1
|
Fernandez A, Sarn N, Eng C, Wright KM. Altered primary somatosensory neuron development in a Pten heterozygous model for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.04.552039. [PMID: 37781577 PMCID: PMC10541114 DOI: 10.1101/2023.08.04.552039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social interactions, repetitive behaviors, and hyper- or hyposensitivity to sensory stimuli. The mechanisms underlying the emergence of sensory features in ASD are not fully understood, but recent studies in rodent models highlight that these may result from differences in primary sensory neurons themselves. We examined sensory behaviors in a Pten haploinsufficient mouse model ( Pten Het ) for syndromic ASD and identified elevated responses to mechanical stimuli and a higher threshold to thermal responses. Transcriptomic and in vivo anatomical analysis identified alterations in subtype-specific markers of primary somatosensory neurons in Pten Het dorsal root ganglia (DRG). These defects emerge early during DRG development and involve dysregulation of multiple signaling pathways downstream of Pten . Finally, we show that mice harboring an ASD-associated mutation ( Pten Y69H ) also show altered expression of somatosensory neuron subtype-specific markers. Together, these results show that precise levels of Pten are required for proper somatosensory development and provide insight into the molecular and cellular basis of sensory abnormalities in a model for syndromic ASD.
Collapse
|
2
|
Prajapat M, Maria A, Vidigal J. CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise. Nucleic Acids Res 2025; 53:gkae1138. [PMID: 39673524 PMCID: PMC11724307 DOI: 10.1093/nar/gkae1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/26/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Non-coding regulatory sequences play essential roles in adjusting gene output to cellular needs and are thus critical to animal development and health. Numerous such sequences have been identified in mammalian genomes ranging from transcription factors binding motifs to recognition sites for RNA-binding proteins and non-coding RNAs. The advent of CRISPR has raised the possibility of assigning functionality to individual endogenous regulatory sites by facilitating the generation of isogenic cell lines that differ by a defined set of genetic modifications. Here we investigate the usefulness of this approach to assign function to individual miRNA binding sites. We find that the process of generating isogenic pairs of mammalian cell lines with CRISPR-mediated mutations introduces extensive molecular and phenotypic variability between biological replicates confounding attempts at assigning function to the binding site. Our work highlights an important consideration when employing CRISPR editing to characterize non-coding regulatory sequences in cell lines and calls for the development and adoption of alternative strategies to address this question in the future.
Collapse
Affiliation(s)
- Mahendra K Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Andrea G Maria
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Shen X, Tan J, Liu R, Zhu G, Rooper L, Xing M. The genetic duet of concurrent RASAL1 and PTEN alterations promotes cancer aggressiveness by cooperatively activating the PI3K-AKT pathway. Mol Oncol 2025; 19:248-259. [PMID: 39032134 PMCID: PMC11705815 DOI: 10.1002/1878-0261.13701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The significance of the prominent tumor suppressor gene for RAS protein activator-like 1 (RASAL1) could be better understood by combined genetic, clinical, and functional studies. Here, we investigated the oncogenic and clinical impacts of genetic alterations of RASAL1, particularly when coexisting with genetic alterations of the gene for phosphatase and tensin homolog (PTEN), in 9924 cancers of 33 types in the TCGA database. We found common concurrent genetic alterations of the two genes, which were cooperatively associated with activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, with cancer progression and mortality rates being 46.36% and 31.72% with concurrent gene alterations, versus 29.80% and 16.93% with neither gene alteration (HR 1.64, 95% CI 1.46-1.84 and 1.77, 95% CI 1.53-2.05), respectively. This was enhanced by additional tumor protein p53 (TP53) gene alterations, with cancer progression and mortality rates being 47.65% and 34.46% with coexisting RASAL1, PTEN, and TP53 alterations versus 25.30% and 13.11% with no alteration (HR 2.21, 95% CI 1.92-2.56 and 2.76, 95% CI 2.31-3.30), respectively. In the case of breast cancer, this genetic trio was associated with a triple-negative risk of 68.75% versus 3.83% with no genetic alteration (RR 17.94, 95% CI 9.60-33.51), consistent with the aggressive nature of triple-negative breast cancer. Mice with double knockouts of Rasal1 and Pten displayed robust Pi3k pathway activation, with the development of metastasizing malignancies, while single gene knockout resulted in only benign neoplasma. These results suggest that RASAL1, like PTEN, is a critical player in negatively regulating the PI3K-AKT pathway; defect in RASAL1 causes RAS activation, thus initiating the PI3K-AKT pathway signaling, which cannot terminate with concurrent PTEN defects. Thus, the unique concurrent RASAL1 and PTEN defects drive oncogenesis and cancer aggressiveness by cooperatively activating the PI3K-AKT pathway. This represents a robust genetic mechanism to promote human cancer.
Collapse
Affiliation(s)
- Xiaopei Shen
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jie Tan
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rengyun Liu
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Guangwu Zhu
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Lisa Rooper
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mingzhao Xing
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
4
|
Flores-Martínez Á, Ramos-Herrero VD, Barroso A, Moreno A, G-García ME, Venegas-Moreno E, Dios E, Martínez-Barberá JP, Luque RM, Soto-Moreno A, Cano DA. Conditional Pten inactivation in pituitary results in sex-specific prolactinoma formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167543. [PMID: 39428000 DOI: 10.1016/j.bbadis.2024.167543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pituitary tumors, including prolactinomas, present significant clinical challenges that require a deeper understanding of their molecular roots for improved diagnostics and therapies. Here, we investigate the role of the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K) pathway in pituitary tumorigenesis using a mouse model. Conditional knockout of Pten in all pituitary cell lineages resulted in prolactinoma formation exclusively in female mice, demonstrating the critical role of PTEN in pituitary homeostasis. While Pten inactivation induced Akt activation in all pituitary cells, only prolactin-producing cells exhibited tumorigenic changes, suggesting specific cell-type effects. Histological and molecular analyses of prolactinomas revealed similarities with human pituitary tumors, such as decreased vascularization and cell adhesion proteins and increased accumulation of cell cycle proteins. Notably, prolactinomas displayed diminished levels of phosphorylated extracellular signal-regulated kinase (ERK), implicating downregulation of ERK in tumorigenesis. Finally, we analyzed PTEN/PI3K activation in a collection of human pituitary tumors. Overall, our study delineates the intricate interplay between the PTEN and ERK signaling pathways, providing insights into sex-specific mechanisms of pituitary tumorigenesis and potential therapeutic strategies for prolactinomas.
Collapse
Affiliation(s)
- Álvaro Flores-Martínez
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon 1 University, Lyon, France
| | - Víctor Darío Ramos-Herrero
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alexia Barroso
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alicia Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Miguel E G-García
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Juan Pedro Martínez-Barberá
- Developmental Biology and Cancer Programme, GOS Institute of Child Health, University College London, London, UK
| | - Raúl M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
5
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
6
|
Song D, Cen Y, Qian Z, Wu XS, Rivera K, Wee TL, Demerdash OE, Chang K, Pappin D, Vakoc CR, Tonks NK. PTPN23-dependent ESCRT machinery functions as a cell death checkpoint. Nat Commun 2024; 15:10364. [PMID: 39609437 PMCID: PMC11604704 DOI: 10.1038/s41467-024-54749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Cell death plasticity is crucial for modulating tissue homeostasis and immune responses, but our understanding of the molecular components that regulate cell death pathways to determine cell fate remains limited. Here, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes. These effects are recapitulated by depletion of PTPN23 co-dependent genes in the endosomal sorting complex required for transport (ESCRT) pathway. Through proximity-dependent biotin labeling, we show that NAK-associated protein 1 interacts with PTPN23 to facilitate endosomal sorting of tumor necrosis factor receptor 1 (TNFR1), sensitizing cells to TNF-α-induced cytotoxicity. Our findings reveal PTPN23-dependent ESCRT machinery as a cell death checkpoint that regulates the spatiotemporal distribution of death receptors and TLRs to restrain multiple cell death pathways.
