1
|
Chen G, Yang J, He H, Wu J, Yu H, Li S, Yang N, Huang X, Wang C, Zhang T, Li M, Li B, Fu Y, Liu G. IFIT3 inhibits transmissible gastroenteritis virus (TGEV) infection by promoting the phosphorylation of TBK1 and STAT1, which enhances the innate immune response. Virology 2025; 609:110574. [PMID: 40381424 DOI: 10.1016/j.virol.2025.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
TGEV mainly infects pig small intestinal epithelium, resulting in vomiting, diarrhea, dehydration, and death. IFIT3 is involved in resisting viral infection and is an innate immune regulator. In this study, we determined that TGEV infection could induce IFIT3 expression. The overexpression of IFIT3 inhibited TGEV infection, promoted the phosphorylation of TBK1 and STAT1, and upregulated the transcription of IFN-β and interferon-stimulated genes (ISGs). Conversely, knockdown of IFIT3 decreased the activation of the interferon immune response. Blocking the JAK-STAT1 pathway inhibited the transmission of interferon signals and reversed the restriction of IFIT3 to TGEV infection. Immunoprecipitation revealed that IFIT3 interacted with TBK1 and STAT1, indicating that TBK1 and STAT1 are key molecules through which IFIT3 regulates the interferon immune response and inhibits TGEV infection. This study preliminarily revealed that IFIT3 regulated the innate immune response to inhibit TGEV infection, enriching the theoretical understanding of the interaction between TGEV and the host.
Collapse
Affiliation(s)
- Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hui He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Junfei Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuxian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xin Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Tao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Maolin Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Baoyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
2
|
Zhou J, Zhu N, Dai Q, Sun H, Zhao J, Qiu Y, Zhou B, Wang D, Cui Y, Guo J, Feng X, Hou L, Liu J. DEAD-box RNA helicase 10 inhibits porcine circovirus type 3 replication by interacting with the viral capsid protein and activating interferon responses. J Virol 2025:e0057625. [PMID: 40340395 DOI: 10.1128/jvi.00576-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis and nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DEAD-box RNA helicase 10 (DDX10), a protein that functions primarily through regulating interferon (IFN)-β production to exert its antiviral activity. However, how the interaction between DDX10 and PCV3 Cap regulates viral replication remains unknown. We used Western blotting, interaction assays, and knockdown analyses to observe impaired PCV3 proliferation in transiently DDX10-overexpressing cells, as indicated by decreased viral protein expression levels and virus production. In contrast, PCV3 replication increased upon small interfering RNA-mediated DDX10 depletion. Furthermore, DDX10 positively regulated IFN-β production and interferon-stimulated gene expression, inhibiting PCV3 replication. Mechanistically, PCV3 Cap co-localized and interacted with DDX10, and the N-terminal nuclear localization signal of PCV3 Cap and the helicase domain of DDX10 were essential for the Cap-DDX10 interaction. Furthermore, PCV3 infection decreases DDX10 expression to antagonize its antiviral activity. These results show that DDX10 antagonizes PCV3 replication by interacting with the PCV3 Cap protein and activating IFN-β responses, which provides important insight into the prevention and control of PCV3 infection.IMPORTANCEClarifying how host factors contribute to infection with PCV3, a newly discovered pathogen associated with multiple clinicopathological signs in swine, helps elucidate viral pathogenesis. The PCV3 Cap protein has been shown to interact with DDX10, a crucial protein that regulates RNA virus replication. Herein, we further demonstrated that DDX10 expression is downregulated in PCV3-infected cells and antagonizes the replication of PCV3 and that DDX10 increases interferon-β and interferon-stimulated gene levels to inhibit PCV3 replication by binding to the PCV3 Cap. In addition, PCV3 infection decreases DDX10 expression to antagonize its antiviral activity. These results reveal a molecular mechanism by which DDX10 antagonizes PCV3 replication by binding to the PCV3 Cap protein and activating IFN signals, thereby providing important targets for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Beiyi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Deshaies JE, Triassi V, Lacombe A, Gagné M, Ling K, Ghosh A, Labrecque M, Rigo F, Jafar-Nejad P, Tétreault M, Vande Velde C. The differential impact of HNRNPA1 isoforms on gene expression and their relevance to dsRNA-mediated innate immune response. Sci Rep 2025; 15:15306. [PMID: 40312500 PMCID: PMC12046027 DOI: 10.1038/s41598-025-99031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) is a highly abundant RNA binding protein alternatively spliced in two main isoforms named, hnRNP A1 and hnRNP A1B. While being ubiquitously expressed, both isoforms have different cellular localizations and are differentially expressed in tissues during development and aging. To improve our understanding of the cellular function of each isoform, we performed RNA sequencing in cells exclusively expressing hnRNP A1 or hnRNP A1B. As expected, some genes were commonly regulated, however > 300 genes were differentially regulated by the two isoforms. Functional annotation indicated an enrichment for genes implicated in cellular defense, especially for innate immunity and dsRNA response. Here, we demonstrate that in basal conditions, hnRNP A1, but not hnRNP A1B, represses interferon stimulated genes including the family of dsRNA sensors oligoadenylate synthases (OASs). Thus, the dsRNA-mediated interferon antiviral response can be potentiated by the loss of hnRNP A1-mediated repression.
Collapse
Affiliation(s)
| | - Valérie Triassi
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Andréanne Lacombe
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Myriam Gagné
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Karen Ling
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Asmita Ghosh
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marjorie Labrecque
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Frank Rigo
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Paymaan Jafar-Nejad
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Martine Tétreault
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Christine Vande Velde
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada.
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Neurosciences, Université de Montréal CRCHUM-Tour Viger, 900, rue Saint-Denis, R09.474, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
4
|
Chen S, Deng Y, Huang C, Xie X, Long Z, Lao S, Gao X, Wang K, Wang S, Li X, Liu Y, Xu C, Chen X, Huang W, Zhang J, Peng T, Li L, Chen Y, Lv X, Cai M, Li M. BSRF1 modulates IFN-β-mediated antiviral responses by inhibiting NF-κB activity via an IKK-dependent mechanism in Epstein-Barr virus infection. Int J Biol Macromol 2025; 306:141600. [PMID: 40024405 DOI: 10.1016/j.ijbiomac.2025.141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The Epstein-Barr virus (EBV) encoded tegument protein BSRF1 plays a significant role in the processes of viral maturation and release, however, it's not clear whether BSRF1 is involved in the modulation of host innate immunity. In this study, we demonstrated that BSRF1 can inhibit interferon β (IFN-β) production by downregulating nuclear factor kappa B (NF-κB) activity and subsequently reducing the yield of inflammatory cytokines, thereby facilitating viral replication. Dual luciferase reporter assays indicated that BSRF1 may inhibit NF-κB signaling at the level of IKK or between IKK and p65, while co-immunoprecipitation experiments revealed its association with multiple critical host adaptor proteins. Mechanistically, BSRF1 hinders the phosphorylation of IκBα at Ser32/36 and K48-linked polyubiquitination, thereby preventing proteasome-mediated degradation of IκBα by disrupting the assembly of the regulatory subunits within the IKK complex. Although BSRF1 interacts with p65 and its N-terminal domain, it does not alter the formation of the p65/p50 heterodimer. Instead, it prevents the nuclear translocation of p65 by inhibiting the dissociation of IκBα from the NF-κB dimer. Collectively, these findings suggested that BSRF1 assists EBV's evasion of host innate immune system by inhibiting the antiviral response to IFN-β through the NF-κB signaling pathway, potentially contributing to the virus's ability to establish persistent infection and its association with tumorigenesis.
Collapse
Affiliation(s)
- Shengwen Chen
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yangxi Deng
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Chen Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xiaolei Xie
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Zhiwei Long
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Shuxian Lao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinghong Gao
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Shuai Wang
- Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Xiaoqing Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yintao Liu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Chunyan Xu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinru Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Wenzhuo Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Guangdong South China Vaccine, Guangzhou 510663, Guangdong, China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Yonger Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Xi Lv
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Meili Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
5
|
Amusan OT, Lopez R, Burks E, Trammel J, Raikhy G, Guo H, Bodily J. Stromal Interferon Regulatory Factor 3 Can Antagonize Human Papillomavirus Replication by Supporting Epithelial-to-Mesenchymal Transition. Viruses 2025; 17:598. [PMID: 40431610 PMCID: PMC12115382 DOI: 10.3390/v17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/29/2025] Open
Abstract
Epithelia contribute to the innate immune system through barrier formation and through signaling to immune cells. When the barrier is breached, epithelial cells undergo epithelial-to-mesenchymal transition (EMT) as part of the wound healing process. EMT is largely directed by signals from the stromal microenvironment, including transforming growth factor beta (TGFβ1), and antagonizes normal epithelial differentiation. How EMT and innate immunity may be connected molecularly has not been explored, although both processes are likely to occur simultaneously. Keratinocytes are the host cell type for human papillomaviruses (HPV), which can induce EMT in certain conditions but also depend on differentiation for their replication. We previously found that the innate immune factor interferon regulatory factor 3 (IRF3) inhibits epithelial differentiation and reduces the expression of HPV16 late genes. Here we report that IRF3 in the stroma compartment promotes an EMT-like pattern of gene expression in an HPV16-containing epithelium. The depletion of stromal IRF3 resulted in the downregulation of TGFβ1-related signaling in both the stroma and epithelium. IRF3 binds to the TGFB1 promoter in human foreskin fibroblasts and is necessary for TGFB1 mRNA production. Because an EMT-like state is unfavorable for differentiation-dependent HPV16, we observed that all EMT markers examined were reduced in the presence of episomal HPV16. Together, we show that stromal IRF3 can disrupt epithelial differentiation and act as an anti-HPV factor through the regulation of EMT, linking wound healing and immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jason Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (O.T.A.); (J.T.); (G.R.); (H.G.)
