1
|
Gagalova KK, Yan Y, Wang S, Matzat T, Castellarin SD, Birol I, Edwards D, Schuetz M. Leaf pigmentation in Cannabis sativa: Characterization of anthocyanin biosynthesis in colorful Cannabis varieties. PLANT DIRECT 2024; 8:e70016. [PMID: 39600728 PMCID: PMC11588432 DOI: 10.1002/pld3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Cannabis plants produce a spectrum of secondary metabolites, encompassing cannabinoids and more than 300 non-cannabinoid compounds. Among these, anthocyanins have important functions in plants and also have well documented health benefits. Anthocyanins are largely responsible for the red/purple color phenotypes in plants. Although some well-known Cannabis varieties display a wide range of red/purple pigmentation, the genetic underpinnings of anthocyanin biosynthesis have not been well characterized in Cannabis. This study unveils the genetic diversity of anthocyanin biosynthesis genes found in Cannabis, and we characterize the diversity of anthocyanins and related phenolics found in four differently pigmented Cannabis varieties. Our investigation revealed that the genes 4CL, CHS, F3H, F3'H, FLS, DFR, ANS, and OMT exhibited the strongest correlation with anthocyanin accumulation in Cannabis leaves. The results of this study enhance our understanding of the anthocyanin biosynthetic pathway and shed light on the molecular mechanisms governing Cannabis leaf pigmentation.
Collapse
Affiliation(s)
- Kristina K. Gagalova
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
- Canada's Michael Smith Genome Sciences CentreBC CancerVancouverBCCanada
| | - Yifan Yan
- Wine Research CentreUniversity of British ColumbiaVancouverBCCanada
| | - Shumin Wang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Till Matzat
- Wine Research CentreUniversity of British ColumbiaVancouverBCCanada
| | | | - Inanc Birol
- Canada's Michael Smith Genome Sciences CentreBC CancerVancouverBCCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Mathias Schuetz
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
- Department of BiologyKwantlen Polytechnic UniversitySurreyBCCanada
| |
Collapse
|
2
|
Güngör E, Bartels B, Bolchi G, Heeren RMA, Ellis SR, Schluepmann H. Biosynthesis and differential spatial distribution of the 3-deoxyanthocyanidins apigenidin and luteolinidin at the interface of a plant-cyanobacteria symbiosis exposed to cold. PLANT, CELL & ENVIRONMENT 2024; 47:4151-4170. [PMID: 38932650 DOI: 10.1111/pce.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Aquatic ferns of the genus Azolla (Azolla) form highly productive symbioses with filamentous cyanobacteria fixing N2 in their leaf cavities, Nostoc azollae. Stressed symbioses characteristically turn red due to 3-deoxyanthocyanidin (DA) accumulation, rare in angiosperms and of unknown function. To understand DA accumulation upon cold acclimation and recovery, we integrated laser-desorption-ionization mass-spectrometry-imaging (LDI-MSI), a new Azolla filiculoides genome-assembly and annotation, and dual RNA-sequencing into phenotypic analyses of the symbioses. Azolla sp. Anzali recovered even when cold-induced DA-accumulation was inhibited by abscisic acid. Cyanobacterial filaments generally disappeared upon cold acclimation and Nostoc azollae transcript profiles were unlike those of resting stages formed in cold-resistant sporocarps, yet filaments re-appeared in leaf cavities of newly formed green fronds upon cold-recovery. The high transcript accumulation upon cold acclimation of AfDFR1 encoding a flavanone 4-reductase active in vitro suggested that the enzyme of the first step in the DA-pathway may regulate accumulation of DAs in different tissues. However, LDI-MSI highlighted the necessity to describe metabolite accumulation beyond class assignments as individual DA and caffeoylquinic acid metabolites accumulated differentially. For example, luteolinidin accumulated in epithelial cells, including those lining the leaf cavity, supporting a role for the former in the symbiotic interaction during cold acclimation.
Collapse
Affiliation(s)
- Erbil Güngör
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Benjamin Bartels
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Giorgio Bolchi
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Shane R Ellis
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | |
Collapse
|
3
|
Wang J, Liao N, Liu G, Li Y, Xu F, Shi J. Diversity and regioselectivity of O-methyltransferases catalyzing the formation of O-methylated flavonoids. Crit Rev Biotechnol 2024; 44:1203-1225. [PMID: 38035668 DOI: 10.1080/07388551.2023.2280755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Flavonoids and their methylated derivatives have immense market potential in the food and biomedical industries due to their multiple beneficial effects, such as antimicrobial, anti-inflammatory, and anticancer activities. The biological synthesis of flavonoids and their derivatives is often accomplished via the use of genetically modified microorganisms to ensure large-scale production. Therefore, it is pivotal to understand the properties of O-methyltransferases (OMTs) that mediate the methylation of flavonoids. However, the properties of these OMTs are governed by their: sources, substrate specificity, amino acid residues in the active sites, and the intricate mechanism. In order to obtain a clue for the selection of suitable OMTs for the biosynthesis of a target methylated flavonoid, we made a comprehensive review of the currently reported results, with a particular focus on their comparative regioselectivity for different flavonoid substrates. Additionally, the possible mechanisms for the diversity of this class of enzymes were explored using molecular simulation technology. Finally, major gaps in our understanding and areas for future studies were discussed. The findings of this study may be useful in selecting genes that encode OMTs and designing enzyme-based processes for synthesizing O-methylated flavonoids.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Choudhary N, Pucker B. Conserved amino acid residues and gene expression patterns associated with the substrate preferences of the competing enzymes FLS and DFR. PLoS One 2024; 19:e0305837. [PMID: 39196921 PMCID: PMC11356453 DOI: 10.1371/journal.pone.0305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/05/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Flavonoids, an important class of specialized metabolites, are synthesized from phenylalanine and present in almost all plant species. Different branches of flavonoid biosynthesis lead to products like flavones, flavonols, anthocyanins, and proanthocyanidins. Dihydroflavonols form the branching point towards the production of non-colored flavonols via flavonol synthase (FLS) and colored anthocyanins via dihydroflavonol 4-reductase (DFR). Despite the wealth of publicly accessible data, there remains a gap in understanding the mechanisms that mitigate competition between FLS and DFR for the shared substrate, dihydroflavonols. RESULTS An angiosperm-wide comparison of FLS and DFR sequences revealed the amino acids at positions associated with the substrate specificity in both enzymes. A global analysis of the phylogenetic distribution of these amino acid residues revealed that monocots generally possess FLS with Y132 (FLSY) and DFR with N133 (DFRN). In contrast, dicots generally possess FLSH and DFRN, DFRD, and DFRA. DFRA, which restricts substrate preference to dihydrokaempferol, previously believed to be unique to strawberry species, is found to be more widespread in angiosperms and has evolved independently multiple times. Generally, angiosperm FLS appears to prefer dihydrokaempferol, whereas DFR appears to favor dihydroquercetin or dihydromyricetin. Moreover, in the FLS-DFR competition, the dominance of one over the other is observed, with typically only one gene being expressed at any given time. CONCLUSION This study illustrates how almost mutually exclusive gene expression and substrate-preference determining residues could mitigate competition between FLS and DFR, delineates the evolution of these enzymes, and provides insights into mechanisms directing the metabolic flux of the flavonoid biosynthesis, with potential implications for ornamental plants and molecular breeding strategies.
Collapse
Affiliation(s)
- Nancy Choudhary
- Institute of Plant Biology & BRICS, Plant Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Institute of Plant Biology & BRICS, Plant Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Dong J, Yu XH, Dong J, Wang GH, Wang XL, Wang DW, Yan YC, Xiao H, Ye BQ, Lin HY, Yang GF. An artificially evolved gene for herbicide-resistant rice breeding. Proc Natl Acad Sci U S A 2024; 121:e2407285121. [PMID: 39133859 PMCID: PMC11348328 DOI: 10.1073/pnas.2407285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 08/29/2024] Open
Abstract
Discovering and engineering herbicide-resistant genes is a crucial challenge in crop breeding. This study focuses on the 4-hydroxyphenylpyruvate dioxygenase Inhibitor Sensitive 1-Like (HSL) protein, prevalent in higher plants and exhibiting weak catalytic activity against many β-triketone herbicides (β-THs). The crystal structures of maize HSL1A complexed with β-THs were elucidated, identifying four essential herbicide-binding residues and explaining the weak activity of HSL1A against the herbicides. Utilizing an artificial evolution approach, we developed a series of rice HSL1 mutants targeting the four residues. Then, these mutants were systematically evaluated, identifying the M10 variant as the most effective in modifying β-THs. The initial active conformation of substrate binding in HSL1 was also revealed from these mutants. Furthermore, overexpression of M10 in rice significantly enhanced resistance to β-THs, resulting in a notable 32-fold increase in resistance to methyl-benquitrione. In conclusion, the artificially evolved M10 gene shows great potential for the development of herbicide-resistant crops.
Collapse
Affiliation(s)
- Jin Dong
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Xin-He Yu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Jiangqing Dong
- Hubei Shizhen Laboratory, Wuhan430061, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan430065, People’s Republic of China
| | - Gao-Hua Wang
- Edgene Biotechnology Co., Ltd., Wuhan430074, People’s Republic of China
| | - Xin-Long Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Da-Wei Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Yao-Chao Yan
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Han Xiao
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Bao-Qin Ye
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| |
Collapse
|
6
|
Manoilenko S, Dippe M, Fuchs T, Eisenschmidt-Bönn D, Ziegler J, Bauer AK, Wessjohann LA. Enzymatic one-step synthesis of natural 2-pyrones and new-to-nature derivatives from coenzyme A esters. J Biotechnol 2024; 388:72-82. [PMID: 38616039 DOI: 10.1016/j.jbiotec.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The 2-pyrone moiety is present in a wide range of structurally diverse natural products with various biological activities. The plant biosynthetic routes towards these compounds mainly depend on the activity of either type III polyketide synthase-like 2-pyrone synthases or hydroxylating 2-oxoglutarate dependent dioxygenases. In the present study, the substrate specificity of these enzymes is investigated by a systematic screening using both natural and artificial substrates with the aims of efficiently forming (new) products and understanding the underlying catalytic mechanisms. In this framework, we focused on the in vitro functional characterization of a 2-pyrone synthase Gh2PS2 from Gerbera x hybrida and two dioxygenases AtF6'H1 and AtF6'H2 from Arabidopsis thaliana using a set of twenty aromatic and aliphatic CoA esters as substrates. UHPLC-ESI-HRMSn based analyses of reaction intermediates and products revealed a broad substrate specificity of the enzymes, enabling the facile "green" synthesis of this important class of natural products and derivatives in a one-step/one-pot reaction in aqueous environment without the need for halogenated or metal reagents and protective groups. Using protein modeling and substrate docking we identified amino acid residues that seem to be important for the observed product scope.
