1
|
Hou L, Jiang M, Li Y, Cheng J, Liu F, Han X, Guo J, Feng L, Li Z, Yi J, Zhao X, Gao Y, Yue W. Targeting SPP1 + macrophages via the SPP1-CD44 axis reveals a key mechanism of immune suppression and tumor progression in ovarian cancer. Int Immunopharmacol 2025; 160:114906. [PMID: 40446696 DOI: 10.1016/j.intimp.2025.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in immune suppression, tumor progression, and metastasis within the tumor microenvironment (TME) of ovarian cancer. While TAMs are known to promote T-cell dysfunction, the precise molecular mechanisms governing this process remain poorly understood. Here, we performed an integrated analysis of six high-grade serous ovarian cancer (HGSOC) single-cell sequencing datasets to investigate the molecular and functional diversity of TAMs in HGSOC. We identified an SPP1+ TAM subpopulation enriched in HGSOC and strongly associated with poor prognosis. These macrophages promoted T-cell exhaustion via the SPP1-CD44 axis, which emerged as the principal mediator of immune suppression. Functional assays demonstrated that SPP1 secreted by TAMs drove T-cell exhaustion, weakening anti-tumor immunity. Blocking either SPP1 or CD44 effectively reversed T-cell exhaustion, restored CD8+ T-cell functionality, and suppressed tumor growth in vivo. Furthermore, molecular docking and dynamics simulations identified nilotinib as a potential SPP1 inhibitor, exhibiting strong binding affinity and stability. In vitro assays confirmed that nilotinib reduced PD-1 expression in Jurkat cells induced by M2-type macrophages, underscoring its therapeutic potential in reversing T-cell exhaustion in ovarian cancer. The research demonstrates that SPP1+ TAMs drive immune suppression and T-cell exhaustion in ovarian cancer via the SPP1-CD44 axis, highlighting this pathway as a promising therapeutic target for reprogramming the immune microenvironment and improving patient outcomes.
Collapse
Affiliation(s)
- Lisha Hou
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Mei Jiang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yue Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jin Cheng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fei Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaoyang Han
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiahao Guo
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadelléen 21, 0349 Oslo, Norway
| | - Lei Feng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Junjie Yi
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
2
|
Engel NW, Steinfeld I, Ryan D, Anupindi K, Kim S, Wellhausen N, Chen L, Wilkins K, Baker DJ, Rommel PC, Jarocha D, Gohil M, Zhang Q, Milone MC, Fraietta JA, Davis M, Young RM, June CH. Quadruple adenine base-edited allogeneic CAR T cells outperform CRISPR/Cas9 nuclease-engineered T cells. Proc Natl Acad Sci U S A 2025; 122:e2427216122. [PMID: 40324075 PMCID: PMC12107175 DOI: 10.1073/pnas.2427216122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/27/2025] [Indexed: 05/07/2025] Open
Abstract
Genome-editing technologies have enabled the clinical development of allogeneic cellular therapies, yet the optimal gene-editing modality for multiplex editing of therapeutic T cell product manufacturing remains elusive. In this study, we conducted a comprehensive comparison of CRISPR/Cas9 nuclease and adenine base editor (ABE) technologies in generating allogeneic chimeric antigen receptor (CAR) T cells, utilizing extensive in vitro and in vivo analyses. Both methods achieved high editing efficiencies across four target genes, critical for mitigating graft-versus-host disease and allograft rejection: TRAC or CD3E, B2M, CIITA, and PVR. Notably, ABE demonstrated higher manufacturing yields and distinct off-target profiles compared to Cas9, with translocations observed exclusively in Cas9-edited products. Functionally, ABE-edited CAR T cells exhibited superior in vitro effector functions under continuous antigen stimulation, including enhanced proliferative capacity and increased surface CAR expression. Transcriptomic analysis revealed that ABE editing resulted in reduced activation of p53 and DNA damage response pathways at baseline, along with sustained activation of metabolic pathways during antigen stress. Consistently, Assay for Transposase-Accessible Chromatin using sequencing data indicated that Cas9-edited, but not ABE-edited, CAR T cells showed enrichment of chromatin accessibility peaks associated with double-strand break repair and DNA damage response pathways. In a preclinical leukemia model, ABE-edited CAR T cells demonstrated improved tumor control and extended overall survival compared to their Cas9-edited counterparts. Collectively, these findings position ABE as superior to Cas9 nucleases for multiplex gene editing of therapeutic T cells.
Collapse
Affiliation(s)
- Nils W. Engel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Daniel Ryan
- Agilent Research Laboratories, Santa Clara, CA95051
| | - Kusala Anupindi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Samuel Kim
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Translational Center of Excellence in Hematopoietic Stem Cell Engineering, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Linhui Chen
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Daniel J. Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Philipp C. Rommel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Danuta Jarocha
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Mercy Gohil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Qian Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael C. Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Megan Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
3
|
Hinckley-Boned A, Barbero-Jiménez C, Tristán-Manzano M, Maldonado-Perez N, Hudecek M, Justicia-Lirio P, Martin F. Tailoring CAR surface density and dynamics to improve CAR-T cell therapy. J Immunother Cancer 2025; 13:e010702. [PMID: 40300856 PMCID: PMC12049969 DOI: 10.1136/jitc-2024-010702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/23/2025] [Indexed: 05/01/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment landscape for relapsed and/or refractory B-cell neoplasms, garnering Food and Drug Administration/European Medicines Agency approval for six commercial products. Despite this success, challenges persist, including a relapse rate of 30-50% in hematologic tumors, limited clinical efficacy in solid tumors, and severe side effects. This review addresses the critical need for therapeutic enhancement by focusing on the often-overlooked strategy of modulating CAR protein density on the cell membrane. We delve into the key factors influencing CAR surface expression, such as CAR downmodulation following antigen encounter and antigen-related factors. The dynamics of CAR downmodulation remain underexplored; however, recent data point to its modification as a useful tool for improving functionality. Notably, transcriptional control of CAR expression and the incorporation of specific elements into the CAR design have emerged as interesting strategies to tailor CAR expression profiles. Therefore, controlling CAR dynamic density may represent an attractive strategy for achieving optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Ana Hinckley-Boned
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Spain
| | - Carmen Barbero-Jiménez
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Andalusia, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Maria Tristán-Manzano
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Spain
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Andalusia, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, Granada, Spain
| | - Noelia Maldonado-Perez
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael Hudecek
- Würzburg University. Anstalt des öffentlichen Rechts Josef-Schneider-Straße 2, Würzburg, Germany
| | - Pedro Justicia-Lirio
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Andalusia, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Francisco Martin
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
4
|
Fukushima Y, Ueno R, Minato N, Hattori M. Senescence-associated T cells in immunosenescence and diseases. Int Immunol 2025; 37:143-152. [PMID: 39320393 DOI: 10.1093/intimm/dxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
Age-related changes in the immune system, referred to as immunosenescence, appear to evolve with rather paradoxical manifestations, a diminished adaptive immune capacity, and an increased propensity for chronic inflammation often with autoimmunity, which may underlie the development of diverse disorders with age. Immunosenescent phenotypes are associated with the emergence of unique lymphocyte subpopulations of both T and B lineages. We report that a CD153+ programmed cell death protein 1 (PD-1)+ CD4+ T-cell subpopulation with severely attenuated T-cell receptor (TCR)-responsiveness, termed senescence-associated T (SAT) cells, co-evolve with potentially autoreactive CD30+ B cells, such as spontaneous germinal center B cells and age-associated B cells, in aging mice. SAT cells and CD30+ B cells are reciprocally activated with the aid of the interaction of CD153 with CD30 in trans and with the TCR complex in cis, resulting in the restoration of TCR-mediated proliferation and secretion of abundant pro-inflammatory cytokines in SAT cells and the activation and production of autoantibodies by CD30+ B cells. Besides normal aging, the development of SAT cells coupled with counterpart B cells may be robustly accelerated and accumulated in the relevant tissues of lymphoid or extra-lymphoid organs under chronic inflammatory conditions, including autoimmunity, and may contribute to the pathogenesis and aggravation of the disorders. This review summarizes and discusses recent advances in the understanding of SAT cells in the contexts of immunosenescent phenotypes, as well as autoimmune and chronic inflammatory diseases, and it provides a novel therapeutic clue.