| |
Collapse
|
6
|
Wu M, Cai J, Qiao G, Li X, Zhou J, Xu F, Ye Y, Wang Y, Xu X, Li J, Tian X, Shao Y, Dong C, Chen Z, Hao C, Yang Y, Zhang J. RNF149 modulates the type I IFN innate antiviral immune responses through degrading IRF3. PLoS Pathog 2025; 21:e1013051. [PMID: 40245000 PMCID: PMC12005527 DOI: 10.1371/journal.ppat.1013051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
E3 ubiquitin ligases are key molecules in regulating the innate immune responses against virus. They catalyze the activation or degradation of various signaling proteins involved in the innate immune responses. Herein, we found the regulatory role of RNF149 in the host's innate immune responses against viral infection. Virus infection induced the expression of RNF149. Overexpression of RNF149 was associated with reduced production of IFN-β and enhanced viral replication. Mechanically, RNF149 interacted with IRF3 and downregulated its protein level. As an E3 ubiquitin ligase, RNF149 promoted the K27-linked ubiquitination of IRF3 at K409 and K33-linked ubiquitination at K366 and K409, which promoted IRF3 degradation through the proteasome pathway. Our results revealed the regulatory mechanism of RNF149 during viral infection and provided new insights into host cells responding to viral infection. Downregulating the expression of RNF149 may help enhance the antiviral ability of host cells and inhibit viral replication, thus providing a new strategy for the treatment of viral infection.
Collapse
Affiliation(s)
- Mengyun Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiamin Cai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guodong Qiao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoping Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Fei Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yunfei Ye
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yufeng Wang
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Xuena Xu
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Jiaoyang Li
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaoyu Tian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunsheng Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jinping Zhang
- The Fourth Affiliated Hospital, Institutes of Biology and Medical Science, SuZhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Zhao X, Zhang Y, Jia H, Lv L, Ahsan M, Fu X, Hu R, Shen Z, Shen N. Diversities of African swine fever virus host-virus dynamics revealed by single-cell profiling. J Virol 2025; 99:e0203524. [PMID: 39932318 PMCID: PMC11917525 DOI: 10.1128/jvi.02035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
African swine fever virus (ASFV) causes epidemics with high mortality; however, effective vaccines and therapies remain missing. Here, we depict a temporal single-cell landscape of primary porcine alveolar macrophages (PAMs) exposed to three different virulent ASFV strains in vitro. We found that attenuated and low-virulence ASFV strains tend to exhibit higher viral loads than highly virulent strain, which may result from upregulated RNA polymerase subunit genes expression. On the host side, our study highlights the IRF7-mediated positive feedback loop to the activation of the interferon signaling pathway in cells exposed to attenuated and low virulent ASFV strains. Moreover, we unraveled the PAMs populations marked by expressions of the IFI16 and CD163, respectively, which produce high levels of interferon-stimulated genes (ISGs) and IL18 to regulate the host response to different virulent ASFV strains. Collectively, our data provide insights into the complex host-virus interactions with various ASFV strain infections, which may shed light on the development of effective antiviral strategies.IMPORTANCEThere is still no available research on the temporal transcriptional profile of host cells exposed to different virulent ASFV strains at the single-cell level. Here, we first profiled the temporal viral and host transcriptomes in PAMs exposed to high virulent, attenuated virulent, and low virulent ASFV strains. Our analysis revealed that attenuated and low-virulence ASFV strains tend to exhibit higher viral loads than highly virulent strains, which may result from upregulated RNA polymerase subunit genes expression. We also found a positive feedback loop of the interferon signaling pathway mediated through IRF7 and identified the populations of PAMs marked by IFI6 and CD163, respectively, which produce high levels of ISGs and IL18 to regulate host response to different virulent ASFV strains. Our study delineated a comprehensive single-cell landscape of host-virus dynamics across ASFV strains with different virulences and would provide an important resource for future research.
Collapse
MESH Headings
- African Swine Fever Virus/pathogenicity
- African Swine Fever Virus/physiology
- African Swine Fever Virus/genetics
- Animals
- Swine
- Single-Cell Analysis
- African Swine Fever/virology
- African Swine Fever/immunology
- African Swine Fever/genetics
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/immunology
- Host-Pathogen Interactions
- Interferon Regulatory Factor-7/metabolism
- Interferon Regulatory Factor-7/genetics
- Viral Load
- CD163 Antigen
- Signal Transduction
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Interferons/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Virulence
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Department of
Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu
Laboratory, Zhejiang University School of
Medicine, Hangzhou,
China
| | - Yanyan Zhang
- Changchun Veterinary
Research Institute, Chinese Academy of Agricultural
Sciences, Changchun,
China
| | - Hanying Jia
- Liangzhu Laboratory,
Zhejiang University School of Medicine, Hangzhou,
China
| | - Lin Lv
- Department of
Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu
Laboratory, Zhejiang University School of
Medicine, Hangzhou,
China
| | - Md.Asif Ahsan
- Department of
Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu
Laboratory, Zhejiang University School of
Medicine, Hangzhou,
China
| | - Xudong Fu
- Department of
Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu
Laboratory, Zhejiang University School of
Medicine, Hangzhou,
China
| | - Rongliang Hu
- Changchun Veterinary
Research Institute, Chinese Academy of Agricultural
Sciences, Changchun,
China
| | - Zhiqiang Shen
- Shandong Lvdu
Bio-Sciences and Technology Co., Ltd.,
Binzhou, Shandong,
China
- Shandong Binzhou
Academy of Animal Science and Veterinary Medicine, Shandong Academy of
Agricultural Sciences, Binzhou,
Shandong, China
| | - Ning Shen
- Department of
Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu
Laboratory, Zhejiang University School of
Medicine, Hangzhou,
China
| |
Collapse
|
8
|
Qin Q, Chen W, King CD, Kumar SP, Vogel P, Tweedell RE, Kanneganti TD. The critical role of the ZBP1-NINJ1 axis and IRF1/IRF9 in ethanol-induced cell death, PANoptosis, and alcohol-associated liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642836. [PMID: 40161842 PMCID: PMC11952398 DOI: 10.1101/2025.03.12.642836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Innate immunity provides the critical first line of defense against infection and sterile triggers. Cell death is a key component of the innate immune response to clear pathogens, but excessive or aberrant cell death can induce inflammation, cytokine storm, and pathology, making it a central molecular mechanism in inflammatory diseases. Alcohol-associated liver disease (ALD) is one such inflammatory disease, but the specific innate immune mechanisms driving pathology in this context remain unclear. Here, by leveraging RNAseq and tissue expression in clinical samples, we identified increased expression of the innate immune sensor Z-DNA binding protein (ZBP1) in patients with ALD. We discovered that ZBP1 expression correlated with ALD progression in patients, and that ethanol induced ZBP1-dependent lytic cell death, PANoptosis, in immune (macrophages, monocytes, Kupffer cells) and non-immune cells (hepatocytes). Mechanistically, the interferon regulatory factors (IRFs) IRF9 and IRF1 upregulated ZBP1 expression, allowing ZBP1 to sense Z-NAs through its Zα2 domain and drive PANoptosis signaling, cell membrane rupture through NINJ1, and DAMP release. Furthermore, the expressions of ZBP1 and NINJ1 were upregulated in both liver and serum samples from patients with ALD. In mouse models of chronic and acute ALD, ZBP1-deficient mice were significantly protected from disease pathology and liver damage. Overall, our findings establish the critical role of the ZBP1-NINJ1 axis regulated by IRFs in driving inflammatory cell death, PANoptosis, in liver cells, suggesting that targeting these molecules will have therapeutic potential in ALD and other inflammatory conditions.