Collapse
Affiliation(s)
- Svitlana Manoilenko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Martin Dippe
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| | - Tristan Fuchs
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Daniela Eisenschmidt-Bönn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Anne-Katrin Bauer
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| |
Collapse
|
7
|
Li RN, Chen SL. Mechanistic Insights into the N-Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin. Chemistry 2024; 30:e202303845. [PMID: 38212866 DOI: 10.1002/chem.202303845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω-methyl-L-arginine (L-NMA) into N-nitroso-containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L-NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O-O bond dissociation, forming Fe(IV)=O, induced by the H+/e- introduction to the FeA side of μ-1,2-peroxo-Fe2(III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e- to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O-O bond dissociation (mechanism A) and the addition of H2O as a co-substrate (mechanism D), have been ruled out.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
8
|
de Oliveira AS, Muniz Seif EJ, da Silva Junior PI. In silico prospection of receptors associated with the biological activity of U1-SCTRX-lg1a: an antimicrobial peptide isolated from the venom of Loxosceles gaucho. In Silico Pharmacol 2024; 12:15. [PMID: 38476933 PMCID: PMC10925584 DOI: 10.1007/s40203-024-00190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 03/14/2024] Open
Abstract
The emergence of antibiotic-resistant pathogens generates impairment to human health. U1-SCTRX-lg1a is a peptide isolated from a phospholipase D extracted from the spider venom of Loxosceles gaucho with antimicrobial activity against Gram-negative bacteria (between 1.15 and 4.6 μM). The aim of this study was to suggest potential receptors associated with the antimicrobial activity of U1-SCTRX-lg1a using in silico bioinformatics tools. The search for potential targets of U1-SCRTX-lg1a was performed using the PharmMapper server. Molecular docking between U1-SCRTX-lg1a and the receptor was performed using PatchDock software. The prediction of ligand sites for each receptor was conducted using the PDBSum server. Chimera 1.6 software was used to perform molecular dynamics simulations only for the best dock score receptor. In addition, U1-SCRTX-lg1a and native ligand interactions were compared using AutoDock Vina software. Finally, predicted interactions were compared with the ligand site previously described in the literature. The bioprospecting of U1-SCRTX-lg1a resulted in the identification of three hundred (300) diverse targets (Table S1), forty-nine (49) of which were intracellular proteins originating from Gram-negative microorganisms (Table S2). Docking results indicate Scores (10,702 to 6066), Areas (1498.70 to 728.40) and ACEs (417.90 to - 152.8) values. Among these, NAD + NH3-dependent synthetase (PDB ID: 1wxi) showed a dock score of 9742, area of 1223.6 and ACE of 38.38 in addition to presenting a Normalized Fit score of 8812 on PharmMapper server. Analysis of the interaction of ligands and receptors suggests that the peptide derived from brown spider venom can interact with residues SER48 and THR160. Furthermore, the C terminus (- 7.0 score) has greater affinity for the receptor than the N terminus (- 7.7 score). The molecular dynamics assay shown that free energy value for the protein complex of - 214,890.21 kJ/mol, whereas with rigid docking, this value was - 29.952.8 sugerindo that after the molecular dynamics simulation, the complex exhibits a more favorable energy value compared to the previous state. The in silico bioprospecting of receptors suggests that U1-SCRTX-lg1a may interfere with NAD + production in Escherichia coli, a Gram-negative bacterium, altering the homeostasis of the microorganism and impairing growth. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00190-8.
Collapse
Affiliation(s)
- André Souza de Oliveira
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Biotechnology, University of São Paulo, São Paulo, SP Brazil
| | - Elias Jorge Muniz Seif
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Molecular Biology, Federal University of São Paulo, São Paulo, SP Brazil
| | - Pedro Ismael da Silva Junior
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Biotechnology, University of São Paulo, São Paulo, SP Brazil
- Post Graduate Program of Molecular Biology, Federal University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
9
|
Mori K, Tanase K, Sasaki K. Novel electroporation-based genome editing of carnation plant tissues using RNPs targeting the anthocyanidin synthase gene. PLANTA 2024; 259:84. [PMID: 38448635 DOI: 10.1007/s00425-024-04358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
MAIN CONCLUSION A novel electroporation method for genome editing was performed using plant tissue samples by direct RNPs-introduction in carnation. Genome editing is becoming a very useful tool in plant breeding. In this study, a novel electroporation method was performed for genome editing using plant tissue samples. The objective was to create a flower color mutant using the pink-flowered carnation 'Kane Ainou 1-go'. For this purpose, a ribonucleoprotein consisting of guide RNA and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) was introduced into the stem tissue to induce mutations in the anthocyanidin synthase (ANS) gene, which is involved in anthocyanin biosynthesis. As the ANS of 'Kane Ainou 1-go' has not been previously isolated, we initially isolated the ANS gene from 'Kane Ainou 1-go' for characterization. Southern hybridization analysis confirmed that the ANS gene was present in the genome as a two-allele gene with a pair of homologous sequences (ANS-1 and 2); these sequences were used as the target for genome editing. Genome editing was performed by introducing #2_single-guide RNA into the stem tissue using the ribonucleoprotein. This molecule was used because it exhibited the highest efficiency in an analysis of cleavage activity against the target sequence in vitro. Cleaved amplified polymorphic sequence analysis of genomic DNA extracted from 85 regenerated individuals after genome editing was performed. The results indicated that mutations in the ANS gene may have been introduced into two lines. Cloning of the ANS gene in these two lines confirmed the introduction of a single nucleotide substitution mutation for ANS-1 in both lines, and a single amino acid substitution in one line. We discussed the possibility of color change by the amino acid substitution, and also the future applications of this technology.
Collapse
Affiliation(s)
- Kenichiro Mori
- Aichi Agricultural Research Center (AARC), 1-1 Sagamine Yazako, Nagakute, Aichi, 480-1193, Japan
| | - Koji Tanase
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan.
| |
Collapse
|
10
|
Song W, Li C, Kou M, Li C, Gao G, Cai T, Tang W, Zhang Z, Nguyen T, Wang D, Wang X, Ma M, Gao R, Yan H, Shen Y, You C, Zhang Y, Li Q. Different regions and environments have critical roles on yield, main quality and industrialization of an industrial purple-fleshed sweetpotato ( Ipomoea batatas L. (Lam.)) "Xuzishu8". Heliyon 2024; 10:e25328. [PMID: 38390079 PMCID: PMC10881541 DOI: 10.1016/j.heliyon.2024.e25328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/10/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Purple-fleshed sweetpotato (PFSP) (Ipomoea batatas (L.) Lam), whose flesh is purple to dark purple, is a special variety type of sweetpotato, which has the characteristics of food crop, industrial crop and medicinal crop. The storage root (SR) of PFSP is rich in anthocyanins, starch, protein, soluble sugar, mineral elements, polyphenol, dietary fiber and so on, which has balanced and comprehensive nutritional value. And in recent years, its unique nutritional elements are increasingly known for their health functions. At present, there is no article on the characteristics and quality analysis of industrial xz8 variety. To explore the influence of different environments on the processing quality of xz8, we selected nine regions (Xuzhou, Jiawang, Pizhou, Xinyi, Peixian, Sihong, Yanchen, Xiangyang and Tianshui) to measure its yield and quality changes. The data demonstrated that xz8 has a very consistent high yield performance. In Tianshui, the anthocyanins, protein and minerals contents were significantly higher and yield also above average. Moreover, the variety with the lowest starch content exhibited the best taste. On the basis of the above results, it suggested that quite practicable to promote xz8 cultivation and suitable for processing in these areas. Thus, our present findings improve our understanding of xz8 variety and provide the basis for the industrial production of PFSP with strong prospects for success.
Collapse
Affiliation(s)
- Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chengyang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Guangzhen Gao
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Tingdong Cai
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Zhenyi Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Thanhliem Nguyen
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
| | - Dandan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Meng Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Yifan Shen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chang You
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| |
Collapse
|
11
|
Schilbert HM, Busche M, Sáez V, Angeli A, Weisshaar B, Martens S, Stracke R. Generation and characterisation of an Arabidopsis thaliana f3h/fls1/ans triple mutant that accumulates eriodictyol derivatives. BMC PLANT BIOLOGY 2024; 24:99. [PMID: 38331743 PMCID: PMC10854054 DOI: 10.1186/s12870-024-04787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Flavonoids are plant specialised metabolites, which derive from phenylalanine and acetate metabolism. They possess a variety of beneficial characteristics for plants and humans. Several modification steps in the synthesis of tricyclic flavonoids cause for the amazing diversity of flavonoids in plants. The 2-oxoglutarate-dependent dioxygenases (2-ODDs) flavanone 3-hydroxylase (F3H, synonym FHT), flavonol synthase (FLS) and anthocyanidin synthase (ANS, synonym leucoanthocyanidin dioxygenase (LDOX)), catalyse oxidative modifications to the central C ring. They are highly similar and have been shown to catalyse, at least in part, each other's reactions. FLS and ANS have been identified as bifunctional enzymes in many species, including Arabidopsis thaliana, stressing the capability of plants to bypass missing or mutated reaction steps on the way to flavonoid production. However, little is known about such bypass reactions and the flavonoid composition of plants lacking all three central flavonoid 2-ODDs. RESULTS To address this issue, we generated a f3h/fls1/ans mutant, as well as the corresponding double mutants and investigated the flavonoid composition of this mutant collection. The f3h/fls1/ans mutant was further characterised at the genomic level by analysis of a nanopore DNA sequencing generated genome sequence assembly and at the transcriptomic level by RNA-Seq analysis. The mutant collection established, including the novel double mutants f3h/fls1 and f3h/ans, was used to validate and analyse the multifunctionalities of F3H, FLS1, and ANS in planta. Metabolite analyses revealed the accumulation of eriodictyol and additional glycosylated derivatives in mutants carrying the f3h mutant allele, resulting from the conversion of naringenin to eriodictyol by flavonoid 3'-hydroxylase (F3'H) activity. CONCLUSIONS We describe the in planta multifunctionality of the three central flavonoid 2-ODDs from A. thaliana and identify a bypass in the f3h/fls1/ans triple mutant that leads to the formation of eriodictyol derivatives. As (homo-)eriodictyols are known as bitter taste maskers, the annotated eriodictyol (derivatives) and in particular the observations made on their in planta production, could provide valuable insights for the creation of novel food supplements.
