1
|
Xu Y, Alves-Wagner AB, Inada H, Firouzjah SD, Osana S, Amir MS, Conlin RH, Hirshman MF, Nozik ES, Goodyear LJ, Nagatomi R, Kusuyama J. Placenta-derived SOD3 deletion impairs maternal behavior via alterations in FGF/FGFR-prolactin signaling axis. Cell Rep 2024; 43:114789. [PMID: 39325622 DOI: 10.1016/j.celrep.2024.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/27/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Ana B Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hitoshi Inada
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sepideh D Firouzjah
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya 60132, Indonesia; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Royce H Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care, Department of Pediatrics, the University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
2
|
Shi XK, Peng T, Azimova B, Li XL, Li SS, Cao DY, Fu NJ, Zhang GL, Xiao WL, Wang F. Luteolin and its analog luteolin-7-methylether from Leonurus japonicus Houtt suppress aromatase-mediated estrogen biosynthesis to alleviate polycystic ovary syndrome by the inhibition of tumor progression locus 2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118279. [PMID: 38705425 DOI: 10.1016/j.jep.2024.118279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houtt (L. japonicus, Chinese motherwort), known as Yi Mu Cao which means "good for women", has long been widely used in China and other Asian countries to alleviate gynecological disorders, often characterized by estrogen dysregulation. It has been used for the treatment of polycystic ovary syndrome (PCOS), a common endocrine disorder in women but the underlying mechanism remains unknown. AIM OF THE STUDY The present study was designed to investigate the effect and mechanism of flavonoid luteolin and its analog luteolin-7-methylether contained in L. japonicus on aromatase, a rate-limiting enzyme that catalyzes the conversion of androgens to estrogens and a drug target to induce ovulation in PCOS patients. MATERIALS AND METHODS Estrogen biosynthesis in human ovarian granulosa cells was examined using ELISA. Western blots were used to explore the signaling pathways in the regulation of aromatase expression. Transcriptomic analysis was conducted to elucidate the potential mechanisms of action of compounds. Finally, animal models were used to assess the therapeutic potential of these compounds in PCOS. RESULTS Luteolin potently inhibited estrogen biosynthesis in human ovarian granulosa cells stimulated by follicle-stimulating hormone. This effect was achieved by decreasing cAMP response element-binding protein (CREB)-mediated expression of aromatase. Mechanistically, luteolin and luteolin-7-methylether targeted tumor progression locus 2 (TPL2) to suppress mitogen-activated protein kinase 3/6 (MKK3/6)-p38 MAPK-CREB pathway signaling. Transcriptional analysis showed that these compounds regulated the expression of different genes, with the MAPK signaling pathway being the most significantly affected. Furthermore, luteolin and luteolin-7-methylether effectively alleviated the symptoms of PCOS in mice. CONCLUSIONS This study demonstrates a previously unrecognized role of TPL2 in estrogen biosynthesis and suggests that luteolin and luteolin-7-methylether have potential as novel therapeutic agents for the treatment of PCOS. The results provide a foundation for further development of these compounds as effective and safe therapies for women with PCOS.
Collapse
Affiliation(s)
- Xiao-Ke Shi
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Peng
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Bahtigul Azimova
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, 45 Aybek Street, 100015, Tashkent, Uzbekistan
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China.
| | - Shan-Shan Li
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Yi Cao
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650500, China
| | - Nai-Jie Fu
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Lin Zhang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Fei Wang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhang J, Sun J, Ou M, Ouyang Y, Shi D, Lu F. Testosterone Supplementation Promotes Estrogen Synthesis of Buffalo Cumulus Cells Surrounding In Vitro-Matured Oocytes. Cell Reprogram 2024; 26:79-84. [PMID: 38579133 DOI: 10.1089/cell.2023.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17β-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Meizhen Ou
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Vermehren-Schmaedick A, Joshi S, Wagoner W, Norgard MA, Packwood W, Diba P, Mendez H, Fedorov LM, Rakshe S, Park B, Marks DL, Grossberg A, Luoh SW. Grb7 Ablation in Mice Improved Glycemic Control, Enhanced Insulin Signaling, and Increased Abdominal fat Mass in Females. Endocrinology 2024; 165:bqae045. [PMID: 38578949 PMCID: PMC11491842 DOI: 10.1210/endocr/bqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES Growth factor receptor bound protein 7 (GRB7) is a multidomain signaling adaptor. Members of the Grb7/10/14 family, specifically Gbrb10/14, have important roles in metabolism. We ablated the Grb7 gene in mice to examine its metabolic function. METHODS Global ablation of Grb7 in FVB/NJ mice was generated. Growth, organ weight, food intake, and glucose homeostasis were measured. Insulin signaling was examined by Western blotting. Fat and lean body mass was measured by nuclear magnetic resonance, and body composition after fasting or high-fat diet was assessed. Energy expenditure was measured by indirect calorimetry. Expression of adiposity and lipid metabolism genes was measured by quantitative PCR. RESULTS Grb7-null mice were viable, fertile, and without obvious phenotype. Grb7 ablation improved glycemic control and displayed sensitization to insulin signaling in the liver. Grb7-null females but not males had increased gonadal white adipose tissue mass. Following a 12-week high-fat diet, Grb7-null female mice gained fat body mass and developed relative insulin resistance. With fasting, there was less decrease in fat body mass in Grb7-null female mice. Female mice with Grb7 ablation had increased baseline food intake, less energy expenditure, and displayed a decrease in the expression of lipolysis and adipose browning genes in gonadal white adipose tissue by transcript and protein analysis. CONCLUSION Our study suggests that Grb7 is a negative regulator of glycemic control. Our results reveal a role for Grb7 in female mice in the regulation of the visceral adipose tissue mass, a powerful predictor of metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sonali Joshi
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Oregon Health & Science University and Knight Cancer Institute, Portland, OR 97239, USA
| | - Wendy Wagoner
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
| | - William Packwood
- Small Animal Research Imaging Core, USR Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Parham Diba
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Heike Mendez
- Brenden Colson Center for Pancreatic Care, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, USR Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shauna Rakshe
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Byung Park
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
| | - Aaron Grossberg
- Brenden Colson Center for Pancreatic Care, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shiuh-Wen Luoh
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
5
|
Zhang J, Sun J, Xiao L, Ouyang Y, Shi D, Lu F. Testosterone supplementation improves estrogen synthesis of buffalo (Bubalus bubalis) granulosa cells. Reprod Domest Anim 2023; 58:1628-1635. [PMID: 37668268 DOI: 10.1111/rda.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of androgen on estrogen production in buffalo GCs remain unclear. In this study, the impacts of testosterone on estrogen synthesis in buffalo GCs were examined. The results showed that testosterone that was added to cell medium at a concentration of 10-7 mol/L and applied to GCs for 48 or 72 h enhanced the estrogen synthesis of buffalo GCs. This study provides a theoretical basis for further exploration of ovarian endocrine mechanism for steroidogenesis.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Linlin Xiao
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Zhang Y, Zhang J, Sun J, Ouyang Y, Shi D, Lu F. Hypoxia enhances steroidogenic competence of buffalo (Bubalus bubalis) granulosa cells. Theriogenology 2023; 210:214-220. [PMID: 37527623 DOI: 10.1016/j.theriogenology.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo GCs remain unclear. In this study, the impacts of hypoxic conditions (5% oxygen) on estrogen synthesis in buffalo GCs were examined. The results showed that hypoxia improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in buffalo GCs. Hypoxic conditions promoted the sensitivity of buffalo GCs to FSH. Furthermore, inhibition of cAMP/PKA signaling pathway (H89, a cAMP/PKA signaling pathway inhibitor) reduced both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in hypoxia-cultured buffalo GCs. Besides, inhibition of cAMP/PKA signaling pathway lowered the responsiveness of buffalo GCs to FSH under hypoxic conditions. The present study indicated that hypoxia enhanced the steroidogenic competence of buffalo GCs principal by affecting cAMP/PKA signaling pathway and subsequent sensitivity of GCs to FSH.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Deshun Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
7
|