Collapse
Affiliation(s)
- Qiang Qin
- Department of Immunology, St. Jude Children's Research Hospital; Memphis, TN 38105, USA
| | - Wen Chen
- Department of Immunology, St. Jude Children's Research Hospital; Memphis, TN 38105, USA
| | - Clay D. King
- University of Kansas Medical Center, The University of Kansas; Kansas City, KS 66045, USA
| | | | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Rebecca E. Tweedell
- Department of Immunology, St. Jude Children's Research Hospital; Memphis, TN 38105, USA
| | | |
Collapse
|
9
|
Ambite I, Chao SM, Rosenblad T, Hopkins R, Storm P, Ng YH, Ganesan I, Lindén M, Haq F, Tran TH, Ahmadi S, Lee B, Chen SL, Godaly G, Brandström P, Connolly JE, Svanborg C. Molecular analysis of acute pyelonephritis-excessive innate and attenuated adaptive immunity. Life Sci Alliance 2025; 8:e202402926. [PMID: 40036168 PMCID: PMC11662066 DOI: 10.26508/lsa.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 03/06/2025] Open
Abstract
This study investigated the molecular basis of disease severity in acute pyelonephritis (APN), a common and potentially life-threatening bacterial infection. Two cohorts of infants with febrile urinary tract infection were included. Renal involvement was defined by DMSA scans and molecular disease determinants by gene expression analysis and proteomic screens, at diagnosis and after 6 mo. Innate immune hyper-activation, systemically and locally in the urinary tract, was defined as a cytokine storm. Neutrophil degranulation and renal toxicity genes were strongly regulated, with overexpression in the APN group (first DMSA+). Adaptive immune attenuation in the APN group further supported the notion of an immune imbalance. DNA exome genotyping identified APN and febrile urinary tract infection as genetically distinct and scarring associated genes, but the activation of renal toxicity genes during acute infection was unrelated to the development of renal scarring. The results define APN as a hyper-inflammatory disorder with the characteristics of a cytokine storm combined with adaptive immune attenuation. The findings are consistent with innate immune dysfunctions and neutrophil disorders identified as determinants of APN susceptibility in genetic models.
Collapse
Affiliation(s)
- Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Duke-National University of Singapore Academic Clinical Program, Pediatric Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Therese Rosenblad
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Pediatrics, Lund Children's Hospital, Lund, Sweden
| | - Richard Hopkins
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Petter Storm
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Yong Hong Ng
- Duke-National University of Singapore Academic Clinical Program, Pediatric Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Indra Ganesan
- Duke-National University of Singapore Academic Clinical Program, Pediatric Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Magnus Lindén
- Department of Pediatrics, Halland Hospital, Halmstad, Sweden
| | - Farhan Haq
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Swaine L Chen
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Infectious Diseases Translational Research Program, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Gabriela Godaly
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Per Brandström
- Pediatric Uro-Nephrology Center, Queen Silvia's Children's Hospital, Gothenburg, Sweden
- University of Gothenburg, Gothenburg, Sweden
| | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Zhao J, Dai Q, Sun H, Zhou B, Lan X, Qiu Y, Zhang Q, Wang D, Cui Y, Guo J, Hou L, Liu J, Zhou J. Ubiquitination-dependent degradation of DHX36 mediated by porcine circovirus type 3 capsid protein. Virology 2025; 604:110419. [PMID: 39862752 DOI: 10.1016/j.virol.2025.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, and reproductive failure. PCV3 Cap interacts with DExD/H-box helicase 36 (DHX36), a protein that functions primarily through regulating interferon (IFN)-β production. However, how the interaction between DHX36 and PCV3 Cap regulates viral replication remains unknown. Herein, we observed impaired PCV3 proliferation after DHX36 overexpression as indicated by decreased Rep protein expression and virus production. In contrast, PCV3 replication increased upon small interfering RNA-mediated DHX36 depletion. Furthermore, DHX36 positively regulated IFN-β production and interferon-stimulated genes (ISGs) expression. Mechanistically, PCV3 Cap interacted with DHX36, and the PCV3 Cap-NLS and DHX36-NTD were essential for the interaction. Furthermore, DHX36 may get degraded because its binding cellular partners became ubiquitinated and then reduced, and PCV3 Cap-(35-100aa) also promoted the degradation of DHX36 through the K48-linked ubiquitination. Taken together, these results show that DHX36 antagonizes PCV3 replication by interacting with PCV3 Cap and activating IFN-β response, which provides important insight on the prevention and controlling of PCV3 infection. IMPORTANCE: Porcine circovirus type 3 (PCV3) is a newly discovered pathogen associated with multiple clinicopathological signs. Clarifying the mechanisms that host factors modulate PCV3 replication helps understanding of the viral pathogenesis. The PCV3 capsid (Cap) protein has been shown to interact with DExD/H-box helicase 36 (DHX36) (Zhou et al., 2022b), a crucial protein that regulates virus replication. Herein, we further demonstrated that DHX36 protein is degraded in PCV3-infected cells and antagonizes the replication of PCV3 and that DHX36 increases interferon-β and interferon-stimulated gene levels by binding to PCV3 Cap. In addition, PCV3 infection could decrease DHX36 expression levels to antagonize its antiviral activity. These results reveal a molecular mechanism by which DHX36 antagonizes PCV3 replication by binding to PCV3 Cap protein and activating IFN signals, thereby providing important targets for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Beiyi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Qianqian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Jiang L, Dalgarno C, Papalexi E, Mascio I, Wessels HH, Yun H, Iremadze N, Lithwick-Yanai G, Lipson D, Satija R. Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens. Nat Cell Biol 2025; 27:505-517. [PMID: 40011560 PMCID: PMC12083445 DOI: 10.1038/s41556-025-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but predicting causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single-cell sequencing (Perturb-seq) to systematically identify the targets of signalling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signalling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signalling pathway activation for in vivo and in situ samples. Our work enhances our understanding of signalling regulators and their targets, and lays a computational framework towards the data-driven inference of an 'atlas' of perturbation signatures.
Collapse
Affiliation(s)
| | | | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | | | | | | | | | - Rahul Satija
- New York Genome Center, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
12
|
Ambite I, Wan MLY, Tran HT, Nazari A, Chaudhuri A, Krintel C, Gomes I, Sabari S, Ahmadi S, Carneiro ANBM, Ishac R, Haq F, Svanborg C. Multitarget mechanism of MYC inhibition by the bacterial lon protease in disease. Sci Rep 2025; 15:6778. [PMID: 40000737 PMCID: PMC11861601 DOI: 10.1038/s41598-025-88093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Identifying specific inhibitors of the MYC oncogene has been challenging, due to off target effects associated with MYC inhibition. This study investigated how the recombinant Escherichia coli Lon protease (rLon), which targets MYC in human cells, inhibits MYC over-activation in models of infection and cancer. In silico predictions identified specific peptide domains of bacterial Lon that target MYC and the affinity of these peptides for MYC was investigated by surface plasmon resonance. The N-terminal domain of rLon was shown to interact with the C-terminal, leucine zipper domain of MYC and MAX and to prevent MYC/MAX dimerization. Furthermore, rLon targeted and degraded c-MYC in vitro and in cellular models, through the peptidase domain. In a model of kidney infection, rLon treatment prevented, c-MYC, N-MYC and L-MYC over-expression, MYC-dependent gene expression, specifically renal toxicity genes and pathology, suggesting that rLon recognizes and corrects MYC dysregulation in this disease. The findings describe a multitarget mechanism of MYC inhibition by rLon, and the combined effects achieved by the Lon domains, targeting different MYC epitopes and MYC-dependent functions, with no evidence of toxicity or detrimental effects on homeostatic MYC expression.
Collapse
Affiliation(s)
- Ines Ambite
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Hien Thi Tran
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Atefeh Nazari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Arunima Chaudhuri
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Christian Krintel
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Inês Gomes
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Samudra Sabari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Shahram Ahmadi
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - António N B M Carneiro
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Rita Ishac
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Farhan Haq
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Catharina Svanborg
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden.
| |
Collapse
|
13
|
Gong Z, Hu M, Zhao G, Liang N, Zhang H, Li H, Che Q, Guo J, Song T, Wang Y, Shi N, Liu B. Therapeutic Effects of Alkaloids on Influenza: A Systematic Review and Meta-Analysis of Preclinical Studies. Int J Mol Sci 2025; 26:1823. [PMID: 40076449 PMCID: PMC11899224 DOI: 10.3390/ijms26051823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Experimental evidence suggests that alkaloids have anti-influenza and anti-inflammatory effects. However, the risk of translating existing evidence into clinical practice is relatively high. We conducted a systematic review and meta-analysis of animal studies to evaluate the therapeutic effects of alkaloids in treating influenza, providing valuable references for future studies. Seven electronic databases were searched until October 2024 for relevant studies. The Review Manager 5.2 software was utilized to perform the meta-analysis. Our study was registered within the International Prospective Register of Systematic Reviews (PROSPERO) as number CRD42024607535. Alkaloids are significantly correlated with viral titers, pulmonary inflammation scores, survival rates, lung indices, and body weight. However, alkaloid therapy is not effective in reducing the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, the therapeutic effects of alkaloids may be related to the inhibition of the Toll-like receptor 4 or 7/Nuclear factor (NF)-κB signaling pathway, NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome pathway, and the Antiviral innate immune response receptor RIG-I (RIG-I) pathway. Alkaloids are potential candidates for the prevention and treatment of influenza. However, extensive preclinical studies and clinical studies are needed to confirm the anti-influenza and anti-inflammatory properties of alkaloids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.G.); (M.H.); (G.Z.); (N.L.); (H.Z.); (H.L.); (Q.C.); (J.G.); (T.S.); (Y.W.)