Collapse
Affiliation(s)
- Hanna Marie Schilbert
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Mareike Busche
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Vania Sáez
- Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige (TN), Italy
| | - Andrea Angeli
- Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige (TN), Italy
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige (TN), Italy
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
12
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
13
|
Cai O, Zhang H, Yang L, Wu H, Qin M, Yao W, Huang F, Li L, Lin S. Integrated Transcriptome and Metabolome Analyses Reveal Bamboo Culm Color Formation Mechanisms Involved in Anthocyanin Biosynthetic in Phyllostachys nigra. Int J Mol Sci 2024; 25:1738. [PMID: 38339012 PMCID: PMC10855043 DOI: 10.3390/ijms25031738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Phyllostachys nigra has green young culms (S1) and purple black mature culms (S4). Anthocyanins are the principal pigment responsible for color presentation in ornamental plants. We employ a multi-omics approach to investigate the regulatory mechanisms of anthocyanins in Ph. nigra. Firstly, we found that the pigments of the culm of Ph. nigra accumulated only in one to four layers of cells below the epidermis. The levels of total anthocyanins and total flavonoids gradually increased during the process of bamboo culm color formation. Metabolomics analysis indicated that the predominant pigment metabolites observed were petunidin 3-O-glucoside and malvidin O-hexoside, exhibiting a significant increase of up to 9.36-fold and 13.23-fold, respectively, during pigmentation of Ph. nigra culm. Transcriptomics sequencing has revealed that genes involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways were significantly enriched, leading to color formation. A total of 62 differentially expressed structural genes associated with anthocyanin synthesis were identified. Notably, PnANS2, PnUFGT2, PnCHI2, and PnCHS1 showed significant correlations with anthocyanin metabolites. Additionally, certain transcription factors such as PnMYB6 and PnMYB1 showed significant positive or negative correlations with anthocyanins. With the accumulation of sucrose, the expression of PnMYB6 is enhanced, which in turn triggers the expression of anthocyanin biosynthesis genes. Based on these findings, we propose that these key genes primarily regulate the anthocyanin synthesis pathway in the culm and contribute to the accumulation of anthocyanin, ultimately resulting in the purple-black coloration of Ph. nigra.
Collapse
Affiliation(s)
- Ou Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hanjiao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Min Qin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Feiyi Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Duff SMG, Zhang M, Zinnel F, Rydel T, Taylor CM, Chen D, Tilton G, Mamanella P, Duda D, Wang Y, Xiang B, Karunanandaa B, Varagona R, Chittoor J, Qi Q, Hall E, Garvey G, Zeng J, Zhang J, Li X, White T, Jerga A, Haas J. Structural and functional characterization of triketone dioxygenase from Oryza Sativa. Biochim Biophys Acta Gen Subj 2024; 1868:130504. [PMID: 37967728 DOI: 10.1016/j.bbagen.2023.130504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023]
Abstract
The transgenic expression of rice triketone dioxygenase (TDO; also known as HIS1) can provide protection from triketone herbicides to susceptible dicot crops such as soybean. Triketones are phytotoxic inhibitors of plant hydroxyphenylpyruvate dioxygenases (HPPD). The TDO gene codes for an iron/2-oxoglutarate-dependent oxidoreductase. We obtained an X-ray crystal structure of TDO using SeMet-SAD phasing to 3.16 Å resolution. The structure reveals that TDO possesses a fold like that of Arabidopsis thaliana 2-oxoglutarate‑iron-dependent oxygenase anthocyanidin synthase (ANS). Unlike ANS, this TDO structure lacks bound metals or cofactors, and we propose this is because the disordered flexible loop over the active site is sterically constrained from folding properly in the crystal lattice. A combination of mass spectrometry, nuclear magnetic resonance, and enzyme activity studies indicate that rice TDO oxidizes mesotrione in a series of steps; first producing 5-hydroxy-mesotrione and then oxy-mesotrione. Evidence suggests that 5-hydroxy-mesotrione is a much weaker inhibitor of HPPD than mesotrione, and oxy-mesotrione has virtually no inhibitory activity. Of the close homologues which have been tested, only corn and rice TDO have enzymatic activity and the ability to protect plants from mesotrione. Correlating sequence and structure has identified four amino acids necessary for TDO activity. Introducing these four amino acids imparts activity to a mesotrione-inactive TDO-like protein from sorghum, which may expand triketone herbicide resistance in new crop species.
Collapse
Affiliation(s)
| | | | | | | | | | - Danqi Chen
- Ionova Life Sciences, Shenzhen, Guangdong, China
| | | | | | | | | | | | | | | | | | - Qungang Qi
- Bayer Crop Science, Chesterfield, MO, USA
| | - Erin Hall
- Bayer Crop Science, Chesterfield, MO, USA
| | | | | | - Jun Zhang
- Bayer Crop Science, Chesterfield, MO, USA
| | - Xin Li
- Bayer Crop Science, Chesterfield, MO, USA
| | | | | | - Jeff Haas
- Bayer Crop Science, Chesterfield, MO, USA
| |
Collapse
|
15
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
16
|
Okamoto K, Inoue T, Nagano T, Miyazaki S, Takahashi I, Asami T, Okada K, Okada K, Nakajima M. Chemical screening of inhibitors specific for MdDOX-Co that cause an apple columnar tree-shape. Biosci Biotechnol Biochem 2023; 88:63-69. [PMID: 37791963 DOI: 10.1093/bbb/zbad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
MdDOX-Co, the ectopic expression of which is considered to cause the apple columnar tree shape, belongs to the 2-oxoglutarate-dependent dioxygenase (2ODD) family. It adds a hydroxyl group to position 12 of gibberellins (GAs). However, the 2ODD enzymes related to GA biosynthesis and catabolism are phylogenetically distinct from MdDOX-Co. Thus, it is possible that substrates other than GAs exist in MdDOX-Co. To identify the previously unidentified substrate(s) of MdDOX-Co, we searched for MdDOX-Co-specific inhibitors. Chemical screening using gas chromatography-mass spectrometry was performed to investigate the effects of 2400 compounds that inhibited the catalytic reaction of MdDOX-Co, but not the catabolic reaction of GA 2-oxidase, an enzyme involved in GA catabolism. By applying two positive compounds in Arabidopsis, a chemical 3-((2-chloro-6-fluorobenzyl)thio)-5,7-dimethyl-5H-pyrazolo[3,4-e][1,4,2]dithiazine-1,1-dioxide designated as TPDD that did not inhibit GA biosynthesis was selected. The structure-activity relationships among the TPDD analogs were also obtained.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsunesato Nagano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Miyazaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ikuo Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuma Okada
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Feng Y, Tian X, Liang W, Nan X, Zhang A, Li W, Ma Z. Genome-wide identification of grape ANS gene family and expression analysis at different fruit coloration stages. BMC PLANT BIOLOGY 2023; 23:632. [PMID: 38066449 PMCID: PMC10709965 DOI: 10.1186/s12870-023-04648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Anthocyanin synthase (ANS) is the enzyme downstream of the anthocyanins synthesis pathway and the rate-limiting enzyme of the synthesis pathway. It catalyzes the conversion of colorless anthocyanins to anthocyanins and plays an important role in plant color presentation and stress resistance. However, ANS gene is rarely studied in grapes. RESULTS In this study, 121 VvANS genes were identified and distributed on 18 chromosomes, VvANS family members were divided into 8 subgroups. Secondary structure prediction showed mainly irregular coils and α-helices, and subcellular localization indicated that VvANS gene family is mainly located in chloroplast, cytoplasm and nucleus. The promoter region of the VvANS gene family contains multiple cis-acting elements that are associated with light, abiotic stress, and hormones. Intraspecific collinearity analysis showed that there were 13 pairs of collinearity between VvANS genes. Interspecific collinearity analysis showed that there was more collinearity between grape, apple and Arabidopsis, but less collinearity between grape and rice. Microarray data analysis showed that VvANS17, VvANS23 and VvANS75 had higher expression levels in flesh and peel, while VvANS25, VvANS64 and VvANS106 had higher expression levels in flower. The results of qRT-PCR analysis showed that VvANS genes were expressed throughout the whole process of fruit coloring, such as VvANS47 and VvANS55 in the green fruit stage, VvANS3, VvANS64 and VvANS90 in the initial fruit color turning stage. The expression levels of VvANS21, VvANS79 and VvANS108 were higher at 50% coloring stage, indicating that these genes play an important role in the fruit coloring process. VvANS4, VvANS66 and VvANS113 had the highest expression levels in the full maturity stage. CONCLUSIONS These results indicated that different members of VvANS gene family played a role in different coloring stages, and this study laid a foundation for further research on the function of ANS gene family.
Collapse
Affiliation(s)
- Yongqing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xuechun Tian
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Wei Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - XinTong Nan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Aoning Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
18
|
Wu L, Tian J, Yu Y, Yuan L, Zhang Y, Wu H, Wang F, Peng X. Functional characterization of a cold related flavanone 3-hydroxylase from Tetrastigma hemsleyanum: an in vitro, in silico and in vivo study. Biotechnol Lett 2023; 45:1565-1578. [PMID: 37910279 DOI: 10.1007/s10529-023-03440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023]
Abstract
Tetrastigma hemsleyanum Diels et Gilg, a traditional Chinese medicine, frequently suffers from cold damage in the winter, leading to lower yields. There is a pressing need to improve cold resistance; however, the mechanisms underlying T. hemsleyanum responses to cold stress are still not clearly understood. Here, we explored the function of the flavanone 3-hydroxylase gene (ThF3H) in T. hemsleyanum under cold treatment. The open reading frame of ThF3H is 1092 bp and encodes 363 amino acid residues. In vitro, the ThF3H enzyme was expressed in E. coli and successfully catalyzed naringenin and eriodictyol into dihydrokaempferol and dihydroquercetin, respectively. ThF3H exhibited a higher affinity for naringenin than for eriodictyol, which was in accordance with an in silico molecular docking analysis. The optimal pH and temperature for ThF3H activity were 7.0 and 30 °C, respectively. In vivo, overexpression of the ThF3H gene enhanced the cold tolerance of transgenic Arabidopsis lines, which was likely due to the increase in flavonoids. Collectively, the function of a cold-related ThF3H in the flavonoid biosynthesis pathway may be helpful for improving the cold tolerance of T. hemsleyanum through molecular breeding techniques.
Collapse
Affiliation(s)
- Lishuang Wu
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China.
| | - Jian Tian
- Newgen Biotech (Ningbo) Co., Ltd, Ningbo, 315100, Zhejiang, China
| | - Yao Yu
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315100, Zhejiang, China
| | - Lixia Yuan
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Yujiong Zhang
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Hao Wu
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Furong Wang
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315100, Zhejiang, China
| |
Collapse
|
19
|
Wang Y, Cui Z, Li Q, Zhang S, Li Y, Li X, Kong L, Luo J. The parallel biosynthesis routes of hyperoside from naringenin in Hypericum monogynum. HORTICULTURE RESEARCH 2023; 10:uhad166. [PMID: 37727703 PMCID: PMC10506691 DOI: 10.1093/hr/uhad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants. It plays an important physiological role in the growth of flower buds. However, the hyperoside biosynthesis pathway has not been systematically elucidated in plants, including its original source, Hypericaceae. Our group found abundant hyperoside in the flower buds of Hypericum monogynum, and we sequenced its transcriptome to study the biosynthetic mechanism of hyperoside. After gene screening and functional verification, four kinds of key enzymes were identified. Specifically, HmF3Hs (flavanone 3-hydroxylases) and HmFLSs (flavonol synthases) could catalyze flavanones into dihydroflavonols, as well as catalyzing dihydroflavonols into flavonols. HmFLSs could also convert flavanones into flavonols and flavones with varying efficiencies. HmF3'H (flavonoid 3'-hydroxylase) was found to act broadly on 4'-hydroxyl flavonoids to produce 3',4'-diydroxylated flavanones, dihydroflavonols, flavonols, and flavones. HmGAT (flavonoid 3-O-galactosyltransferase) would transform flavonols into the corresponding 3-O-galactosides, including hyperoside. The parallel hyperoside biosynthesis routes were thus depicted, one of which was successfully reconstructed in Escherichia coli BL21(DE3) by feeding naringenin, resulting in a hyperoside yield of 25 mg/l. Overall, this research not only helped us understand the interior catalytic mechanism of hyperoside in H. monogynum concerning flower development and bioactivity, but also provided valuable insights into these enzyme families.