Khan MS, Kim HS, Kim R, Yoon SH, Kim SG. Dysregulated Liver Metabolism and Polycystic Ovarian Syndrome. Int J Mol Sci 2023; 24:ijms24087454. [PMID: 37108615 PMCID: PMC10138914 DOI: 10.3390/ijms24087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A significant fraction of couples around the world suffer from polycystic ovarian syndrome (PCOS), a disease defined by the characteristics of enhanced androgen synthesis in ovarian theca cells, hyperandrogenemia, and ovarian dysfunction in women. Most of the clinically observable symptoms and altered blood biomarker levels in the patients indicate metabolic dysregulation and adaptive changes as the key underlying mechanisms. Since the liver is the metabolic hub of the body and is involved in steroid-hormonal detoxification, pathological changes in the liver may contribute to female endocrine disruption, potentially through the liver-to-ovary axis. Of particular interest are hyperglycemic challenges and the consequent changes in liver-secretory protein(s) and insulin sensitivity affecting the maturation of ovarian follicles, potentially leading to female infertility. The purpose of this review is to provide insight into emerging metabolic mechanisms underlying PCOS as the primary culprit, which promote its incidence and aggravation. Additionally, this review aims to summarize medications and new potential therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Hee-Sun Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Ranhee Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Sang Ho Yoon
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
- Department of Obstetrics and Gynecology, Dongguk University Medical College, Goyang-si 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
8
|
Zhang S, Liu Y, Wang M, Ponikwicka-Tyszko D, Ma W, Krentowska A, Kowalska I, Huhtaniemi I, Wolczynski S, Rahman NA, Li X. Role and mechanism of miR-335-5p in the pathogenesis and treatment of polycystic ovary syndrome. Transl Res 2023; 252:64-78. [PMID: 35931409 DOI: 10.1016/j.trsl.2022.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of unknown etiology that occurs in women of reproductive age. Despite being considered to affect up to one-fifth of women in this cohort, the condition lacks generally accepted diagnostic biomarkers and options for targeted therapy. Hereby, we analyzed the diagnostic, therapeutic, and functional potential of a recently discovered miR-335-5p that was observed to be reduced in the follicular fluid (FF) of PCOS patients as compared with healthy women. We found miR-335-5p to be significantly decreased in the serum and FF samples of PCOS patients (n = 40) vs healthy women (n = 30), as well as in primary human granulosa cells (hGCs), and in 3 different hormonally induced PCOS-like murine models vs. wild-type (WT) mice. The level of circulating miR-335-5p was found to significantly correlate with the impaired endocrine and clinical features associated with PCOS in human patients. Ovarian intrabursal injection of the miR-335-5p antagomir in WT mice ovaries induced a PCOS-like reproductive phenotype. Treatment with the miR-335-5p agomir rescued the dihydrotestosterone-induced PCOS-phenotype in mice, thereby providing a functional link between miR-335-5p and PCOS. We identified SP1 as a miR-335-5p target gene by using the dual-luciferase reporter assay. Both the luciferase reporter assay and chromatin immunoprecipitation assay showed that SP1 bound to the promoter region of human CYP19A1 and inhibited its transcription. miR-335-5p increased the production of estradiol via the SP1/CYP19A1 axis in hGCs, thereby suggesting its mechanistic pathway of action. In conclusion, these results provide evidence that miR-335-5p may function as a mediator in the etiopathogenesis of PCOS, as well as has the potential as both a novel diagnostic biomarker and therapeutic target for PCOS.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yajing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Hainan Yazhou Bay Seed Lab
| | - Mingming Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Wenqiang Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Bialystok, Poland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15276, Poland
| | - Nafis A Rahman
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Hainan Yazhou Bay Seed Lab; Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Chen LY, Pang XY, Chen C, Xu HG. NF-κB regulates the expression of STING via alternative promoter usage. Life Sci 2023; 314:121336. [PMID: 36586574 DOI: 10.1016/j.lfs.2022.121336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
AIMS Stimulator of interferon genes (STING) is a transmembrane protein in endoplasmic reticulum and plays crucial roles in autophagy, antiviral and anti-tumor responses. However, there are few studies on the transcriptional regulation mechanism of STING. MAIN METHODS The 5' RACE experiment was used to determine the location of STING promoters. Luciferase reporting assay confirmed the activity and core region of STING internal promoter. Site-directed mutagenesis confirmed that NF-κB regulates the activity of STING promoters. The regulation of NF-κB on STING was investigated by real-time quantitative PCR, western blot, chromatin immunoprecipitation assay and lipopolysaccharide (LPS) inflammatory cell model. KEY FINDINGS There was also a transcription start site at the 17 bp sequence upstream of STING second exon. STING-285 was the core region of the internal promoter. After NF-κB binding site mutation, the activity of STING internal promoter decreased significantly. In addition, we found that NF-κB can bind to the promoter region of wild-type STING. Overexpression of NF-κB significantly increased the activity of STING internal promoter and wild-type promoter, while knockdown of endogenous NF-κB significantly inhibited the activity of STING promoters. The binding of NF-κB to STING promoters in vivo were confirmed by chromatin immunoprecipitation assay. Meanwhile, we stimulated HeLa cells with LPS to activate the NF-κB pathway and found that STING expression was up-regulated. SIGNIFICANCE These results suggest that transcription factor NF-κB positively regulates the expression of STING via alternative promoter usage. This provides a new basis and potential drug targets for the clinical treatment of STING related diseases.
Collapse
Affiliation(s)
- Lin-Yuan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Can Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
11
|
Vyrides AA, El Mahdi E, Giannakou K. Ovulation induction techniques in women with polycystic ovary syndrome. Front Med (Lausanne) 2022; 9:982230. [PMID: 36035398 PMCID: PMC9411864 DOI: 10.3389/fmed.2022.982230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Anovulation is very common and has several different clinical manifestations, including amenorrhea, oligomenorrhea and abnormal uterine bleeding. Various mechanisms can cause anovulation. The clinical consequences and commonest chronic anovulatory disorder, polycystic ovary syndrome (PCOS), has a prevalence that ranges between 6 to 10% of the global population. While multiple causes can eventually result in PCOS, various methods have been described in the literature for its management, often without ascertaining the underlying cause. Ovulation Induction (OI) is a group of techniques that is used in women with PCOS who are looking to conceive and are unbale to do so with natural means. This narrative review presents a summary of the current evidence and available techniques for OI in women with PCOS, highlighting their performance and applicability.
Collapse
Affiliation(s)
- Andreas A. Vyrides
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Essam El Mahdi
- Department of Obstetrics and Gynecology, Newham University Hospital NHS Trust, London, United Kingdom
| | - Konstantinos Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Konstantinos Giannakou
| |
Collapse
|
12
|
Hong K, Muralimanoharan S, Kwak YT, Mendelson CR. NRF2 Serves a Critical Role in Regulation of Immune Checkpoint Proteins (ICPs) During Trophoblast Differentiation. Endocrinology 2022; 163:bqac070. [PMID: 35596653 PMCID: PMC9197021 DOI: 10.1210/endocr/bqac070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Using cultured human trophoblast stem cells (hTSCs), mid-gestation human trophoblasts in primary culture, and gene-targeted mice, we tested the hypothesis that the multinucleated syncytiotrophoblast (SynT) serves a critical role in pregnancy maintenance through production of key immune modulators/checkpoint proteins (ICPs) under control of the O2-regulated transcription factor, NRF2/NFE2L2. These ICPs potentially act at the maternal-fetal interface to protect the hemiallogeneic fetus from rejection by the maternal immune system. Using cultured hTSCs, we observed that several ICPs involved in the induction and maintenance of immune tolerance were markedly upregulated during differentiation of cytotrophoblasts (CytTs) to SynT. These included HMOX1, kynurenine receptor, aryl hydrocarbon receptor, PD-L1, and GDF15. Intriguingly, NRF2, C/EBPβ, and PPARγ were markedly induced when CytTs fused to form SynT in a 20% O2 environment. Notably, when hTSCs were cultured in a hypoxic (2% O2) environment, SynT fusion and the differentiation-associated induction of NRF2, C/EBPβ, aromatase (CYP19A1; SynT differentiation marker), and ICPs were blocked. NRF2 knockdown also prevented induction of aromatase, C/EBPβ and the previously mentioned ICPs. Chromatin immunoprecipitation-quantitative PCR revealed that temporal induction of the ICPs in hTSCs and mid-gestation human trophoblasts cultured in 20% O2 was associated with increased binding of endogenous NRF2 to putative response elements within their promoters. Moreover, placentas of 12.5 days postcoitum mice with a global Nrf2 knockout manifested decreased mRNA expression of C/ebpβ, Pparγ, Hmox1, aryl hydrocarbon receptor, and Nqo1, another direct downstream target of Nrf2, compared with wild-type mice. Collectively, these compelling findings suggest that O2-regulated NRF2 serves as a key regulator of ICP expression during SynT differentiation.