Collapse
Affiliation(s)
- Yuji Fukushima
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Ryuji Ueno
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Masakazu Hattori
- Laboratory of Tumor Tissue Response, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
Wang H, Concannon P, Ge Y. Roles of TULA-family proteins in T cells and autoimmune diseases. Genes Immun 2025; 26:54-62. [PMID: 39558087 DOI: 10.1038/s41435-024-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
The T cell Ubiquitin Ligand (TULA) protein family contains two members, UBASH3A and UBASH3B, that display similarities in protein sequence and domain structure. Both TULA proteins act to repress T cell activation via a combination of overlapping and nonredundant functions. UBASH3B acts mainly as a phosphatase that suppresses proximal T cell receptor (TCR) signaling. In contrast, UBASH3A acts primarily as an adaptor protein, interacting with other proteins (including UBASH3B) in T cells upon TCR stimulation and resulting in downregulation of TCR signaling and NF-κB signaling. Human genetic and functional studies have revealed another notable distinction between UBASH3A and UBASH3B: numerous genome-wide association studies have identified statistically significant associations between genetic variants in and around the UBASH3A gene and at least seven different autoimmune diseases, suggesting a key role of UBASH3A in autoimmunity. However, the evidence for an independent role of UBASH3B in autoimmune disease is limited. This review summarizes key findings regarding the roles of TULA proteins in T cell biology and autoimmunity, highlights the commonalities and differences between UBASH3A and UBASH3B, and speculates on the individual and joint effects of TULA proteins on T cell signaling.
Collapse
Affiliation(s)
- Hua Wang
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yan Ge
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China.
| |
Collapse
|
6
|
Shmidt D, Mamonkin M. SOHO State of the Art Updates and Next Questions | CAR T Cells in T Cell Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:77-88. [PMID: 38955579 DOI: 10.1016/j.clml.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Chimeric antigen receptor (CAR T) therapy produced excellent activity in patients with relapsed/refractory B-lineage malignancies. However, extending these therapies to T cell cancers requires overcoming unique challenges. In the recent years, multiple approaches have been developed in preclinical models and some were tested in clinical trials in patients with treatment-refractory T-cell malignanices with promising early results. Here, we review main hurdles impeding the success of CAR T therapy in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL), discuss potential solutions, and summarize recent progress in both preclinical and clinical development of CAR T therapy for these diseases.
Collapse
Affiliation(s)
- Daniil Shmidt
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
7
|
Herath HDW, Hu YS. Unveiling nanoparticle-immune interactions: how super-resolution imaging illuminates the invisible. NANOSCALE 2025; 17:1213-1224. [PMID: 39618290 PMCID: PMC12042815 DOI: 10.1039/d4nr03838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nanoparticles (NPs) have attracted considerable attention in nanomedicine, particularly in harnessing and manipulating immune cells. However, the current understanding of the interactions between NPs and immune cells at the nanoscale remains limited. Advancing this knowledge guides the design principles of NPs. This review offers a historical perspective on the synergistic evolution of immunology and optical microscopy, examines the current landscape of NP applications in immunology, and explores the advancements in super-resolution imaging techniques, which provide new insights into nanoparticle-immune cell interactions. Key findings from recent studies are discussed, along with challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Herath D W Herath
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| |
Collapse
|
8
|
Granados ST, Yanushkevich S, Lok J, Concepcion AR. Analysis of Store-Operated Ca 2+ Entry in Primary T Cells. Methods Mol Biol 2025; 2904:91-113. [PMID: 40220228 DOI: 10.1007/978-1-0716-4414-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Calcium ions (Ca2+) are key second messengers for signal transduction in virtually all cells. In T cells, Ca2+ signals are generated upon T cell receptor (TCR) stimulation in a two-step integrated process known as Store-Operated Ca2+ Entry (SOCE), which involves the depletion of endoplasmic reticulum (ER) Ca2+ stores, followed by the influx of extracellular Ca2+ via Ca2+ release-activated Ca2+ (CRAC) channels. The Ca2+ influx generated by the opening of CRAC channels in T cells is essential for their metabolic reprogramming, proliferation, cytokine production, and adaptive immune response.In this book chapter, we review general concepts, discuss the rationale for using ratiometric Ca2+-sensitive chemical dyes to monitor SOCE in primary murine T cells, and weigh the advantages and disadvantages of the different methods that are currently available to detect cytosolic Ca2+ dynamics. We provide detailed protocols to measure SOCE in mouse T cells including flow cytometry, fluorescent microplate reader and single-cell imaging, and offer a general guideline on how to quantify SOCE in these cells. These protocols are easily adaptable to monitor cytosolic Ca2+ dynamics in human T cells and other cell types of interest.