Collapse
Affiliation(s)
- Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhirong Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yongyi Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xueyan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Chelliah A, Arumugam C, Punchakkara PM, Suthanthiram B, Raman T, Subbaraya U. Genome-wide characterization of 2OGD superfamily for mining of susceptibility factors responding to various biotic stresses in Musa spp. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1319-1338. [PMID: 38024958 PMCID: PMC10678914 DOI: 10.1007/s12298-023-01380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Bananas are an important staple food and cash crop, but they are vulnerable to a variety of pests and diseases that substantially reduce yield and quality. Banana diseases are challenging to control and necessitate an integrated strategy, and development of resistant cultivars is one of the effective ways of managing diseases. Lasting disease resistance is the main goal in crop improvement and resistance mediated by a single resistant (R) gene mostly lack durability. However, long-term resistance can be obtained by inactivating susceptibility factors (S), which facilitate pathogen infection and proliferation. Identification and inactivation of susceptibility factors against the major pathogens like Fusarium oxysporum f. sp. cubense (Foc), Pseudocercospora eumusae and Pratylenchus coffeae in banana will be an effective way in developing banana varieties with more durable resistance. Downy mildew resistance 6 (DMR6) and DMR-like oxygenases (DLO1) are one such susceptibility factors and they belong to 2-oxoglutarate Fe(II) dependent oxygenases (2OGD) superfamily. 2OGDs are known to catalyze a plethora of reactions and also confer resistance to different pathogens in various crops, but not much is known about the 2OGD in Musa species. Through a comprehensive genome-wide analysis, 133 and 122 potential 2OGDs were systematically identified and categorized from the A and B genomes of banana, respectively. Real time expression of dmr6 and dlo1 genes showed positive correlation with transcriptome data upon Foc race1 and TR4 infection and examination of expression pattern of Macma4_04_g22670 (Ma04_g20880) and Macma4_02_g13590 (Ma02_g12040) genes revealed their involvement in Foc race1 and TR4 infections, respectively. Further the expression profile of 2OGDs, specifically Macma4_04_g25310 (Ma04_g23390), Macma4_08_g11980 (Ma08_g12090) and Macma4_04_g38910 (Ma04_g36640) shows that they may play a significant role as a susceptibility factor, particularly against P. eumusae and P. coffeae, implying that they can be exploited as a candidate gene for editing in developing resistant cultivars against these diseases. In summary, our findings contribute to a deeper comprehension of the evolutionary and functional aspects of 2OGDs in Musa spp. Furthermore, they highlight the substantial functions of these family constituents in the progression of diseases. These insights hold significance in the context of enhancing the genetic makeup of bananas to attain extended and more durable resistance against pathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01380-y.
Collapse
Affiliation(s)
- Anuradha Chelliah
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Chandrasekar Arumugam
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Prashina Mol Punchakkara
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Backiyarani Suthanthiram
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Thangavelu Raman
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
21
|
Eichenberger M, Schwander T, Hüppi S, Kreuzer J, Mittl PRE, Peccati F, Jiménez-Osés G, Naesby M, Buller RM. The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis. Nat Catal 2023; 6:927-938. [PMID: 37881531 PMCID: PMC10593608 DOI: 10.1038/s41929-023-01018-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/01/2023] [Indexed: 10/27/2023]
Abstract
Anthocyanins are ubiquitous plant pigments used in a variety of technological applications. Yet, after over a century of research, the penultimate biosynthetic step to anthocyanidins attributed to the action of leucoanthocyanidin dioxygenase has never been efficiently reconstituted outside plants, preventing the construction of heterologous cell factories. Through biochemical and structural analysis, here we show that anthocyanin-related glutathione transferases, currently implicated only in anthocyanin transport, catalyse an essential dehydration of the leucoanthocyanidin dioxygenase product, flavan-3,3,4-triol, to generate cyanidin. Building on this knowledge, introduction of anthocyanin-related glutathione transferases into a heterologous biosynthetic pathway in baker's yeast results in >35-fold increased anthocyanin production. In addition to unravelling the long-elusive anthocyanin biosynthesis, our findings pave the way for the colourants' heterologous microbial production and could impact the breeding of industrial and ornamental plants.
Collapse
Affiliation(s)
- Michael Eichenberger
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Thomas Schwander
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Sean Hüppi
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jan Kreuzer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Rebecca M. Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|
22
|
Feng Y, Yang S, Li W, Mao J, Chen B, Ma Z. Genome-Wide Identification and Expression Analysis of ANS Family in Strawberry Fruits at Different Coloring Stages. Int J Mol Sci 2023; 24:12554. [PMID: 37628740 PMCID: PMC10454780 DOI: 10.3390/ijms241612554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
To elucidate the structural characteristics, phylogeny and biological function of anthocyanin synthase (ANS) and its role in anthocyanin synthesis, members of the strawberry ANS gene family were obtained by whole genome retrieval, and their bioinformatic analysis and expression analysis at different developmental stages of fruit were performed. The results showed that the strawberry ANS family consisted of 141 members distributed on 7 chromosomes and could be divided into 4 subfamilies. Secondary structure prediction showed that the members of this family were mainly composed of random curls and α-helices, and were mainly located in chloroplasts, cytoplasm, nuclei and cytoskeletons. The promoter region of the FvANS gene family contains light-responsive elements, abiotic stress responsive elements and hormone responsive elements, etc. Intraspecific collinearity analysis revealed 10 pairs of FvANS genes, and interspecific collinearity analysis revealed more relationships between strawberries and apples, grapes and Arabidopsis, but fewer between strawberries and rice. Chip data analysis showed that FvANS15, FvANS41, FvANS47, FvANS48, FvANS49, FvANS67, FvANS114 and FvANS132 were higher in seed coat tissues and endosperm. FvANS16, FvANS85, FvANS90 and FvANS102 were higher in internal and fleshy tissues. Quantitative real-time PCR (qRT-PCR) showed that the ANS gene was expressed throughout the fruit coloring process. The expression levels of most genes were highest in the 50% coloring stage (S3), such as FvANS16, FvANS19, FvANS31, FvANS43, FvANS73, FvANS78 and FvANS91. The expression levels of FvANS52 were the highest in the green fruit stage (S1), and FvANS39 and FvANS109 were the highest in the 20% coloring stage (S2). These results indicate that different members of the FvANS gene family play a role in different pigmentation stages, with most genes playing a role in the expression level of the rapid accumulation of fruit coloring. This study lays a foundation for further study on the function of ANS gene family.
Collapse
Affiliation(s)
| | | | | | | | | | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
23
|
Yu H, Wang J, Shen Y, Sheng X, Shaw RK, Branca F, Gu H. A 43 Bp-Deletion in the F3'H Gene Reducing Anthocyanins Is Responsible for Keeping Buds Green at Low Temperatures in Broccoli. Int J Mol Sci 2023; 24:11391. [PMID: 37511150 PMCID: PMC10380335 DOI: 10.3390/ijms241411391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Most broccoli cultivars or accessions exhibit green buds under appropriate growth conditions, which turn purple at cold temperatures. However, certain cultivars consistently maintain green buds both during normal growth and at cold temperatures. In this study, we used BSA-seq (bulked segregation analysis-sequencing), along with fine mapping and transcriptome analysis to identify a candidate gene (flavonoid 3'-hydroxylase, F3'H) responsible for reducing anthocyanin accumulation in the mutant GS and HX-16 broccoli (Brassica oleracea L. var. italica), which could retain green buds even at low temperatures. A 43-bp deletion was detected in the coding sequence (CDS) of the F3'H gene in HX-16 and the mutant GS, which significantly decreased F3'H expression and the accumulation of cyanidin and delphinidin in the mutant GS. Furthermore, the expression of F3'H was upregulated at low temperatures in the wild line PS. Our results demonstrated the efficacy of utilizing the 43-bp InDel (Insertion-Deletion) in predicting whether buds in B. oleracea L. will turn purple or remain green at cold temperatures across forty-two germplasm materials. This study provides critical genetic and molecular insights for the molecular breeding of B. oleracea and sheds light on the molecular mechanisms underlying the effect of low temperatures on bud color in broccoli.
Collapse
Affiliation(s)
- Huifang Yu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiansheng Wang
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yusen Shen
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ranjan Kumar Shaw
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Honghui Gu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
24
|
Bennett C, Funsueb S, Kittiwachana S, Sookwong P, Mahatheeranont S. Mineral elements and their relation to anthocyanin content in pigmented rice plants using definitive screening design and self-organizing maps. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4535-4544. [PMID: 36856263 DOI: 10.1002/jsfa.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Mineral elements are nutrients required by an organism to perform functions necessary for survival. Stress-induced metabolism following nutritional stress has been reported to increase levels of anthocyanin. However, the role of mineral elements commonly found in soil and their contribution to the accumulation of anthocyanin content in rice plants is uncertain. RESULT Amongst the ten mineral elements investigated, the cultivation of rice plants in clean sand showed that the Mg-, Se-, and Cu-treated plants had the highest accumulated anthocyanin content in the leaves, whereas B, Cr, and Se had the greatest effect on grains. Yield component data showed major positive effects from Mg, Cr, and B. The interaction of Zn*Se and Mg*Cu positively affected the anthocyanin content in grains. The self-organizing map indicated that the total anthocyanin content was relatively proportional to the concentration of Mn, B, and Cr, but disproportional to that of Se. However, rice plants with added Fe produced the smallest amount of total anthocyanin content, less than the control, in the four stages of rice growth. CONCLUSION The appropriate concentrations of mineral elements in soil could promote the proliferation of anthocyanin content in rice plants and grains. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chonlada Bennett
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sujitra Funsueb
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sila Kittiwachana
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Phumon Sookwong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Tan C, Chen H, Dai G, Liu Y, Shen W, Wang C, Liu D, Liu S, Xu S, Zhu B, Chen D, Cui C. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis). PLANTA 2023; 258:19. [PMID: 37314587 DOI: 10.1007/s00425-023-04171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B. rapa L. ssp. chinensis) is an influential and important vegetable with green, yellow, or purple leaves that is cultivated worldwide. The purple leaves are rich in anthocyanins, but the underlying genetics and evolution have yet to be extensively studied. Free-hand sections of the purple leaves indicated that anthocyanins mainly accumulate throughout the adaxial and abaxial epidermal leaf cells. Segregation analyses of an F2 population of a B. rapa ssp. chinensis L. purple leaf mutant ZBC indicated that the purple trait is controlled by an incompletely dominant nuclear gene. Bulked segregant analysis (BSA) showed that the key genes controlling the trait were between 24.25 and 38.10 Mb on chromosome A03 of B. rapa. From the annotated genes, only BraA03g050560.3C, homologous to Arabidopsis AtANS, was related to the anthocyanin synthesis pathway. Genome annotation results and transcriptional sequencing analyses revealed that the BraANS.A3 gene was involved in the purple leaf trait. qRT-PCR analyses showed that BraANS.A3 was highly upregulated in ZBC but hardly expressed in the leaves of an inbred homozygous line of B. campestris ssp. chinensis L. green leaf mutant WTC, indicating that BraANS.A3 played a key role catalyzing anthocyanin synthesis in ZBC. Full-length sequence alignment of BraANS.A3 in WTC and ZBC showed that it was highly conserved in the gene region, with significant variation in the promoter region. In particular, the insertion of two short fragments of the promoter region in WTC may interfere with its normal expression. The promoter regions of ANS in six Brassica species all had multiple cis-elements involved in responses to abscisic acid, light, and stress, suggesting that ANS may be involved in multiple metabolic pathways or biological processes. Protein-protein interactions predicted that BraANS.A3 interacts with virtually all catalytic proteins in the anthocyanin synthesis pathway and has a strong relationship with Transparent Testa 8 (TT8). These results suggest that BraANS.A3 promotes anthocyanin accumulation in purple pak choi and provide new insights into the functional analysis of anthocyanin-related genes in Chinese cabbage and transcriptional regulatory networks.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Duannv Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Sijia Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Shuqi Xu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|
26
|
Yu K, Song Y, Lin J, Dixon RA. The complexities of proanthocyanidin biosynthesis and its regulation in plants. PLANT COMMUNICATIONS 2023; 4:100498. [PMID: 36435967 PMCID: PMC10030370 DOI: 10.1016/j.xplc.2022.100498] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Proanthocyanidins (PAs) are natural flavan-3-ol polymers that contribute protection to plants under biotic and abiotic stress, benefits to human health, and bitterness and astringency to food products. They are also potential targets for carbon sequestration for climate mitigation. In recent years, from model species to commercial crops, research has moved closer to elucidating the flux control and channeling, subunit biosynthesis and polymerization, transport mechanisms, and regulatory networks involved in plant PA metabolism. This review extends the conventional understanding with recent findings that provide new insights to address lingering questions and focus strategies for manipulating PA traits in plants.