Collapse
Affiliation(s)
- Kyunghee Hong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | | | - Youn-Tae Kwak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9032, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-8511, USA
- North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| |
Collapse
|
13
|
Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021; 11:metabo11120837. [PMID: 34940594 PMCID: PMC8708157 DOI: 10.3390/metabo11120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.
Collapse
|
14
|
Halawa E, Ryad L, El-Shenawy NS, Al-Eisa RA, EL-Hak HNG. Evaluation of acetamiprid and azoxystrobin residues and their hormonal disrupting effects on male rats using liquid chromatography-tandem mass spectrometry. PLoS One 2021; 16:e0259383. [PMID: 34855766 PMCID: PMC8638893 DOI: 10.1371/journal.pone.0259383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting compounds as pesticides affect the hormonal balance, and this can result in several diseases. Therefore, the analysis of representative hormones with acetamiprid (AC) and azoxystrobin (AZ) was a good strategy for the investigation of the endocrine-disrupting activity of pesticides. Hence, a sensitive and rapid analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. The method was validated for the analysis of AC, AZ, estriol, estrone, progesterone, and testosterone in the serum, testis, and liver of rats. The correlation between the residues of pesticides and the disturbance of the endocrine system was evaluated. The different mass parameters, mobile phase types, analytical columns, injection volumes, and extraction solvents were compared to get the lowest limit of detection of the studied compounds. The detection limits of AC, AZ, estriol, estrone, progesterone, and testosterone were 0.05, 0.05, 1.0, 10, and 1.0 ng/ml, respectively. The method developed was applied to evaluate the changes in these hormones induced by the duration of exposure to AC and AZ in rat testis and serum. The hormones level in rat serum and testis had a significant decrease as they were oral gavage treated with different high concentrations of studied pesticides. Both pesticides were distributed in the body of rats by the multi-compartment model (liver, testis, and serum).
Collapse
Affiliation(s)
- Ekramy Halawa
- Agricultural Research Center, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Ismailia, Egypt
| | - Lamia Ryad
- Agricultural Research Center, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Ismailia, Egypt
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rasha A. Al-Eisa
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Heba N. Gad EL-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res 2021; 14:125. [PMID: 34563259 PMCID: PMC8466925 DOI: 10.1186/s13048-021-00879-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathies affecting the early reproductive age in women, whose pathophysiology perplexes many researchers till today. This syndrome is classically categorized by hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction, bulky multi follicular ovaries on Ultrasonography (USG), and metabolic abnormalities such as hyperinsulinemia, dyslipidemia, obesity. The etiopathogenesis of PCOS is not fully elucidated, but it seems that the hypothalamus-pituitary-ovarian axis, ovarian, and/or adrenal androgen secretion may contribute to developing the syndrome. Infertility and poor reproductive health in women's lives are highly associated with elevated levels of androgens. Studies with ovarian theca cells taken from PCOS women have demonstrated increased androgen production due to augmented ovarian steroidogenesis attributed to mainly altered expression of critical enzymes (Cytochrome P450 enzymes: CYP17, CYP21, CYP19, CYP11A) in the steroid hormone biosynthesis pathway. Despite the heterogeneity of PCOS, candidate gene studies are the widely used technique to delineate the genetic variants and analyze for the correlation of androgen biosynthesis pathway and those affecting the secretion or action of insulin with PCOS etiology. Linkage and association studies have predicted the relationship between genetic variants and PCOS risk among families or populations. Several genes have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or polymorphisms has been discovered, which suggests that PCOS has a vital heritable component. The following review summarizes the influence of polymorphisms in crucial genes of the steroidogenesis pathway leading to intraovarian hyperandrogenism which can result in PCOS.
Collapse
Affiliation(s)
- Hiral Chaudhary
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Jalpa Patel
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Nayan K. Jain
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Rushikesh Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
16
|
ASCL2 reciprocally controls key trophoblast lineage decisions during hemochorial placenta development. Proc Natl Acad Sci U S A 2021; 118:2016517118. [PMID: 33649217 DOI: 10.1073/pnas.2016517118] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.
Collapse
|
17
|
Sun MA, Wolf G, Wang Y, Senft AD, Ralls S, Jin J, Dunn-Fletcher CE, Muglia LJ, Macfarlan TS. Endogenous retroviruses drive lineage-specific regulatory evolution across primate and rodent placentae. Mol Biol Evol 2021; 38:4992-5004. [PMID: 34320657 DOI: 10.1093/molbev/msab223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mammals, the placenta mediates maternal-fetal nutrient and waste exchange and acts in an immunomodulatory way to facilitate maternal-fetal tolerance. The placenta is highly diverse across mammalian species, yet the molecular mechanisms that distinguish the placenta of human from other mammals are not fully understood. Using an interspecies transcriptomic comparison of human, macaque, and mouse late-gestation placentae, we identified hundreds of genes with lineage-specific expression-including dozens that are placentally-enriched and potentially related to pregnancy. We further annotated the enhancers for different human tissues using epigenomic data and demonstrate that the placenta and chorion are unique in that their enhancers display the least conservation. We identified numerous lineage-specific human placental enhancers and found they highly overlap with specific families of endogenous retroviruses (ERVs), including MER21A, MER41A/B and MER39B that were previously linked to immune response and placental function. Among these ERV families, we further demonstrate that MER41A/B insertions create dozens of lineage-specific Serum Response Factor (SRF) binding loci in human, including one adjacent to FBN2, a placenta-specific gene with increased expression in humans that produces the peptide hormone placensin to stimulate glucose secretion and trophoblast invasion. Overall, our results demonstrate the prevalence of lineage-specific placental enhancers which are frequently associated with ERV insertions and likely facilitate the lineage-specific evolution of the mammalian placenta.
Collapse
Affiliation(s)
- Ming-An Sun
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA.,Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Yejun Wang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Anna D Senft
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Sherry Ralls
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Jinpu Jin
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Caitlin E Dunn-Fletcher
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Physician-Scientist Training Program in Pediatrics, Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Burroughs Wellcome Fund, Research Triangle Park, NC, 27709, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Abaffy T, Matsunami H. 19-hydroxy Steroids in the Aromatase Reaction: Review on Expression and Potential Functions. J Endocr Soc 2021; 5:bvab050. [PMID: 34095690 PMCID: PMC8169043 DOI: 10.1210/jendso/bvab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
Scientific evidence related to the aromatase reaction in various biological processes spanning from mid-1960 to today is abundant; however, as our analytical sensitivity increases, a new look at the old chemical reaction is necessary. Here, we review an irreversible aromatase reaction from the substrate androstenedione. It proceeds in 3 consecutive steps. In the first 2 steps, 19-hydroxy steroids are produced. In the third step, estrone is produced. They can dissociate from the enzyme complex and either accumulate in tissues or enter the blood. In this review, we want to highlight the potential importance of these 19-hydroxy steroids in various physiological and pathological conditions. We focus primarily on 19-hydroxy steroids, and in particular on the 19-hydroxyandrostenedione produced by the incomplete aromatase reaction. Using a PubMed database and the search term “aromatase reaction,” 19-hydroxylation of androgens and steroid measurements, we detail the chemistry of the aromatase reaction and list previous and current methods used to measure 19-hydroxy steroids. We present evidence of the existence of 19-hydroxy steroids in brain tissue, ovaries, testes, adrenal glands, prostate cancer, as well as during pregnancy and parturition and in Cushing’s disease. Based on the available literature, a potential involvement of 19-hydroxy steroids in the brain differentiation process, sperm motility, ovarian function, and hypertension is suggested and warrants future research. We hope that with the advancement of highly specific and sensitive analytical methods, future research into 19-hydroxy steroids will be encouraged, as much remains to be learned and discovered.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
19
|
Role of promoters in regulating alternative splicing. Gene 2021; 782:145523. [PMID: 33667606 DOI: 10.1016/j.gene.2021.145523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
Alternative splicing (AS) plays a critical role in enhancing proteome complexity in higher eukaryotes. Almost all the multi intron-containing genes undergo AS in humans. Splicing mainly occurs co-transcriptionally, where RNA polymerase II (RNA pol II) plays a crucial role in coordinating transcription and pre-mRNA splicing. Aberrant AS leads to non-functional proteins causative in various pathophysiological conditions such as cancers, neurodegenerative diseases, and muscular dystrophies. Transcription and pre-mRNA splicing are deeply interconnected and can influence each other's functions. Several studies evinced that specific promoters employed by RNA pol II dictate the RNA processing decisions. Promoter-specific recruitment of certain transcriptional factors or transcriptional coactivators influences splicing, and the extent to which these factors affect splicing has not been discussed in detail. Here, in this review, various DNA-binding proteins and their influence on promoter-specific AS are extensively discussed. Besides, this review highlights how the promoter-specific epigenetic changes might regulate AS.