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.G.); (M.H.); (G.Z.); (N.L.); (H.Z.); (H.L.); (Q.C.); (J.G.); (T.S.); (Y.W.)
| |
Collapse
|
14
|
Wang Z, Chen X, Zhu C, Fan S, Tang J, Deng H, Sun X, Liu X, Xiao W. Direct lysine dimethylation of IRF3 by the methyltransferase SMYD3 attenuates antiviral innate immunity. Proc Natl Acad Sci U S A 2025; 122:e2320644122. [PMID: 39813248 PMCID: PMC11761311 DOI: 10.1073/pnas.2320644122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Interferon regulatory factor 3 (IRF3) is the key transcription factor in the type I IFN signaling pathway, whose activation is regulated by multiple posttranslational modifications. Here, we identify SMYD3, a lysine methyltransferase, as a negative regulator of IRF3. SMYD3 interacts with IRF3 and catalyzes the dimethylation of IRF3 at lysine 39. This modification reduces IRF3 phosphorylation, dimerization, and subsequent nuclear translocation, leading to the inhibition of downstream type I interferon production. In addition, Smyd3-deficient mice are more resistant to RNA and DNA viral infections. Zebrafish lacking smyd3 or treated with the inhibitor BCI121 are also more resistant to viral infection. Our findings reveal a role for SMYD3 in the regulation of antiviral innate immunity and provide insight into a specific modulation of IRF3 that affects its activation.
Collapse
Affiliation(s)
- Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
| | - Xiaoyun Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
| | - Sijia Fan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Jinhua Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, People’s Republic of China
| |
Collapse
|
15
|
Gokhale NS, Sam RK, Somfleth K, Thompson MG, Marciniak DM, Smith JR, Genoyer E, Eggenberger J, Chu LH, Park M, Dvorkin S, Oberst A, Horner SM, Ong SE, Gale M, Savan R. Cellular RNA interacts with MAVS to promote antiviral signaling. Science 2024; 386:eadl0429. [PMID: 39700280 PMCID: PMC11905950 DOI: 10.1126/science.adl0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/12/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
Antiviral signaling downstream of RIG-I-like receptors (RLRs) proceeds through a multi-protein complex organized around the adaptor protein mitochondrial antiviral signaling protein (MAVS). Protein complex function can be modulated by RNA molecules that provide allosteric regulation or act as molecular guides or scaffolds. We hypothesized that RNA plays a role in organizing MAVS signaling platforms. We found that MAVS, through its central intrinsically disordered domain, directly interacted with the 3' untranslated regions of cellular messenger RNAs. Elimination of RNA by ribonuclease treatment disrupted the MAVS signalosome, including RNA-modulated MAVS interactors that regulate RLR signaling and viral restriction, and inhibited phosphorylation of transcription factors that induce interferons. This work uncovered a function for cellular RNA in promoting signaling through MAVS and highlights generalizable principles of RNA regulatory control of immune signaling complexes.
Collapse
Affiliation(s)
| | - Russell K. Sam
- Department of Immunology, University of Washington, Seattle, WA
| | - Kim Somfleth
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Julian R. Smith
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Lan H. Chu
- Department of Immunology, University of Washington, Seattle, WA
| | - Moonhee Park
- Department of Integrative Immunobiology, Duke University, Durham, NC
| | - Steve Dvorkin
- Department of Immunology, University of Washington, Seattle, WA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA
| | - Stacy M. Horner
- Department of Integrative Immunobiology, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham NC
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
16
|
Luca D, Kato H. Mouse models of type I interferonopathies. Hum Mol Genet 2024:ddae187. [PMID: 39680957 DOI: 10.1093/hmg/ddae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Type I interferonopathies are severe monogenic diseases caused by mutations that result in chronically upregulated production of type I interferon. They present with a broad variety of symptoms, the mechanisms of which are being extensively studied. Mouse models of type I interferonopathies are an important resource for this purpose, and in this context, we review several key molecular and phenotypic findings that are advancing our understanding of the respective diseases. We focus on genotypes related to nucleic acid metabolism, sensing by cytosolic receptors and downstream signalling.
Collapse
Affiliation(s)
- Domnica Luca
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
17
|
Dowell W, Dearborn J, Languon S, Miller Z, Kirch T, Paige S, Garvin O, Kjendal L, Harby E, Zuchowski AB, Clark E, Lescieur-Garcia C, Vix J, Schumer A, Mistri SK, Snoke DB, Doiron AL, Freeman K, Toth MJ, Poynter ME, Boyson JE, Majumdar D. Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response. ACS NANO 2024; 18:33058-33072. [PMID: 39563529 DOI: 10.1021/acsnano.4c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Developments in mRNA/lipid nanoparticle (LNP) technology have advanced the fields of vaccinology and gene therapy, raising questions about immunogenicity. While some mRNA/LNPs generate an adjuvant-like environment in muscle tissue, other mRNA/LNPs are distinct in their capacity for multiple rounds of therapeutic delivery. We evaluate the adjuvancy of components of mRNA/LNPs by phenotyping cellular infiltrate at injection sites, tracking uptake by immune cells, and assessing the inflammatory state. Delivery of 9 common, but chemically distinct, LNPs to muscle revealed two classes of inflammatory gene expression programs: inflammatory (Class A) and noninflammatory (Class B). We find that intramuscular injection with Class A, but not Class B, empty LNPs (eLNPs) induce robust neutrophil infiltration into muscle within 2 h and a diverse myeloid population within 24 h. Single-cell RNA sequencing revealed SM-102-mediated expression of inflammatory chemokines by myeloid infiltrates within muscle 1 day after injection. Surprisingly, we found direct transfection of muscle infiltrating myeloid cells and splenocytes 24 h after intramuscular mRNA/LNP administration. Transfected myeloid cells within the muscle exhibit an activated phenotype 24 h after injection. Similarly, directly transfected splenic lymphocytes and dendritic cells (DCs) are differentially activated by Class A or Class B containing mRNA/LNP. Within the splenic DC compartment, type II conventional DCs (cDC2s) are directly transfected and activated by Class A mRNA/LNP. Together, we show that mRNA and LNPs work synergistically to provide the necessary innate immune stimuli required for effective vaccination. Importantly, this work provides a design framework for vaccines and therapeutics alike.
Collapse
Affiliation(s)
- William Dowell
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Jacob Dearborn
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Sylvester Languon
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Zachary Miller
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Tylar Kirch
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Stephen Paige
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Olivia Garvin
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Lily Kjendal
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Ethan Harby
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Adam B Zuchowski
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Emily Clark
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Carlos Lescieur-Garcia
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jesse Vix
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amy Schumer
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Somen K Mistri
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Deena B Snoke
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Kalev Freeman
- Department of Emergency Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Michael J Toth
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathan E Boyson
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Devdoot Majumdar
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
18
|
Zhao G, Zhang HM, Nasseri AR, Yip F, Telkar N, Chen YT, Aghakeshmiri S, Küper C, Lam W, Yang W, Zhao J, Luo H, McManus BM, Yang D. Heart-specific NFAT5 knockout suppresses type I interferon signaling and aggravates coxsackievirus-induced myocarditis. Basic Res Cardiol 2024; 119:1075-1092. [PMID: 38834767 DOI: 10.1007/s00395-024-01058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Nuclear factor of activated T cells 5 (NFAT5) is an osmosensitive transcription factor that is well-studied in renal but rarely explored in cardiac diseases. Although the association of Coxsackievirus B3 (CVB3) with viral myocarditis is well-established, the role of NFAT5 in this disease remains largely unexplored. Previous research has demonstrated that NFAT5 restricts CVB3 replication yet is susceptible to cleavage by CVB3 proteases. Using an inducible cardiac-specific Nfat5-knockout mouse model, we uncovered that NFAT5-deficiency exacerbates cardiac pathology, worsens cardiac function, elevates viral load, and reduces survival rates. RNA-seq analysis of CVB3-infected mouse hearts revealed the significant impact of NFAT5-deficiency on gene pathways associated with cytokine signaling and inflammation. Subsequent in vitro and in vivo investigation validated the disruption of the cytokine signaling pathway in response to CVB3 infection, evidenced by reduced expression of key cytokines such as interferon β1 (IFNβ1), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6 (IL6), among others. Furthermore, NFAT5-deficiency hindered the formation of stress granules, leading to a reduction of important stress granule components, including plakophilin-2, a pivotal protein within the intercalated disc, thereby impacting cardiomyocyte structure and function. These findings unveil a novel mechanism by which NFAT5 inhibits CVB3 replication and pathogenesis through the promotion of antiviral type I interferon signaling and the formation of cytoplasmic stress granules, collectively identifying NFAT5 as a new cardio protective protein.