Collapse
Affiliation(s)
- Sara T Granados
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sergei Yanushkevich
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jessica Lok
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Axel R Concepcion
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Lai M, Pichardo-Almarza C, Verma M, Shahinuzzaman M, Zhu X, Kimko H. T-cell engagers: model interrogation as a tool to quantify the interplay of relative affinity and target expression on trimer formation. Front Pharmacol 2024; 15:1470595. [PMID: 39439898 PMCID: PMC11493665 DOI: 10.3389/fphar.2024.1470595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
T-cell engagers (TCEs) represent a promising therapeutic strategy for various cancers and autoimmune disorders. These bispecific antibodies act as bridges, connecting T-cell receptors (TCRs) to target cells (either malignant or autoreactive) via interactions with specific tumour-associated antigens (TAAs) or autoantigens to form trimeric synapses, or trimers, that co-localise T-cells with target cells and stimulate their cytotoxic function. Bispecific TCEs are expected to exhibit a bell-shaped dose-response curve, with a defined optimal TCE exposure for maximizing trimer formation. The shape of the dose-response is determined by a non-trivial interplay of binding affinities, exposure and antigens expression levels. Furthermore, excessively low binding to the TCR may reduce efficacy, but mitigate risk of over-stimulating cytokine secretion or induce effector cell exhaustion. These inevitable trade-off highlights the importance of quantitatively understanding the relationship between TCE concentration, target expression, binding affinities, and trimer formation. We utilized a mechanistic target engagement model to show that, if the TCE design parameters are close to the recommended ranges found in the literature, relative affinities for TCR, TAA and target expression levels have qualitatively different, but predictable, effects on the resulting dose-response curve: higher expression levels shift the curve upwards, higher antigen affinity shifts the curve to the left, and higher TCR affinity shifts the curve upwards and to the left.
Collapse
Affiliation(s)
- Massimo Lai
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Cesar Pichardo-Almarza
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Meghna Verma
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Md Shahinuzzaman
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Xu Zhu
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Waltham, MA, United States
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| |
Collapse
|
10
|
Sun PP, Liao SX, Sang P, Liu MM, Yang JB. Lysosomal transmembrane protein 5: Impact on immune cell function and implications for immune-related deficiencies. Heliyon 2024; 10:e36705. [PMID: 39281638 PMCID: PMC11401081 DOI: 10.1016/j.heliyon.2024.e36705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Lysosomal transmembrane protein 5 (LAPTM5) is a lysosomal-associated protein that interacts with surface receptors on various immune cells, including B cells, T cells, macrophages and dendritic cells. Dysregulated expression of LAPTM5 is implicated in the development of multiple immune system-related diseases. In the context of tumors, elevated LAPTM5 levels in immune cells are associated with decreased cell membrane levels of T cell receptors (TCR) or B cell receptors (BCR), leading to impaired antigen presentation and immune escape, thereby promoting tumor progression. Besides, LAPTM5 is critical for inducing non-apoptotic cell death in tumor parenchymal cells since its downregulation leads to inhibition of the cell death pathway in the tumor parenchyma and subsequent enhanced tumorigenesis. LAPTM5 also affects the cell cycle as the elevated LAPTM5 expression in solid tumors causes its inability to block the G0/G1 stage. In non-solid tumors, abnormal LAPTM5 expression disrupts blood cell development and causes irregular proliferation. Furthermore, in the nervous system, aberrant LAPTM5 expression in microglia is correlated with Alzheimer's disease severity. In this context, further preclinical research is essential to validate LAPTM5 as a potential target for diagnosis, therapy, and prognosis in immune-related disorders and tumors. This review summarized the current insights into LAPTM5's role in tumors and immune-related deficits, highlighting its potential as a valuable biomarker and therapeutic target.
Collapse
Affiliation(s)
- Peng-Peng Sun
- Department of Orthopedics Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shi-Xia Liao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Sang
- Department of Orthopedics Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mao-Mao Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ji-Bin Yang
- Department of Orthopedics Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
12
|
Hong H, Wang Y, Menard M, Buckley JA, Zhou L, Volpicelli-Daley L, Standaert DG, Qin H, Benveniste EN. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease. J Neuroinflammation 2024; 21:216. [PMID: 39218899 PMCID: PMC11368013 DOI: 10.1186/s12974-024-03210-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
Affiliation(s)
- Huixian Hong
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Yong Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Marissa Menard
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| |
Collapse
|
13
|
Hong H, Wang Y, Menard M, Buckley J, Zhou L, Volpicelli-Daley L, Standaert D, Qin H, Benveniste E. Suppression of the JAK/STAT Pathway Inhibits Neuroinflammation in the Line 61-PFF Mouse Model of Parkinson's Disease. RESEARCH SQUARE 2024:rs.3.rs-4307273. [PMID: 38766241 PMCID: PMC11100885 DOI: 10.21203/rs.3.rs-4307273/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of a-synuclein (a-Syn) into insoluble aggregates called Lewy pathology. The Line 61 a-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human a-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human a-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-a-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-a-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
|
14
|
Harter MF, Recaldin T, Gerard R, Avignon B, Bollen Y, Esposito C, Guja-Jarosz K, Kromer K, Filip A, Aubert J, Schneider A, Bacac M, Bscheider M, Stokar-Regenscheit N, Piscuoglio S, Beumer J, Gjorevski N. Analysis of off-tumour toxicities of T-cell-engaging bispecific antibodies via donor-matched intestinal organoids and tumouroids. Nat Biomed Eng 2024; 8:345-360. [PMID: 38114742 PMCID: PMC11087266 DOI: 10.1038/s41551-023-01156-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Predicting the toxicity of cancer immunotherapies preclinically is challenging because models of tumours and healthy organs do not typically fully recapitulate the expression of relevant human antigens. Here we show that patient-derived intestinal organoids and tumouroids supplemented with immune cells can be used to study the on-target off-tumour toxicities of T-cell-engaging bispecific antibodies (TCBs), and to capture clinical toxicities not predicted by conventional tissue-based models as well as inter-patient variabilities in TCB responses. We analysed the mechanisms of T-cell-mediated damage of neoplastic and donor-matched healthy epithelia at a single-cell resolution using multiplexed immunofluorescence. We found that TCBs that target the epithelial cell-adhesion molecule led to apoptosis in healthy organoids in accordance with clinical observations, and that apoptosis is associated with T-cell activation, cytokine release and intra-epithelial T-cell infiltration. Conversely, tumour organoids were more resistant to damage, probably owing to a reduced efficiency of T-cell infiltration within the epithelium. Patient-derived intestinal organoids can aid the study of immune-epithelial interactions as well as the preclinical and clinical development of cancer immunotherapies.
Collapse
Affiliation(s)
- Marius F Harter
- Institute of Human Biology (IHB), Roche Innovation Center Basel, Basel, Switzerland
- Gustave Roussy Cancer Campus, University Paris-Saclay, Paris, France
| | - Timothy Recaldin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Regine Gerard
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Blandine Avignon
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Yannik Bollen
- Institute of Human Biology (IHB), Roche Innovation Center Basel, Basel, Switzerland
| | - Cinzia Esposito
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Kristina Kromer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Adrian Filip
- Institute of Human Biology (IHB), Roche Innovation Center Basel, Basel, Switzerland
| | - Julien Aubert
- Institute of Human Biology (IHB), Roche Innovation Center Basel, Basel, Switzerland
| | - Anneliese Schneider
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Michael Bscheider
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Joep Beumer
- Institute of Human Biology (IHB), Roche Innovation Center Basel, Basel, Switzerland
| | - Nikolche Gjorevski
- Institute of Human Biology (IHB), Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Nichakawade TD, Ge J, Mog BJ, Lee BS, Pearlman AH, Hwang MS, DiNapoli SR, Wyhs N, Marcou N, Glavaris S, Konig MF, Gabelli SB, Watson E, Sterling C, Wagner-Johnston N, Rozati S, Swinnen L, Fuchs E, Pardoll DM, Gabrielson K, Papadopoulos N, Bettegowda C, Kinzler KW, Zhou S, Sur S, Vogelstein B, Paul S. TRBC1-targeting antibody-drug conjugates for the treatment of T cell cancers. Nature 2024; 628:416-423. [PMID: 38538786 PMCID: PMC11250631 DOI: 10.1038/s41586-024-07233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor β-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.
