Very Preterm Infants without Brain Injury. Neonatology 2020; 117:57-64. [PMID: 31480070 DOI: 10.1159/000502491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/01/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cerebellar injury is increasingly recognized as a relevant complication of premature birth. However, the prevalence of reduced cerebellar growth and its consequences for neurodevelopmental outcome in preterm infants without overt brain injury remain to be defined in detail. The aim of this study was to assess the transcerebellar diameter (TCD) at term-equivalent age (TEA) in very preterm infants without brain injury and to evaluate whether TCD is related to neurodevelopmental outcome in this population. METHODS Very preterm infants underwent magnetic resonance imaging at TEA. Infants with any grade of supra- or infratentorial brain injury were excluded. TCD was measured and categorized using existing cut-off values as normal TCD and mild or severe TCD reduction. Psychomotor Developmental index (PDI) and Mental Developmental index (MDI) were assessed using Bayley Scales of Infant Development II and III at a corrected age of 2 years. RESULTS A total of 166 infants with a mean gestational age of 29.9 ± 1.8 weeks and a mean birth weight of 1,317 ± 393 g were included. Mean TCD of girls was significantly lower compared to the mean TCD of boys (p = 0.004). TCD reduction was present in 8 infants (4.8%). Infants with a mild TCD reduction achieved lower mean MDI than infants with normal TCD (p = 0.021). DISCUSSION We found that reduced TCD was associated with a 17% lower mean MDI at a corrected age of 2 years. Thus, TCD at TEA may be used as an imaging marker for adverse cognitive outcome in the apparently low-risk group of preterm infants without brain injury.
Collapse
Affiliation(s)
- Marlene Hammerl
- Neonatology, Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Zagler
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Griesmaier
- Neonatology, Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
| | - Tanja Janjic
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vera Neubauer
- Neonatology, Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria,
| |
Collapse
|
29
|
Oishi K, Chotiyanonta J, Wu D, Miller MI, Mori S, Oishi K. Developmental trajectories of the human embryologic brain regions. Neurosci Lett 2019; 708:134342. [PMID: 31228595 DOI: 10.1016/j.neulet.2019.134342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
Vertebrate brains commonly consist of five basic embryologic anatomical regions: telencephalon; diencephalon; mesencephalon; metencephalon; and myelencephalon. The proportions of these regions vary widely across species and developmental stages. Investigation of their growth trajectories, therefore, has the potential to provide an understanding of the substrates of inter-species variation in neuroanatomy and function. To investigate the volumetric growth trajectories, structural magnetic resonance imaging (MRI) scans obtained from 618 healthy children (334 boys, 284 girls; ages 3-17 years old) were parcellated into five regions for the volume quantification. The sex- and region-specific growth trajectories were identified, and the most active growth was seen in the mesencephalon for both boys and girls. Whether similar regional growth patterns are seen in other species, or whether such patterns are related to evolution, are important questions that must be elucidated in the future.
Collapse
Affiliation(s)
- Kumiko Oishi
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Susumu Mori
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kenichi Oishi
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | | |
Collapse
|
30
|
Jäncke L, Liem F, Merillat S. Weak correlations between body height and several brain metrics in healthy elderly subjects. Eur J Neurosci 2019; 50:3578-3589. [DOI: 10.1111/ejn.14501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Lutz Jäncke
- Division Neuropsychology Institute of Psychology University of Zurich Zurich Switzerland
- University Research Priority Program (URPP) “Dynamics of Healthy Aging” University of Zurich Zurich Switzerland
| | - Franz Liem
- Division Neuropsychology Institute of Psychology University of Zurich Zurich Switzerland
- University Research Priority Program (URPP) “Dynamics of Healthy Aging” University of Zurich Zurich Switzerland
| | - Susan Merillat
- Division Neuropsychology Institute of Psychology University of Zurich Zurich Switzerland
- University Research Priority Program (URPP) “Dynamics of Healthy Aging” University of Zurich Zurich Switzerland
| |
Collapse
|
31
|
Armstrong NM, An Y, Beason-Held L, Doshi J, Erus G, Ferrucci L, Davatzikos C, Resnick SM. Sex differences in brain aging and predictors of neurodegeneration in cognitively healthy older adults. Neurobiol Aging 2019; 81:146-156. [PMID: 31280118 DOI: 10.1016/j.neurobiolaging.2019.05.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/04/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023]
Abstract
We evaluated sex differences in MRI-based volume loss and differences in predictors of this neurodegeneration in cognitively healthy older adults. Mixed-effects regression was used to compare regional brain volume trajectories of 295 male and 328 female cognitively healthy Baltimore Longitudinal Study of Aging participants, aged 55-92 years, with up to 20 years of follow-up and to assess sex differences in the associations of age, hypertension, obesity, APOE e4 carrier status, and high-density lipoprotein cholesterol with regional brain volume trajectories. For both sexes, older age was associated with steeper volumetric declines in many brain regions, with sex differences in volume loss observed in frontal, temporal, and parietal regions. In males, hypertension and higher high-density lipoprotein cholesterol were protective against volume loss in the hippocampus, entorhinal cortex, and parahippocampal gyrus. In females, hypertension was associated with steeper volumetric decline in gray matter, and obesity was protective against volume loss in temporal gray matter. Predictors of volume change may affect annual rates of volume change differently between men and women.