Collapse
Affiliation(s)
- Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada
| | - Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada
| | - Ali Reza Nasseri
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada
| | - Fione Yip
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Yankuan T Chen
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada
| | - Sana Aghakeshmiri
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada
| | - Christoph Küper
- MSH Medical School Hamburg, IMM Institute for Molecular Medicine, Medical University, Hamburg, Germany
| | - Wan Lam
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Zhao
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada.
| | - Bruce M McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada.
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, B.C, V6Z 1Y6, Canada.
| |
Collapse
|
19
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
20
|
Liu H, Sheng Q, Dan J, Xie X. Crosstalk and Prospects of TBK1 in Inflammation. Immunol Invest 2024; 53:1205-1233. [PMID: 39194013 DOI: 10.1080/08820139.2024.2392587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND TANK-binding kinase 1 (TBK1) is a pivotal mediator of innate immunity, activated by receptors such as mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes (STING), and TIR-domain-containing adaptor inducing interferon-β (TRIF). It modulates immune responses by exerting influence on the type I interferons (IFN-Is) signaling and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, Over the past few years, TBK1 multifaceted role in both immune and inflammatory responses is increasingly recognized. METHODS AND RESULTS This review aims to scrutinize how TBK1 operates within the NF-κB pathway and the interferon regulatory transcription factor 3 (IRF3)-dependent IFN-I pathways, highlighting the kinases and other molecules involved in these processes. This analysis reveals the distinctive characteristics of TBK1's involvement in these pathways. Furthermore, it has been observed that the role of TBK1 in exerting anti-inflammatory or pro-inflammatory effects is contingent upon varying pathological conditions, indicating a multifaceted role in immune regulation. DISCUSSION TBK1's evolving role in various diseases and the potential of TBK1 inhibitors as therapeutic agents are explored. Targeting TBK1 may provide new strategies for treating inflammatory disorders and autoimmune diseases associated with IFN-Is, warranting further investigation.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Qihuan Sheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
21
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
22
|
Tezcan G, Yakar N, Hasturk H, Van Dyke TE, Kantarci A. Resolution of chronic inflammation and cancer. Periodontol 2000 2024; 96:229-249. [PMID: 39177291 DOI: 10.1111/prd.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Chronic inflammation poses challenges to effective cancer treatment. Although anti-inflammatory therapies have shown short-term benefits, their long-term implications may be unfavorable because they fail to initiate the necessary inflammatory responses. Recent research underscores the promise of specialized pro-resolving mediators, which play a role in modulating the cancer microenvironment by promoting the resolution of initiated inflammatory processes and restoring tissue hemostasis. This review addresses current insights into how inflammation contributes to cancer pathogenesis and explores recent strategies to resolve inflammation associated with cancer.
Collapse
Affiliation(s)
- Gulcin Tezcan
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Nil Yakar
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas E Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Wang M, Li XW, Yuan SC, Pan J, Guo ZL, Sun LM, Jiang SZ, Zhao M, Xue W, Cai H, Gu L, Luo D, Chen L, Zhou XQ, Han QY, Li J, Zhou T, Xia T, Li T. Indomethacin restrains cytoplasmic nucleic acid-stimulated immune responses by inhibiting the nuclear translocation of IRF3. J Mol Cell Biol 2024; 16:mjae015. [PMID: 38578631 PMCID: PMC11472148 DOI: 10.1093/jmcb/mjae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
The recognition of cytosolic nucleic acid triggers the DNA/RNA sensor-IRF3 axis-mediated production of type I interferons (IFNs), which are essential for antiviral immune responses. However, the inappropriate activation of these signaling pathways is implicated in autoimmune conditions. Here, we report that indomethacin, a widely used nonsteroidal anti-inflammatory drug, inhibits nucleic acid-triggered IFN production. We found that both DNA- and RNA-stimulated IFN expression can be effectively blocked by indomethacin. Interestingly, indomethacin also prohibits the nuclear translocation of IRF3 following cytosolic nucleic acid recognition. Importantly, in cell lines and a mouse model of Aicardi-Goutières syndrome, indomethacin administration blunts self-DNA-induced autoimmune responses. Thus, our study reveals a previously unknown function of indomethacin and provides a potential treatment for cytosolic nucleic acid-stimulated autoimmunity.
Collapse
Affiliation(s)
- Miao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Xiao-Wei Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Sen-Chao Yuan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Zeng-Lin Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Li-Ming Sun
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Shao-Zhen Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Lin Gu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Dan Luo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ling Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue-Qing Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Jin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Ouyang P, Li Q, Liu S, Li Y, Li S, Zhou Y, Jia P, Chen D, Huang X, Geng Y. Histopathology and transcriptome profiling reveal features of immune responses in gills and intestine induced by Spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109726. [PMID: 38944254 DOI: 10.1016/j.fsi.2024.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The immune system of bony fish closely resembles that of mammals, comprising both specific (adaptive) and non-specific (innate) components. Notably, the mucosa-associated lymphoid tissue (MALT) serves as the first line of defense within the non-specific immune system, playing a critical role in protecting these aquatic organisms against invading pathogens. MALT encompasses a network of immune cells strategically distributed throughout the gills and intestines, forming an integral part of the mucosal barrier that interfaces directly with the surrounding aquatic environment. Spring Viremia of Carp Virus(SVCV), a highly pathogenic agent causing substantial harm to common carp populations, has been designated as a Class 2 animal disease by the Ministry of Agriculture and Rural Affairs of China. Utilizing a comprehensive array of research techniques, including Hematoxylin and Eosin (HE)、Alcian Blue Periodic Acid-Schiff (AB-PAS)、transcriptome analysis for global gene expression profiling and Reverse Transcription-Polymerase Chain Reaction (RT-qPCR), this study uncovered several key findings: SVCV is capable of compromising the mucosal architecture in the gill and intestinal tissues of carp, and stimulate the proliferation of mucous cells both in gill and intestinal tissues. Critically, the study revealed that SVCV's invasion elicits a robust response from the carp's mucosal immune system, demonstrating the organism's capacity to resist SVCV invasion despite the challenges posed by the pathogen.
Collapse
Affiliation(s)
- Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Qiunan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shuya Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yankai Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shuhan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yongheng Zhou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Peng Jia
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
25
|
Sellaththurai SR, Jung S, Nadarajapillai K, Kim MJ, Lee J. Functional characterization of irf3 against viral hemorrhagic septicemia virus infection using a CRISPR/Cas9-mediated zebrafish knockout model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105208. [PMID: 38834141 DOI: 10.1016/j.dci.2024.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/11/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Interferon regulatory factors (IRFs) are transcription factors involved in immune responses, such as pathogen response regulation, immune cell growth, and differentiation. IRFs are necessary for the synthesis of type I interferons through a signaling cascade when pathogen recognition receptors identify viral DNA or RNA. We discovered that irf3 is expressed in the early embryonic stages and in all immune organs of adult zebrafish. We demonstrated the antiviral immune mechanism of Irf3 against viral hemorrhagic septicemia virus (VHSV) using CRISPR/Cas9-mediated knockout zebrafish (irf3-KO). In this study, we used a truncated Irf3 protein, encoded by irf3 with a 10 bp deletion, for further investigation. Upon VHSV injection, irf3-KO zebrafish showed dose-dependent high and early mortality compared with zebrafish with the wild-type Irf3 protein (WT), confirming the antiviral activity of Irf3. Based on the results of expression analysis of downstream genes upon VHSV challenge, we inferred that Irf3 deficiency substantially affects the expression of ifnphi1 and ifnphi2. However, after 5 days post infection (dpi), ifnphi3 expression was not significantly altered in irf3-KO compared to that in WT, and irf7 transcription showed a considerable increase in irf3-KO after 5 dpi, indicating irf7's control over ifnphi3 expression. The significantly reduced expression of isg15, viperin, mxa, and mxb at 3 dpi also supported the effect of Irf3 deficiency on the antiviral activity in the early stage of infection. The higher mortality in irf3-KO zebrafish than in WT might be due to an increased inflammation and tissue damage that occurs in irf3-KO because of delayed immune response. Our results suggest that Irf3 plays a role in antiviral immunity of zebrafish by modulating critical immune signaling molecules and regulating antiviral immune genes.
Collapse
Affiliation(s)
- Sarithaa Raguvaran Sellaththurai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
26
|
Zhou CJ, Zhang C, Lu LF, Li S. Fish ubiquitin-specific protease 8 (USP8) inhibits IFN production through autophagy-lysosomal dependent degradation of IRF7. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105181. [PMID: 38636698 DOI: 10.1016/j.dci.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.