Collapse
Affiliation(s)
- Tushar D Nichakawade
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaxin Ge
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bum Seok Lee
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alexander H Pearlman
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, San Francisco, CA, USA
| | - Sarah R DiNapoli
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nicolas Wyhs
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nikita Marcou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephanie Glavaris
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Maximilian F Konig
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra B Gabelli
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Evangeline Watson
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cole Sterling
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nina Wagner-Johnston
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lode Swinnen
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ephraim Fuchs
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nickolas Papadopoulos
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Surojit Sur
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Suman Paul
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Clutton GT, Weideman AMK, Mischell MA, Kallon S, Conrad SZ, Shaw FR, Warren JA, Lin L, Kuruc JD, Xu Y, Gay CM, Armistead PM, G. Hudgens M, Goonetilleke NP. CD3 downregulation identifies high-avidity human CD8 T cells. Clin Exp Immunol 2024; 215:279-290. [PMID: 37950348 PMCID: PMC10876116 DOI: 10.1093/cei/uxad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
CD8 T cells recognize infected and cancerous cells via their T-cell receptor (TCR), which binds peptide-MHC complexes on the target cell. The affinity of the interaction between the TCR and peptide-MHC contributes to the antigen sensitivity, or functional avidity, of the CD8 T cell. In response to peptide-MHC stimulation, the TCR-CD3 complex and CD8 co-receptor are downmodulated. We quantified CD3 and CD8 downmodulation following stimulation of human CD8 T cells with CMV, EBV, and HIV peptides spanning eight MHC restrictions, observing a strong correlation between the levels of CD3 and CD8 downmodulation and functional avidity, regardless of peptide viral origin. In TCR-transduced T cells targeting a tumor-associated antigen, changes in TCR-peptide affinity were sufficient to modify CD3 and CD8 downmodulation. Correlation analysis and generalized linear modeling indicated that CD3 downmodulation was the stronger correlate of avidity. CD3 downmodulation, simply measured using flow cytometry, can be used to identify high-avidity CD8 T cells in a clinical context.
Collapse
Affiliation(s)
- Genevieve T Clutton
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann Marie K Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Mischell
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallay Kallon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shayla Z Conrad
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fiona R Shaw
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lin Lin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - JoAnn D Kuruc
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Gay
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nilu P Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Sattler A, Gamradt S, Proß V, Thole LML, He A, Schrezenmeier EV, Jechow K, Gold SM, Lukassen S, Conrad C, Kotsch K. CD3 downregulation identifies high-avidity, multipotent SARS-CoV-2 vaccine- and recall antigen-specific Th cells with distinct metabolism. JCI Insight 2024; 9:e166833. [PMID: 38206757 PMCID: PMC11143931 DOI: 10.1172/jci.insight.166833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.
Collapse
Affiliation(s)
- Arne Sattler
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Stefanie Gamradt
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
| | - Vanessa Proß
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Linda Marie Laura Thole
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - An He
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Eva Vanessa Schrezenmeier
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Katharina Jechow
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Stefan M. Gold
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
- Universitätsklinikum Hamburg Eppendorf, Institut für Neuroimmunologie und Multiple Sklerose, Hamburg, Germany
| | - Sören Lukassen
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Christian Conrad
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Katja Kotsch
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| |
Collapse
|
18
|
Li C, Zuo S, Shan L, Huang H, Cui H, Feng X. Myeloid leukemia-derived galectin-1 downregulates CAR expression to hinder cytotoxicity of CAR T cells. J Transl Med 2024; 22:32. [PMID: 38184596 PMCID: PMC10771695 DOI: 10.1186/s12967-023-04832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells have shown significant activity in B-lineage malignancies. However, their efficacy in myeloid leukemia has not been successful due to unclear molecular mechanisms. METHODS We conducted in vitro and in vivo experiments to investigate whether myeloid leukemia cells directly induce CAR down-regulation. Furthermore, we designed a CD33 CARKR in which all lysines in the cytoplasmic domain of CAR were mutated to arginine and verified through in vitro experiments that it could reduce the down-regulation of surface CARs and enhance the killing ability. Transcriptome sequencing was performed on various AML and ALL cell lines and primary samples, and the galectin-1-specific inhibitory peptide (anginex) successfully rescued the killing defect and T-cell activation in in vitro assays. RESULTS CAR down-regulation induced by myeloid leukemia cells under conditions of low effector-to-tumor ratio, which in turn impairs the cytotoxicity of CAR T cells. In contrast, lysosomal degradation or actin polymerization inhibitors can effectively alleviate CAR down-regulation and restore CAR T cell-mediated anti-tumor functions. In addition, this study identified galectin-1 as a critical factor used by myeloid leukemia cells to induce CAR down-regulation, resulting in impaired T-cell activation. CONCLUSION The discovery of the role of galectin-1 in cell surface CAR down-regulation provides important insights for developing strategies to restore anti-tumor functions.
Collapse
Affiliation(s)
- Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingling Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Haidong Cui
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
19
|
Gardner J, Hammond S, Jensen R, Gibson A, Krantz MS, Ardern‐Jones M, Phillips EJ, Pirmohamed M, Chadwick AE, Betts C, Naisbitt DJ. Glycolysis: An early marker for vancomycin-specific T-cell activation. Clin Exp Allergy 2024; 54:21-33. [PMID: 38177093 PMCID: PMC10953384 DOI: 10.1111/cea.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Vancomycin, a glycopeptide antibiotic used for Gram-positive bacterial infections, has been linked with drug reaction with eosinophilia and systemic symptoms (DRESS) in HLA-A*32:01-expressing individuals. This is associated with activation of T lymphocytes, for which glycolysis has been isolated as a fuel pathway following antigenic stimulation. However, the metabolic processes that underpin drug-reactive T-cell activation are currently undefined and may shed light on the energetic conditions needed for the elicitation of drug hypersensitivity or tolerogenic pathways. Here, we sought to characterise the immunological and metabolic pathways involved in drug-specific T-cell activation within the context of DRESS pathogenesis using vancomycin as model compound and drug-reactive T-cell clones (TCCs) generated from healthy donors and vancomycin-hypersensitive patients. METHODS CD4+ and CD8+ vancomycin-responsive TCCs were generated by serial dilution. The Seahorse XFe96 Analyzer was used to measure the extracellular acidification rate (ECAR) as an indicator of glycolytic function. Additionally, T-cell proliferation and cytokine release (IFN-γ) assay were utilised to correlate the bioenergetic characteristics of T-cell activation with in vitro assays. RESULTS Model T-cell stimulants induced non-specific T-cell activation, characterised by immediate augmentation of ECAR and rate of ATP production (JATPglyc). There was a dose-dependent and drug-specific glycolytic shift when vancomycin-reactive TCCs were exposed to the drug. Vancomycin-reactive TCCs did not exhibit T-cell cross-reactivity with structurally similar compounds within proliferative and cytokine readouts. However, cross-reactivity was observed when analysing energetic responses; TCCs with prior specificity for vancomycin were also found to exhibit glycolytic switching after exposure to teicoplanin. Glycolytic activation of TCC was HLA restricted, as exposure to HLA blockade attenuated the glycolytic induction. CONCLUSION These studies describe the glycolytic shift of CD4+ and CD8+ T cells following vancomycin exposure. Since similar glycolytic switching is observed with teicoplanin, which did not activate T cells, it is possible the master switch for T-cell activation is located upstream of metabolic signalling.