Collapse
MESH Headings
- Humans
- Endosomal Sorting Complexes Required for Transport/metabolism
- Endosomal Sorting Complexes Required for Transport/genetics
- Endosomes/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Apoptosis
- NF-kappa B/metabolism
- Cell Death
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Toll-Like Receptors/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Signal Transduction
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- HEK293 Cells
- Receptors, Death Domain/metabolism
Collapse
Affiliation(s)
- Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Yuxin Cen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Osama E Demerdash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Darryl Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
7
|
Ghosh A, Riester M, Pal J, Lainde KA, Tangermann C, Wanninger A, Dueren UK, Dhamija S, Diederichs S. Suppressive cancer nonstop extension mutations increase C-terminal hydrophobicity and disrupt evolutionarily conserved amino acid patterns. Nat Commun 2024; 15:9209. [PMID: 39448564 PMCID: PMC11502859 DOI: 10.1038/s41467-024-52779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Nonstop extension mutations, a.k.a. stop-lost or stop-loss mutations, convert a stop codon into a sense codon resulting in translation into the 3' untranslated region until the next in-frame stop codon, thereby extending the C-terminus of a protein. In cancer, only nonstop mutations in SMAD4 have been functionally characterized, while the impact of other nonstop mutations remain unknown. Here, we exploit our pan-cancer NonStopDB dataset and test all 2335 C-terminal extensions arising from somatic nonstop mutations in cancer for their impact on protein expression. In a high-throughput screen, 56.1% of the extensions effectively reduce protein abundance. Extensions of multiple tumor suppressor genes like PTEN, APC, B2M, CASP8, CDKN1B and MLH1 are effective and validated for their suppressive impact. Importantly, the effective extensions possess a higher hydrophobicity than the neutral extensions linking C-terminal hydrophobicity with protein destabilization. Analyzing the proteomes of eleven different species reveals conserved patterns of amino acid distribution in the C-terminal regions of all proteins compared to the proteomes like an enrichment of lysine and arginine and a depletion of glycine, leucine, valine and isoleucine across species and kingdoms. These evolutionary selection patterns are disrupted in the cancer-derived effective nonstop extensions.
Collapse
Affiliation(s)
- Avantika Ghosh
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Marisa Riester
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kadri-Ann Lainde
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Carla Tangermann
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Angela Wanninger
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Ursula K Dueren
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Prajapat MK, Vidigal JA. CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611048. [PMID: 39282279 PMCID: PMC11398363 DOI: 10.1101/2024.09.03.611048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Non-coding regulatory sequences play essential roles in adjusting gene output to cellular needs and are thus critical to animal development and health. Numerous such sequences have been identified in mammalian genomes ranging from transcription factors binding motifs to recognition sites for RNA-binding proteins and non-coding RNAs. The advent of CRISPR has raised the possibility of assigning functionality to individual endogenous regulatory sites by facilitating the generation of isogenic cell lines that differ by a defined set of genetic modifications. Here we investigate the usefulness of this approach to assign function to individual miRNA binding sites. We find that the process of generating isogenic pairs of mammalian cell lines with CRISPR-mediated mutations introduces extensive molecular and phenotypic variability between biological replicates making any attempt of assigning function to the binding site essentially impossible. Our work highlights an important consideration when employing CRISPR editing to characterize non-coding regulatory sequences in cell lines and calls for the development and adoption of alternative strategies to address this question in the future.
Collapse
Affiliation(s)
- Mahendra K Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Ortega-Molina A, Lebrero-Fernández C, Sanz A, Calvo-Rubio M, Deleyto-Seldas N, de Prado-Rivas L, Plata-Gómez AB, Fernández-Florido E, González-García P, Vivas-García Y, Sánchez García E, Graña-Castro O, Price NL, Aroca-Crevillén A, Caleiras E, Monleón D, Borrás C, Casanova-Acebes M, de Cabo R, Efeyan A. A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan. NATURE AGING 2024; 4:1102-1120. [PMID: 38849535 PMCID: PMC11333293 DOI: 10.1038/s43587-024-00635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain.
| | - Cristina Lebrero-Fernández
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucía de Prado-Rivas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Fernández-Florido
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Yurena Vivas-García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Sánchez García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), Department of Basic Medical Sciences, School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Institute of Health Research-INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), MiniAging Research Group, Institute of Health Research-INCLIVA, Valencia, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
10
|
Das F, Ghosh-Choudhury N, Kasinath BS, Sharma K, Choudhury GG. High glucose-induced downregulation of PTEN-Long is sufficient for proximal tubular cell injury in diabetic kidney disease. Exp Cell Res 2024; 440:114116. [PMID: 38830568 DOI: 10.1016/j.yexcr.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | | | | | - Kumar Sharma
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
11
|
Ruan D, Xu J, Liu Y, Luo J, Zhao X, Li Y, Wang G, Feng J, Liang H, Yin Y, Luo J, Yin Y. CircPTEN-MT from PTEN regulates mitochondrial energy metabolism. J Genet Genomics 2024; 51:531-542. [PMID: 38184105 DOI: 10.1016/j.jgg.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.
Collapse
Affiliation(s)
- Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiancheng Xu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuhua Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiawen Feng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
12
|
Liu Y, Sun Q, Wei X. Strategies and techniques for preclinical therapeutic targeting of PI3K in oncology: where do we stand in 2024? Expert Opin Ther Targets 2024; 28:221-232. [PMID: 38646899 DOI: 10.1080/14728222.2024.2342522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is an important signaling pathway in eukaryotic cells that is activated in a variety of cancers and is also associated with treatment resistance. This signaling pathway is an important target for anticancer therapy and holds great promise for research. At the same time PI3K inhibitors have a general problem that they have unavoidable toxic side effects. AREAS COVERED This review provides an explanation of the role of PI3K in the development and progression of cancer, including several important mutations, and a table listing the cancers caused by these mutations. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. Furthermore, based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable. EXPERT OPINION The PI3K pathway is a biological pathway of great potential value. However, the reduction of its toxic side effects and combination therapies need to be further investigated.
Collapse
Affiliation(s)
- Yanyan Liu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Qiu Sun
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Dvorak O, Ndukwe M, Slavickova M, Laco J, Spacek J. DNA methylation of selected tumor suppressor genes in endometrial hyperplasia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:68-73. [PMID: 36628559 DOI: 10.5507/bp.2022.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
AIMS To investigate DNA methylation of specific gene promoters in endometrial hyperplasia compared to normal endometrial tissue. MATERIALS AND METHODS To search for epigenetic events, methylation-specific multiplex ligation-dependent probe amplification was employed to compare the methylation status of 64 tissue samples with atypical endometrial hyperplasia, 60 tissue samples with endometrial hyperplasia without atypia, and 40 control tissue samples with normal endometrium. RESULTS Differences in DNA methylation among the groups were found in PTEN, CDH13, and MSH6 promoters (PTEN: atypical hyperplasia 32%, benign hyperplasia 6.8%, normal endometrium 10%; P=0.004; CDH13: atypical hyperplasia, 50%; benign hyperplasia, 43%; normal endometrium 8.1%; P=0.003; MSH6 atypical hyperplasia 84%, benign hyperplasia, 62%; normal endometrium, 52%; P=0.008.) Higher rates of CDH13 promoter methylation were identified in the groups with both forms of endometrial hyperplasia when compared to the control group (atypical hyperplasia, P=0.003, benign hyperplasia, P=0.0002). A higher rate of DNA methylation of the PTEN and MSH6 promoters was observed in samples with atypical endometrial hyperplasia than in samples with benign endometrial hyperplasia (PTEN: P=0.02; MSH6: P=0.01) and samples with normal endometrial tissue (PTEN, P=0.04; MSH6, P=0.006). CONCLUSION DNA methylation of CDH13, PTEN, and MSH6 appear to be involved in the development of endometrial hyperplasia.