Collapse
Affiliation(s)
- Chu-Jing Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shun Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Purbey PK, Seo J, Paul MK, Iwamoto KS, Daly AE, Feng AC, Champhekar AS, Langerman J, Campbell KM, Schaue D, McBride WH, Dubinett SM, Ribas A, Smale ST, Scumpia PO. Opposing tumor-cell-intrinsic and -extrinsic roles of the IRF1 transcription factor in antitumor immunity. Cell Rep 2024; 43:114289. [PMID: 38833371 PMCID: PMC11315447 DOI: 10.1016/j.celrep.2024.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.
Collapse
Affiliation(s)
- Prabhat K Purbey
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Joowon Seo
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Manash K Paul
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Keisuke S Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ameya S Champhekar
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Steven M Dubinett
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
28
|
Zhang Y, Cen J, Wu H, Gao W, Jia Z, Adamek M, Zou J. Autophagy mediated degradation of MITA/TBK1/IRF3 by a hnRNP family member attenuates interferon production in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109563. [PMID: 38642725 DOI: 10.1016/j.fsi.2024.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.
Collapse
Affiliation(s)
- Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Cen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Haixia Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wa Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, CAFS, Harbin, Heilongjiang Province, 150070, China
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
| |
Collapse
|
29
|
Heyward FD, Liu N, Jacobs C, Machado NLS, Ivison R, Uner A, Srinivasan H, Patel SJ, Gulko A, Sermersheim T, Tsai L, Rosen ED. AgRP neuron cis-regulatory analysis across hunger states reveals that IRF3 mediates leptin's acute effects. Nat Commun 2024; 15:4646. [PMID: 38821928 PMCID: PMC11143326 DOI: 10.1038/s41467-024-48885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.
Collapse
Affiliation(s)
- Frankie D Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Natalia L S Machado
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachael Ivison
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Suraj J Patel
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology & Hepatology, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition and Department of Internal Medicine, UT Southwestern Medical, Center, Dallas, TX, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
31
|
Nguyen W, Gyawali N, Stewart R, Tang B, Cox AL, Yan K, Larcher T, Bishop CR, Wood N, Devine GJ, Suhrbier A, Rawle DJ. Characterisation of a Japanese Encephalitis virus genotype 4 isolate from the 2022 Australian outbreak. NPJ VIRUSES 2024; 2:15. [PMID: 40295675 PMCID: PMC11721158 DOI: 10.1038/s44298-024-00025-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/30/2025]
Abstract
Human infections with the Japanese encephalitis virus (JEV) are a leading cause of viral encephalitis. An unprecedented outbreak of JEV genotype 4 was recently reported in Australia, with an isolate (JEVNSW/22) obtained from a stillborn piglet brain. Herein we conduct a thorough characterization of JEVNSW/22 in three different mouse strains and in human cortical brain organoids (hBOs), and determined the ability of JEVNSW/22 to be neutralized by sera from humans vaccinated with IMOJEV. JEVNSW/22 was less virulent than JEVFU (genotype 2) and JEVNakayama (genotype 3) in C57BL/6J mice and in interferon regulatory factor 7 deficient (Irf7-/-) mice, with infection of wild-type and knockout murine embryonic fibroblasts indicating JEVNSW/22 is more sensitive to type I interferon responses. Irf7-/- mice provide a new model for JEVNSW/22, showing higher viremia levels compared to C57BL/6J mice, and allowing for lethal neuroinvasive infection. All JEV strains were universally lethal in Ifnar-/- mice by day 3, with histological signs of brain hemorrhage, but no other lesions. There were no indications of brain infection in Ifnar-/- mice, with viral protein detected in blood vessels, but not neurons. All JEV isolates showed robust cytopathic infection of human cortical brain organoids, albeit lower for JEVNSW/22. IMOJEV vaccination in humans induced antibodies capable of neutralizing JEVNSW/22, although, for all JEV strains, cross-neutralization titers declined with increasing divergence from IMOJEV in the envelope amino acid sequences. Overall, our study establishes JEVNSW/22 mouse and hBO models of infection, allowing for possible lethal neuroinvasive infection in mice that was rarer than for other JEV genotypes. JEV vaccination regimens may afford protection against this newly emerged JEV genotype 4 strain, although neutralizing antibody responses are sub-optimal.
Collapse
Affiliation(s)
- Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Narayan Gyawali
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Romal Stewart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | | | - Cameron R Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
32
|
Han C, Gui C, Dong S, Lan K. The Interplay between KSHV Infection and DNA-Sensing Pathways. Viruses 2024; 16:749. [PMID: 38793630 PMCID: PMC11125855 DOI: 10.3390/v16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Chenwu Gui
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Shuhong Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Cruz-Rivera PCDL, Eitson JL, Schoggins JW. IRF7 from the black flying fox induces a STAT1-independent ISG response in unstimulated cell lines that protects against diverse RNA viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592239. [PMID: 38746207 PMCID: PMC11092574 DOI: 10.1101/2024.05.02.592239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bats are considered unique in their ability to harbor large numbers of viruses and serve as reservoirs for zoonotic viruses that have the potential to spill over into humans. However, these animals appear relatively resistant to the pathogenic effects of many viruses. Mounting evidence suggests that bats may tolerate viral infections due to unique immune features. These include evolutionary innovations in inflammatory pathways and in the molecules involved in viral sensing, interferon induction, and downstream interferon-induced antiviral effectors. We sought to determine whether interferon-stimulated genes (ISGs) from the black flying fox ( Pteropus alecto ) encoded proteins with unique antiviral activity relative to their human orthologs. Accordingly, we compared the antiviral activity of over 50 ISG human-bat ortholog pairs to identify differences in individual effector functions. We identified IRF7 from Pteropus alecto (Pa.IRF7) as a potent and broad-acting antiviral molecule that provides robust antiviral protection without prior activation. We show that Pa.IRF7 uniquely induces a subset of protective ISGs independent of canonical IFN signaling, which leads to protection from alphaviruses, a flavivirus, a rhabdovirus, and a paramyxovirus. In uninfected cells, Pa.IRF7 partially localizes to the nucleus and can directly bind interferon-sensitive regulatory elements (ISREs). Compared to human IRF7, Pa.IRF7 also has additional serines in its C terminal domain that contribute to antiviral activity and may serve as unique phosphorylation hubs for activation. These properties constitute major differences between bat and human IRF7 that offer additional insight into the potential uniqueness of the black flying fox immune system.
Collapse
|
34
|
Wang L, Yang F, Ye J, Zhang L, Jiang X. Insight into the role of IRF7 in skin and connective tissue diseases. Exp Dermatol 2024; 33:e15083. [PMID: 38794808 DOI: 10.1111/exd.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024]
Abstract
Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
36
|
Feng AC, Thomas BJ, Purbey PK, de Melo FM, Liu X, Daly AE, Sun F, Lo JHH, Cheng L, Carey MF, Scumpia PO, Smale ST. The transcription factor NF-κB orchestrates nucleosome remodeling during the primary response to Toll-like receptor 4 signaling. Immunity 2024; 57:462-477.e9. [PMID: 38430908 PMCID: PMC10984581 DOI: 10.1016/j.immuni.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/26/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Inducible nucleosome remodeling at hundreds of latent enhancers and several promoters shapes the transcriptional response to Toll-like receptor 4 (TLR4) signaling in macrophages. We aimed to define the identities of the transcription factors that promote TLR-induced remodeling. An analysis strategy based on ATAC-seq and single-cell ATAC-seq that enriched for genomic regions most likely to undergo remodeling revealed that the transcription factor nuclear factor κB (NF-κB) bound to all high-confidence peaks marking remodeling during the primary response to the TLR4 ligand, lipid A. Deletion of NF-κB subunits RelA and c-Rel resulted in the loss of remodeling at high-confidence ATAC-seq peaks, and CRISPR-Cas9 mutagenesis of NF-κB-binding motifs impaired remodeling. Remodeling selectivity at defined regions was conferred by collaboration with other inducible factors, including IRF3- and MAP-kinase-induced factors. Thus, NF-κB is unique among TLR4-activated transcription factors in its broad contribution to inducible nucleosome remodeling, alongside its ability to activate poised enhancers and promoters assembled into open chromatin.
Collapse
Affiliation(s)
- An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon J Thomas
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA 98195, USA
| | - Prabhat K Purbey
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Filipe Menegatti de Melo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fei Sun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jerry Hung-Hao Lo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lijing Cheng
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael F Carey
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Dodantenna N, Cha JW, Chathuranga K, Chathuranga WAG, Weerawardhana A, Ranathunga L, Kim Y, Jheong W, Lee JS. The African Swine Fever Virus Virulence Determinant DP96R Suppresses Type I IFN Production Targeting IRF3. Int J Mol Sci 2024; 25:2099. [PMID: 38396775 PMCID: PMC10889005 DOI: 10.3390/ijms25042099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
DP96R of African swine fever virus (ASFV), also known as uridine kinase (UK), encodes a virulence-associated protein. Previous studies have examined DP96R along with other genes in an effort to create live attenuated vaccines. While experiments in pigs have explored the impact of DP96R on the pathogenicity of ASFV, the precise molecular mechanism underlying this phenomenon remains unknown. Here, we describe a novel molecular mechanism by which DP96R suppresses interferon regulator factor-3 (IRF3)-mediated antiviral immune responses. DP96R interacts with a crucial karyopherin (KPNA) binding site within IRF3, disrupting the KPNA-IRF3 interaction and consequently impeding the translocation of IRF3 to the nucleus. Under this mechanistic basis, the ectopic expression of DP96R enhances the replication of DNA and RNA viruses by inhibiting the production of IFNs, whereas DP96R knock-down resulted in higher IFNs and IFN-stimulated gene (ISG) transcription during ASFV infection. Collectively, these findings underscore the pivotal role of DP96R in inhibiting IFN responses and increase our understanding of the relationship between DP96R and the virulence of ASFV.