Collapse
Affiliation(s)
- Nicole M Armstrong
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jimit Doshi
- Department of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Department of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Christos Davatzikos
- Department of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
32
|
Manzouri A, Savic I. Possible Neurobiological Underpinnings of Homosexuality and Gender Dysphoria. Cereb Cortex 2019; 29:2084-2101. [PMID: 30084980 PMCID: PMC6677918 DOI: 10.1093/cercor/bhy090] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023] Open
Abstract
Although frequently discussed in terms of sex dimorphism, the neurobiology of sexual orientation and identity is unknown. We report multimodal magnetic resonance imaging data, including cortical thickness (Cth), subcortical volumes, and resting state functional magnetic resonance imaging, from 27 transgender women (TrW), 40 transgender men (TrM), and 80 heterosexual (40 men) and 60 homosexual cisgender controls (30 men). These data show that whereas homosexuality is linked to cerebral sex dimorphism, gender dysphoria primarily involves cerebral networks mediating self-body perception. Among the homosexual cisgender controls, weaker sex dimorphism was found in white matter connections and a partly reversed sex dimorphism in Cth. Similar patterns were detected in transgender persons compared with heterosexual cisgender controls, but the significant clusters disappeared when adding homosexual controls, and correcting for sexual orientation. Instead, both TrW and TrM displayed singular features, showing greater Cth as well as weaker structural and functional connections in the anterior cingulate-precuneus and right occipito-parietal cortex, regions known to process own body perception in the context of self.
Collapse
Affiliation(s)
- A Manzouri
- Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - I Savic
- Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, Stockholm, Sweden
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Martins NRB, Angelica A, Chakravarthy K, Svidinenko Y, Boehm FJ, Opris I, Lebedev MA, Swan M, Garan SA, Rosenfeld JV, Hogg T, Freitas RA. Human Brain/Cloud Interface. Front Neurosci 2019; 13:112. [PMID: 30983948 PMCID: PMC6450227 DOI: 10.3389/fnins.2019.00112] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
The Internet comprises a decentralized global system that serves humanity's collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a "human brain/cloud interface" ("B/CI"), would be based on technologies referred to here as "neuralnanorobotics." Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain's ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood-brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human-brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as "transparent shadowing" (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family.
Collapse
Affiliation(s)
- Nuno R. B. Martins
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | | | - Krishnan Chakravarthy
- UC San Diego Health Science, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | | | - Ioan Opris
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Mikhail A. Lebedev
- Center for Neuroengineering, Duke University, Durham, NC, United States
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
- Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Melanie Swan
- Department of Philosophy, Purdue University, West Lafayette, IN, United States
| | - Steven A. Garan
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | - Jeffrey V. Rosenfeld
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Clayton, VIC, Australia
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tad Hogg
- Institute for Molecular Manufacturing, Palo Alto, CA, United States
| | | |
Collapse
|
34
|
Koundal S, Liu X, Sanggaard S, Mortensen K, Wardlaw J, Nedergaard M, Benveniste H, Lee H. Brain Morphometry and Longitudinal Relaxation Time of Spontaneously Hypertensive Rats (SHRs) in Early and Intermediate Stages of Hypertension Investigated by 3D VFA-SPGR MRI. Neuroscience 2019; 404:14-26. [PMID: 30690138 DOI: 10.1016/j.neuroscience.2019.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
Abstract
Cerebral small vessel disease(s) (SVD) results from pathological changes of the small blood vessels in the brain and is common in older people. The diagnostic features by which SVD manifests in brain includes white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and atrophy. In the present study, we use in vivo magnetic resonance imaging (MRI) to characterize brain morphometry and longitudinal relaxation time (T1) of spontaneously hypertensive rats (SHRs) to study the contribution of chronic hypertension to SVD relevant pathology. Male SHR and Wistar-Kyoto (WKY) rats underwent 3D variable flip angle spoiled gradient echo brain MRI at 9.4 T at early (seven weeks old) and established (19 weeks old) stages of hypertension. The derived proton density weighted and T1 images were utilized for morphometry and to characterize T1 properties in gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Custom tissue probability maps were constructed for accurate computerized whole brain tissue segmentations and voxel-wise analyses. Characteristic morphological differences between the two strains included enlarged ventricles, smaller corpus callosum (CC) volumes and general 'thinning' of CC in SHR compared to WKY rats at both age groups. While we did not observe parenchymal T1 differences, the T1 of CSF was elevated in SHR compared to controls. Collectively these findings indicate that SHRs develop WM atrophy which is a clinically robust MRI biomarker associated with WM degeneration.