Collapse
Affiliation(s)
- Ondrej Dvorak
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Munachiso Ndukwe
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Marcela Slavickova
- Department of Clinical Biochemistry and Diagnostics and Osteocenter, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Jiri Spacek
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
15
|
Navaridas R, Vidal‐Sabanés M, Ruiz‐Mitjana A, Altés G, Perramon‐Güell A, Yeramian A, Egea J, Encinas M, Gatius S, Matias‐Guiu X, Dolcet X. In Vivo Intra-Uterine Delivery of TAT-Fused Cre Recombinase and CRISPR/Cas9 Editing System in Mice Unveil Histopathology of Pten/p53-Deficient Endometrial Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303134. [PMID: 37749866 PMCID: PMC10646277 DOI: 10.1002/advs.202303134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Indexed: 09/27/2023]
Abstract
Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.
Collapse
Affiliation(s)
- Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Maria Vidal‐Sabanés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Anna Ruiz‐Mitjana
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Gisela Altés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Aida Perramon‐Güell
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Sonia Gatius
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Matias‐Guiu
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| |
Collapse
|
16
|
Leroux AE, Biondi RM. The choreography of protein kinase PDK1 and its diverse substrate dance partners. Biochem J 2023; 480:1503-1532. [PMID: 37792325 DOI: 10.1042/bcj20220396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
17
|
Brodaczewska K, Majewska A, Filipiak-Duliban A, Kieda C. Pten knockout affects drug resistance differently in melanoma and kidney cancer. Pharmacol Rep 2023; 75:1187-1199. [PMID: 37673853 PMCID: PMC10539195 DOI: 10.1007/s43440-023-00523-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND PTEN is a tumor suppressor that is often mutated and nonfunctional in many types of cancer. The high heterogeneity of PTEN function between tumor types makes new Pten knockout models necessary to assess its impact on cancer progression and/or treatment outcomes. METHODS We aimed to show the effect of CRISPR/Cas9-mediated Pten knockout on murine melanoma (B16 F10) and kidney cancer (Renca) cells. We evaluated the effect of PTEN deregulation on tumor progression in vivo and in vitro, as well as on the effectiveness of drug treatment in vitro. In addition, we studied the molecular changes induced by Pten knockout. RESULTS In both models, Pten mutation did not cause significant changes in cell proliferation in vitro or in vivo. Cells with Pten knockout differed in sensitivity to cisplatin treatment: in B16 F10 cells, the lack of PTEN induced sensitivity and, in Renca cells, resistance to drug treatment. Accumulation of pAKT was observed in both cell lines, but only Renca cells showed upregulation of the p53 level after Pten knockout. PTEN deregulation also varied in the way that it altered PAI-1 secretion in the tested models, showing a decrease in PAI-1 in B16 F10 Pten/KO and an increase in Renca Pten/KO cells. In kidney cancer cells, Pten knockout caused changes in epithelial to mesenchymal transition marker expression, with downregulation of E-cadherin and upregulation of Snail, Mmp9, and Acta2 (α-SMA). CONCLUSIONS The results confirmed heterogenous cell responses to PTEN loss, which may lead to a better understanding of the role of PTEN in particular types of tumors and points to PTEN as a therapeutic target for personalized medicine.
Collapse
Affiliation(s)
- Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Szaserów 128, 01-141, Warsaw, Poland.
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Szaserów 128, 01-141, Warsaw, Poland
- Postgraduate School of Molecular Medicine (Medical University of Warsaw), Żwirki I Wigury 61, 02-091, Warsaw, Poland
| | - Aleksandra Filipiak-Duliban
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Szaserów 128, 01-141, Warsaw, Poland
- Postgraduate School of Molecular Medicine (Medical University of Warsaw), Żwirki I Wigury 61, 02-091, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Szaserów 128, 01-141, Warsaw, Poland
- Center for Molecular Biophysics UPR 4301, CNRS, 45071, Orleans, France
| |
Collapse
|
18
|
Rodgers SJ, Mitchell CA, Ooms LM. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Biochem Soc Trans 2023; 51:1459-1472. [PMID: 37471270 PMCID: PMC10586779 DOI: 10.1042/bst20220866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
The class IA PI3K signaling pathway is activated by growth factor stimulation and regulates a signaling cascade that promotes diverse events including cell growth, proliferation, migration and metabolism. PI3K signaling is one of the most commonly hyperactivated pathways in breast cancer, leading to increased tumor growth and progression. PI3K hyperactivation occurs via a number of genetic and epigenetic mechanisms including mutation or amplification of PIK3CA, the gene encoding the p110α subunit of PI3Kα, as well as via dysregulation of the upstream growth factor receptors or downstream signaling effectors. Over the past decade, extensive efforts to develop therapeutics that suppress oncogenic PI3K signaling have been undertaken. Although FDA-approved PI3K inhibitors are now emerging, their clinical success remains limited due to adverse effects and negative feedback mechanisms which contribute to their reduced efficacy. There is an emerging body of evidence demonstrating crosstalk between the PI3K and Wnt/β-catenin pathways in breast cancer. However, PI3K exhibits opposing effects on Wnt/β-catenin signaling in distinct tumor subsets, whereby PI3K promotes Wnt/β-catenin activation in ER+ cancers, but paradoxically suppresses this pathway in ER- breast cancers. This review discusses the molecular mechanisms for PI3K-Wnt crosstalk in breast cancer, and how Wnt-targeted therapies have the potential to contribute to treatment regimens for breast cancers with PI3K dysregulation.
Collapse
Affiliation(s)
- Samuel J. Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A. Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lisa M. Ooms
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
19
|
Vande Voorde J, Steven RT, Najumudeen AK, Ford CA, Dexter A, Gonzalez-Fernandez A, Nikula CJ, Xiang Y, Ford L, Maneta Stavrakaki S, Gilroy K, Zeiger LB, Pennel K, Hatthakarnkul P, Elia EA, Nasif A, Murta T, Manoli E, Mason S, Gillespie M, Lannagan TRM, Vlahov N, Ridgway RA, Nixon C, Raven A, Mills M, Athineos D, Kanellos G, Nourse C, Gay DM, Hughes M, Burton A, Yan B, Sellers K, Wu V, De Ridder K, Shokry E, Huerta Uribe A, Clark W, Clark G, Kirschner K, Thienpont B, Li VSW, Maddocks ODK, Barry ST, Goodwin RJA, Kinross J, Edwards J, Yuneva MO, Sumpton D, Takats Z, Campbell AD, Bunch J, Sansom OJ. Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target. Nat Metab 2023; 5:1303-1318. [PMID: 37580540 PMCID: PMC10447251 DOI: 10.1038/s42255-023-00857-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuchen Xiang
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lauren Ford
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Stefania Maneta Stavrakaki
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | | - Lucas B Zeiger
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn Pennel
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Eftychios Manoli
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sam Mason
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Michael Gillespie
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Megan Mills
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Craig Nourse
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David M Gay
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Københavns Universitet, BRIC, Copenhagen, Denmark
| | - Mark Hughes
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Amy Burton
- National Physical Laboratory, London, UK
| | - Bin Yan
- National Physical Laboratory, London, UK
| | - Katherine Sellers
- The Francis Crick Institute, London, UK
- Rheos Medicines, Cambridge, MA, USA
| | - Vincen Wu
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kobe De Ridder
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Engy Shokry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Graeme Clark
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Bernard Thienpont
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | | | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James Kinross
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Zoltan Takats
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Biological Mass Spectrometry, Rosalind Franklin Institute, Didcot, UK
| | | | - Josephine Bunch
- National Physical Laboratory, London, UK
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Biological Mass Spectrometry, Rosalind Franklin Institute, Didcot, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
20
|
Choi HR, Kim K. Mouse Models to Examine Differentiated Thyroid Cancer Pathogenesis: Recent Updates. Int J Mol Sci 2023; 24:11138. [PMID: 37446316 DOI: 10.3390/ijms241311138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Although the overall prognosis of differentiated thyroid cancer (DTC), the most common endocrine malignancy, is favorable, a subset of patients exhibits aggressive features. Therefore, preclinical models that can be utilized to investigate DTC pathogenesis and novel treatments are necessary. Various mouse models have been developed based on advances in thyroid cancer genetics. This review focuses on recent progress in mouse models that have been developed to elucidate the molecular pathogenesis of DTC.