Collapse
Affiliation(s)
- Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - W. A. Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Lakmal Ranathunga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju 62407, Republic of Korea; (Y.K.); (W.J.)
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju 62407, Republic of Korea; (Y.K.); (W.J.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| |
Collapse
|
38
|
Guabiraba R, Rodrigues DR, Manna PT, Chollot M, Saint-Martin V, Trapp S, Oliveira M, Bryant CE, Ferguson BJ. Mechanisms of type I interferon production by chicken TLR21. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105093. [PMID: 37951324 DOI: 10.1016/j.dci.2023.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The innate immune response relies on the ability of host cells to rapidly detect and respond to microbial nucleic acids. Toll-like receptors (TLRs), a class of pattern recognition receptors (PRRs), play a fundamental role in distinguishing self from non-self at the molecular level. In this study, we focused on TLR21, an avian TLR that recognizes DNA motifs commonly found in bacterial genomic DNA, specifically unmethylated CpG motifs. TLR21 is believed to act as a functional homologue to mammalian TLR9. By analysing TLR21 signalling in chickens, we sought to elucidate avian TLR21 activation outputs in parallel to that of other nucleic acid species. Our analyses revealed that chicken TLR21 (chTLR21) triggers the activation of NF-κB and induces a potent type-I interferon response in chicken macrophages, similar to the signalling cascades observed in mammalian TLR9 activation. Notably, the transcription of interferon beta (IFNB) by chTLR21 was found to be dependent on both NF-κB and IRF7 signalling, but independent of the TBK1 kinase, a distinctive feature of mammalian TLR9 signalling. These findings highlight the conservation of critical signalling components and downstream responses between avian TLR21 and mammalian TLR9, despite their divergent evolutionary origins. These insights into the evolutionarily conserved mechanisms of nucleic acid sensing contribute to the broader understanding of host-pathogen interactions across species.
Collapse
Affiliation(s)
| | | | - Paul T Manna
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Sascha Trapp
- ISP, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Marisa Oliveira
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
39
|
Wang Q, Li B, Sun XN, Gan Z. Evolutionary and functional conservation of IRF7 in the Tibetan frog Nanorana parkeri. Mol Biol Rep 2024; 51:114. [PMID: 38227268 DOI: 10.1007/s11033-023-09067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The production of interferons (IFNs) is essential for the control of viral infections, and interferon regulatory factor 7 (IRF7) is considered as a vital regulator for the transcription of type I IFNs. Amphibians appear to possess a highly expanded type I IFN repertoire, consisting of intron-containing genes as observed in fish, and intronless genes as in other higher vertebrates. However, the knowledge on transcriptional regulatory mechanism of these two types of type I IFN genes is rather scarce in amphibians. METHODS AND RESULTS A IRF7 gene named as Np-IRF7 was identified in Tibetan frog (Nanorana parkeri), and bioinformatic analysis revealed that the predicted protein of Np-IRF7 contains several important structural features known in IRF7. Expression analysis showed that Np-IRF7 gene was widely expressed and rapidly induced by poly(I:C) in different organs/tissues. Interestingly, luciferase reporter assay revealed that intronless IFN promoters were more effectively activated than intron-containing IFN promoter in Np-IRF7-transfected cells. Moreover, the overexpression of Np-IRF7 could induce the expression of ISGs and suppress the replication of FV3 in A6 cells. CONCLUSION Np-IRF7 is indeed the ortholog of known IRF7, and IRF7 is structurally conserved in different lineages of vertebrates. Np-IRF7 played distinct roles in the activation of intron-containing and intronless type I IFN promoters, thus inducing the expression of interferon-stimulated antiviral effectors and providing a protection against ranavirus infection. The present research thus contributes to a better understanding of regulatory function of IRF7 in the IFN-mediated antiviral response of anuran amphibians.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Bo Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Na Sun
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic, Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
40
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
41
|
Ambite I, Tran TH, Butler DSC, Cavalera M, Wan MLY, Ahmadi S, Svanborg C. Therapeutic Effects of IL-1RA against Acute Bacterial Infections, including Antibiotic-Resistant Strains. Pathogens 2023; 13:42. [PMID: 38251349 PMCID: PMC10820880 DOI: 10.3390/pathogens13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Innate immunity is essential for the anti-microbial defense, but excessive immune activation may cause severe disease. In this study, immunotherapy was shown to prevent excessive innate immune activation and restore the anti-bacterial defense. E. coli-infected Asc-/- mice develop severe acute cystitis, defined by IL-1 hyper-activation, high bacterial counts, and extensive tissue pathology. Here, the interleukin-1 receptor antagonist (IL-1RA), which inhibits IL-1 hyper-activation in acute cystitis, was identified as a more potent inhibitor of inflammation and NK1R- and substance P-dependent pain than cefotaxime. Furthermore, IL-1RA treatment inhibited the excessive innate immune activation in the kidneys of infected Irf3-/- mice and restored tissue integrity. Unexpectedly, IL-1RA also accelerated bacterial clearance from infected bladders and kidneys, including antibiotic-resistant E. coli, where cefotaxime treatment was inefficient. The results suggest that by targeting the IL-1 response, control of the innate immune response to infection may be regained, with highly favorable treatment outcomes, including infections caused by antibiotic-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (I.A.); (T.H.T.); (D.S.C.B.); (M.C.); (M.L.Y.W.); (S.A.)
| |
Collapse
|
42
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
43
|
Dobrikov MI, Dobrikova EY, Nardone-White DT, McKay ZP, Brown MC, Gromeier M. Early enterovirus translation deficits extend viral RNA replication and elicit sustained MDA5-directed innate signaling. mBio 2023; 14:e0191523. [PMID: 37962360 PMCID: PMC10746184 DOI: 10.1128/mbio.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Multiple pattern recognition receptors sense vRNAs and initiate downstream innate signaling: endosomal Toll-like receptors (TLRs) 3, 7, and 8 and cytoplasmic RIG-I-like receptors (RLRs) RIG-I, and MDA5. They engage distinct signaling scaffolds: mitochondrial antiviral signaling protein (RLR), MyD88, and TLR-adaptor interacting with SLC15A4 on the lysosome (TLR7 and TLR8) and toll/IL-1R domain-containing adaptor inducing IFN (TLR3). By virtue of their unusual vRNA structure and direct host cell entry path, the innate response to EVs uniquely is orchestrated by MDA5. We reported that PVSRIPO's profound attenuation and loss of cytopathogenicity triggers MDA5-directed polar TBK1-IRF3 signaling that generates priming of polyfunctional antitumor CD8+ T-cell responses and durable antitumor surveillance in vivo. Here we unraveled EV-host relations that control suppression of host type-I IFN responses and show that PVSRIPO's deficient immediate host eIF4G cleavage generates unopposed MDA5-directed downstream signaling cascades resulting in sustained type-I IFN release.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Dasean T. Nardone-White
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
44
|
Jiang R, Zhu W, Liao Z, Yang C, Su J. TLR7 neo-functionalizes to sense dsRNA and trigger antiviral and antibacterial immunity in non-tetrapod vertebrates. iScience 2023; 26:108315. [PMID: 38025781 PMCID: PMC10679900 DOI: 10.1016/j.isci.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
TLR7 plays a crucial role in sensing viral ssRNA and initiating immune responses. Piscine TLR7 also responds to dsRNA challenge. dsRNA exists in almost all the viruses at specific stages. However, the mechanism on sensing dsRNA by TLR7 remains unknown. In the present study, we employed Ctenopharyngodon idella TLR7 (CiTLR7) to systematically explore the immune functions and mechanisms in teleost. CiTLR7 can directly bind not only ssRNA but also dsRNA at different patches in lysosome, recruit MyD88 as adaptor, and activate the downstream IFN pathway via SLC15A4/TASLa/TASLb/IRF5/IRF7 complex for antiviral and antibacterial infections and AP-1 pathway for pro-inflammatory cytokines. The key binding sites for dsRNA are L29 and L811 in CiTLR7. Further, we found that the function on recognizing dsRNA by TLR7 emerges in pisciformes and loses in tetrapods in evolution. This is the first report on sensing both ssRNA and dsRNA by a TLR member.