Collapse
Affiliation(s)
- Joshua Gardner
- Department of Pharmacology and Therapeutics, Centre for Drug Safety ScienceUniversity of LiverpoolLiverpoolUK
| | | | - Rebecca Jensen
- Department of Pharmacology and Therapeutics, Centre for Drug Safety ScienceUniversity of LiverpoolLiverpoolUK
| | - Andrew Gibson
- Murdoch UniversityInstitute for Immunology & Infectious DiseasesPerthWestern AustraliaAustralia
| | - Matthew S. Krantz
- Vanderbilt Institute for Infection, Immunology and InflammationVanderbilt UniversityNashvilleTennesseeUSA
| | - Michael Ardern‐Jones
- Clinical Experimental SciencesUniversity of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General HospitalSouthamptonUK
| | - Elizabeth J. Phillips
- Vanderbilt Institute for Infection, Immunology and InflammationVanderbilt UniversityNashvilleTennesseeUSA
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Centre for Drug Safety ScienceUniversity of LiverpoolLiverpoolUK
| | - Amy E. Chadwick
- Department of Pharmacology and Therapeutics, Centre for Drug Safety ScienceUniversity of LiverpoolLiverpoolUK
| | - Catherine Betts
- Clinical Pharmacology & Safety SciencesAstraZeneca R&DCambridgeUK
| | - Dean J. Naisbitt
- Department of Pharmacology and Therapeutics, Centre for Drug Safety ScienceUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
20
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
21
|
Lucero OM, Lee JA, Bowman J, Johnson K, Sapparapu G, Thomas JK, Fan G, Chang BH, Thiel-Klare K, Eide CA, Okada C, Palazzolo M, Lind E, Kosaka Y, Druker BJ, Lydon N, Bowers PM. Patient-Specific Targeting of the T-Cell Receptor Variable Region as a Therapeutic Strategy in Clonal T-Cell Diseases. Clin Cancer Res 2023; 29:4230-4241. [PMID: 37199721 PMCID: PMC10592575 DOI: 10.1158/1078-0432.ccr-22-0906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE Targeted therapeutics are a goal of medicine. Methods for targeting T-cell lymphoma lack specificity for the malignant cell, leading to elimination of healthy cells. The T-cell receptor (TCR) is designed for antigen recognition. T-cell malignancies expand from a single clone that expresses one of 48 TCR variable beta (Vβ) genes, providing a distinct therapeutic target. We hypothesized that a mAb that is exclusive to a specific Vβ would eliminate the malignant clone while having minimal effects on healthy T cells. EXPERIMENTAL DESIGN We identified a patient with large granular T-cell leukemia and sequenced his circulating T-cell population, 95% of which expressed Vβ13.3. We developed a panel of anti-Vβ13.3 antibodies to test for binding and elimination of the malignant T-cell clone. RESULTS Therapeutic antibody candidates bound the malignant clone with high affinity. Antibodies killed engineered cell lines expressing the patient TCR Vβ13.3 by antibody-dependent cellular cytotoxicity and TCR-mediated activation-induced cell death, and exhibited specific killing of patient malignant T cells in combination with exogenous natural killer cells. EL4 cells expressing the patient's TCR Vβ13.3 were also killed by antibody administration in an in vivo murine model. CONCLUSIONS This approach serves as an outline for development of therapeutics that can treat clonal T-cell-based malignancies and potentially other T-cell-mediated diseases. See related commentary by Varma and Diefenbach, p. 4024.
Collapse
Affiliation(s)
- Olivia M Lucero
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Ji-Ann Lee
- Clinical and Translational Science Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jenna Bowman
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Kara Johnson
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Gopal Sapparapu
- Clinical and Translational Science Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - John K Thomas
- Clinical and Translational Science Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Guang Fan
- Department of Pathology and Clinical Laboratory Medicine, Oregon Health & Science University, Portland, Oregon
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Division of Pediatric Hematology and Oncology, Oregon Health & Science University, Portland, Oregon
| | - Karina Thiel-Klare
- Division of Pediatric Hematology and Oncology, Oregon Health & Science University, Portland, Oregon
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Craig Okada
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Mike Palazzolo
- Clinical and Translational Science Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Evan Lind
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Yoko Kosaka
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Division of Pediatric Hematology and Oncology, Oregon Health & Science University, Portland, Oregon
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
- VB Therapeutics LLC, Jackson, Wyoming
| | | | - Peter M Bowers
- Therapeutic Antibody Laboratory, Department of Pulmonology and Critical Care, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
22
|
Smid AI, Garforth SJ, Obaid MS, Bollons HR, James JR. Pre-T cell receptor localization and trafficking are independent of its signaling. J Cell Biol 2023; 222:e202212106. [PMID: 37516909 PMCID: PMC10373305 DOI: 10.1083/jcb.202212106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
Expression of the pre-T cell receptor (preTCR) is an important checkpoint during the development of T cells, an essential cell type of our adaptive immune system. The preTCR complex is only transiently expressed and rapidly internalized in developing T cells and is thought to signal in a ligand-independent manner. However, identifying a mechanistic basis for these unique features of the preTCR compared with the final TCR complex has been confounded by the concomitant signaling that is normally present. Thus, we have reconstituted preTCR expression in non-immune cells to uncouple receptor trafficking dynamics from its associated signaling. We find that all the defining features of the preTCR are intrinsic properties of the receptor itself, driven by exposure of an extracellular hydrophobic region, and are not the consequence of receptor activation. Finally, we show that transitory preTCR cell surface expression can sustain tonic signaling in the absence of ligand binding, suggesting how the preTCR can nonetheless drive αβTCR lineage commitment.