Collapse
Affiliation(s)
- Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Xiaodan Liu
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Simon Sanggaard
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Kristian Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanna Wardlaw
- Center for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK; Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Edinburgh, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
35
|
Benavides A, Metzger A, Tereschenko S, Conrad A, Bell EF, Spencer J, Ross-Sheehy S, Georgieff M, Magnotta V, Nopoulos P. Sex-specific alterations in preterm brain. Pediatr Res 2019; 85:55-62. [PMID: 30279607 PMCID: PMC6353678 DOI: 10.1038/s41390-018-0187-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The literature on brain imaging in premature infants is mostly made up of studies that evaluate neonates, yet the most dynamic time of brain development happens from birth to 1 year of age. This study was designed to obtain quantitative brain measures from magnetic resonance imaging scans of infants born prematurely at 12 months of age. METHODS The subject group was designed to capture a wide range of gestational age (GA) from premature to full-term infants. An age-specific atlas generated quantitative brain measures. A regression model was used to predict effects of GA and sex on brain measures. RESULTS There was a primary effect of sex on: (1) intracranial volume, males > females; (2) proportional cerebral cortical gray matter (females > males), and (3) cerebral white matter (males > females). GA predicted cerebral volume and cerebral spinal fluid. GA also predicted cortical gray matter in a sex-specific manner with GA having a significant effect on cortical volume in the males, but not in females. CONCLUSIONS AND RELEVANCE Sex differences in brain structure are large early in life. GA had sex-specific effects highlighting the importance evaluating sex effects in neurodevelopmental outcomes of premature infants.
Collapse
Affiliation(s)
- Amanda Benavides
- University of Iowa, Carver College of Medicine, Department of Psychiatry
| | - Andrew Metzger
- University of Iowa, Carver College of Medicine, Department of Radiology
| | - Sasha Tereschenko
- University of Iowa, Carver College of Medicine, Department of Psychiatry
| | - Amy Conrad
- University of Iowa, Carver College of Medicine, Department of Pediatrics
| | - Edward F. Bell
- University of Iowa, Carver College of Medicine, Department of Pediatrics
| | - John Spencer
- University of East Anglia, Norwich, England, School of Psychology
| | | | - Michael Georgieff
- University of Minnesota, Department of Pediatrics, School of Medicine
| | - Vince Magnotta
- University of Iowa, Carver College of Medicine, Department of Radiology
| | - Peg Nopoulos
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA. .,Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA. .,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
36
|
Seitz J, Kubicki M, Jacobs EG, Cherkerzian S, Weiss BK, Papadimitriou G, Mouradian P, Buka S, Goldstein JM, Makris N. Impact of sex and reproductive status on memory circuitry structure and function in early midlife using structural covariance analysis. Hum Brain Mapp 2018; 40:1221-1233. [PMID: 30548738 DOI: 10.1002/hbm.24441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Research on age-related memory alterations traditionally targets individuals aged ≥65 years. However, recent studies emphasize the importance of early aging processes. We therefore aimed to characterize variation in brain gray matter structure in early midlife as a function of sex and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal, and 32 postmenopausal) and 99 demographically comparable men from the New England Family Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner. Sex and reproductive-dependent structural differences were evaluated using Box's M test and analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex (ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex differences in volume of hippocampus with women of all groups having higher volumes than men relative to cerebrum size, we also found significant differences in the covariance matrices of perimenopausal women compared with postmenopausal women. Associations between ACC and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better memory performance. Findings in this study underscore the importance of sex and reproductive status in early midlife for understanding memory function with aging.
Collapse
Affiliation(s)
- Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Emily G Jacobs
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara Cherkerzian
- Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Blair K Weiss
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George Papadimitriou
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Palig Mouradian
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Stephen Buka
- Department of Community Health, Brown University, Providence, Rhode Island
| | - Jill M Goldstein
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
37
|
Anderson NE, Harenski KA, Harenski CL, Koenigs MR, Decety J, Calhoun VD, Kiehl KA. Machine learning of brain gray matter differentiates sex in a large forensic sample. Hum Brain Mapp 2018; 40:1496-1506. [PMID: 30430711 DOI: 10.1002/hbm.24462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/05/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022] Open
Abstract
Differences between males and females have been extensively documented in biological, psychological, and behavioral domains. Among these, sex differences in the rate and typology of antisocial behavior remains one of the most conspicuous and enduring patterns among humans. However, the nature and extent of sexual dimorphism in the brain among antisocial populations remains mostly unexplored. Here, we seek to understand sex differences in brain structure between incarcerated males and females in a large sample (n = 1,300) using machine learning. We apply source-based morphometry, a contemporary multivariate approach for quantifying gray matter measured with magnetic resonance imaging, and carry these parcellations forward using machine learning to classify sex. Models using components of brain gray matter volume and concentration were able to differentiate between males and females with greater than 93% generalizable accuracy. Highly differentiated components include orbitofrontal and frontopolar regions, proportionally larger in females, and anterior medial temporal regions proportionally larger in males. We also provide a complimentary analysis of a nonforensic healthy control sample and replicate our 93% sex discrimination. These findings demonstrate that the brains of males and females are highly distinguishable. Understanding sex differences in the brain has implications for elucidating variability in the incidence and progression of disease, psychopathology, and differences in psychological traits and behavior. The reliability of these differences confirms the importance of sex as a moderator of individual differences in brain structure and suggests future research should consider sex specific models.