Collapse
Affiliation(s)
- Rui Jiang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wentao Zhu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiwei Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
45
|
Zhu Y, Rosenfeld MG, Suh Y. Ultrafine mapping of chromosome conformation at hundred basepair resolution reveals regulatory genome architecture. Proc Natl Acad Sci U S A 2023; 120:e2313285120. [PMID: 37922325 PMCID: PMC10636305 DOI: 10.1073/pnas.2313285120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/05/2023] Open
Abstract
The resolution limit of chromatin conformation capture methodologies (3Cs) has restrained their application in detection of fine-level chromatin structure mediated by cis-regulatory elements (CREs). Here, we report two 3C-derived methods, Tri-4C and Tri-HiC, which utilize multirestriction enzyme digestions for ultrafine mapping of targeted and genome-wide chromatin interaction, respectively, at up to one hundred basepair resolution. Tri-4C identified CRE loop interaction networks and quantitatively revealed their alterations underlying dynamic gene control. Tri-HiC uncovered global fine-gauge regulatory interaction networks, identifying >20-fold more enhancer:promoter (E:P) loops than in situ Hi-C. In addition to vastly improved identification of subkilobase-sized E:P loops, Tri-HiC also uncovered interaction stripes and contact domain insulation from promoters and enhancers, revealing their loop extrusion behaviors resembling the topologically associating domain boundaries. Tri-4C and Tri-HiC provide robust approaches to achieve the high-resolution interactome maps required for characterizing fine-gauge regulatory chromatin interactions in analysis of development, homeostasis, and disease.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Obstetrics and Gynecology, Columbia University, New York, NY10032
| | - Michael G. Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA92093
- Department of Genetics and Development, Columbia University, New York, NY10032
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY10032
- Department of Genetics and Development, Columbia University, New York, NY10032
| |
Collapse
|
46
|
Zhou Z, Zhang M, Zhao C, Gao X, Wen Z, Wu J, Chen C, Fleming I, Hu J, Wang DW. Epoxyeicosatrienoic Acids Prevent Cardiac Dysfunction in Viral Myocarditis via Interferon Type I Signaling. Circ Res 2023; 133:772-788. [PMID: 37681352 DOI: 10.1161/circresaha.123.322619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Myocarditis is a challenging inflammatory disease of the heart, and better understanding of its pathogenesis is needed to develop specific drug therapies. Epoxyeicosatrienoic acids (EETs), active molecules synthesized by CYP (cytochrome P450) enzymes from arachidonic acids and hydrolyzed to less active dihydroxyeicosatrienoic acids by sEH (soluble epoxide hydrolase), have been attributed anti-inflammatory activity. Here, we investigated whether EETs have immunomodulatory activity and exert protective effects on coxsackie B3 virus-induced myocarditis. Viral infection altered eicosanoid epoxide and diol levels in both patients with myocarditis and in the murine heart and correlated with the increased expression and activity of sEH after coxsackie B3 virus infection. Administration of a sEH inhibitor prevented coxsackie B3 virus-induced cardiac dysfunction and inflammatory infiltration. Importantly, EET/sEH inhibitor treatment attenuated viral infection or improved viral resistance by activating type I IFN (interferon) signaling. At the molecular level, EETs enhanced the interaction between GSK3β (glycogen synthase kinase-3 beta) and TBK1 (TANK-binding kinase 1) to promote IFN-β production. Our findings revealed that EETs and sEH inhibitors prevent the progress of coxsackie B3 virus-induced myocarditis, particularly by promoting viral resistance by increasing IFN production.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Chengcheng Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Xu Gao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Ingrid Fleming
- Sino-German Laboratory of CardioPulmonary Science (I.F., J.H., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany (I.F., J.H.)
- German Center of Cardiovascular Research, Partner Site RheinMain, Frankfurt am Main, Germany (I.F., J.H.)
| | - Jiong Hu
- Department of Histology and Embryology, School of Basic Medicine (J.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (I.F., J.H., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany (I.F., J.H.)
- German Center of Cardiovascular Research, Partner Site RheinMain, Frankfurt am Main, Germany (I.F., J.H.)
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (I.F., J.H., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| |
Collapse
|
47
|
Wang Y, De Labastida Rivera F, Edwards CL, Frame TC, Engel JA, Bukali L, Na J, Ng SS, Corvino D, Montes de Oca M, Bunn PT, Soon MS, Andrew D, Loughland JR, Zhang J, Amante FH, Barber BE, McCarthy JS, Lopez JA, Boyle MJ, Engwerda CR. STING activation promotes autologous type I interferon-dependent development of type 1 regulatory T cells during malaria. J Clin Invest 2023; 133:e169417. [PMID: 37781920 PMCID: PMC10541195 DOI: 10.1172/jci169417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.
Collapse
Affiliation(s)
- Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | | | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Luzia Bukali
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Marcela Montes de Oca
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Jia Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - James S. McCarthy
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | - Michelle J. Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Life Sciences Division, Burnet Institute, Melbourne, Australia
| | | |
Collapse
|
48
|
Gokhale NS, Somfleth K, Thompson MG, Sam RK, Marciniak DM, Chu LH, Park M, Dvorkin S, Oberst A, Horner SM, Ong SE, Gale M, Savan R. CELLULAR RNA INTERACTS WITH MAVS TO PROMOTE ANTIVIRAL SIGNALING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559083. [PMID: 37808873 PMCID: PMC10557580 DOI: 10.1101/2023.09.25.559083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Immune signaling needs to be well-regulated to promote clearance of pathogens, while preventing aberrant inflammation. Interferons (IFNs) and antiviral genes are activated by the detection of viral RNA by RIG-I-like receptors (RLRs). Signal transduction downstream of RLRs proceeds through a multi-protein complex organized around the central adaptor protein MAVS. Recent work has shown that protein complex function can be modulated by RNA molecules providing allosteric regulation or acting as molecular guides or scaffolds. Thus, we hypothesized that RNA plays a role in organizing MAVS signaling platforms. Here, we show that MAVS, through its central intrinsically disordered domain, directly interacts with the 3' untranslated regions of cellular mRNAs. Importantly, elimination of RNA by RNase treatment disrupts the MAVS signalosome, including newly identified regulators of RLR signaling, and inhibits phosphorylation of the transcription factor IRF3. This supports the hypothesis that RNA molecules scaffold proteins in the MAVS signalosome to induce IFNs. Together, this work uncovers a function for cellular RNA in promoting signaling through MAVS and highlights a generalizable principle of RNA regulatory control of cytoplasmic immune signaling complexes.
Collapse
Affiliation(s)
| | - Kim Somfleth
- Department of Immunology, University of Washington, Seattle, WA
| | | | - Russell K. Sam
- Department of Immunology, University of Washington, Seattle, WA
| | | | - Lan H. Chu
- Department of Immunology, University of Washington, Seattle, WA
| | - Moonhee Park
- Department of Integrative Immunobiology, Duke University, Durham, NC
| | - Steve Dvorkin
- Department of Immunology, University of Washington, Seattle, WA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA
| | - Stacy M. Horner
- Department of Integrative Immunobiology, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham NC
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
49
|
Thouenon R, Kracker S. Human inborn errors of immunity associated with IRF4. Front Immunol 2023; 14:1236889. [PMID: 37809068 PMCID: PMC10556498 DOI: 10.3389/fimmu.2023.1236889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The transcription factor interferon regulatory factor 4 (IRF4) belongs to the IRF family and has several important functions for the adaptive immune response. Mutations affecting IRF family members IRF1, IRF3, IRF7, IRF8, or IRF9 have been described in patients presenting with inborn errors of immunity (IEI) highlighting the importance of these factors for the cellular host defense against mycobacterial and/or viral infections. IRF4 deficiency and haploinsufficiency have been associated with IEI. More recently, two novel IRF4 disease-causing mechanisms have been described due to the characterization of IEI patients presenting with cellular immunodeficiency associated with agammaglobulinemia. Here, we review the phenotypes and physiopathological mechanisms underlying IEI of IRF family members and, in particular, IRF4.
Collapse
Affiliation(s)
- Romane Thouenon
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR, Paris, France
| | - Sven Kracker
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR, Paris, France
| |
Collapse
|
50
|
Weichert L, Düsedau HP, Fritzsch D, Schreier S, Scharf A, Grashoff M, Cebulski K, Michaelsen-Preusse K, Erck C, Lienenklaus S, Dunay IR, Kröger A. Astrocytes evoke a robust IRF7-independent type I interferon response upon neurotropic viral infection. J Neuroinflammation 2023; 20:213. [PMID: 37737190 PMCID: PMC10515022 DOI: 10.1186/s12974-023-02892-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.
Collapse
Affiliation(s)
- Loreen Weichert
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - David Fritzsch
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Sarah Schreier
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Annika Scharf
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Martina Grashoff
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Kristin Cebulski
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | | | - Christian Erck
- Cellular Proteome Research, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hanover Medical School, 30625, Hannover, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany
| | - Andrea Kröger
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany.
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|