Collapse
Affiliation(s)
- Hye Ryeon Choi
- Department of Surgery, Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Republic of Korea
| | - Kwangsoon Kim
- Department of Surgery, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
21
|
Pearson A, Ortiz C, Eisenbaum M, Arrate C, Browning M, Mullan M, Bachmeier C, Crawford F, Ojo JO. Deletion of PTEN in microglia ameliorates chronic neuroinflammation following repetitive mTBI. Mol Cell Neurosci 2023; 125:103855. [PMID: 37084991 DOI: 10.1016/j.mcn.2023.103855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Traumatic brain injury is a leading cause of morbidity and mortality in adults and children in developed nations. Following the primary injury, microglia, the resident innate immune cells of the CNS, initiate several inflammatory signaling cascades and pathophysiological responses that may persist chronically; chronic neuroinflammation following TBI has been closely linked to the development of neurodegeneration and neurological dysfunction. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that have been shown to regulate several key mechanisms in the inflammatory response to TBI. Increasing evidence has shown that the modulation of the PI3K/AKT signaling pathway has the potential to influence the cellular response to inflammatory stimuli. However, directly targeting PI3K signaling poses several challenges due to its regulatory role in several cell survival pathways. We have previously identified that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), the major negative regulator of PI3K/AKT signaling, is dysregulated following exposure to repetitive mild traumatic brain injury (r-mTBI). Moreover, this dysregulated PI3K/AKT signaling was correlated with chronic microglial-mediated neuroinflammation. Therefore, we interrogated microglial-specific PTEN as a therapeutic target in TBI by generating a microglial-specific, Tamoxifen inducible conditional PTEN knockout model using a CX3CR1 Cre recombinase mouse line PTENfl/fl/CX3CR1+/CreERT2 (mcg-PTENcKO), and exposed them to our 20-hit r-mTBI paradigm. Animals were treated with tamoxifen at 76 days post-last injury, and the effects of microglia PTEN deletion on immune-inflammatory responses were assessed at 90-days post last injury. We observed that the deletion of microglial PTEN ameliorated the proinflammatory response to repetitive brain trauma, not only reducing chronic microglial activation and proinflammatory cytokine production but also rescuing TBI-induced reactive astrogliosis, demonstrating that these effects extended beyond microglia alone. Additionally, we observed that the pharmacological inhibition of PTEN with BpV(HOpic) ameliorated the LPS-induced activation of microglial NFκB signaling in vitro. Together, these data provide support for the role of PTEN as a regulator of chronic neuroinflammation following repetitive mild TBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom.
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Clara Arrate
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | | | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Joseph O Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
22
|
Narala S, Che Y, Saleem A, Lock CB, Kim YH, Rieger KE. Progression of Mycosis Fungoides After Fingolimod Treatment for Multiple Sclerosis and Targeted Next-Generation Sequencing Demonstrating Potential Links Between the Two Diseases. JCO Precis Oncol 2023; 7:e2200501. [PMID: 36724412 DOI: 10.1200/po.22.00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Saisindhu Narala
- Department of Pathology, Stanford University School of Medicine, Stanford, CA.,Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Yonglu Che
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Atif Saleem
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Christopher B Lock
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Youn H Kim
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Kerri E Rieger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA.,Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
23
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
24
|
Yehia L, Heald B, Eng C. Clinical Spectrum and Science Behind the Hamartomatous Polyposis Syndromes. Gastroenterology 2023; 164:800-811. [PMID: 36717037 DOI: 10.1053/j.gastro.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
The hamartomatous polyposis syndromes are a set of clinically distinct disorders characterized by the occurrence of hamartomatous polyps in the gastrointestinal tract. These syndromes include juvenile polyposis syndrome, Peutz-Jeghers syndrome, and PTEN hamartoma tumor syndrome. Although each of the syndromes has distinct phenotypes, the hamartomatous polyps can be challenging to differentiate histologically. Additionally, each of these syndromes is associated with increased lifetime risks of gene-specific and organ-specific cancers, including those outside of the gastrointestinal tract. Germline pathogenic variants can be identified in a subset of individuals with these syndromes, which facilitates molecular diagnosis and subsequent gene-enabled management in the setting of genetic counseling. Although the malignant potential of hamartomatous polyps remains elusive, timely recognition of these syndromes is important and enables presymptomatic cancer surveillance and management before symptom exacerbation. Presently, there are no standard agents to prevent the development of polyps and cancers in the hamartomatous polyposis syndromes.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Center for Personalized Genetic Healthcare, Community Care, Cleveland Clinic, Cleveland, Ohio; Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio; Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
25
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
26
|
Valet M, Narbonne P. Formation of benign tumors by stem cell deregulation. PLoS Genet 2022; 18:e1010434. [PMID: 36301803 PMCID: PMC9612571 DOI: 10.1371/journal.pgen.1010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within living organisms, stem cells respond to various cues, including to niche signals and growth factors. Niche signals originate from the stem cell's microenvironment and promote the undifferentiated state by preventing differentiation, allowing for stem cell self-renewal. On the other hand, growth factors promote stem cell growth and proliferation, while their sources comprise of a systemic input reflecting the animal's nutritional and metabolic status, and a localized, homeostatic feedback signal from the tissue that the stem cells serve. That homeostatic signal prevents unnecessary stem cell proliferation when the corresponding differentiated tissues already have optimal cell contents. Here, we recapitulate progresses made in our understanding of in vivo stem cell regulation, largely using simple models, and draw the conclusion that 2 types of stem cell deregulations can provoke the formation of benign tumors. Namely, constitutive niche signaling promotes the formation of undifferentiated "stem cell" tumors, while defective homeostatic signaling leads to the formation of differentiated tumors. Finally, we provide evidence that these general principles may be conserved in mammals and as such, may underlie benign tumor formation in humans, while benign tumors can evolve into cancer.