Collapse
Affiliation(s)
- Nathaniel E Anderson
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Keith A Harenski
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Carla L Harenski
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | | | | | - Vince D Calhoun
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,University of New Mexico, Albuquerque, New Mexico
| | - Kent A Kiehl
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
38
|
Dopfel D, Zhang N. Mapping stress networks using functional magnetic resonance imaging in awake animals. Neurobiol Stress 2018; 9:251-263. [PMID: 30450389 PMCID: PMC6234259 DOI: 10.1016/j.ynstr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
The neurobiology of stress is studied through behavioral neuroscience, endocrinology, neuronal morphology and neurophysiology. There is a shift in focus toward progressive changes throughout stress paradigms and individual susceptibility to stress that requires methods that allow for longitudinal study design and study of individual differences in stress response. Functional magnetic resonance imaging (fMRI), with the advantages of noninvasiveness and a large field of view, can be used for functionally mapping brain-wide regions and circuits critical to the stress response, making it suitable for longitudinal studies and understanding individual variability of short-term and long-term consequences of stress exposure. In addition, fMRI can be applied to both animals and humans, which is highly valuable in translating findings across species and examining whether the physiology and neural circuits involved in the stress response are conserved in mammals. However, compared to human fMRI studies, there are a number of factors that are essential for the success of fMRI studies in animals. This review discussed the use of fMRI in animal studies of stress. It reviewed advantages, challenges and technical considerations of the animal fMRI methodology as well as recent literature of stress studies using fMRI in animals. It also highlighted the development of combining fMRI with other methods and the future potential of fMRI in animal studies of stress. We conclude that animal fMRI studies, with their flexibility, low cost and short time frame compared to human studies, are crucial to advancing our understanding of the neurobiology of stress.
Collapse
Affiliation(s)
- David Dopfel
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
39
|
Manzouri A, Savic I. Multimodal MRI suggests that male homosexuality may be linked to cerebral midline structures. PLoS One 2018; 13:e0203189. [PMID: 30278046 PMCID: PMC6168246 DOI: 10.1371/journal.pone.0203189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
The neurobiology of sexual preference is often discussed in terms of cerebral sex dimorphism. Yet, our knowledge about possible cerebral differences between homosexual men (HoM), heterosexual men (HeM) and heterosexual women (HeW) are extremely limited. In the present MRI study, we addressed this issue investigating measures of cerebral anatomy and function, which were previously reported to show sex difference. Specifically, we asked whether there were any signs of sex atypical cerebral dimorphism among HoM, if these were widely distributed (providing substrate for more general 'female' behavioral characteristics among HoM), or restricted to networks involved in self-referential sexual arousal. Cortical thickness (Cth), surface area (SA), subcortical structural volumes, and resting state functional connectivity were compared between 30 (HoM), 35 (HeM) and 38 (HeW). HoM displayed a significantly thicker anterior cingulate cortex (ACC), precuneus, and the left occipito-temporal cortex compared to both control groups. These differences seemed coordinated, since HoM also displayed stronger cortico-cortical covariations between these regions. Furthermore, functional connections within the default mode network, which mediates self- referential processing, and includes the ACC and precuneus were significantly weaker in HoM than HeM and HeW, whereas their functional connectivity between the thalamus and hypothalamus (important nodes for sexual behavior) was stronger. In addition to these singular features, HoM displayed 'female' characteristics, with a similar Cth in the left superior parietal and cuneus cortices as HeW, but different from HeM. These data suggest both singular and sex atypical features and motivate further investigations of cerebral midline structures in relation to male homosexuality.