Collapse
Affiliation(s)
- Andrei I. Smid
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Sam J. Garforth
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Maryam S. Obaid
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hannah R. Bollons
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - John R. James
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Giacalone VD, Giraldo DM, Silva GL, Hosten J, Peng L, Guglani L, Tirouvanziam R. Pulmonary exacerbations in early cystic fibrosis lung disease are marked by strong modulation of CD3 and PD-1 on luminal T cells. Front Immunol 2023; 14:1194253. [PMID: 37809107 PMCID: PMC10551126 DOI: 10.3389/fimmu.2023.1194253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background In chronic cystic fibrosis (CF) lung disease, neutrophilic inflammation and T-cell inhibition occur concomitantly, partly due to neutrophil-mediated release of the T-cell inhibitory enzyme Arg1. However, the onset of this tonic inhibition of T cells, and the impact of pulmonary exacerbations (PEs) on this process, remain unknown. Methods Children with CF aged 0-5 years were enrolled in a longitudinal, single-center cohort study. Blood (n = 35) and bronchoalveolar lavage (BAL) fluid (n = 18) were collected at stable outpatient clinic visits or inpatient PE hospitalizations and analyzed by flow cytometry (for immune cell presence and phenotype) and 20-plex chemiluminescence assay (for immune mediators). Patients were categorized by PE history into (i) no prior PE, (ii) past history of PE prior to stable visit, or (iii) current PE. Results PEs were associated with increased concentration of both pro- and anti-inflammatory mediators in BAL, and increased neutrophil frequency and G-CSF in circulation. PE BAL samples showed a trend toward an increased frequency of hyperexocytic "GRIM" neutrophils, which we previously identified in chronic CF. Interestingly, expression levels of the T-cell receptor associated molecule CD3 and of the inhibitory programmed death-1 (PD-1) receptor were respectively decreased and increased on T cells from BAL compared to blood in all patients. When categorized by PE status, CD3 and PD-1 expression on blood T cells did not differ among patients, while CD3 expression was decreased, and PD-1 expression was increased on BAL T cells from patients with current PE. Conclusions Our findings suggest that airway T cells are engaged during early-life PEs, prior to the onset of chronic neutrophilic inflammation in CF. In addition, increased blood neutrophil frequency and a trend toward increased BAL frequency of hyperexocytic neutrophils suggest that childhood PEs may progressively shift the balance of CF airway immunity towards neutrophil dominance.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Center for CF and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Diego Moncada Giraldo
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Center for CF and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - George L. Silva
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Center for CF and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, United States
| | - Lokesh Guglani
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Center for CF and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Center for CF and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
24
|
Schendel DJ. Evolution by innovation as a driving force to improve TCR-T therapies. Front Oncol 2023; 13:1216829. [PMID: 37810959 PMCID: PMC10552759 DOI: 10.3389/fonc.2023.1216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapies continually evolve through science-based innovation. Specialized innovations for TCR-T therapies are described here that are embedded in an End-to-End Platform for TCR-T Therapy Development which aims to provide solutions for key unmet patient needs by addressing challenges of TCR-T therapy, including selection of target antigens and suitable T cell receptors, generation of TCR-T therapies that provide long term, durable efficacy and safety and development of efficient and scalable production of patient-specific (personalized) TCR-T therapy for solid tumors. Multiple, combinable, innovative technologies are used in a systematic and sequential manner in the development of TCR-T therapies. One group of technologies encompasses product enhancements that enable TCR-T therapies to be safer, more specific and more effective. The second group of technologies addresses development optimization that supports discovery and development processes for TCR-T therapies to be performed more quickly, with higher quality and greater efficiency. Each module incorporates innovations layered onto basic technologies common to the field of immunology. An active approach of "evolution by innovation" supports the overall goal to develop best-in-class TCR-T therapies for treatment of patients with solid cancer.
Collapse
Affiliation(s)
- Dolores J. Schendel
- Medigene Immunotherapies GmbH, Planegg, Germany
- Medigene AG, Planegg, Germany
| |
Collapse
|
25
|
Culberson AL, Bowles-Welch AC, Wang B, Kottke PA, Jimenez AC, Roy K, Fedorov AG. Early detection and metabolic pathway identification of T cell activation by in-process intracellular mass spectrometry. Cytotherapy 2023; 25:1006-1015. [PMID: 37061898 PMCID: PMC10524195 DOI: 10.1016/j.jcyt.2023.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AIMS In-process monitoring and control of biomanufacturing workflows remains a significant challenge in the development, production, and application of cell therapies. New process analytical technologies must be developed to identify and control the critical process parameters that govern ex vivo cell growth and differentiation to ensure consistent and predictable safety, efficacy, and potency of clinical products. METHODS This study demonstrates a new platform for at-line intracellular analysis of T-cells. Untargeted mass spectrometry analyses via the platform are correlated to conventional methods of T-cell assessment. RESULTS Spectral markers and metabolic pathways correlated with T-cell activation and differentiation are detected at early time points via rapid, label-free metabolic measurements from a minimal number of cells as enabled by the platform. This is achieved while reducing the analytical time and resources as compared to conventional methods of T-cell assessment. CONCLUSIONS In addition to opportunities for fundamental insight into the dynamics of T-cell processes, this work highlights the potential of in-process monitoring and dynamic feedback control strategies via metabolic modulation to drive T-cell activation, proliferation, and differentiation throughout biomanufacturing.
Collapse
Affiliation(s)
- Austin L Culberson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA
| | - Annie C Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Bryan Wang
- National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter A Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Angela C Jimenez
- National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Krishnendu Roy
- National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Andrei G Fedorov
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA.
| |
Collapse
|
26
|
Grant NL, Kelly K, Maiello P, Abbott H, O’Connor S, Lin PL, Scanga CA, Flynn JL. Mycobacterium tuberculosis-Specific CD4 T Cells Expressing Transcription Factors T-Bet or RORγT Associate with Bacterial Control in Granulomas. mBio 2023; 14:e0047723. [PMID: 37039646 PMCID: PMC10294621 DOI: 10.1128/mbio.00477-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
Despite the extensive research on CD4 T cells within the context of Mycobacterium tuberculosis (Mtb) infections, few studies have focused on identifying and investigating the profile of Mtb-specific T cells within lung granulomas. To facilitate the identification of Mtb-specific CD4 T cells, we identified immunodominant epitopes for two Mtb proteins, namely, Rv1196 and Rv0125, using a Mauritian cynomolgus macaque model of Mtb infection, thereby providing data for the synthesis of MHC class II tetramers. Using tetramers, we identified Mtb-specific cells within different immune compartments, postinfection. We found that granulomas were enriched sites for Mtb-specific cells and that tetramer+ cells had increased frequencies of the activation marker CD69 as well as the transcription factors T-bet and RORγT, compared to tetramer negative cells within the same sample. Our data revealed that while the frequency of Rv1196 tetramer+ cells was positively correlated with the granuloma bacterial burden, the frequency of RORγT or T-bet within tetramer+ cells was inversely correlated with the granuloma bacterial burden, thereby highlighting the importance of having activated, polarized, Mtb-specific cells for the control of Mtb in lung granulomas. IMPORTANCE Tuberculosis, caused by the bacterial pathogen Mycobacterium tuberculosis, kills 1.5 million people each year, despite the existence of effective drugs and a vaccine that is given to infants in most countries. Clearly, we need better vaccines against this disease. However, our understanding of the immune responses that are necessary to prevent tuberculosis is incomplete. This study seeks to understand the functions of T cells that are specific for M. tuberculosis at the site of the disease in the lungs. For this, we developed specialized tools called MHC class II tetramers to identify those T cells that can recognize M. tuberculosis and applied the tools to the study of this infection in nonhuman primate models that mimic human tuberculosis. We demonstrate that M. tuberculosis-specific T cells in lung lesions are associated with control of the bacteria only when those T cells are expressing certain functions, thereby highlighting the importance of combining the identification of specific T cells with functional analyses. Thus, we surmise that these functions of specific T cells are critical to the control of infection and should be considered as a part of the development of vaccines against tuberculosis.