Collapse
Affiliation(s)
- Matthieu Valet
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Patrick Narbonne
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- * E-mail:
| |
Collapse
|
27
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
28
|
Sahoo SS, Ramanand SG, Gao Y, Abbas A, Kumar A, Cuevas IC, Li HD, Aguilar M, Xing C, Mani RS, Castrillon DH. FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity. J Clin Invest 2022; 132:157574. [PMID: 35703180 PMCID: PMC9197528 DOI: 10.1172/jci157574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/23/2023] Open
Abstract
FOXA2 encodes a transcription factor mutated in 10% of endometrial cancers (ECs), with a higher mutation rate in aggressive variants. FOXA2 has essential roles in embryonic and uterine development. However, FOXA2’s role in EC is incompletely understood. Functional investigations using human and mouse EC cell lines revealed that FOXA2 controls endometrial epithelial gene expression programs regulating cell proliferation, adhesion, and endometrial-epithelial transition. In live animals, conditional inactivation of Foxa2 or Pten alone in endometrial epithelium did not result in ECs, but simultaneous inactivation of both genes resulted in lethal ECs with complete penetrance, establishing potent synergism between Foxa2 and PI3K signaling. Studies in tumor-derived cell lines and organoids highlighted additional invasion and cell growth phenotypes associated with malignant transformation and identified key mediators, including Myc and Cdh1. Transcriptome and cistrome analyses revealed that FOXA2 broadly controls gene expression programs through modification of enhancer activity in addition to regulating specific target genes, rationalizing its tumor suppressor functions. By integrating results from our cell lines, organoids, animal models, and patient data, our findings demonstrated that FOXA2 is an endometrial tumor suppressor associated with aggressive disease and with shared commonalities among its roles in endometrial function and carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development.,Department of Bioinformatics.,Department of Population and Data Sciences
| | - Ram S Mani
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Urology, and
| | - Diego H Castrillon
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
29
|
Hu L, Jiang GY, Wang YP, Hu ZB, Zhou BY, Zhang L, Song NN, Huang Y, Chai GD, Chen JY, Lang B, Xu L, Liu JL, Li Y, Wang QX, Ding YQ. The role of PTEN in primary sensory neurons in processing itch and thermal information in mice. Cell Rep 2022; 39:110724. [PMID: 35443189 DOI: 10.1016/j.celrep.2022.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
PTEN is known as a tumor suppressor and plays essential roles in brain development. Here, we report that PTEN in primary sensory neurons is involved in processing itch and thermal information in adult mice. Deletion of PTEN in the dorsal root ganglia (DRG) is achieved in adult Drg11-CreER: PTENflox/flox (PTEN CKO) mice with oral administration of tamoxifen, and CKO mice develop pathological itch and elevated itch responses on exposure to various pruritogens. PTEN deletion leads to ectopic expression of TRPV1 and MrgprA3 in IB4+ non-peptidergic DRG neurons, and the TRPV1 is responsive to capsaicin. Importantly, the elevated itch responses are no longer present in Drg11-CreER: PTENflox/flox: TRPV1flox/flox (PTEN: TRPV1 dCKO) mice. In addition, thermal stimulation is enhanced in PTEN CKO mice but blunted in dCKO mice. PTEN-involved regulation of itch-related gene expression in DRG neurons provides insights for understanding molecular mechanism of itch and thermal sensation at the spinal level.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guan-Yu Jiang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ying-Ping Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bing-Yao Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Guo-Dong Chai
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China; Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lin Xu
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jun-Ling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Qing-Xiu Wang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
30
|
Guida E, Tassinari V, Colopi A, Todaro F, Cesarini V, Jannini B, Pellegrini M, Botti F, Rossi G, Rossi P, Jannini EA, Dolci S. Mapk activation drives male and female mouse teratocarcinomas from late PGCs. J Cell Sci 2022; 135:274751. [PMID: 35297490 DOI: 10.1242/jcs.259375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Germ cell tumors (GCTs) are rare tumors that can develop in both sexes, peaking in adolescents. To understand the mechanisms that underlie germ cell transformation, we established a GCT mouse model carrying germ cell-specific BRafV600E mutation with or without heterozygous Pten deletion. Both male and female mice developed monolateral teratocarcinomas containing embryonal carcinoma (EC) cells that showed an aggressive phenotype and metastatic ability. Germ cell transformation started in fetal gonads and progressed after birth leading to gonadal invasion. Early postnatal testes showed foci of tumor transformation, while ovaries showed increased number of follicles, multi-ovular follicles (MOFs) and scattered metaphase I oocytes containing follicles. Our results indicate that Mapk over-activation in fetal germ cells of both sexes can expand their proliferative window leading to neoplastic transformation and metastatic behavior.
Collapse
Affiliation(s)
- Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Tassinari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Federica Todaro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Benedetto Jannini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome, Italy
| | - Flavia Botti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Pathology Department, S. Eugenio Hospital, Rome, Italy
| | - Gabriele Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
31
|
Chai C, Wu HH, Abuetabh Y, Sergi C, Leng R. Regulation of the tumor suppressor PTEN in triple-negative breast cancer. Cancer Lett 2022; 527:41-48. [PMID: 34902523 DOI: 10.1016/j.canlet.2021.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BCa) in which estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) are not expressed. Although TNBC cases account for approximately 15% of all BCa cases, TNBC patients' prognosis is poor compared with that of other BCa subtypes. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays an important role in cell proliferation and migration by negatively regulating the PI3K/Akt pathway. PTEN is one of the most commonly inactivated tumor suppressors in BCa. PTEN inactivity is associated with larger tumor sizes, multiple lymph node metastases, and an aggressive triple-negative phenotype. This review primarily focuses on two key points: (1) PTEN and its function. (2) The regulation of tumor suppressor PTEN in TNBC. We provide a summary of genomic alterations of PTEN in BCa. We further discuss the transcriptional regulation of PTEN and how PTEN is regulated by posttranscription and posttranslational modification, as well as by protein interactions. Finally, we discuss the perspectives of the PTEN protein in TNBC.
Collapse
Affiliation(s)
- Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
32
|
Wang A, Bu FT, Li JJ, Zhang YF, Jia PC, You HM, Wu S, Wu YY, Zhu S, Huang C, Li J. MicroRNA-195-3p promotes hepatic stellate cell activation and liver fibrosis by suppressing PTEN expression. Toxicol Lett 2022; 355:88-99. [PMID: 34838997 DOI: 10.1016/j.toxlet.2021.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/07/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a reversible wound healing reaction characterized by abnormal accumulation of extracellular matrix (ECM) in response to liver injury. Recent studies have shown that it can be epigenetically regulated, especially by microRNAs (miRNAs). It has been acknowledged that activation of hepatic stellate cells (HSCs) is a pivotal step in the initiation and progression of liver fibrosis. Notably, our results showed that miR-195-3p was increased in HSCs isolated from CCl4-treated mice and that the increase was more pronounced as the degree of liver fibrosis increased. Moreover, treatment of LX-2 cells, a human immortalized hepatic stellate cell line, with TGF-β1 resulted remarkable upregulation of miR-195-3p. Gain-of-function and loss-of-function experiments have suggested that the increased levels of miR-195-3p inhibit the expression of phosphatase and tension homolog deleted on chromosome 10 (PTEN), a negative regulator of the PI3K/Akt/mTOR signaling pathway in liver fibrosis, thereby contributing to HSC activation and proliferation and promoting the expression of profibrotic genes, such as α-SMA and collagen I, in LX-2 cells, which accelerates the accumulation of fibrous extracellular matrix deposition in the liver, while knockdown of miR-195-3p induced the opposite effect. Taken together, these results provide evidence for the harmful role of miR-195-3p in CCl4-treated mouse liver fibrosis.