Collapse
Affiliation(s)
- Amirhossein Manzouri
- Department of Women’s and Children’s Health, and Neurology Clinic, Karolinska Institute and Hospital, Stockholm, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Ivanka Savic
- Department of Women’s and Children’s Health, and Neurology Clinic, Karolinska Institute and Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
The differences in the structure of the motor nucleus of the medial gastrocnemius muscle in male and female rats. Ann Anat 2018; 221:93-100. [PMID: 30240908 DOI: 10.1016/j.aanat.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
There are many reports describing sexual dissimilarities in the CNS, particularly in the brain and cortical regions. However, knowledge regarding sexual dissimilarities in the spinal cord and in particular in the hindlimb muscle-motoneuron connectivity controlling locomotion is limited. In order to recognise sex differences in the architecture of the medial gastrocnemius (MG) motor nucleus in rats of the same age, retrograde-labelled motoneurons were identified following a bath of the proximal stump of the transected MG nerve in horseradish peroxidase. The rostrocaudal distribution of motoneurons along the spinal cord and on transverse sections as well as the size and density of motoneurons in the motor nucleus were determined from serial microscopic images. It was shown that the MG pool extended throughout the L4-L6 segments, with a length that was 32% greater in males. The position of the moto pool within the ventral horn of the spinal cord transversal sections was also different in both sexes: the pool was located more dorsally and laterally in males. Three size categories of motoneurons with different soma diameters were distinguished: α1 (27.5-40.0μm), α2 (>40.0μm) and γ (<27.5μm). The density of α (α1 and α2) motoneurons as well as γ motoneurons was higher in females, by about 13% and 23%, respectively. The number of α1 motoneurons was 8% higher in females, whereas there were 46% more α2 motoneurons in males. The most significant differences in the distribution concerned α2 motoneurons, which revealed a lower density in the rostral parts of the MG motor nucleus in females. It was therefore concluded that the length of the MG motor nucleus was shorter, whereas the mean density of α and γ motoneurons was higher in females.
Collapse
|
41
|
Qian L, Wang Y, Chu K, Li Y, Xiao C, Xiao T, Xiao X, Qiu T, Xiao Y, Fang H, Ke X. Alterations in hub organization in the white matter structural network in toddlers with autism spectrum disorder: A 2-year follow-up study. Autism Res 2018; 11:1218-1228. [PMID: 30114344 DOI: 10.1002/aur.1983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022]
Abstract
Little is currently known about the longitudinal developmental patterns of hubs in the whole-brain white matter (WM) structural networks among toddlers with autism spectrum disorder (ASD). This study utilized diffusion tensor imaging (DTI) and deterministic tractography to map the WM structural networks in 37 ASD toddlers and 27 age-, gender- and developmental quotient-matched controls with developmental delay (DD) toddlers aged 2-3 years old at baseline (Time 1) and at 2-year follow-up (Time 2). Furthermore, graph-theoretical methods were applied to investigate alterations in the network hubs in these patients at the two time points. The results showed that after 2 years, 17 hubs were identified in the ASD subjects compared to the controls, including 13 hubs that had not changed from baseline and 4 hubs that were newly identified. In addition, alterations in the properties of the hubs of the right middle frontal gyrus, right insula, left median cingulate gyri, and bilateral precuneus were significantly correlated with alterations in the behavioral data for ASD patients. These results indicated that at the stage of 2-5 years of age, ASD children showed distributions of network hubs that were relatively stable, with minor differences. Abnormal developmental patterns in the five areas mentioned above in ASD may contribute to abnormalities in the social and nonsocial characteristics of this disorder. Autism Res 2018, 11: 1218-1228. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This work studied the longitudinal developmental patterns of hubs in the whole-brain white matter (WM) structural network among toddlers with autism spectrum disorder (ASD). The findings of this study could have implications for understanding how the abnormalities in hub organization in ASD account for behavioral deficits in patients and may provide potential biomarkers for disease diagnosis and the subsequent monitoring of progression and treatment effects for patients with ASD.
Collapse
Affiliation(s)
- Lu Qian
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China.,Wuxi Tongren International Rehabilitation Hospital, Wuxi, China
| | - Yao Wang
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - KangKang Chu
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Li
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - ChaoYong Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Qiu
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - YunHua Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - XiaoYan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Seong SB, Pae C, Park HJ. Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data. Front Neuroinform 2018; 12:42. [PMID: 30034333 PMCID: PMC6043762 DOI: 10.3389/fninf.2018.00042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
In machine learning, one of the most popular deep learning methods is the convolutional neural network (CNN), which utilizes shared local filters and hierarchical information processing analogous to the brain’s visual system. Despite its popularity in recognizing two-dimensional (2D) images, the conventional CNN is not directly applicable to semi-regular geometric mesh surfaces, on which the cerebral cortex is often represented. In order to apply the CNN to surface-based brain research, we propose a geometric CNN (gCNN) that deals with data representation on a mesh surface and renders pattern recognition in a multi-shell mesh structure. To make it compatible with the conventional CNN toolbox, the gCNN includes data sampling over the surface, and a data reshaping method for the convolution and pooling layers. We evaluated the performance of the gCNN in sex classification using cortical thickness maps of both hemispheres from the Human Connectome Project (HCP). The classification accuracy of the gCNN was significantly higher than those of a support vector machine (SVM) and a 2D CNN for thickness maps generated by a map projection. The gCNN also demonstrated position invariance of local features, which rendered reuse of its pre-trained model for applications other than that for which the model was trained without significant distortion in the final outcome. The superior performance of the gCNN is attributable to CNN properties stemming from its brain-like architecture, and its surface-based representation of cortical information. The gCNN provides much-needed access to surface-based machine learning, which can be used in both scientific investigations and clinical applications.