Collapse
Affiliation(s)
- Keji Yu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yushuang Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
27
|
Jiang T, Cui A, Cui Y, Cui R, Han M, Zhang Y, Fan Y, Huang H, Feng X, Lei Y, Liu X, Ni K, Zhang H, Xu N, Wang J, Sun L, Rui C, Wang J, Wang S, Chen X, Lu X, Wang D, Guo L, Zhao L, Hao F, Ye W. Systematic analysis and expression of Gossypium 2ODD superfamily highlight the roles of GhLDOXs responding to alkali and other abiotic stress in cotton. BMC PLANT BIOLOGY 2023; 23:124. [PMID: 36869319 PMCID: PMC9985220 DOI: 10.1186/s12870-023-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND 2-oxoglutarate-dependent dioxygenase (2ODD) is the second largest family of oxidases involved in various oxygenation/hydroxylation reactions in plants. Many members in the family regulate gene transcription, nucleic acid modification/repair and secondary metabolic synthesis. The 2ODD family genes also function in the formation of abundant flavonoids during anthocyanin synthesis, thereby modulating plant development and response to diverse stresses. RESULTS Totally, 379, 336, 205, and 204 2ODD genes were identified in G. barbadense (Gb), G. hirsutum (Gh), G. arboreum (Ga), and G. raimondii (Gb), respectively. The 336 2ODDs in G. hirsutum were divided into 15 subfamilies according to their putative functions. The structural features and functions of the 2ODD members in the same subfamily were similar and evolutionarily conserved. Tandem duplications and segmental duplications served essential roles in the large-scale expansion of the cotton 2ODD family. Ka/Ks values for most of the gene pairs were less than 1, indicating that 2ODD genes undergo strong purifying selection during evolution. Gh2ODDs might act in cotton responses to different abiotic stresses. GhLDOX3 and GhLDOX7, two members of the GhLDOX subfamily from Gh2ODDs, were significantly down-regulated in transcription under alkaline stress. Moreover, the expression of GhLDOX3 in leaves was significantly higher than that in other tissues. These results will provide valuable information for further understanding the evolution mechanisms and functions of the cotton 2ODD genes in the future. CONCLUSIONS Genome-wide identification, structure, and evolution and expression analysis of 2ODD genes in Gossypium were carried out. The 2ODDs were highly conserved during evolutionary. Most Gh2ODDs were involved in the regulation of cotton responses to multiple abiotic stresses including salt, drought, hot, cold and alkali.
Collapse
Affiliation(s)
- Tiantian Jiang
- State Key Laboratory of Cotton Biology / School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aihua Cui
- Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, Jiangxi, China
| | - Yupeng Cui
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruifeng Cui
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Mingge Han
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hui Huang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xixian Feng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yuqian Lei
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoyu Liu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Kesong Ni
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hong Zhang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Nan Xu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jing Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liangqing Sun
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Cun Rui
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuai Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xuke Lu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Delong Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lixue Guo
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology / School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology / School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
28
|
Tao M, Liu S, Li Y, Liu A, Tian J, Liu Y, Fu H, Zhu W. Molecular characterization of a feruloyl-CoA 6'-hydroxylase involved in coumarin biosynthesis in Clematis terniflora DC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:162-170. [PMID: 36709578 DOI: 10.1016/j.plaphy.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coumarin is an important secondary metabolite that affects plant physiology. It is a lactone of cis-o-hydroxycinnamic acid and widely exists in medicinal plants. Clematis terniflora DC. is a plant belonging to Ranunculaceae and is rich in variety of coumarins. Feruloyl-CoA 6'-hydroxylase has been reported as a key enzyme in the formation of coumarin basic skeleton only in some common plants, however, its evidence in other species is still lacking especially for the biosynthesis of coumarins in C. terniflora. In the present study, we identified a feruloyl-CoA 6'-hydroxylase CtF6'H in C. terniflora, and functional characterization indicated that CtF6'H could hydroxylate feruloyl-CoA to 6-hydroxyferuloyl-CoA. Furthermore, the expression level of CtF6'H was differed among different tissues in C. terniflora, while under UV-B radiation, the level of CtF6'H was increased in the leaves. Biochemical characteristics and subcellular location showed that CtF6'H was mainly present in the cytosol. The crystal structure of CtF6'H was simulated by homology modeling to predict the potential residues affecting enzyme activity. This study provides the additional evidence of feruloyl-CoA 6'-hydroxylase in different plant species and enriches our understanding of biosynthetic mechanism of coumarin in C. terniflora.
Collapse
Affiliation(s)
- Minglei Tao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchang Liu
- International Center of Zhejiang Fuyang High School, Hangzhou, 311400, China
| | - Hongwei Fu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
29
|
Wang Q, Zhu J, Li B, Li S, Yang Y, Wang Q, Xu W, Wang L. Functional identification of anthocyanin glucosyltransferase genes: a Ps3GT catalyzes pelargonidin to pelargonidin 3-O-glucoside painting the vivid red flower color of Paeonia. PLANTA 2023; 257:65. [PMID: 36826722 DOI: 10.1007/s00425-023-04095-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Glycosylation from an anthocyanidin 3-O-glucosyltransferase Ps3GT (PsUGT78A27) facilitates the accumulation of pelargonidin 3-O-glucoside, which defines the vivid red flower color and occurs only in specific peony tree cultivars. Although tree peony cultivars of Chinese and Japanese both originated from China, vivid red color is only found in flowers of Japanese cultivars but not of Chinese cultivar groups. In this study, a Japanese tree peony cultivar 'Taiyoh' with vivid red petals and a Chinese tree peony cultivar 'Hu Hong' with reddish pink petals were chosen as the experimental materials. Flavonoids profiling indicated that pelargonidin 3-O-glucoside (Pg3G) detected only in Japanese cultivar contributed to vivid red color of tree peony petals, while pelargonidin 3,5-di-O-glucoside (Pg3G5G) found in both of Japanese and Chinese cultivars was responsible for pink flower color. Through the integration of full-length transcriptome sequencing and in vitro enzymatic activity analysis, two anthocyanin glucosyltransferase genes PsUGT78A27 and PsUGT75L45 were isolated from the petals of tree peony, and their encoding products exhibited enzymatic activities of pelargonidin 3-O-glucosyltransferase and anthocyanin 5-O-glucosyltransferase, respectively. Further quantitative real-time PCR revealed that PsUGT78A27 displayed high expression in petals of both cultivars and PsUGT75L45 was expressed at high levels in cultivar 'Hu Hong' only. Using a gene gun technique, the GFP fusion proteins of PsUGT78A27 and PsUGT75L45 were visualized to be cytoplasmic and nuclear localization in the epidermal cells of tree peony petals, and the glucosylation function of PsUGT78A27 and PsUGT75L45 to alter petal color of tree peony and herbaceous peony had been directly validated in vivo. These results demonstrated that PsUGT78A27 and PsUGT75L45 are key players for the presence or absence of vivid red flower color in tree peony cultivars. Our findings further elucidated the chemical and molecular mechanism of petal pigmentation of Paeonia and could help breed the Paeonia cultivars possessing novel flower colors.
Collapse
Affiliation(s)
- Qianyu Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Qingyun Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Nguyen HM, Putterill J, Dare AP, Plunkett BJ, Cooney J, Peng Y, Souleyre EJF, Albert NW, Espley RV, Günther CS. Two genes, ANS and UFGT2, from Vaccinium spp. are key steps for modulating anthocyanin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1082246. [PMID: 36818839 PMCID: PMC9933871 DOI: 10.3389/fpls.2023.1082246] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are a major group of red to blue spectrum plant pigments with many consumer health benefits. Anthocyanins are derived from the flavonoid pathway and diversified by glycosylation and methylation, involving the concerted action of specific enzymes. Blueberry and bilberry (Vaccinium spp.) are regarded as 'superfruits' owing to their high content of flavonoids, especially anthocyanins. While ripening-related anthocyanin production in bilberry (V. myrtillus) and blueberry (V. corymbosum) is regulated by the transcriptional activator MYBA1, the role of specific structural genes in determining the concentration and composition of anthocyanins has not been functionally elucidated. We isolated three candidate genes, CHALCONE SYNTHASE (VmCHS1), ANTHOCYANIDIN SYNTHASE (VmANS) and UDP-GLUCOSE : FLAVONOID-3-O-GLYCOSYLTRANSFERASE (VcUFGT2), from Vaccinium, which were predominantly expressed in pigmented fruit skin tissue and showed high homology between bilberry and blueberry. Agrobacterium-mediated transient expression of Nicotiana benthamiana showed that overexpression of VcMYBA1 in combination with VmANS significantly increased anthocyanin concentration (3-fold). Overexpression of VmCHS1 showed no effect above that induced by VcMYBA1, while VcUFGT2 modulated anthocyanin composition to produce delphinidin-3-galactosylrhamnoside, not naturally produced in tobacco. In strawberry (Fragaria × ananassa), combined transient overexpression of VcUFGT2 with a FLAVONOID 3´,5´-HYDROXYLASE from kiwifruit (Actinidia melanandra) modulated the anthocyanin profile to include galactosides and arabinosides of delphinidin and cyanidin, major anthocyanins in blueberry and bilberry. These findings provide insight into the role of the final steps of biosynthesis in modulating anthocyanin production in Vaccinium and may contribute to the targeted breeding of new cultivars with improved nutritional properties.