Collapse
Affiliation(s)
- Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sha Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Yan Y, Shi H, Zhao Z, Wang S, Zhou S, Mu Y, Ding N, Lai Y, Zhao AZ, Cheng L, Li F. Adiponectin Deficiency Promotes Endometrial Carcinoma Pathogenesis and Development via Activation of
Mitogen‐Activated
Protein Kinase. J Pathol 2022; 257:146-157. [PMID: 35072951 DOI: 10.1002/path.5874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yunjing Yan
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Hui Shi
- Department of Pathology Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu Province China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Ning Ding
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yimei Lai
- Department of Pathology First Affiliated Hospital of Gannan Medical University Ganzhou Jiangxi Province China
| | - Allan Z. Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Lixian Cheng
- Key laboratory of Functional and Clinical Translational Medicine Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College Xiamen Fujian Province China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| |
Collapse
|
34
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Papa A, Pandolfi PP. PTEN in Immunity. Curr Top Microbiol Immunol 2022; 436:95-115. [DOI: 10.1007/978-3-031-06566-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Crespo-Masip M, Pérez-Gómez A, Guzmán C, Rayego S, Doladé N, García-Carrasco A, Jover R, Valdivielso JM. PTEN Deletion in Adult Mice Induces Hypoinsulinemia With Concomitant Low Glucose Levels. Front Endocrinol (Lausanne) 2022; 13:850214. [PMID: 35282439 PMCID: PMC8914015 DOI: 10.3389/fendo.2022.850214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The PI3K/AKT pathway, negatively regulated by PTEN, plays a paramount role in glucose metabolism regulation due to its activation by the insulin receptor signaling pathway. We generated a PTEN-KO mouse to evaluate the systemic effect of the overactivation of the PI3K/AKT pathway in insulin signaling and glucose homeostasis. Our results demonstrate that PTEN-KO mice show very low glucose levels in the fasted state, which poorly respond to glucose and pyruvate administration. Insulinemia decreased without alterations in pancreatic islets. Among the possible reasons, we uncover the deregulation of the expression of proximal tubule glucose transporter and consequent glycosuria. Moreover, we evidence an altered activation of hepatic gluconeogenesis-related genes. In addition, the expression of several genes related to β-oxidation showed a delayed or even absent response to fasting, suggesting that the lack of PTEN not only impairs glucose metabolism but also slows down the use of lipids as a metabolic fuel. We conclude that the inducible full PTEN-KO mice could be a good model to study the metabolic interactions between glycidic and lipidic metabolism in hypoinsulinemic hypoglycemia and that PTEN could be an important mediator in the disease and/or a potential drug target.
Collapse
Affiliation(s)
- Maria Crespo-Masip
- Vascular & Renal Translational Research Group, IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain
| | - Aurora Pérez-Gómez
- Vascular & Renal Translational Research Group, IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain
| | - Carla Guzmán
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain
| | - Sandra Rayego
- Vascular & Renal Translational Research Group, IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain
| | - Nuria Doladé
- Vascular & Renal Translational Research Group, IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain
| | - Alicia García-Carrasco
- Vascular & Renal Translational Research Group, IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain
| | - Ramiro Jover
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salut Carlos III, Madrid, Spain
- Department Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - José Manuel Valdivielso
- Vascular & Renal Translational Research Group, IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain
- *Correspondence: José Manuel Valdivielso,
| |
Collapse
|
37
|
Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. The INPP4B paradox: Like PTEN, but different. Adv Biol Regul 2021; 82:100817. [PMID: 34216856 DOI: 10.1016/j.jbior.2021.100817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer is a complex and heterogeneous disease marked by the dysregulation of cancer driver genes historically classified as oncogenes or tumour suppressors according to their ability to promote or inhibit tumour development and growth, respectively. Certain genes display both oncogenic and tumour suppressor functions depending on the biological context, and as such have been termed dual-role cancer driver genes. However, because of their context-dependent behaviour, the tumourigenic mechanism of many dual-role genes is elusive and remains a significant knowledge gap in our effort to understand and treat cancer. Inositol polyphosphate 4-phosphatase type II (INPP4B) is an emerging dual-role cancer driver gene, primarily known for its role as a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway. In response to growth factor stimulation, class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane. PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate 5-phosphatases to generate PtdIns(3,4)P2, which, together with PtdIns(3,4,5)P3, facilitates the activation of AKT to promote cell proliferation, survival, migration, and metabolism. Phosphatase and tensin homology on chromosome 10 (PTEN) and INPP4B are dual-specificity phosphatases that hydrolyse PtdIns(3,4,5)P3 and PtdIns(3,4)P2, respectively, and thus negatively regulate PI3K/AKT signalling. PTEN is a bona fide tumour suppressor that is frequently lost in human tumours. INPP4B was initially characterised as a tumour suppressor akin to PTEN, and has been implicated as such in a number of cancers, including prostate, thyroid, and basal-like breast cancers. However, evidence has since emerged revealing INPP4B as a paradoxical oncogene in several malignancies, with increased INPP4B expression reported in AML, melanoma and colon cancers among others. Although the tumour suppressive function of INPP4B has been mostly ascribed to its ability to negatively regulate PI3K/AKT signalling, its oncogenic function remains less clear, with proposed mechanisms including promotion of PtdIns(3)P-dependent SGK3 signalling, inhibition of PTEN-dependent AKT activation, and enhancing DNA repair mechanisms to confer chemoresistance. Nevertheless, research is ongoing to identify the factors that dictate the tumourigenic output of INPP4B in different human cancers. In this review we discuss the dualistic role that INPP4B plays in the context of cancer development, progression and treatment, drawing comparisons to PTEN to explore how their similarities and, importantly, their differences may account for their diverging roles in tumourigenesis.
Collapse
Affiliation(s)
- Sabryn A Hamila
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
38
|
Duan X, Wang H, Yang Y, Wang P, Zhang H, Liu B, Wei W, Yao W, Zhou X, Zhao J, Wang W. Genetic variants in telomerase-associated protein 1 are associated with telomere damage in PAH-exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112558. [PMID: 34333383 DOI: 10.1016/j.ecoenv.2021.112558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Telomeres are functional complexes at the ends of linear chromosomes, and telomerase aids in their maintenance and replication. Additionally, accumulating evidence suggests that telomerase-associated protein 1 (TEP1) is a component of the telomerase ribonucleoprotein complex and is responsible for catalyzing the addition of new synthetic telomere sequences to chromosome ends. In our previous study, we found that genetic variants of the TERT gene participated in the regulation of telomere length. Exposure to particulate matter, environmental pollutants, oxidative stress, and pesticides is associated with shortening of telomere length. However, it is unknown whether genetic variants in the TEP1 gene may affect telomere length (TL) in polycyclic aromatic hydrocarbon (PAH)-exposed workers. Therefore, we measured the peripheral leukocyte TL and genotyped the polymorphism loci in the TEP1 gene among 544 PAH-exposed workers and 238 healthy controls. Covariance analysis showed that the individuals carrying TEP1 rs1760903 CC and TEP1 rs1760904 TT had longer TL in the control group (P < 0.05). In the generalized linear model, we found that rs1760903 CC was a protective factor against TL shortening, and PAH exposure could promote telomere shortening (P < 0.05). Thus, this study reinforces the roles of environmental factors and genetic variations in telomere damage, and provides a theoretical foundation for the early detection of susceptible populations and the establishment of occupational standards.
Collapse
Affiliation(s)
- Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongmei Wang
- Department of nursing, Zhengzhou Health Vocational College, Zhengzhou 450100, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hui Zhang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wan Wei
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
39
|
PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci 2021; 44:961-976. [PMID: 34625286 DOI: 10.1016/j.tins.2021.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
The lack of effective treatments for autism spectrum disorder (ASD) and congenital hydrocephalus (CH) reflects the limited understanding of the biology underlying these common neurodevelopmental disorders. Although ASD and CH have been extensively studied as independent entities, recent human genomic and preclinical animal studies have uncovered shared molecular pathophysiology. Here, we review and discuss phenotypic, genomic, and molecular similarities between ASD and CH, and identify the PTEN-PI3K-mTOR (phosphatase and tensin homolog-phosphoinositide 3-kinase-mammalian target of rapamycin) pathway as a common underlying mechanism that holds diagnostic, prognostic, and therapeutic promise for individuals with ASD and CH.