Collapse
Affiliation(s)
- Si-Baek Seong
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, South Korea.,Department of Nuclear Medicine, Radiology, and Psychiatry, Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea
| | - Chongwon Pae
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, South Korea.,Department of Nuclear Medicine, Radiology, and Psychiatry, Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hae-Jeong Park
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, South Korea.,Department of Nuclear Medicine, Radiology, and Psychiatry, Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea.,Department of Cognitive Science, Yonsei University, Seoul, South Korea.,Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
43
|
Knickmeyer RC, Xia K, Lu Z, Ahn M, Jha SC, Zou F, Zhu H, Styner M, Gilmore JH. Impact of Demographic and Obstetric Factors on Infant Brain Volumes: A Population Neuroscience Study. Cereb Cortex 2018; 27:5616-5625. [PMID: 27797836 DOI: 10.1093/cercor/bhw331] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 11/14/2022] Open
Abstract
Individual differences in neuroanatomy are associated with intellectual ability and psychiatric risk. Factors responsible for this variability remain poorly understood. We tested whether 17 major demographic and obstetric variables were associated with individual differences in brain volumes in 756 neonates assessed with MRI. Gestational age at MRI, sex, gestational age at birth, and birthweight were the most significant predictors, explaining 31% to 59% of variance. Unexpectedly, earlier born babies had larger brains than later born babies after adjusting for other predictors. Our results suggest earlier born children experience accelerated brain growth, either as a consequence of the richer sensory environment they experience outside the womb or in response to other factors associated with delivery. In the full sample, maternal and paternal education, maternal ethnicity, maternal smoking, and maternal psychiatric history showed marginal associations with brain volumes, whereas maternal age, paternal age, paternal ethnicity, paternal psychiatric history, and income did not. Effects of parental education and maternal ethnicity are partially mediated by differences in birthweight. Remaining effects may reflect differences in genetic variation or cultural capital. In particular late initiation of prenatal care could negatively impact brain development. Findings could inform public health policy aimed at optimizing child development.
Collapse
Affiliation(s)
- Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Zhaohua Lu
- Department of Human Development and Family Studies, Quantitative Developmental Systems Methodology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557-0084, USA
| | - Shaili C Jha
- Curriculum in Neurobiology,University of North Carolina, Chapel Hill, NC 27599-7320, USA
| | - Fei Zou
- Department of Biostatistics,University of North Carolina, Chapel Hill, NC 27599-7420, USA
| | - Hongtu Zhu
- Department of Biostatistics,University of North Carolina, Chapel Hill, NC 27599-7420, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| |
Collapse
|
44
|
Sepehrband F, Lynch KM, Cabeen RP, Gonzalez-Zacarias C, Zhao L, D'Arcy M, Kesselman C, Herting MM, Dinov ID, Toga AW, Clark KA. Neuroanatomical morphometric characterization of sex differences in youth using statistical learning. Neuroimage 2018; 172:217-227. [PMID: 29414494 PMCID: PMC5967879 DOI: 10.1016/j.neuroimage.2018.01.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022] Open
Abstract
Exploring neuroanatomical sex differences using a multivariate statistical learning approach can yield insights that cannot be derived with univariate analysis. While gross differences in total brain volume are well-established, uncovering the more subtle, regional sex-related differences in neuroanatomy requires a multivariate approach that can accurately model spatial complexity as well as the interactions between neuroanatomical features. Here, we developed a multivariate statistical learning model using a support vector machine (SVM) classifier to predict sex from MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from the Philadelphia Neurodevelopmental Cohort (PNC). Then, we validated the multivariate model on an independent dataset of 682 healthy youth from the multi-site Pediatric Imaging, Neurocognition and Genetics (PING) cohort study. The trained model exhibited an 83% cross-validated prediction accuracy, and correctly predicted the sex of 77% of the subjects from the independent multi-site dataset. Results showed that cortical thickness of the middle occipital lobes and the angular gyri are major predictors of sex. Results also demonstrated the inferential benefits of going beyond classical regression approaches to capture the interactions among brain features in order to better characterize sex differences in male and female youths. We also identified specific cortical morphological measures and parcellation techniques, such as cortical thickness as derived from the Destrieux atlas, that are better able to discriminate between males and females in comparison to other brain atlases (Desikan-Killiany, Brodmann and subcortical atlases).