Collapse
Affiliation(s)
- Han M. Nguyen
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Joanna Putterill
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Blue J. Plunkett
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | | | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| |
Collapse
|
31
|
Zhang S, Ren Y, Zhao Q, Wu Y, Zhuo Y, Li H. Drought-induced CsMYB6 interacts with CsbHLH111 to regulate anthocyanin biosynthesis in Chaenomeles speciosa. PHYSIOLOGIA PLANTARUM 2023; 175:e13859. [PMID: 36688571 DOI: 10.1111/ppl.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Chaenomeles speciosa is a plant with high ornamental value, and the color of its petals deepens obviously under drought stress. To understand the mechanism of drought-induced reddening of C. speciosa petal color, the metabolites and transcriptomics of petals from 4% PEG-8000-treated and control cuttings were analyzed. In this study, the analysis of metabolites revealed the accumulation of anthocyanins in petals of PEG-treated cuttings, indicating anthocyanins might be the reason for the deepening of petal color. By using transcriptomics, we identified CsMYB6 as an overexpressed transcription factor in PEG-treated samples. Transient overexpression and suppression of CsMYB6 revealed that it is a key transcription factor for anthocyanin synthesis. We identified genes related to anthocyanin biosynthesis and constructed a network of drought- and anthocyanin-related genes (such as CsMYB6, CsbHLH111, CsANS, CsDFR, and CsUFGT). Further experiments indicated that CsMYB6 directly interacted with CsbHLH111, and this interaction increased the binding ability of CsMYB6 to the promoter regions of three structural genes of anthocyanin biosynthesis: CsANS, CsDFR, and CsUFGT. Our findings provide a molecular basis and new insight into drought-induced anthocyanin biosynthesis in C. speciosa.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanshen Ren
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianyi Zhao
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yang Wu
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yue Zhuo
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Houhua Li
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Gonda I, Abu-Abied M, Adler C, Milavski R, Tal O, Davidovich-Rikanati R, Faigenboim A, Kahane-Achinoam T, Shachter A, Chaimovitsh D, Dudai N. Two independent loss-of-function mutations in anthocyanidin synthase homeologous genes are responsible for the all-green phenotype of sweet basil. PHYSIOLOGIA PLANTARUM 2023; 175:e13870. [PMID: 36724166 DOI: 10.1111/ppl.13870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/02/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.
Collapse
Affiliation(s)
- Itay Gonda
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Mohamad Abu-Abied
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Chen Adler
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Renana Milavski
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
- The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| | - Ofir Tal
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Rachel Davidovich-Rikanati
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Adi Faigenboim
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Tali Kahane-Achinoam
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Alona Shachter
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - David Chaimovitsh
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
- The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| |
Collapse
|
33
|
Niu B, Li Q, Fan L, Shi X, Liu Y, Zhuang Q, Qin X. De Novo Assembly of a Sarcocarp Transcriptome Set Identifies AaMYB1 as a Regulator of Anthocyanin Biosynthesis in Actinidia arguta var. purpurea. Int J Mol Sci 2022; 23:ijms232012120. [PMID: 36292977 PMCID: PMC9603036 DOI: 10.3390/ijms232012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
The kiwifruit (Actinidia arguta var. purpurea) produces oval shaped fruits containing a slightly green or mauve outer exocarp and a purple-flesh endocarp with rows of tiny black seeds. The flesh color of the fruit results from a range of anthocyanin compounds, and is an important trait for kiwifruit consumers. To elucidate the molecular mechanisms involved in anthocyanin biosynthesis of the sarcocarp during A. arguta fruit development, de novo assembly and transcriptomic profile analyses were performed. Based on significant Gene Ontology (GO) biological terms, differentially expressed genes were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and amino acid metabolic processes. The genes closely related to anthocyanin biosynthesis, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and anthocyanidin synthase (ANS), displayed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed by qRT-PCR. Meanwhile, a series of transcription factor genes were identified among the DEGs. Through a correlation analysis. AaMYB1 was found to be significantly correlated with key genes of anthocyanin biosynthesis, especially with CHS. Through a transient expression assay, AaMYB1 induced anthocyanin accumulation in tobacco leaves. These data provide an important basis for exploring the related mechanisms of sarcocarp anthocyanin biosynthesis in A. arguta. This study will provide a strong foundation for functional studies on A. arguta and will facilitate improved breeding of A. arguta fruit.
Collapse
Affiliation(s)
- Bei Niu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Qiaohong Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Lijuan Fan
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuan Liu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Qiguo Zhuang
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Xiaobo Qin
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence:
| |
Collapse
|
34
|
Xu S, Li G, Zhou J, Chen G, Shao J. Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes. Front Bioeng Biotechnol 2022; 10:899182. [PMID: 36061422 PMCID: PMC9437251 DOI: 10.3389/fbioe.2022.899182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are natural pigments found in various plants. As multifunctional natural compounds, anthocyanins are widely used in food, pharmaceuticals, health products, and cosmetics. At present, the anthocyanins are heterologously biosynthesized in prokaryotes from flavan-3-ols, which is rather expensive. This study aimed to metabolically engineer Saccharomyces cerevisiae for anthocyanin production. Anthocyanin production has been extensively studied to understand the metabolic pathway enzymes in their natural hosts, including CHS (chalcone synthase); FLS (flavonol synthase); CHI (chalcone isomerase); F3H (flavanone 3-hydroxylase); F3′H (flavonoid 3′-hydroxylase); F3′5′H (flavonoid 3′,5′-hydroxylase); DFR (dihydroflavonol 4-reductase); ANS (anthocyanidin synthase); LAR (leucoanthocyanidin reductase); and UFGT (flavonoid 3-O-glucosyltransferase). The anthocyanin transporter MdGSTF6 was first introduced and proven to be indispensable for the biosynthesis of anthocyanins. By expressing MdGSTF6, FaDFR, PhANS0, and Dc3GT and disrupting EXG1 (the main anthocyanin-degrading enzyme), the BA-22 strain produced 261.6 mg/L (254.5 mg/L cyanidin-3-O-glucoside and 7.1 mg/L delphinidin-3-O-glucoside) anthocyanins from 2.0 g/L dihydroflavonols, which was known to be the highest titer in eukaryotes. Finally, 15.1 mg/L anthocyanins was obtained from glucose by expressing the de novo biosynthesis pathway in S. cerevisiae, which is known to be the highest de novo production. It is the first study to show that through the introduction of a plant anthocyanin transporter and knockout of a yeast endogenous anthocyanin degrading enzyme, the anthocyanin titer has been increased by more than 100 times.
Collapse
Affiliation(s)
- Sha Xu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Zhejiang Esigma Biotechnology Company Limited, Haining, China
| | - Guangjian Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Guicai Chen
- Zhejiang Esigma Biotechnology Company Limited, Haining, China
- *Correspondence: Guicai Chen, ; Jianzhong Shao,
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Guicai Chen, ; Jianzhong Shao,
| |
Collapse
|
35
|
Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165166. [PMID: 36014406 PMCID: PMC9413827 DOI: 10.3390/molecules27165166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health. In this review, we decided to organize the information about maize flavonoids into three sections. In the first section, we include updated information about the enzymatic pathway of maize flavonoids. We describe a total of twenty-one genes for the flavonoid pathway of maize. The first three genes participate in the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides. The second section explains the tissue accumulation and regulation of flavonoids by environmental factors affecting the expression of the MYB-bHLH-WD40 (MBW) transcriptional complex. The study of transcription factors of the MBW complex is fundamental for understanding how the flavonoid profiles generate a palette of colors in the plant tissues. Finally, we also include an update of the biological activities of C3G, the major maize anthocyanin, including anticancer, antidiabetic, and antioxidant effects, among others. This review intends to disclose and integrate the existing knowledge regarding maize flavonoid pigmentation and its relevance in the human health sector.
Collapse
Affiliation(s)
- Héctor A. Peniche-Pavía
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| | - Tereso J. Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jesús M. Magaña-Cerino
- División Académica de Ciencias de la Salud, Centro de Investigación y Posgrado, Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez Magaña 2838-A, Col. Tamulté de las Barrancas, Villahermosa 86150, Tabasco, Mexico
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Enfermedades Crónico Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Universidad de Guadalajara, C. Sierra Mojada 950. Col. Independencia, Guadalajara 44340, Jalisco, Mexico
- Correspondence: ; Tel.: +52-33-10585200 (ext. 33930)
| | - Axel Tiessen
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
36
|
Yu K, Dixon RA, Duan C. A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization. Nat Commun 2022; 13:3425. [PMID: 35701431 PMCID: PMC9197940 DOI: 10.1038/s41467-022-31153-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Proanthocyanidins (PAs) are natural polymers of flavan-3-ols, commonly (+)-catechin and (-)-epicatechin. However, exactly how PA oligomerization proceeds is poorly understood. Here we show, both biochemically and genetically, that ascorbate (AsA) is an alternative "starter unit" to flavan-3-ol monomers for leucocyanidin-derived (+)-catechin subunit extension in the Arabidopsis thaliana anthocyanidin synthase (ans) mutant. These (catechin)n:ascorbate conjugates (AsA-[C]n) also accumulate throughout the phase of active PA biosynthesis in wild-type grape flowers, berry skins and seeds. In the presence of (-)-epicatechin, AsA-[C]n can further provide monomeric or oligomeric PA extension units for non-enzymatic polymerization in vitro, and their role in vivo is inferred from analysis of relative metabolite levels in both Arabidopsis and grape. Our findings advance the knowledge of (+)-catechin-type PA extension and indicate that PA oligomerization does not necessarily proceed by sequential addition of a single extension unit. AsA-[C]n defines a new type of PA intermediate which we term "sub-PAs".
Collapse
Affiliation(s)
- Keji Yu
- grid.22935.3f0000 0004 0530 8290Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Richard A. Dixon
- grid.266869.50000 0001 1008 957XBioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Changqing Duan
- grid.22935.3f0000 0004 0530 8290Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| |
Collapse
|
37
|
Mahoney JD, Wang S, Iorio LA, Wegrzyn JL, Dorris M, Martin D, Bolling BW, Brand MH, Wang H. De novo assembly of a fruit transcriptome set identifies AmMYB10 as a key regulator of anthocyanin biosynthesis in Aronia melanocarpa. BMC PLANT BIOLOGY 2022; 22:143. [PMID: 35337270 PMCID: PMC8951710 DOI: 10.1186/s12870-022-03518-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Aronia is a group of deciduous fruiting shrubs, of the Rosaceae family, native to eastern North America. Interest in Aronia has increased because of the high levels of dietary antioxidants in Aronia fruits. Using Illumina RNA-seq transcriptome analysis, this study investigates the molecular mechanisms of polyphenol biosynthesis during Aronia fruit development. Six A. melanocarpa (diploid) accessions were collected at four fruit developmental stages. De novo assembly was performed with 341 million clean reads from 24 samples and assembled into 90,008 transcripts with an average length of 801 bp. The transcriptome had 96.1% complete according to Benchmarking Universal Single-Copy Orthologs (BUSCOs). The differentially expressed genes (DEGs) were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and polysaccharide metabolic processes based on significant Gene Ontology (GO) biological terms. The expression of ten anthocyanin biosynthetic genes showed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed using qRT-PCR expression analyses. Additionally, transcription factor genes were identified among the DEGs. Using a transient expression assay, we confirmed that AmMYB10 induces anthocyanin biosynthesis. The de novo transcriptome data provides a valuable resource for the understanding the molecular mechanisms of fruit anthocyanin biosynthesis in Aronia and species of the Rosaceae family.