Collapse
|
20
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
21
|
Zhang J, Deng Y, Chen W, Zi Y, Shi D, Lu F. Theca cell-conditioned medium added to in vitro maturation enhances embryo developmental competence of buffalo (Bubalus bubalis) oocytes after parthenogenic activation. Reprod Domest Anim 2020; 55:1501-1510. [PMID: 32767798 DOI: 10.1111/rda.13799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Theca cells (TCs) play a key role in follicular growth and atresia. TCs synthesize androgens that act as substrate for granulosa cells (GCs) aromatization to estrogens needed for oocyte maturation. However, the effects of TCs in the form of conditioned medium on in vitro maturation (IVM) and developmental competence of buffalo oocytes remain unclear. In the present study, we examined the impacts of TC-conditioned medium (TCCM) on maturation efficiency and embryo development of buffalo oocytes after parthenogenic activation (PA). Our results showed that TCCM that was collected on day 2 and added to IVM medium at a 20% proportional level (2 days & 20%) exerted no significant effect on IVM rate (43.06% vs. 44.71%), but significantly (p < .05) enhanced embryo development (oocyte cleavage, 80.93% vs. 69.66%; blastocyst formation, 39.85% vs. 32.84%) of buffalo oocytes after PA compared with the control group. However, monolayer TC significantly (p < .05) promoted both maturation efficiency (48.84% vs. 44.53%) and embryo development (oocyte cleavage, 80.39% vs. 69.32%; blastocyst formation, 35.38% vs. 29.25%) of buffalo oocytes after PA compared to that in the control group. Furthermore, TCs secreted some testosterone into the conditioned medium, which significantly (p < .05) promoted the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1 and 17β-HSD) in buffalo cumulus-oocyte complexes (COCs). Our study indicated that TCCM (2 days & 20%) did not significantly affect IVM efficiency, but enhanced embryo developmental competence of oocytes after PA principally by stimulating the secretion of testosterone and facilitating estradiol synthesis of buffalo COCs.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Weili Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yonghong Zi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Fang L, Yu Y, Li Y, Wang S, Zhang R, Guo Y, Li Y, Yan Y, Sun YP. Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: a mechanism for estradiol production in the luteal phase. Hum Reprod 2020; 34:2018-2026. [PMID: 31553790 DOI: 10.1093/humrep/dez171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/18/2019] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Does amphiregulin (AREG), the most abundant and important epidermal growth factor receptor (EGFR) ligand in the follicular fluid, regulate aromatase expression in human granulosa-lutein (hGL) cells? SUMMARY ANSWER AREG mediates the hCG-induced up-regulation of aromatase expression and estradiol (E2) production in hGL cells. WHAT IS KNOWN ALREADY AREG expression and secretion are rapidly induced by hCG in hGL cells and mediate physiological functions of LH/hCG in the ovary. EGFR protein is expressed in follicles not only in the pre-ovulatory phase but also throughout the luteal phase of the menstrual cycle. After the LH surge, the human corpus luteum secretes high levels of E2, which regulates various luteal cell functions. Aromatase is an enzyme responsible for a key step in the biosynthesis of E2. However, whether AREG regulates aromatase expression and E2 production in hGL cells remains unexplored. STUDY DESIGN, SIZE, DURATION This study is an experimental study performed over a 1-year period. In vitro investigations examined the role of AREG in the regulation of aromatase expression and E2 production in primary hGL cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary hGL cells were obtained from women undergoing IVF treatment in an academic research center. Aromatase mRNA and protein levels were examined after exposure of hGL cells to recombinant human AREG, hCG or LH. The EGFR tyrosine kinase inhibitor AG1478, PI3K inhibitor LY294002 and siRNAs targeting EGFR, LH receptor, StAR and AREG were used to verify the specificity of the effects and to investigate the underlying molecular mechanisms. Reverse transcription quantitative real-time PCR (RT-qPCR) and western blot were used to measure the specific mRNA and protein levels, respectively. Follicular fluid and serum were collected from 65 infertile women during IVF treatment. Pearson's correlation analysis was performed to examine the correlation coefficient between two values. MAIN RESULTS AND THE ROLE OF CHANCE Treatment of hGL cells with AREG-stimulated aromatase expression and E2 production. Using pharmacological inhibitors and specific siRNAs, we revealed that AREG-stimulated aromatase expression and E2 production via EGFR-mediated activation of the protein kinase B (AKT) signaling pathway. In addition, inhibition of EGFR activity and AREG knockdown attenuated hCG-induced up-regulation of aromatase expression and E2 production. Importantly, the protein levels of AREG in the follicular fluid were positively correlated with the E2 levels in serum after 2 days of oocyte pick-up and in the follicular fluid of IVF patients. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The in vitro setting of this study is a limitation that may not reflect the real intra-ovarian microenvironment. Clinical data were obtained from a small sample size. WIDER IMPLICATIONS OF THE FINDINGS Our results provide the first evidence that hCG-induced AREG contributes to aromatase expression and E2 production in the luteal phase of the menstrual cycle. A better understanding of the hormonal regulation of female reproductive function may help to develop new strategies for the treatment of clinical infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China for Young Scientists (81601253), the specific fund of clinical medical research of Chinese Medical Association (16020160632) and the Foundation from the First Affiliated Hospital of Zhengzhou University for Young Scientists to Lanlan Fang. This work was also supported by an operating grant from the National Natural Science Foundation of China (81820108016) to Ying-Pu Sun. All authors declare no conflict of interest.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sijia Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
23
|
Zhang J, Deng Y, Li J, Zi Y, Shi D, Lu F. Theca cell-conditioned medium enhances steroidogenesis competence of buffalo (Bubalus bubalis) granulosa cells. Reprod Domest Anim 2020; 56:254-262. [PMID: 32748525 DOI: 10.1111/rda.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
Theca cells (TCs) play a crucial role in follicular development and atresia. TCs synthesize androgens that act as substrate for granulosa cells (GCs) aromatization to oestrogens needed for follicular growth. However, the effects of TCs in the form of conditioned medium on steroidogenesis in buffalo GCs remain unclear. In the present study, the impacts of TC-conditioned medium (TCCM) on oestrogen synthesis in buffalo GCs were examined. The results showed that TCs secreted principally testosterone, but almost no androstenedione or oestradiol into TCCM. TCs at passage 3 had a stronger secretion capacity of testosterone in TCCM. Furthermore, TCCM collected at 72 hr improved both the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1, 3β-HSD and 17β-HSD) and the secretion levels of estradiol in GCs. The treatment of 72 hr in TCCM promoted both the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1 and 3β-HSD) and the secretion levels of estradiol in GCs. Besides, TCCM that was collected at 72 hr and applied to GCs for 72 hr (72 & 72 hr) improved the sensitivity of buffalo GCs to FSH. This study indicates that TCCM (72 & 72 hr) enhances the steroidogenesis competence of GCs mainly through facilitating the responsiveness of GCs to FSH in buffalo.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jiaojiao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yonghong Zi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Vasanthakumar A, Chisanga D, Blume J, Gloury R, Britt K, Henstridge DC, Zhan Y, Torres SV, Liene S, Collins N, Cao E, Sidwell T, Li C, Spallanzani RG, Liao Y, Beavis PA, Gebhardt T, Trevaskis N, Nutt SL, Zajac JD, Davey RA, Febbraio MA, Mathis D, Shi W, Kallies A. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 2020; 579:581-585. [PMID: 32103173 PMCID: PMC7241647 DOI: 10.1038/s41586-020-2040-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.