Collapse
Affiliation(s)
- Nicole L. Grant
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Kristen Kelly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helena Abbott
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Lee JH, Lee BH, Jeong S, Joh CSY, Nam HJ, Choi HS, Sserwadda H, Oh JW, Park CG, Jin SP, Kim HJ. Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells. Genomics Inform 2023; 21:e18. [PMID: 37704208 PMCID: PMC10326540 DOI: 10.5808/gi.23009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 07/08/2023] Open
Abstract
Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.
Collapse
Affiliation(s)
- Jung Ho Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Brian H Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Soyoung Jeong
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Christine Suh-Yun Joh
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Hyo Jeong Nam
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Hyun Seung Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Henry Sserwadda
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chung-Gyu Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul 03080, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Medical Research Center, Institute of Human-Environmental Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
28
|
Park JS, Kim JH, Soh WC, Kim NY, Lee KS, Kim CH, Chung IJ, Lee S, Kim HR, Jun CD. Trogocytic molting of T cell microvilli upregulates T cell receptor surface expression and promotes clonal expansion. Nat Commun 2023; 14:2980. [PMID: 37221214 DOI: 10.1038/s41467-023-38707-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Although T cell activation is known to involve the internalization of the T cell antigen receptor (TCR), much less is known regarding the release of TCRs following T cell interaction with cognate antigen-presenting cells. In this study, we examine the physiological mechanisms underlying TCR release following T cell activation. We show that T cell activation results in the shedding of TCRs in T cell microvilli, which involves a combined process of trogocytosis and enzymatic vesiculation, leading to the loss of membrane TCRs and microvilli-associated proteins and lipids. Surprisingly, unlike TCR internalization, this event results in the rapid upregulation of surface TCR expression and metabolic reprogramming of cholesterol and fatty acid synthesis to support cell division and survival. These results demonstrate that TCRs are lost through trogocytic 'molting' following T cell activation and highlight this mechanism as an important regulator of clonal expansion.
Collapse
Affiliation(s)
- Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jun-Hyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kyung-Sik Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
29
|
Dekkers JF, Alieva M, Cleven A, Keramati F, Wezenaar AKL, van Vliet EJ, Puschhof J, Brazda P, Johanna I, Meringa AD, Rebel HG, Buchholz MB, Barrera Román M, Zeeman AL, de Blank S, Fasci D, Geurts MH, Cornel AM, Driehuis E, Millen R, Straetemans T, Nicolasen MJT, Aarts-Riemens T, Ariese HCR, Johnson HR, van Ineveld RL, Karaiskaki F, Kopper O, Bar-Ephraim YE, Kretzschmar K, Eggermont AMM, Nierkens S, Wehrens EJ, Stunnenberg HG, Clevers H, Kuball J, Sebestyen Z, Rios AC. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat Biotechnol 2023; 41:60-69. [PMID: 35879361 PMCID: PMC9849137 DOI: 10.1038/s41587-022-01397-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/14/2022] [Indexed: 01/22/2023]
Abstract
Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Astrid Cleven
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Farid Keramati
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Amber K L Wezenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Esmée J van Vliet
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Peter Brazda
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Angelo D Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Heggert G Rebel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mario Barrera Román
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Amber L Zeeman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sam de Blank
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Domenico Fasci
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Else Driehuis
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Rosemary Millen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mara J T Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tineke Aarts-Riemens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hendrikus C R Ariese
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hannah R Johnson
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ravian L van Ineveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Oded Kopper
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Yotam E Bar-Ephraim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Mildred Scheel Early Career Center for Cancer Research Würzburg, University Hospital Würzburg, MSNZ/IZKF, Wurzburg, Germany
| | - Alexander M M Eggermont
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
- Comprehensive Cancer Center München, Munich, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Pharma, Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Bai L, Dermadi D, Kalesinskas L, Dvorak M, Chang SE, Ganesan A, Rubin SJS, Kuo A, Cheung P, Donato M, Utz PJ, Habtezion A, Khatri P. Mass-cytometry-based quantitation of global histone post-translational modifications at single-cell resolution across peripheral immune cells in IBD. J Crohns Colitis 2022; 17:804-815. [PMID: 36571819 PMCID: PMC10155749 DOI: 10.1093/ecco-jcc/jjac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Current understanding of histone post-translational modifications (histone modifications) across immune cell types in patients with inflammatory bowel disease (IBD) during remission and flare is limited. The study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls. METHODS We performed a case-control study of 94 subjects (83 IBD patients and 11 healthy controls). IBD patients had either UC (n=38) or CD (n=45) in clinical remission or flare. We used epigenetic profiling by time-of-flight (EpiTOF) to investigate changes in histone modifications within peripheral blood mononuclear cells from IBD patients. RESULTS We discovered substantial heterogeneity in histone modifications across multiple immune cell types in IBD patients. They had a higher proportion of less differentiated CD34 + hematopoietic progenitors, and a subset of CD56 bright NK cells and γδ T cells characterized by distinct histone modifications associated with the gene transcription. The subset of CD56 bright NK cells had increased several histone acetylations. An epigenetically defined subset of NK was associated with higher levels of CRP in peripheral blood. CD14+ monocytes from IBD patients had significantly decreased cleaved H3T22, suggesting they were epigenetically primed for macrophage differentiation. CONCLUSION We describe the first systems-level quantification of histone modifications across immune cells from IBD patients at a single-cell resolution revealing the increased epigenetic heterogeneity that is not possible with traditional ChIP-seq profiling. Our data open new directions in investigating the association between histone modifications and IBD pathology using other epigenomic tools.