Collapse
Affiliation(s)
- Jonathan D Mahoney
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Sining Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Liam A Iorio
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Matthew Dorris
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Derek Martin
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Mark H Brand
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
38
|
Wang J, Zhang C, Li Y. Genome-Wide Identification and Expression Profiles of 13 Key Structural Gene Families Involved in the Biosynthesis of Rice Flavonoid Scaffolds. Genes (Basel) 2022; 13:genes13030410. [PMID: 35327963 PMCID: PMC8951560 DOI: 10.3390/genes13030410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are a class of key polyphenolic secondary metabolites with broad functions in plants, including stress defense, growth, development and reproduction. Oryza sativa L. (rice) is a well-known model plant for monocots, with a wide range of flavonoids, but the key flavonoid biosynthesis-related genes and their molecular features in rice have not been comprehensively and systematically characterized. Here, we identified 85 key structural gene candidates associated with flavonoid biosynthesis in the rice genome. They belong to 13 families potentially encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), leucoanthocyanidin dioxygenase (LDOX), anthocyanidin synthase (ANS), flavone synthase II (FNSII), flavanone 2-hydroxylase (F2H), flavonoid 3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). Through structural features, motif analyses and phylogenetic relationships, these gene families were further grouped into five distinct lineages and were examined for conservation and divergence. Subsequently, 22 duplication events were identified out of a total of 85 genes, among which seven pairs were derived from segmental duplication events and 15 pairs were from tandem duplications, demonstrating that segmental and tandem duplication events play important roles in the expansion of key flavonoid biosynthesis-related genes in rice. Furthermore, these 85 genes showed spatial and temporal regulation in a tissue-specific manner and differentially responded to abiotic stress (including six hormones and cold and salt treatments). RNA-Seq, microarray analysis and qRT-PCR indicated that these genes might be involved in abiotic stress response, plant growth and development. Our results provide a valuable basis for further functional analysis of the genes involved in the flavonoid biosynthesis pathway in rice.
Collapse
|
39
|
Oxidative Transformation of Dihydroflavonols and Flavan-3-ols by Anthocyanidin Synthase from Vitis vinifera. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031047. [PMID: 35164310 PMCID: PMC8839691 DOI: 10.3390/molecules27031047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022]
Abstract
Twelve polyphenols from three distinct families (dihydroflavonols, flavan-3-ols, and flavanones) were studied as potential substrates of anthocyanidin synthase from Vitis vinifera (VvANS). Only flavan-3-ols of (2R,3S) configuration having either a catechol or gallol group on ring B are accepted as substrates. Only dihydroflavonols of (2R,3R) configuration are accepted as substrates, but a catechol or gallol group is not mandatory. Flavanones are not substrates of VvANS. HPLC and MS/MS analyses of the enzymatic products showed that the VvANS-catalyzed oxidative transformation of (+)-dihydroflavonols, such as dihydroquercetin, dihydrokaempferol and dihydromyricetin, leads only to the corresponding flavonols. Among the flavan-3-ols recognized as substrates, (+)-gallocatechin was only transformed into delphinidin by VvANS, whereas (+)-catechin was transformed into three products, including two major products that were an ascorbate-cyanidin adduct and a dimer of oxidized catechin, and a minor product that was cyanidin. Data from real-time MS monitoring of the enzymatic transformation of (+)-catechin suggest that its products are all derived from the initial C3-hydroxylation intermediate, i.e., a 3,3-gem-diol, and their most likely formation mechanism is discussed.
Collapse
|
40
|
Kawai K, Takehara S, Kashio T, Morii M, Sugihara A, Yoshimura H, Ito A, Hattori M, Toda Y, Kojima M, Takebayashi Y, Furuumi H, Nonomura KI, Mikami B, Akagi T, Sakakibara H, Kitano H, Matsuoka M, Ueguchi-Tanaka M. Evolutionary alterations in gene expression and enzymatic activities of gibberellin 3-oxidase 1 in Oryza. Commun Biol 2022; 5:67. [PMID: 35046494 PMCID: PMC8770518 DOI: 10.1038/s42003-022-03008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022] Open
Abstract
Proper anther and pollen development are important for plant reproduction. The plant hormone gibberellin is important for anther development in rice, but its gametophytic functions remain largely unknown. Here, we report the functional and evolutionary analyses of rice gibberellin 3-oxidase 1 (OsGA3ox1), a gibberellin synthetic enzyme specifically expressed in the late developmental stages of anthers. Enzymatic and X-ray crystallography analyses reveal that OsGA3ox1 has a higher GA7 synthesis ratio than OsGA3ox2. In addition, we generate an osga3ox1 knockout mutant by genome editing and demonstrate the bioactive gibberellic acid synthesis by the OsGA3ox1 action during starch accumulation in pollen via invertase regulation. Furthermore, we analyze the evolution of Oryza GA3ox1s and reveal that their enzyme activity and gene expression have evolved in a way that is characteristic of the Oryza genus and contribute to their male reproduction ability. The authors solve the crystal structure of OsGA3ox2 and predict that of OsGA3ox1. These enzymes catalyze the final step in the biosynthesis of gibberellin, one of the plant hormones. Evolutionary analysis combined with the new structure reveal important aspects of the OsGA3ox1’s function in plant male reproduction.
Collapse
|
41
|
Wang Y, Shi Y, Li K, Yang D, Liu N, Zhang L, Zhao L, Zhang X, Liu Y, Gao L, Xia T, Wang P. Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS. Molecules 2021; 26:molecules26216745. [PMID: 34771153 PMCID: PMC8588099 DOI: 10.3390/molecules26216745] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
The 2-oxoglutarate-dependent dioxygenase (2-OGD) superfamily is one of the largest protein families in plants. The main oxidation reactions they catalyze in plants are hydroxylation, desaturation, demethylation, epimerization, and halogenation. Four members of the 2-OGD superfamily, i.e., flavonone 3β-hydroxylase (F3H), flavones synthase I (FNS I), flavonol synthase (FLS), and anthocyanidin synthase (ANS)/leucoanthocyanidin dioxygenase (LDOX), are present in the flavonoid pathway, catalyzing hydroxylation and desaturation reactions. In this review, we summarize the recent research progress on these proteins, from the discovery of their enzymatic activity, to their functional verification, to the analysis of the response they mediate in plants towards adversity. Substrate diversity analysis indicated that F3H, FNS Ⅰ, ANS/LDOX, and FLS perform their respective dominant functions in the flavonoid pathway, despite the presence of functional redundancy among them. The phylogenetic tree classified two types of FNS Ⅰ, one mainly performing FNS activity, and the other, a new type of FNS present in angiosperms, mainly involved in C-5 hydroxylation of SA. Additionally, a new class of LDOXs is highlighted, which can catalyze the conversion of (+)-catechin to cyanidin, further influencing the starter and extension unit composition of proanthocyanidins (PAs). The systematical description of the functional diversity and evolutionary relationship among these enzymes can facilitate the understanding of their impacts on plant metabolism. On the other hand, it provides molecular genetic evidence of the chemical evolution of flavonoids from lower to higher plants, promoting plant adaptation to harsh environments.
Collapse
Affiliation(s)
- Yueyue Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China;
| | - Kaiyuan Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Dong Yang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Nana Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (Y.L.)
| | - Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (Y.L.)
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (Y.L.)
- Correspondence: (L.G.); (T.X.); (P.W.)
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China;
- Correspondence: (L.G.); (T.X.); (P.W.)
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
- Correspondence: (L.G.); (T.X.); (P.W.)
| |
Collapse
|
42
|
Takamura N, Yamazaki A, Sakuma N, Hirose S, Sakai M, Takani Y, Yamashita S, Oshima M, Kuroki M, Tozawa Y. Catalytic promiscuity of rice 2-oxoglutarate/Fe(II)-dependent dioxygenases supports xenobiotic metabolism. PLANT PHYSIOLOGY 2021; 187:816-828. [PMID: 34608958 PMCID: PMC8491036 DOI: 10.1093/plphys/kiab293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The rice (Oryza sativa) 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenase HIS1 mediates the catalytic inactivation of five distinct β-triketone herbicides (bTHs). By assessing the effects of plant growth regulators on HIS1 enzyme function, we found that HIS1 mediates the hydroxylation of trinexapac-ethyl (TE) in the presence of Fe2+ and 2OG. TE blocks gibberellin biosynthesis, and we observed that its addition to culture medium induced growth retardation of rice seedlings in a concentration-dependent manner. Similar treatment with hydroxylated TE revealed that hydroxylation greatly attenuated the inhibitory effect of TE on plant growth. Forced expression of HIS1 in a rice his1 mutant also reduced its sensitivity to TE compared with that of the nontransformant. These results indicate that HIS1 metabolizes TE and thereby markedly reduces its ability to slow plant growth. Furthermore, analysis of five rice HIS1-like (HSL) proteins revealed that OsHSL2 and OsHSL4 also metabolize TE in vitro. HSLs from wheat (Triticum aestivum) and barley (Hordeum vulgare) also showed such activity. In contrast, OsHSL1, which shares the highest amino acid sequence identity with HIS1 and metabolizes the bTH tefuryltrione, did not manifest TE-metabolizing activity. Site-directed mutagenesis of OsHSL1 informed by structural models showed that substitution of three amino acids with the corresponding residues of HIS1 conferred TE-metabolizing activity similar to that of HIS1. Our results thus reveal a catalytic promiscuity of HIS1 and its related enzymes that support xenobiotic metabolism in plants.