Collapse
Affiliation(s)
- Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - Kirsten M Lynch
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Clio Gonzalez-Zacarias
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Mike D'Arcy
- USC Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Carl Kesselman
- USC Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Ivo D Dinov
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA; Statistics Online Computational Resource, Department of Health Behavior and Biological, University of Michigan, Ann Arbor, MI, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Kristi A Clark
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Shaqiri A, Roinishvili M, Grzeczkowski L, Chkonia E, Pilz K, Mohr C, Brand A, Kunchulia M, Herzog MH. Sex-related differences in vision are heterogeneous. Sci Rep 2018; 8:7521. [PMID: 29760400 PMCID: PMC5951855 DOI: 10.1038/s41598-018-25298-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
Despite well-established sex differences for cognition, audition, and somatosensation, few studies have investigated whether there are also sex differences in visual perception. We report the results of fifteen perceptual measures (such as visual acuity, visual backward masking, contrast detection threshold or motion detection) for a cohort of over 800 participants. On six of the fifteen tests, males significantly outperformed females. On no test did females significantly outperform males. Given this heterogeneity of the sex effects, it is unlikely that the sex differences are due to any single mechanism. A practical consequence of the results is that it is important to control for sex in vision research, and that findings of sex differences for cognitive measures using visually based tasks should confirm that their results cannot be explained by baseline sex differences in visual perception.
Collapse
Affiliation(s)
- Albulena Shaqiri
- Laboratory of Psychophysics, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| | - Maya Roinishvili
- Laboratory of Vision Physiology, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | | | - Eka Chkonia
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia.,Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia
| | - Karin Pilz
- School of Psychology, University of Aberdeen, Aberdeen, Scotland, UK
| | - Christine Mohr
- Institute of Psychology, Faculty of Social and Political Sciences, Bâtiment Geopolis, Quartier Mouline, 1015, Lausanne, Switzerland
| | - Andreas Brand
- Institute for Psychology and Cognition Research, University of Bremen, Bremen, Germany
| | - Marina Kunchulia
- Laboratory of Vision Physiology, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| |
Collapse
|
46
|
Manzouri A, Savic I. Cerebral sex dimorphism and sexual orientation. Hum Brain Mapp 2018; 39:1175-1186. [PMID: 29227002 PMCID: PMC6866632 DOI: 10.1002/hbm.23908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 11/08/2022] Open
Abstract
The neurobiology of sexual orientation is frequently discussed in terms of cerebral sex dimorphism (defining both functional and structural sex differences). Yet, the information about possible cerebral differences between sex-matched homo and heterosexual persons is limited, particularly among women. In this multimodal MRI study, we addressed these issues by investigating possible cerebral differences between homo and heterosexual persons, and by asking whether there is any sex difference in this aspect. Measurements of cortical thickness (Cth), subcortical volumes, and functional and structural resting-state connections among 40 heterosexual males (HeM) and 40 heterosexual females (HeF) were compared with those of 30 homosexual males (HoM) and 30 homosexual females (HoF). Congruent with previous reports, sex differences were detected in heterosexual controls with regard to fractional anisotropy (FA), Cth, and several subcortical volumes. Homosexual groups did not display any sex differences in FA values. Furthermore, their functional connectivity was significantly less pronounced in the mesial prefrontal and precuneus regions. In these two particular regions, HoM also displayed thicker cerebral cortex than other groups, whereas HoF did not differ from HeF. In addition, in HoM the parietal Cth showed "sex-reversed" values, not observed in HoF. Homosexual orientation seems associated with a less pronounced sexual differentiation of white matter tracts and a less pronounced functional connectivity of the self-referential networks compared to heterosexual orientation. Analyses of Cth suggest that male and female homosexuality are not simple analogues of each other and that differences from heterosexual controls are more pronounced in HoM.
Collapse
Affiliation(s)
- Amirhossein Manzouri
- Department of Women's and Children's Health, and Neurology ClinicKarolinska Institutet and HospitalStickholmSE‐171 76Sweden
| | - Ivanka Savic
- Department of Women's and Children's Health, and Neurology ClinicKarolinska Institutet and HospitalStickholmSE‐171 76Sweden
| |
Collapse
|
47
|
Savic I, Engel J. Reprint of "Structural and functional correlates of epileptogenesis--does gender matter?". Neurobiol Dis 2018; 72 Pt B:131-5. [PMID: 25448763 DOI: 10.1016/j.nbd.2014.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/15/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022] Open
Abstract
In the majority of neuropsychiatric conditions, marked gender-based differences have been found in the epidemiology,clinical manifestations, and therapy of disease. One possible reason is that sex differences in cerebral morphology, structural and functional connections, render men and women differentially vulnerable to various disease processes. The present review addresses this issue with respect to the functional and structural correlates to some forms of epilepsy.