Collapse
Affiliation(s)
- Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | - David Chisanga
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonas Blume
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Renee Gloury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kara Britt
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Darren C Henstridge
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Liene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Nicholas Collins
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Tom Sidwell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Chaoran Li
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul A Beavis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie Trevaskis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Soares MJ, Varberg KM, Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol Reprod 2019; 99:196-211. [PMID: 29481584 DOI: 10.1093/biolre/ioy049] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Abstract
Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA and the Center for Perinatal Research, Children΄s Research Institute, Children΄s Mercy, Kansas City, Missouri, USA
| | - Kaela M Varberg
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
28
|
Chen X, He Y, Wang Z, Li J. Expression and DNA methylation analysis of cyp19a1a in Chinese sea perch Lateolabrax maculatus. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:85-90. [PMID: 30099195 DOI: 10.1016/j.cbpb.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 aromatase (P450arom), which is encoded by cyp19a1a, can convert androgen to estrogen. Therefore, P450arom is important in gonadal differentiation and maintenance. In this study, we analyzed the expression and DNA methylation of cyp19a from Chinese sea perch Lateolabrax maculatus (sp. cyp19a1a). The sp. cyp19a1a gene consists of 9 exons, but only 3.5 kb, being smaller than the human cyp19a1a, as a result of small introns. The sp. cyp19a1a protein contains 518 amino acid residues and evolutionarily conserved domains and is clustered in the teleost subfamily on the phylogenetic tree. Amino acid alignment indicates that sp. cyp19a1a shares the highest identity (91.6%) to Epinephelus akaara and Lates calcarifer. Endogenous sp. cyp19a1a is detected mainly in stromal cells around the oocytes of stage I ovary, and the gene expression level has no difference after 40 days fresh water culture in both ovary and testis. The sp. Cyp19a1a can catalyze the production of estrogen from androgen in vitro. Seven CpG dinucleotides are found in the proximal promoter. Binding sites of the conserved predicted transcription factors include cAMP response element, steroidogenic factor-1, and SRY-Box. The deletion of this region reduces promoter activity significantly. The methylation level of the seven CpG dinucleotides in cyp19a1a promoter is higher in the testis (44.25 ± 4.04) than in the ovary (24.71 ± 3.05). The induced hypermethylation of the sp. cyp19a1a promoter suppressed promoter transcription function in vitro. These results suggest that DNA methylation may be a mechanism used for natural sex maintenance.
Collapse
Affiliation(s)
- Xiaowu Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China
| | - Yudong He
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhipeng Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 26000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 26000, China.
| |
Collapse
|
29
|
Alnemr AAA, Ammar IMM, Aboelfath AMK, Talaat B. Effect of estradiol valerate on the pregnancy rate in patients receiving letrozole for induction of ovulation. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2018. [DOI: 10.1016/j.mefs.2017.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Haas J, Bassil R, Gonen N, Meriano J, Jurisicova A, Casper RF. The VEGF and PEDF levels in the follicular fluid of patients co- treated with LETROZOLE and gonadotropins during the stimulation cycle. Reprod Biol Endocrinol 2018; 16:54. [PMID: 29843716 PMCID: PMC5975523 DOI: 10.1186/s12958-018-0367-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/09/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Previous studies have shown that androgens, in addition to serving as precursors for ovarian estrogen synthesis, also have a fundamental role in primate ovarian follicular development by augmentation of FSH receptor expression on granulosa cells. Recent studies have shown that aromatase inhibitor, letrozole, improves ovarian response to FSH in normal and poor responder patients, possibly by increasing intraovarian androgen levels. Studies in mice also showed an effect of letrozole to increase pigment epithelium-derived factor (PEDF) and to lower vascular epithelial growth factor (VEGF), which might be expected to reduce the risk of ovarian hyperstimulation syndrome (OHSS) with stimulation. The aim of this study was to compare the VEGF and PEDF levels in the follicular fluids of normal responders treated with letrozole and gonadotropins during the ovarian stimulation with patients treated with gonadotropins only. METHODS A single center, prospective clinical trial. We collected follicular fluid from 26 patients, on a GnRH antagonist protocol, dual triggered with hCG and GnRH agonist. The patients in one group were co-treated with letrozole and gonadotropins during the ovarian stimulation and the patients in the other group were treated with gonadotropins only. VEGF, PEDF, estrogen, progesterone and testosterone levels were measured by ELISA kits. RESULTS The age of the patients, the total dose of gonadotropins and the number of oocytes were comparable between the two groups. In the follicular fluid, the estrogen levels (2209 nmol/l vs. 3280 nmol/l, p = 0.02) were significantly decreased, and the testosterone levels (246.5 nmol/l vs. 40.7 nmol/l, p < 0.001) were significantly increased in the letrozole group compared to the gonadotropin only group. The progesterone levels (21.4 μmol/l vs. 17.5 p = NS) were comparable between the two groups. The VEGF levels (2992 pg/ml vs. 1812 pg/ml p = 0.02) were significantly increased and the PEDF levels (9.7 ng/ml vs 17.3 ng/ml p < 0.001) were significantly decreased in the letrozole group. CONCLUSIONS Opposite to observations in the mouse, we found that VEGF levels were increased and PEDF levels were decreased in the follicular fluid in patients treated with letrozole during the stimulation cycles. Further investigation is required to determine if patients treated with letrozole during the IVF stimulation protocol are at increased risk for developing OHSS as a result of these findings.
Collapse
Affiliation(s)
- Jigal Haas
- 0000 0001 2157 2938grid.17063.33Division of Reproductive Sciences, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- TRIO fertility partners, 655 Bay St 11th floor, Toronto, ON M5G 2K4 Canada
- 0000 0004 1937 0546grid.12136.37Department of Obstetrics and Gynecology, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Rawad Bassil
- 0000 0001 2157 2938grid.17063.33Division of Reproductive Sciences, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- TRIO fertility partners, 655 Bay St 11th floor, Toronto, ON M5G 2K4 Canada
| | - Noa Gonen
- 0000 0001 2157 2938grid.17063.33Division of Reproductive Sciences, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- TRIO fertility partners, 655 Bay St 11th floor, Toronto, ON M5G 2K4 Canada
| | - Jim Meriano
- 0000 0001 2157 2938grid.17063.33Division of Reproductive Sciences, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- TRIO fertility partners, 655 Bay St 11th floor, Toronto, ON M5G 2K4 Canada
| | - Andrea Jurisicova
- 0000 0001 2157 2938grid.17063.33Division of Reproductive Sciences, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- TRIO fertility partners, 655 Bay St 11th floor, Toronto, ON M5G 2K4 Canada
| | - Robert F. Casper
- 0000 0001 2157 2938grid.17063.33Division of Reproductive Sciences, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- TRIO fertility partners, 655 Bay St 11th floor, Toronto, ON M5G 2K4 Canada
| |
Collapse
|
31
|
Tsur A, Mayo JA, Wong RJ, Shaw GM, Stevenson DK, Gould JB. 'The obesity paradox': a reconsideration of obesity and the risk of preterm birth. J Perinatol 2017; 37:1088-1092. [PMID: 28749482 DOI: 10.1038/jp.2017.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The association between obesity and spontaneous preterm births (sPTBs) has been shown to be influenced by obesity-attendant comorbidities. Our objective was to better understand the complex relationship of obesity and its attendant comorbidities with sPTBs. STUDY DESIGN A retrospective analysis utilizing maternally linked hospital and birth certificate records of 2 049 196 singleton California deliveries from 2007 to 2011. Adjusted relative risks (aRRs) for sPTBs were estimated using multivariate Poisson regression modeling. RESULTS Obese women had higher aRRs for sPTBs than their normal body mass index (BMI) controls. aRRs (95% confidence interval) increased with increasing BMI category: Obese I=1.10 (1.08 to 1.12); Obese II=1.15 (1.12 to 1.18); and Obese III=1.26 (1.22 to 1.30). When comparing only obese women without comorbidities to their normal BMI controls, aRRs reversed, that is, obese women had lower aRRs of sPTBs: Obese I=0.96 (0.94 to 0.98), Obese II=0.95 (0.91 to 0.98); and Obese III=0.98 (0.94 to 1.03). This same reversal of aRR direction was also observed among women with comorbidities: 0.92 (0.89 to 0.96); 0.89 (0.85 to 0.93); and 0.89 (0.85 to 0.93), respectively. Increasing BMI increased the aRRs for sPTBs among patients with gestational diabetes (P<0.05), while decreasing the risk among patients with chronic hypertension and pregnancy-related hypertensive disease (P<0.05). CONCLUSIONS The obesity and preterm birth paradox is an example of what has been described as 'Simpson's Paradox'. Unmeasured confounding factors mediated by comorbidities may explain the observed protective effect of obesity upon conditioning on the presence or absence of comorbidities and thus resolve the paradox.