Collapse
Affiliation(s)
- Natsuki Takamura
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Akihiko Yamazaki
- Tsukuba Research & Technology Center, SDS Biotech K.K., Tsukuba, 300-2646, Japan
| | - Nozomi Sakuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634, Japan
| | - Motonari Sakai
- Tsukuba Research & Technology Center, SDS Biotech K.K., Tsukuba, 300-2646, Japan
| | - Yukie Takani
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Satoshi Yamashita
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, 920-1192, Japan
| | - Masahiro Oshima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634, Japan
| | - Makoto Kuroki
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
43
|
Akiyama R, Nakayasu M, Umemoto N, Kato J, Kobayashi M, Lee HJ, Sugimoto Y, Iijima Y, Saito K, Muranaka T, Mizutani M. Tomato E8 Encodes a C-27 Hydroxylase in Metabolic Detoxification of α-Tomatine during Fruit Ripening. PLANT & CELL PHYSIOLOGY 2021; 62:775-783. [PMID: 34100555 DOI: 10.1093/pcp/pcab080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Tomato (Solanum lycopersicum) contains α-tomatine, a steroidal glycoalkaloid that contributes to the plant defense against pathogens and herbivores through its bitter taste and toxicity. It accumulates at high levels in all the plant tissues, especially in leaves and immature green fruits, whereas it decreases during fruit ripening through metabolic conversion to the nontoxic esculeoside A, which accumulates in the mature red fruit. This study aimed to identify the gene encoding a C-27 hydroxylase that is a key enzyme in the metabolic conversion of α-tomatine to esculeoside A. The E8 gene, encoding a 2-oxoglutalate-dependent dioxygenase, is well known as an inducible gene in response to ethylene during fruit ripening. The recombinant E8 was found to catalyze the C-27 hydroxylation of lycoperoside C to produce prosapogenin A and is designated as Sl27DOX. The ripe fruit of E8/Sl27DOX-silenced transgenic tomato plants accumulated lycoperoside C and exhibited decreased esculeoside A levels compared with the wild-type (WT) plants. Furthermore, E8/Sl27DOX deletion in tomato accessions resulted in higher lycoperoside C levels in ripe fruits than in WT plants. Thus, E8/Sl27DOX functions as a C-27 hydroxylase of lycoperoside C in the metabolic detoxification of α-tomatine during tomato fruit ripening, and the efficient detoxification by E8/27DOX may provide an advantage in the domestication of cultivated tomatoes.
Collapse
Affiliation(s)
- Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Naoyuki Umemoto
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa, 243-0292 Japan
| | - Junpei Kato
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Midori Kobayashi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Yoko Iijima
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuki Saito
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa, 243-0292 Japan
- Plant Molecular Science Center, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871 Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| |
Collapse
|
44
|
Jiang D, Li G, Chen G, Lei J, Cao B, Chen C. Genome-Wide Identification and Expression Profiling of 2OGD Superfamily Genes from Three Brassica Plants. Genes (Basel) 2021; 12:genes12091399. [PMID: 34573381 PMCID: PMC8465909 DOI: 10.3390/genes12091399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The 2-oxoglutarate and Fe(II)-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation and hydroxylation reactions. Due to their important biochemical significance in metabolism, a systematic analysis of the plant 2OGD genes family is necessary. Here, we identified 160, 179, and 337 putative 2OGDs from Brassica rapa, Brassica oleracea, and Brassica napus. According to their gene structure, domain, phylogenetic features, function, and previous studies, we also divided 676 2OGDs into three subfamilies: DOXA, DOXB, and DOXC. Additionally, homologous and phylogenetic comparisons of three subfamily genes provided valuable insight into the evolutionary characteristics of the 2OGD genes from Brassica plants. Expression profiles derived from the transcriptome and Genevestigator database exhibited distinct expression patterns of the At2OGD, Br2OGD, and Bo2OGD genes in different developmental stages, tissues, or anatomical parts. Some 2OGD genes showed high expression levels in various tissues, such as callus, seed, silique, and root tissues, while other 2OGD genes were expressed at very low levels in other tissues. Analysis of six Bo2OGD genes in different tissues by qRT-PCR indicated that these genes are involved in the metabolism of gibberellin, which in turn regulates plant growth and development. Our working system analysed 2OGD gene families of three Brassica plants and laid the foundation for further study of their functional characterization.
Collapse
Affiliation(s)
- Ding Jiang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
- Guangzhou Institute of Agriculture Science, Guangzhou 510335, China;
| | - Guangguang Li
- Guangzhou Institute of Agriculture Science, Guangzhou 510335, China;
| | - Guoju Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
| | - Jianjun Lei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
- Correspondence:
| |
Collapse
|
45
|
Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. PLANT, CELL & ENVIRONMENT 2021; 44:3015-3033. [PMID: 34114251 DOI: 10.1111/pce.14127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Yan
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ying Liu
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Banerjee A, Singh A, Roychoudhury A. Fluoride toxicity variably affects overall physiology and grain development in three contrasting rice genotypes, representing a potential biohazard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40220-40232. [PMID: 32930987 DOI: 10.1007/s11356-020-10604-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of fluoride through consumption of contaminated food grains has been regarded to be hazardous for consumer health. The current study indicated the possible occurrence of such biohazard due to fluoride bioaccumulation in rice grains and straw (cattle feed). The effects of fluoride toxicity at three stages of grain development in three rice genotypes, viz., IR-64, Gobindobhog (aromatic), and Khitish, were also studied. Irrigation with fluoride-infested water inhibited grain formation in IR-64 and reduced grain yield in Gobindobhog. Fluoride toxicity promoted seed sterility in IR-64 by triggering reactive oxygen species (ROS) production and cellular necrosis, suppressing genes like GIF1, DEP1, and SPL14 (positively controlling seed formation) and inducing GW2 (negatively mediating grain development). Gobindobhog showed intermediate fluoride sensitivity and accumulated high levels of proline, anthocyanins, flavonoids, and phenolics due to the induction of genes like P5CS, ANS, and PAL in developing grains. The agronomic attributes in Khitish were unaffected by fluoride stress due to regulated fluoride uptake and high expression of GIF1, DEP1, and SPL14 along with an increased synthesis of anthocyanins, flavonoids, and phenolics. Khitish also accumulated low ROS as a result of which lowest lipoxygenase expression (among selected cultivars) was observed in developing grains. Fluoride entry was accelerated in the straw of Khitish, possibly due to the absence of regulated uptake mechanism in dead seedlings. Furthermore, the ecological concerns regarding fluoride bioaccumulation and reduced grain yield at the varietal level were also established, based on statistical modelling.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Ankur Singh
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
47
|
Thomazella DPDT, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill US, Qi T, Pham J, Giuseppe P, Lee CY, Ortega A, Cho MJ, Hutton SF, Staskawicz B. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc Natl Acad Sci U S A 2021; 118:e2026152118. [PMID: 34215692 PMCID: PMC8271637 DOI: 10.1073/pnas.2026152118] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.
Collapse
Affiliation(s)
- Daniela Paula de Toledo Thomazella
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Rebecca Mackelprang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| | - Yu Geng
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Upinder S Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Tiancong Qi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Julie Pham
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| | - Priscila Giuseppe
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP 13083-100, Brazil
| | - Clara Youngna Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Arturo Ortega
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| | - Samuel F Hutton
- Horticultural Sciences Department, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| |
Collapse
|
48
|
Zhang X, Wang D, Elberse J, Qi L, Shi W, Peng YL, Schuurink RC, Van den Ackerveken G, Liu J. Structure-guided analysis of Arabidopsis JASMONATE-INDUCED OXYGENASE (JOX) 2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs. MOLECULAR PLANT 2021; 14:820-828. [PMID: 33516967 DOI: 10.1016/j.molp.2021.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 12/20/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
The jasmonic acid (JA) signaling pathway is used by plants to control wound responses. The persistent accumulation of JA inhibits plant growth, and the hydroxylation of JA to 12-hydroxy-JA by JASMONATE-INDUCED OXYGENASEs (JOXs, also named jasmonic acid oxidases) is therefore vital for plant growth, while structural details of JA recognition by JOXs are unknown. Here, we present the 2.65 Å resolution X-ray crystal structure of Arabidopsis JOX2 in complex with its substrate JA and its co-substrates 2-oxoglutarate and Fe(II). JOX2 contains a distorted double-stranded β helix (DSBH) core flanked by α helices and loops. JA is bound in the narrow substrate pocket by hydrogen bonds with the arginine triad R225, R350, and R354 and by hydrophobic interactions mainly with the phenylalanine triad F157, F317, and F346. The most critical residues for JA binding are F157 and R225, both from the DSBH core, which interact with the cyclopentane ring of JA. The spatial distribution of critical residues for JA binding and the shape of the substrate-binding pocket together define the substrate selectivity of the JOXs. Sequence alignment shows that these critical residues are conserved among JOXs from higher plants. Collectively, our study provides insights into the mechanism by which higher plants hydroxylate the hormone JA.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dongli Wang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Joyce Elberse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Shi
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3508 TB Utrecht, the Netherlands.
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Identification of F3H, Major Secondary Metabolite-Related Gene That Confers Resistance against Whitebacked Planthopper through QTL Mapping in Rice. PLANTS 2021; 10:plants10010081. [PMID: 33401742 PMCID: PMC7823371 DOI: 10.3390/plants10010081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Whitebacked planthopper (WBPH) is a pest that causes serious damage to rice in Asian countries with a mild climate. WBPH causes severely rice yield losses and grain poor quality each year so needs biological control. Plants resist biotic and abiotic stress using expressing variety genes, such as kinase, phytohormones, transcription factors, and especially secondary metabolites. In this research, quantitative trait locus (QTL) mapping was performed by assigning the WBPH resistance score in the Cheongcheong/Nagdong doubled haploid (CNDH) line in 2018 and 2019. The RM280-RM6909 on chromosome 4 was detected as a duplicate in 2018, 2019, and derived from Cheongcheong. This region includes cell function, kinase, signaling, transcription factors, and secondary metabolites that protect plants from the stress of WBPH. The RM280-RM6909 on chromosome 4 contains candidate genes that are similar to the flavanone 3-hydroxylase (F3H) of rice. The F3H are homologous genes, which play an important role in biosynthesis defending against biotic stress in plants. After WBPH inoculation, the relative expression level of F3H was higher in resistant line than in a susceptible line. The newly identified WBPH resistance gene F3H by QTL mapping can be used for the breeding of rice cultivars that are resistant against WBPH.
Collapse
|
50
|
Kluza A, Wojdyla Z, Mrugala B, Kurpiewska K, Porebski PJ, Niedzialkowska E, Minor W, Weiss MS, Borowski T. Regioselectivity of hyoscyamine 6β-hydroxylase-catalysed hydroxylation as revealed by high-resolution structural information and QM/MM calculations. Dalton Trans 2020; 49:4454-4469. [PMID: 32182320 DOI: 10.1039/d0dt00302f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyoscyamine 6β-hydroxylase (H6H) is a bifunctional non-heme 2-oxoglutarate/Fe2+-dependent dioxygenase that catalyzes the two final steps in the biosynthesis of scopolamine. Based on high resolution crystal structures of H6H from Datura metel, detailed information on substrate binding was obtained that provided insights into the onset of the enzymatic process. In particular, the role of two prominent residues was revealed - Glu-116 that interacts with the tertiary amine located on the hyoscyamine tropane moiety and Tyr-326 that forms CH-π hydrogen bonds with the hyoscyamine phenyl ring. The structures were used as the basis for QM/MM calculations that provided an explanation for the regioselectivity of the hydroxylation reaction on the hyoscyamine tropane moiety (C6 vs. C7) and quantified contributions of active site residues to respective barrier heights.
Collapse
Affiliation(s)
- Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Beata Mrugala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Katarzyna Kurpiewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL-30387 Krakow, Poland
| | - Przemyslaw J Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489, Berlin, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|