Collapse
|
48
|
Vanston JE, Strother L. Sex differences in the human visual system. J Neurosci Res 2017; 95:617-625. [PMID: 27870438 DOI: 10.1002/jnr.23895] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
Abstract
This Mini-Review summarizes a wide range of sex differences in the human visual system, with a primary focus on sex differences in visual perception and its neural basis. We highlight sex differences in both basic and high-level visual processing, with evidence from behavioral, neurophysiological, and neuroimaging studies. We argue that sex differences in human visual processing, no matter how small or subtle, support the view that females and males truly see the world differently. We acknowledge some of the controversy regarding sex differences in human vision and propose that such controversy should be interpreted as a source of motivation for continued efforts to assess the validity and reliability of published sex differences and for continued research on sex differences in human vision and the nervous system in general. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John E Vanston
- Department of Psychology, University of Nevada, Reno, Reno, Nevada
| | - Lars Strother
- Department of Psychology, University of Nevada, Reno, Reno, Nevada
| |
Collapse
|
49
|
Yu T, Korgaonkar MS, Grieve SM. Gray Matter Atrophy in the Cerebellum-Evidence of Increased Vulnerability of the Crus and Vermis with Advancing Age. THE CEREBELLUM 2017; 16:388-397. [PMID: 27395405 DOI: 10.1007/s12311-016-0813-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined patterns of cerebellar volumetric gray matter (GM) loss across the adult lifespan in a large cross-sectional sample. Four hundred and seventy-nine healthy participants (age range: 7-86 years) were drawn from the Brain Resource International Database who provided T1-weighted MRI scans. The spatially unbiased infratentorial template (SUIT) toolbox in SPM8 was used for normalisation of the cerebellum structures. Global volumetric and voxel-based morphometry analyses were performed to evaluate age-associated trends and gender-specific age-patterns. Global cerebellar GM shows a cross-sectional reduction with advancing age of 2.5 % per decade-approximately half the rate seen in the whole brain. The male cerebellum is larger with a lower percentage of GM, however, after controlling for total brain volume, no gender difference was detected. Analysis of age-related changes in GM volume revealed large bilateral clusters involving the vermis and cerebellar crus where regional loss occurred at nearly twice the average cerebellar rate. No gender-specific patterns were detected. These data confirm that regionally specific GM loss occurs in the cerebellum with age, and form a solid base for further investigation to find functional correlates for this global and focal loss.
Collapse
Affiliation(s)
- Teresa Yu
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia
| | - Mayuresh S Korgaonkar
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia.,Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Westmead Hospital, Sydney, NSW, Australia.,Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart M Grieve
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia. .,Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
50
|
Huffman J, Hoffmann C, Taylor GT. Integrating insulin-like growth factor 1 and sex hormones into neuroprotection: Implications for diabetes. World J Diabetes 2017; 8:45-55. [PMID: 28265342 PMCID: PMC5320748 DOI: 10.4239/wjd.v8.i2.45] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/24/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
Brain integrity and cognitive aptitude are often impaired in patients with diabetes mellitus, presumably a result of the metabolic complications inherent to the disease. However, an increasing body of evidence has demonstrated the central role of insulin-like growth factor 1 (IGF1) and its relation to sex hormones in many neuroprotective processes. Both male and female patients with diabetes display abnormal IGF1 and sex-hormone levels but the comparison of these fluctuations is seldom a topic of interest. It is interesting to note that both IGF1 and sex hormones have the ability to regulate phosphoinositide 3-kinase-Akt and mitogen-activated protein kinases-extracellular signal-related kinase signaling cascades in animal and cell culture models of neuroprotection. Additionally, there is considerable evidence demonstrating the neuroprotective coupling of IGF1 and estrogen. Androgens have also been implicated in many neuroprotective processes that operate on similar signaling cascades as the estrogen-IGF1 relation. Yet, androgens have not been directly linked to the brain IGF1 system and neuroprotection. Despite the sex-specific variations in brain integrity and hormone levels observed in diabetic patients, the IGF1-sex hormone relation in neuroprotection has yet to be fully substantiated in experimental models of diabetes. Taken together, there is a clear need for the comprehensive analysis of sex differences on brain integrity of diabetic patients and the relationship between IGF1 and sex hormones that may influence brain-health outcomes. As such, this review will briefly outline the basic relation of diabetes and IGF1 and its role in neuroprotection. We will also consider the findings on sex hormones and diabetes as a basis for separately analyzing males and females to identify possible hormone-induced brain abnormalities. Finally, we will introduce the neuroprotective interplay of IGF1 and estrogen and how androgen-derived neuroprotection operates through similar signaling cascades. Future research on both neuroprotection and diabetes should include androgens into the interplay of IGF1 and sex hormones.
Collapse
|