Collapse
Affiliation(s)
- A Tsur
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - J A Mayo
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - R J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - G M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - D K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - J B Gould
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
van Duursen MBM. Modulation of estrogen synthesis and metabolism by phytoestrogens in vitro and the implications for women's health. Toxicol Res (Camb) 2017; 6:772-794. [PMID: 30090542 DOI: 10.1039/c7tx00184c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens are increasingly used as dietary supplements due to their suggested health promoting properties, but also by women for breast enhancement and relief of menopausal symptoms. Generally, phytoestrogens are considered to exert estrogenic activity via estrogen receptors (ERs), but they may also affect estrogen synthesis and metabolism locally in breast, endometrial and ovarian tissues. Considering that accurate regulation of local hormone levels is crucial for normal physiology, it is not surprising that interference with hormonal synthesis and metabolism is associated with a wide variety of women's health problems, varying from altered menstrual cycle to hormone-dependent cancers. Yet, studies on phytoestrogens have mainly focused on ER-mediated effects of soy-derived phytoestrogens, with less attention paid to steroid synthesis and metabolism or other phytoestrogens. This review aims to evaluate the potential of phytoestrogens to modulate local estrogen levels and the implications for women's health. For that, an overview is provided of the effects of commonly used phytoestrogens, i.e. 8-prenylnaringenin, biochanin A, daidzein, genistein, naringenin, resveratrol and quercetin, on estrogen synthesizing and metabolizing enzymes in vitro. The potential implications for women's health are assessed by comparing the in vitro effect concentrations with blood concentrations that can be found after intake of these phytoestrogens. Based on this evaluation, it can be concluded that high-dose supplements with phytoestrogens might affect breast and endometrial health or fertility in women via the modulation of steroid hormone levels. However, more data regarding the tissue levels of phytoestrogens and effect data from dedicated, tissue-specific assays are needed for a better understanding of potential risks. At least until more certainty regarding the safety has been established, especially young women would better avoid using supplements containing high doses of phytoestrogens.
Collapse
Affiliation(s)
- Majorie B M van Duursen
- Research group Endocrine Toxicology , Institute for Risk Assessment Sciences , Faculty of Veterinary Medicine , Utrecht University , Yalelaan 104 , 3584 CM , Utrecht , the Netherlands . ; Tel: +31 (0)30 253 5398
| |
Collapse
|
33
|
Tivnan A, Heilinger T, Ramsey JM, O'Connor G, Pokorny JL, Sarkaria JN, Stringer BW, Day BW, Boyd AW, Kim EL, Lode HN, Cryan SA, Prehn JHM. Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, Letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget 2017; 8:16605-16620. [PMID: 28178667 PMCID: PMC5369988 DOI: 10.18632/oncotarget.15073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Aromatase is a critical enzyme in the irreversible conversion of androgens to oestrogens, with inhibition used clinically in hormone-dependent malignancies. We tested the hypothesis that targeted aromatase inhibition in an aggressive brain cancer called glioblastoma (GBM) may represent a new treatment strategy. In this study, aromatase inhibition was achieved using third generation inhibitor, Letrozole, encapsulated within the core of biodegradable poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs). PLGA-NPs were conjugated to human/mouse chimeric anti-GD2 antibody ch14.18/CHO, enabling specific targeting of GD2-positive GBM cells. Treatment of primary and recurrent patient-derived GBM cells with free-Letrozole (0.1 μM) led to significant decrease in cell proliferation and migration; in addition to reduced spheroid formation. Anti-GD2-ch14.18/CHO-NPs displayed specific targeting of GBM cells in colorectal-glioblastoma co-culture, with subsequent reduction in GBM cell numbers when treated with anti-GD2-ch14.18-PLGA-Let-NPs in combination with temozolomide. As miR-191 is an estrogen responsive microRNA, its expression, fluctuation and role in Letrozole treated GBM cells was evaluated, where treatment with premiR-191 was capable of rescuing the reduced proliferative phenotype induced by aromatase inhibitor. The repurposing and targeted delivery of Letrozole for the treatment of GBM, with the potential role of miR-191 identified, provides novel avenues for target assessment in this aggressive brain cancer.
Collapse
Affiliation(s)
- Amanda Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland
| | - Tatjana Heilinger
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland.,IMC Fachhochschule Krems, University of Applied Sciences, Krems, Austria
| | - Joanne M Ramsey
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland & Tissue Engineering Research Group, Department of Anatomy, RCSI and Centre for Research in Medical Devices (CURAM), NUIG, Ireland
| | - Gemma O'Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland & Tissue Engineering Research Group, Department of Anatomy, RCSI and Centre for Research in Medical Devices (CURAM), NUIG, Ireland
| | - Jenny L Pokorny
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America.,Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Brett W Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bryan W Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew W Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ella L Kim
- Laboratory of Neurooncology, Department of Neurosurgery, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Holger N Lode
- Department of Paediatrics and Paediatric Haematology/Oncology, University of Greifswald, Greifswald, Germany
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland & Tissue Engineering Research Group, Department of Anatomy, RCSI and Centre for Research in Medical Devices (CURAM), NUIG, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland
| |
Collapse
|
34
|
Zha W, Ho HTB, Hu T, Hebert MF, Wang J. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci Rep 2017; 7:1137. [PMID: 28442777 PMCID: PMC5430688 DOI: 10.1038/s41598-017-01291-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Depression and use of antidepressant medications are both associated with increased risk of obesity, potentially attributed to a reduced serotonin transporter (SERT) function. However, how SERT deficiency promotes obesity is unknown. Here, we demonstrated that SERT−/− mice display abnormal fat accumulation in both white and brown adipose tissues, glucose intolerance and insulin resistance while exhibiting suppressed aromatase (Cyp19a1) expression and reduced circulating 17β-estradiol levels. 17β-estradiol replacement in SERT−/− mice reversed the obesity and glucose intolerance, supporting a role for estrogen in SERT deficiency-associated obesity and glucose intolerance. Treatment of wild type mice with paroxetine, a chemical inhibitor of SERT, also resulted in Cyp19a1 suppression, decreased circulating 17β-estradiol levels, abnormal fat accumulation, and glucose intolerance. Such effects were not observed in paroxetine-treated SERT−/− mice. Conversely, pregnant SERT−/− mice displayed normalized estrogen levels, markedly reduced fat accumulation, and improved glucose tolerance, which can be eliminated by an antagonist of estrogen receptor α (ERα). Together, these findings support that estrogen suppression is involved in SERT deficiency-induced obesity and glucose intolerance, and suggest approaches to restore 17β-estradiol levels as a novel treatment option for SERT deficiency associated obesity and metabolic abnormalities.
Collapse
Affiliation(s)
- Weibin Zha
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Horace T B Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Tao Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Mary F Hebert
- Department of Pharmacy, University of Washington, Seattle, WA, USA.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA. .,Nutrition Obesity Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
36
|
Dysregulation of WTI (-KTS) is Associated with the Kidney-Specific Effects of the LMX1B R246Q Mutation. Sci Rep 2017; 7:39933. [PMID: 28059119 PMCID: PMC5216339 DOI: 10.1038/srep39933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/28/2016] [Indexed: 01/11/2023] Open
Abstract
Mutations in the LIM homeobox transcription factor 1-beta (LMX1B) are a cause of nail patellar syndrome, a condition characterized by skeletal changes, glaucoma and focal segmental glomerulosclerosis. Recently, a missense mutation (R246Q) in LMX1B was reported as a cause of glomerular pathologies without extra-renal manifestations, otherwise known as nail patella-like renal disease (NPLRD). We have identified two additional NPLRD families with the R246Q mutation, though the mechanisms by which LMX1BR246Q causes a renal-specific phenotype is unknown. In this study, using human podocyte cell lines overexpressing either myc-LMX1BWT or myc-LMX1BR246Q, we observed dominant negative and haploinsufficiency effects of the mutation on the expression of podocyte genes such as NPHS1, GLEPP1, and WT1. Specifically, we observed a novel LMX1BR246Q-mediated downregulation of WT1(−KTS) isoforms in podocytes. In conclusion, we have shown that the renal-specific phenotype associated with the LMX1BR246Q mutation may be due to a dominant negative effect on WT1(−KTS) isoforms that may cause a disruption of the WT1 (−KTS):(+KTS) isoform ratio and a decrease in the expression of podocyte genes. Full delineation of the LMX1B gene regulon is needed to define its role in maintenance of glomerular filtration barrier integrity.