Collapse
|
40
|
Eritja N, Navaridas R, Ruiz-Mitjana A, Vidal-Sabanés M, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Endometrial PTEN Deficiency Leads to SMAD2/3 Nuclear Translocation. Cancers (Basel) 2021; 13:cancers13194990. [PMID: 34638474 PMCID: PMC8507901 DOI: 10.3390/cancers13194990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary PTEN is a protein highly altered in endometrial cancer. PTEN mutation or deficiency leads to the activation of other downstream proteins that are important to the development of cancers. In this study, we have identified the SMAD2/3 proteins as targets of PTEN deficiency. We have found that loss of PTEN in endometrial cells leads to SMAD2/3 activation. To investigate the role of SMAD2/3 activation downstream of PTEN deficiency, we have used endometrial cells lacking both PTEN and SMAD2/3 proteins. These cells display even more tumorigenic potential than cells lacking only PTEN. These results suggest that SMAD2/3 acts as an obstacle for cancer development triggered by PTEN loss. Abstract TGF-β has a dichotomous function, acting as tumor suppressor in premalignant cells but as a tumor promoter for cancerous cells. These contradictory functions of TGF-β are caused by different cellular contexts, including both intracellular and environmental determinants. The TGF-β/SMAD and the PI3K/PTEN/AKT signal transduction pathways have an important role in the regulation of epithelial cell homeostasis and perturbations in either of these two pathways’ contributions to endometrial carcinogenesis. We have previously demonstrated that both PTEN and SMAD2/3 display tumor-suppressive functions in the endometrium, and genetic ablation of either gene results in sustained activation of PI3K/AKT signaling that suppresses TGF-β-induced apoptosis and enhances cell proliferation of mouse endometrial cells. However, the molecular and cellular effects of PTEN deficiency on TGF-β/SMAD2/3 signaling remain controversial. Here, using an in vitro and in vivo model of endometrial carcinogenesis, we have demonstrated that loss of PTEN leads to a constitutive SMAD2/3 nuclear translocation. To ascertain the function of nuclear SMAD2/3 downstream of PTEN deficiency, we analyzed the effects of double deletion PTEN and SMAD2/3 in mouse endometrial organoids. Double PTEN/SMAD2/3 ablation results in a further increase of cell proliferation and enlarged endometrial organoids compared to those harboring single PTEN, suggesting that nuclear translocation of SMAD2/3 constrains tumorigenesis induced by PTEN deficiency.
Collapse
Affiliation(s)
- Núria Eritja
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Raúl Navaridas
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Anna Ruiz-Mitjana
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Maria Vidal-Sabanés
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Joaquim Egea
- Molecular Developmental Neurobiology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Medicina Experimental, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Department of Pathology, Hospital Universitari de Bellvitge, 08908 Barcelona, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Correspondence:
| |
Collapse
|
41
|
Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, Pang AL, Su X, Law PWN, Zhao Z, Chen Z, Chan W. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100849. [PMID: 34247447 PMCID: PMC8425920 DOI: 10.1002/advs.202100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The regulation of cardiomyocyte differentiation is a fundamental aspect of cardiac development and regenerative medicine. PTEN plays important roles during embryonic development. However, its role in cardiomyocyte differentiation remains unknown. In this study, a low-cost protocol for cardiomyocyte differentiation from mouse embryonic stem cells (ESCs) is presented and it is shown that Pten deletion potently suppresses cardiomyocyte differentiation. Transcriptome analysis shows that the expression of a series of cardiomyocyte marker genes is downregulated in Pten-/- cardiomyocytes. Pten ablation induces Dnmt3b expression via the AKT/FoxO3a pathway and regulates the expression of a series of imprinted genes, including Igf2. Double knockout of Dnmt3l and Dnmt3b rescues the deficiency of cardiomyocyte differentiation of Pten-/- ESCs. The DNA methylomes from wild-type and Pten-/- embryoid bodies and cardiomyocytes are analyzed by whole-genome bisulfite sequencing. Pten deletion significantly promotes the non-CG (CHG and CHH) methylation levels of genomic DNA during cardiomyocyte differentiation, and the non-CG methylation levels of cardiomyocyte genes and Igf2 are increased in Pten-/- cardiomyocytes. Igf2 or Igf1r deletion also suppresses cardiomyocyte differentiation through the MAPK/ERK signaling pathway, and IGF2 supplementation partially rescues the cardiomyocyte differentiation. Finally, Pten conditional knockout mice are generated and the role of PTEN in cardiomyocyte differentiation is verified in vivo.
Collapse
Affiliation(s)
- Wuming Wang
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Gang Lu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Hong‐Bin Liu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Zhiqiang Xiong
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ho‐Duen Leung
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ruican Cao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Alan Lap‐Yin Pang
- R&D DivisionTGD Life Company Limited15W, Hong Kong Science ParkShatinHong KongChina
| | - Xianwei Su
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Patrick Wai Nok Law
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhiju Zhao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zi‐Jiang Chen
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Wai‐Yee Chan
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| |
Collapse
|
42
|
Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:25. [PMID: 34337686 PMCID: PMC8326232 DOI: 10.1186/s13619-021-00087-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
Collapse
Affiliation(s)
- Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
43
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
44
|
Tandon S, Bartram J, Kyriakopoulou L, Kanwar N, Lo W, Davidson S, Punnett A, Shlien A, Hitzler J, Malkin D, Villani A, Abla O. Failure of Romidepsin to Treat Relapsed/Refractory Peripheral T-Cell Lymphoma in Children: A Single-center Experience. J Pediatr Hematol Oncol 2021; 43:e745-e748. [PMID: 32427705 DOI: 10.1097/mph.0000000000001824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sneha Tandon
- University Hospital Southampton NHS Foundation Trust, Southampton
| | | | | | | | - Winnie Lo
- Program in Genetics and Genome Biology
| | | | - Angela Punnett
- Division of Paediatric Haematology/Oncology
- Department of Paediatrics University of Toronto
| | - Adam Shlien
- Program in Genetics and Genome Biology
- The Department of Paediatric Laboratory Medicine, The Hospital for Sick Children
| | - Johann Hitzler
- Division of Paediatric Haematology/Oncology
- Department of Paediatrics University of Toronto
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - David Malkin
- Division of Paediatric Haematology/Oncology
- Program in Genetics and Genome Biology
- Department of Paediatrics University of Toronto
| | - Anita Villani
- Division of Paediatric Haematology/Oncology
- Department of Paediatrics University of Toronto
| | - Oussama Abla
- Division of Paediatric Haematology/Oncology
- Department of Paediatrics University of Toronto
| |
Collapse
|
45
|
Tissue distribution and developmental changes of PTEN in the immune organs of chicken and effect of IBDV infection on it. Poult Sci 2021; 100:101356. [PMID: 34358959 PMCID: PMC8350381 DOI: 10.1016/j.psj.2021.101356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/30/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN), a tumor suppressor gene, functions in antiviral innate immunity and regulates the development and function of T cells and B cells. However, limited information about PTEN is available in poultry. In the present study, quantitative real-time polymerase chain reaction and immunohistochemistry staining were used to study the tissue distribution and developmental changes of PTEN in the main immune organs of chicken. The effects of infectious bursal disease virus (IBDV) infection on PTEN mRNA expression in the bursa of Fabricius (BF) of chickens were also investigated. The results are as follows. 1) The order of PTEN mRNA expression levels at the 18th d of hatching (E18) was: muscle and immune organs (spleen and thymus) > visceral organs (heart, lung, kidney, and liver) > hypothalamus and digestive tracts (duodenum, jejunum, ileum, cecum, proventriculus, BF [originates from cloaca], and cecum tonsil [locates at the lamina propria of cecum]). However, at the 15th d of raising (D15), the PTEN mRNA expression in the heart was the highest among all the tissues, followed by those in the liver, proventriculus, and kidney. The PTEN mRNA expression levels in the rest tissues were very low and were only 1.20 to 19.47% as much as that in the heart (P < 0.05). 2) The changes in the expression of PTEN mRNA in the BF, spleen, and thymus from E15 to D15 had no obvious regularity. PTEN-immunopositive (PTEN-ip) cells in the BF were distributed in epithelium mucosa, bursal follicles and interfollicles before hatching, but only in bursal follicles after hatching. PTEN-ip cells in the spleen were expressed in the periarterial lymphatic sheath from E18 to D15. Most of PTEN-ip cells distributed in the thymic medulla and only a few distributed in the thymic cortex during the whole experiment. 3) Chicken with IBDV infection had a remarkable decrease in PTEN mRNA expression from 1 d postinfection (dpi) to 7 dpi. Although PTEN mRNA level was reversed at 7 dpi, it was still significantly lower than that at 0 dpi (P < 0.05). These findings suggest that the PTEN of chicken might play important roles in the development of embryos and T/B lymphocytes, and the downregulation of PTEN in chickens infected with IBDV might be a mechanism of IBDV evasion from host immunity. Strategies designed to restore PTEN expression may be a therapy for preventing chickens from IBDV infection.