Collapse
|
37
|
Zhong S, Liu S, Chen S, Lin H, Wang W, Qin X. Zeranol stimulates proliferation and aromatase activation in human breast preadipocytes. Mol Med Rep 2016; 14:1014-8. [PMID: 27220457 DOI: 10.3892/mmr.2016.5293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
Abstract
Aromatase is a crucial enzyme for the biosynthesis of estrogens and is involved in the process of breast carcinogenesis. Concerns have been raised regarding the effects of environmental estrogens as potential regulators of aromatase expression in human breast cells. Zeranol is a non‑steroidal agent with potent estrogenic activity, which is widely used as a growth promoter for cattle in certain countries. The present study hypothesized that aromatase expression and activity may be elevated by low dose zeranol exposure, providing a source of estrogens that may stimulate cell proliferation. In the present study, primary cultured human breast preadipocytes were used as an in vitro model. The effects of zeranol on cell proliferation were measured using the MTS assay, aromatase expression levels were determined by immunocytochemical staining and reverse transcription‑polymerase chain reaction, and aromatase enzyme activity and estrogen production were analyzed using corresponding assay kits. The results demonstrated that low dose zeranol (2‑50 nM) was able to significantly promote cell proliferation, aromatase mRNA expression, aromatase activity and estrogen production in primary cultured human breast preadipocytes, thus suggesting that zeranol may act as an aromatase activator. The findings of the present study suggest that zeranol promotes breast cancer cell growth by stimulating aromatase activation and increasing estrogen biosynthesis in adipose tissue.
Collapse
Affiliation(s)
- Saiyi Zhong
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Shouchun Liu
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, P.R. China
| | - Suhua Chen
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Huajuan Lin
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Weimin Wang
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Xiaoming Qin
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| |
Collapse
|
38
|
Liu Q, Zhang Y, Shi B, Lu H, Zhang L, Zhang W. Foxo3b but not Foxo3a activates cyp19a1a in Epinephelus coioides. J Mol Endocrinol 2016; 56:337-49. [PMID: 26960338 DOI: 10.1530/jme-15-0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
FOXO3 has been shown to be a critical transcription factor for folliculogenesis in mammals, while the information on its roles in reproduction of nonmammalian vertebrates remains scarce. In this study, two foxo3 homologs, namely foxo3a and foxo3b, were identified in a teleost, the orange-spotted grouper Epinephelus coioides. foxo3a was mainly expressed in the central nervous system, ovary, and gut whereas foxo3b was expressed ubiquitously in tissues examined. In contrast to the dominant expression of mammalian FOXO3 in germ cells but barely detectable in ovarian follicular cells, immunoreactive Foxo3a and Foxo3b were identified both in the ovarian germ cells and follicular cells. The immunointensities of both Foxo3a and Foxo3b in ovarian follicular cells during vitellogenesis were significantly increased stage-dependently, and co-localized with Cyp19a1a. In the nucleus of ovarian follicular cells, both Foxo3a and Foxo3b immunostaining could be detected at the vitellogenic stages. Transient transfection and EMSA showed that Foxo3a and Foxo3b upregulated cyp19a1a promoter activities in vitro through a conserved Foxo-binding site, with the latter being a more potent activator. However, ChIP analysis showed that only Foxo3b binds to cyp19a1a proximal promoter region containing the conserved Foxo-binding site in the vitellogenic ovary. Taken together, these results suggested that Foxo3a and Foxo3b are involved in the ovarian development possibly through regulating the ovarian germ cells as well as follicular cells, and Foxo3b but not Foxo3a may activate cyp19a1a in the ovarian follicular cells during vitellogenesis in the orange-spotted grouper.
Collapse
Affiliation(s)
- Qiongyou Liu
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China Department of Histology and EmbryologyZunyi Medical College, Zunyi, Guizhou, People's Republic of China
| | - Yang Zhang
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Boyang Shi
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijie Lu
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lihong Zhang
- Department of BiologySchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weimin Zhang
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China Department of BiologySchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Biegon A. In vivo visualization of aromatase in animals and humans. Front Neuroendocrinol 2016; 40:42-51. [PMID: 26456904 PMCID: PMC4783227 DOI: 10.1016/j.yfrne.2015.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
Aromatase catalyzes the last and obligatory step in the biosynthesis of estrogens across species. In vivo visualization of aromatase can be performed using positron emission tomography (PET) with radiolabeled aromatase inhibitors such as [(11)C]vorozole. PET studies in rats, monkeys and healthy human subjects demonstrate widespread but heterogeneous aromatase availability in brain and body, which appears to be regulated in a species, sex and region-specific manner. Thus, aromatase availability is high in brain amygdala and in ovaries of all species examined to date, with males demonstrating higher levels than females in all comparable organs. However, the highest concentrations of aromatase in the human brain are found in specific nuclei of the thalamus while the highest levels in rats and monkeys are found in the amygdala. Regional brain aromatase availability is increased by androgens and inhibited by nicotine. Future studies may improve diagnosis and treatment in brain disorders and cancers overexpressing aromatase.
Collapse
Affiliation(s)
- Anat Biegon
- Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY 11794-2565, United States.
| |
Collapse
|
40
|
Modulation of Aromatase by Phytoestrogens. Enzyme Res 2015; 2015:594656. [PMID: 26798508 PMCID: PMC4699002 DOI: 10.1155/2015/594656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/31/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022] Open
Abstract
The aromatase enzyme catalyzes the conversion of androgens to estrogens in many human tissues. Estrogens are known to stimulate cellular proliferation associated with certain cancers and protect against adverse symptoms during the peri- and postmenopausal intervals. Phytoestrogens are a group of plant derived naturally occurring compounds that have chemical structures similar to estrogen. Since phytoestrogens are known to be constituents of animal/human food sources, these compounds have received increased research attention. Phytoestrogens may contribute to decreased cancer risk by the inhibition of aromatase enzyme activity and CYP19 gene expression in human tissues. This review covers (a) the aromatase enzyme (historical descriptions on function, activity, and gene characteristics), (b) phytoestrogens in their classifications and applications to human health, and (c) a chronological coverage of aromatase activity modulated by phytoestrogens from the early 1980s to 2015. In general, phytoestrogens act as aromatase inhibitors by (a) decreasing aromatase gene expression, (b) inhibiting the aromatase enzyme itself, or (c) in some cases acting at both levels of regulation. The findings presented herein are consistent with estrogen's impact on health and phytoestrogen's potential as anticancer treatments, but well-controlled, large-scale studies are warranted to determine the effectiveness of phytoestrogens on breast cancer and age-related diseases.
Collapse
|
41
|
Tournier M, Pouech C, Quignot N, Lafay F, Wiest L, Lemazurier E, Cren-Olivé C, Vulliet E. Determination of endocrine disruptors and endogenic androgens and estrogens in rat serum by high-performance liquid chromatography-tandem mass spectrometry. Steroids 2015; 104:252-62. [PMID: 26476180 DOI: 10.1016/j.steroids.2015.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 01/11/2023]
Abstract
To simultaneously measure some targeted endocrine disruptors and several forms of sex hormones in rat serum, an accurate analytical procedure was developed. First, a comparison between a polymeric-based solid-phase extraction (SPE) and a micro-extraction by packed sorbent was performed to choose the optimal method to extract and concentrate the analytes: bisphenol A, atrazine, vinclozolin metabolite, testosterone, androstenedione, estrone, estradiol, estrone-sulfate and glucuronide and estradiol-sulfate and glucuronide. The analyses were then performed by high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with electrospray ionisation in positive and negative modes. The protocol based on SPE was validated using the ICH/2005 guidelines. The validation demonstrated good performance in terms of linearity (R(2)>0.99), recovery (71-90%) and repeatability (relative standard deviation: 1-18%). The method was sensitive with LOQ comprised between 0.1 and 0.4 ng/ml for androgens and between 0.098 and 10.2 ng/ml for estrogens. The results obtained on the serum of rats exposed to the targeted endocrine disruptors showed the suitability of this analytical strategy.
Collapse
Affiliation(s)
- M Tournier
- Université de Lyon, Institut des Sciences Analytiques, UMR5280-CNRS, Université de Lyon, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - C Pouech
- Université de Lyon, Institut des Sciences Analytiques, UMR5280-CNRS, Université de Lyon, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - N Quignot
- Experimental Toxicology Unit, INERIS, Parc Technologique ALATA, F-60550 Verneuil-en-Halatte, France
| | - F Lafay
- Université de Lyon, Institut des Sciences Analytiques, UMR5280-CNRS, Université de Lyon, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - L Wiest
- Université de Lyon, Institut des Sciences Analytiques, UMR5280-CNRS, Université de Lyon, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - E Lemazurier
- Experimental Toxicology Unit, INERIS, Parc Technologique ALATA, F-60550 Verneuil-en-Halatte, France
| | - C Cren-Olivé
- Université de Lyon, Institut des Sciences Analytiques, UMR5280-CNRS, Université de Lyon, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - E Vulliet
- Université de Lyon, Institut des Sciences Analytiques, UMR5280-CNRS, Université de Lyon, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
42
|
Mechanoreception at the cell membrane: More than the integrins. Arch Biochem Biophys 2015; 586:20-6. [DOI: 10.1016/j.abb.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 01/14/2023]
|
43
|
López M, Tena-Sempere M. Estrogens and the control of energy homeostasis: a brain perspective. Trends Endocrinol Metab 2015; 26:411-21. [PMID: 26126705 DOI: 10.1016/j.tem.2015.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
Despite their prominent roles in the control of reproduction, estrogens pervade many other bodily functions. Key metabolic pathways display marked sexual differences, and estrogens are potent modulators of energy balance, as evidenced in extreme conditions of estrogen deficiency characterized by hyperphagia and decreased energy expenditure, and leading to obesity. Compelling evidence has recently demonstrated that, in addition to their peripheral effects, the actions of estrogens on energy homeostasis are exerted at central levels, to regulate almost every key aspect of metabolic homeostasis, from feeding to energy expenditure, to glucose and lipid metabolism. We review herein the state-of-the-art of the role of estrogens in the regulation of energy balance, with a focus on their central effects and modes of action.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
44
|
TAN TING, WANG LIE, WANG BING. Collagen and prostaglandin E2 regulate aromatase expression through the PI3K/AKT/IKK and the MAP kinase pathways in adipose stromal cells. Mol Med Rep 2015; 12:4766-4772. [DOI: 10.3892/mmr.2015.3901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/28/2014] [Indexed: 11/05/2022] Open
|
45
|
Nadeem U, Ye G, Salem M, Peng C. MicroRNA-378a-5p targets cyclin G2 to inhibit fusion and differentiation in BeWo cells. Biol Reprod 2014; 91:76. [PMID: 25122062 DOI: 10.1095/biolreprod.114.119065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are expressed abundantly in the placenta throughout pregnancy. We have previously reported that microRNA (miR)-378a-5p promoted trophoblast migration and invasion. To further understand the role of miR-378a-5p during placental development, we investigated whether it may regulate the differentiation of syncytiotrophoblast (STB). Using a choriocarcinoma cell line, BeWo, we found that miR-378a-5p was down-regulated during forskolin-induced STB differentiation. Transfection of a miR-378a-5p mimic into BeWo cells decreased the formation of multinucleated STB, increased E-cadherin, and decreased the expression level of STB marker genes. On the other hand, transfection of anti-miR-378a-5p resulted in an increase in formation of multinucleated STB and expression of STB marker genes, as well as the loss of E-cadherin. Bioinformatic analysis revealed that miR-378a-5p has four potential binding sites at the 3' untranslated region (UTR) of cyclin G2 (CCNG2). Using luciferase reporter assays, we showed that miR-378a-5p decreased the luciferase activity of reporter constructs that contain CCNG2 3' UTR. In addition, miR-378a-5p decreased, whereas anti-miR-378a-5p increased, CCNG2 mRNA levels. Overexpression of CCNG2 increased the expression of syncytin-1 and fusion index and reversed the inhibitory effects of miR-378a-5p. In contrast, silencing of CCNG2 using siRNA increased E-cadherin and decreased syncytin-1 levels. These findings provide initial evidence that CCNG2 promotes STB differentiation and suggest that miR-378a-5p exerts an inhibitory role in STB differentiation, in part, by down-regulating CCNG2 expression, in the BeWo cell model.
Collapse
Affiliation(s)
- Uzma Nadeem
- Department of Biology, York University, Toronto, Canada
| | - Gang Ye
- Department of Biology, York University, Toronto, Canada
| | - Mohamed Salem
- Department of Biology, York University, Toronto, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
46
|
Sex-Dependent Gene Expression in Human Pluripotent Stem Cells. Cell Rep 2014; 8:923-32. [DOI: 10.1016/j.celrep.2014.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 05/05/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023] Open
|
47
|
Kar S. Current evidence supporting "letrozole" for ovulation induction. J Hum Reprod Sci 2014; 6:93-8. [PMID: 24082649 PMCID: PMC3778612 DOI: 10.4103/0974-1208.117166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 07/23/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023] Open
Abstract
Aromatase inhibitor “letrozole” was first introduced as a potential ovulation induction (OI) drug almost a decade back. Large number of studies has been published using letrozole for OI: In polycystic ovary syndrome (PCOS) women, clomiphene citrate (CC) resistant women, for intrauterine insemination and also in various protocols of mild stimulation for in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). Letrozole appears to be a good option, with its oral route of administration, cost, shorter half-life and negligible side effects. However, the verdict on efficacy and safety of letrozole is still uncertain. This review explores the current scientific data supporting letrozole for OI.
Collapse
Affiliation(s)
- Sujata Kar
- Department of Obstetrics and Gynecology, Kar Clinic and Hospital Pvt. Ltd, Bhubaneswar, Odisha, India
| |
Collapse
|
48
|
Bondesson M, Hao R, Lin CY, Williams C, Gustafsson JÅ. Estrogen receptor signaling during vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:142-51. [PMID: 24954179 DOI: 10.1016/j.bbagrm.2014.06.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/03/2023]
Abstract
Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA.
| | - Ruixin Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA; DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE, USA
| | - Chin-Yo Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
49
|
Assessing the effect of food mycotoxins on aromatase by using a cell-based system. Toxicol In Vitro 2014; 28:640-6. [DOI: 10.1016/j.tiv.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 11/21/2022]
|
50
|
Kanda S, Tsuchiya N, Narita S, Inoue T, Huang M, Chiba S, Akihama S, Saito M, Numakura K, Tsuruta H, Satoh S, Saito S, Ohyama C, Arai Y, Ogawa O, Habuchi T. Effects of functional genetic polymorphisms in theCYP19A1gene on prostate cancer risk and survival. Int J Cancer 2014; 136:74-82. [DOI: 10.1002/ijc.28952] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/25/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Sohei Kanda
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
| | - Norihiko Tsuchiya
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Shintaro Narita
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Takamitsu Inoue
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Mingguo Huang
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Syuji Chiba
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
| | - Susumu Akihama
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
| | - Mitsuru Saito
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
| | - Kazuyuki Numakura
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
| | - Hiroshi Tsuruta
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
| | - Shigeru Satoh
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
| | - Seiichi Saito
- Division of Urology, Department of Organ-oriented Medicine; University of the Ryukyu; Okinawa Japan
| | - Chikara Ohyama
- Department of Urology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Yoichi Arai
- Department of Urology; Tohoku University Graduate School of Medicine; Tohoku Japan
| | - Osamu Ogawa
- Department of Urology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tomonori Habuchi
- Department of Urology; Akita University Graduate School of Medicine; Akita Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| |
Collapse
|