Collapse
|
46
|
de la Calle Arregui C, Plata-Gómez AB, Deleyto-Seldas N, García F, Ortega-Molina A, Abril-Garrido J, Rodriguez E, Nemazanyy I, Tribouillard L, de Martino A, Caleiras E, Campos-Olivas R, Mulero F, Laplante M, Muñoz J, Pende M, Sabio G, Sabatini DM, Efeyan A. Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling. Nat Commun 2021; 12:3660. [PMID: 34135321 PMCID: PMC8209044 DOI: 10.1038/s41467-021-23857-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates cellular nutrient signaling and hormonal cues to control metabolism. We have previously shown that constitutive nutrient signaling to mTORC1 by means of genetic activation of RagA (expression of GTP-locked RagA, or RagAGTP) in mice resulted in a fatal energetic crisis at birth. Herein, we rescue neonatal lethality in RagAGTP mice and find morphometric and metabolic alterations that span glucose, lipid, ketone, bile acid and amino acid homeostasis in adults, and a median lifespan of nine months. Proteomic and metabolomic analyses of livers from RagAGTP mice reveal a failed metabolic adaptation to fasting due to a global impairment in PPARα transcriptional program. These metabolic defects are partially recapitulated by restricting activation of RagA to hepatocytes, and revert by pharmacological inhibition of mTORC1. Constitutive hepatic nutrient signaling does not cause hepatocellular damage and carcinomas, unlike genetic activation of growth factor signaling upstream of mTORC1. In summary, RagA signaling dictates dynamic responses to feeding-fasting cycles to tune metabolism so as to match the nutritional state.
Collapse
Affiliation(s)
- Celia de la Calle Arregui
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fernando García
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Julio Abril-Garrido
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Rodriguez
- Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Laura Tribouillard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Alba de Martino
- Histopathology Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mario Pende
- Institut Necker Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Guadalupe Sabio
- Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
47
|
Zhao J, Yin L, Jiang L, Hou L, He L, Zhang C. PTEN nuclear translocation enhances neuronal injury after hypoxia-ischemia via modulation of the nuclear factor-κB signaling pathway. Aging (Albany NY) 2021; 13:16165-16177. [PMID: 34114972 PMCID: PMC8266328 DOI: 10.18632/aging.203141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 11/25/2022]
Abstract
The occurrence of hypoxia-ischemia (HI) in the developing brain is closely associated with neuronal injury and even death. However, the underlying molecular mechanism is not fully understood. This study was designed to investigate phosphatase and tensin homolog (PTEN) nuclear translocation and its possible role in rat cortical neuronal damage following oxygen-glucose deprivation (OGD) in vitro. An in vitro OGD model was established using primary cortical neurons dissected from newborn Sprague-Dawley rats to mimic HI conditions. The PTENK13R mutant plasmid, which contains a lysine-to-arginine mutation at the lysine 13 residue, was constructed. The nuclei and cytoplasm of neurons were separated. Neuronal injury following OGD was evidenced by increased lactate dehydrogenase (LDH) release and apoptotic cell counts. In addition, PTEN expression was increased and the phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) and activation of nuclear factor kappa B (NF-κB) were decreased following OGD. PTENK13R transfection prevented PTEN nuclear translocation; attenuated the effect of OGD on nuclear p-ERK1/2 and NF-κB, apoptosis, and LDH release; and increased the expression of several anti-apoptotic proteins. We conclude that PTEN nuclear translocation plays an essential role in neuronal injury following OGD via modulation of the p-ERK1/2 and NF-κB pathways. Prevention of PTEN nuclear translocation might be a candidate strategy for preventing brain injury following HI.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Ling He
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Chunyan Zhang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| |
Collapse
|
48
|
Igarashi A, Kato T, Sesaki H, Iijima M. Nuclear PTEN deficiency and heterozygous PTEN loss have distinct impacts on brain and lymph node size. Biochem Biophys Res Commun 2021; 555:81-88. [PMID: 33813280 PMCID: PMC8085137 DOI: 10.1016/j.bbrc.2021.03.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Defects in PTEN, a critical tumor suppressor, are associated with tumorigenesis and aberrant organ sizes. It has been shown that heterozygous PTEN loss increases brains and neuron size, while the specific loss of nuclear PTEN has the opposite effect. Here, we investigate the impact of a combination of heterozygous PTEN loss and nuclear PTEN loss on the size of various organs, including the brain, liver, thymus, spleen, and inguinal lymph node. We found that the effect of the combination varies among organs. Notably, the combination of heterozygous PTEN loss and nuclear PTEN loss restored the normal size of brains and neurons. In contrast, the liver's size was unaffected by either single PTEN defects or their combination. Strikingly, the size of the inguinal lymph node was greatly increased due to lymphoma by the combination of the two PTEN defects. These data suggest that nuclear PTEN and non-nuclear PTEN function in an antagonistic manner in the brain while acting synergistically in the inguinal lymph node.
Collapse
Affiliation(s)
- Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Qi Y, Liu J, Chao J, Greer PA, Li S. PTEN dephosphorylates Abi1 to promote epithelial morphogenesis. J Cell Biol 2021; 219:151941. [PMID: 32673396 PMCID: PMC7480098 DOI: 10.1083/jcb.201910041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor PTEN is essential for early development. Its lipid phosphatase activity converts PIP3 to PIP2 and antagonizes the PI3K–Akt pathway. In this study, we demonstrate that PTEN’s protein phosphatase activity is required for epiblast epithelial differentiation and polarization. This is accomplished by reconstitution of PTEN-null embryoid bodies with PTEN mutants that lack only PTEN’s lipid phosphatase activity or both PTEN’s lipid and protein phosphatase activities. Phosphotyrosine antibody immunoprecipitation and mass spectrometry were used to identify Abi1, a core component of the WASP-family verprolin homologous protein (WAVE) regulatory complex (WRC), as a new PTEN substrate. We demonstrate that PTEN dephosphorylation of Abi1 at Y213 and S216 results in Abi1 degradation through the calpain pathway. This leads to down-regulation of the WRC and reorganization of the actin cytoskeleton. The latter is critical to the transformation of nonpolar pluripotent stem cells into the polarized epiblast epithelium. Our findings establish a link between PTEN and WAVE-Arp2/3–regulated actin cytoskeletal dynamics in epithelial morphogenesis.
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jie Liu
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Joshua Chao
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Shaohua Li
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
50
|
Abstract
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|