Collapse
Affiliation(s)
- Lawrence Bai
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurynas Kalesinskas
- Biomedical Informatics Training Program, Stanford University School of Medicine, 1265 Welch Road, MSOB X-343, Stanford, CA 94305 USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananthakrishnan Ganesan
- Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Suite B060, Stanford, CA 94305 USA
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggie Cheung
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida Habtezion
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Purvesh Khatri
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Finetti F, Onnis A, Baldari CT. IFT20: An Eclectic Regulator of Cellular Processes beyond Intraflagellar Transport. Int J Mol Sci 2022; 23:ijms232012147. [PMID: 36292997 PMCID: PMC9603483 DOI: 10.3390/ijms232012147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Initially discovered as the smallest component of the intraflagellar transport (IFT) system, the IFT20 protein has been found to be implicated in several unconventional mechanisms beyond its essential role in the assembly and maintenance of the primary cilium. IFT20 is now considered a key player not only in ciliogenesis but also in vesicular trafficking of membrane receptors and signaling proteins. Moreover, its ability to associate with a wide array of interacting partners in a cell-type specific manner has expanded the function of IFT20 to the regulation of intracellular degradative and secretory pathways. In this review, we will present an overview of the multifaceted role of IFT20 in both ciliated and non-ciliated cells.
Collapse
|
32
|
cis interaction of CD153 with TCR/CD3 is crucial for the pathogenic activation of senescence-associated T cells. Cell Rep 2022; 40:111373. [PMID: 36130493 DOI: 10.1016/j.celrep.2022.111373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
With age, senescence-associated (SA) CD4+ T cells that are refractory to T cell receptor (TCR) stimulation are increased along with spontaneous germinal center (Spt-GC) development prone to autoantibody production. We demonstrate that CD153 and its receptor CD30 are expressed in SA-T and Spt-GC B cells, respectively, and deficiency of either CD153 or CD30 results in the compromised increase of both cell types. CD153 engagement on SA-T cells upon TCR stimulation causes association of CD153 with the TCR/CD3 complex and restores TCR signaling, whereas CD30 engagement on GC B cells induces their expansion. Administration of an anti-CD153 antibody blocking the interaction with CD30 suppresses the increase in both SA-T and Spt-GC B cells with age and ameliorates lupus in lupus-prone mice. These results suggest that the molecular interaction of CD153 and CD30 plays a central role in the reciprocal activation of SA-T and Spt-GC B cells, leading to immunosenescent phenotypes and autoimmunity.
Collapse
|
33
|
Rossatti P, Redpath GMI, Ziegler L, Samson GPB, Clamagirand CD, Legler DF, Rossy J. Rapid increase in transferrin receptor recycling promotes adhesion during T cell activation. BMC Biol 2022; 20:189. [PMID: 36002835 PMCID: PMC9400314 DOI: 10.1186/s12915-022-01386-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear. Results Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells. Conclusions Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01386-0.
Collapse
Affiliation(s)
- Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Sydney, Australia
| | - Luca Ziegler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Constance, Germany
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Camille D Clamagirand
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Constance, Germany
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, University of Konstanz, Constance, Germany.
| |
Collapse
|
34
|
Blanco B, Ramírez-Fernández Á, Bueno C, Argemí-Muntadas L, Fuentes P, Aguilar-Sopeña Ó, Gutierrez-Agüera F, Zanetti SR, Tapia-Galisteo A, Díez-Alonso L, Segura-Tudela A, Castellà M, Marzal B, Betriu S, Harwood SL, Compte M, Lykkemark S, Erce-Llamazares A, Rubio-Pérez L, Jiménez-Reinoso A, Domínguez-Alonso C, Neves M, Morales P, Paz-Artal E, Guedan S, Sanz L, Toribio ML, Roda-Navarro P, Juan M, Menéndez P, Álvarez-Vallina L. Overcoming CAR-Mediated CD19 Downmodulation and Leukemia Relapse with T Lymphocytes Secreting Anti-CD19 T-cell Engagers. Cancer Immunol Res 2022; 10:498-511. [PMID: 35362043 DOI: 10.1158/2326-6066.cir-21-0853] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed. Here, we report a comprehensive study comparing engineered T cells either expressing a second-generation anti-CD19 CAR (CAR-T19) or secreting a CD19/CD3-targeting bispecific T-cell engager antibody (STAb-T19). We found that STAb-T19 cells are more effective than CAR-T19 cells at inducing cytotoxicity, avoiding leukemia escape in vitro, and preventing relapse in vivo. We observed that leukemia escape in vitro is associated with rapid and drastic CAR-induced internalization of CD19 that is coupled with lysosome-mediated degradation, leading to the emergence of transiently CD19-negative leukemic cells that evade the immune response of engineered CAR-T19 cells. In contrast, engineered STAb-T19 cells induce the formation of canonical immunologic synapses and prevent the CD19 downmodulation observed in anti-CD19 CAR-mediated interactions. Although both strategies show similar efficacy in short-term mouse models, there is a significant difference in a long-term patient-derived xenograft mouse model, where STAb-T19 cells efficiently eradicated leukemia cells, but leukemia relapsed after CAR-T19 therapy. Our findings suggest that the absence of CD19 downmodulation in the STAb-T19 strategy, coupled with the continued antibody secretion, allows an efficient recruitment of the endogenous T-cell pool, resulting in fast and effective elimination of cancer cells that may prevent CD19-positive relapses frequently associated with CAR-T19 therapies.
Collapse
Affiliation(s)
- Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Clara Bueno
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Argemí-Muntadas
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Patricia Fuentes
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain.,Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Francisco Gutierrez-Agüera
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | | | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Maria Castellà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Berta Marzal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Sergi Betriu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Ainhoa Erce-Llamazares
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Maria Neves
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Pablo Morales
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - María L Toribio
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain.,Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Manel Juan
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.,Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain.,Plataforma Immunoteràpia Hospital Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Pablo Menéndez
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Dobson CS, Reich AN, Gaglione S, Smith BE, Kim EJ, Dong J, Ronsard L, Okonkwo V, Lingwood D, Dougan M, Dougan SK, Birnbaum ME. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat Methods 2022; 19:449-460. [PMID: 35396484 PMCID: PMC9012700 DOI: 10.1038/s41592-022-01436-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/01/2022] [Indexed: 01/11/2023]
Abstract
Deciphering immune recognition is critical for understanding a broad range of diseases and for the development of effective vaccines and immunotherapies. Efforts to do so are limited by a lack of technologies capable of simultaneously capturing the complexity of adaptive immunoreceptor repertoires and the landscape of potential antigens. To address this, we present receptor-antigen pairing by targeted retroviruses, which combines viral pseudotyping and molecular engineering approaches to enable one-pot library-on-library interaction screens by displaying antigens on the surface of lentiviruses and encoding their identity in the viral genome. Antigen-specific viral infection of cell lines expressing human T or B cell receptors allows readout of both antigen and receptor identities via single-cell sequencing. The resulting system is modular, scalable and compatible with any cell type. These techniques provide a suite of tools for targeted viral entry, molecular engineering and interaction screens with broad potential applications.
Collapse
Affiliation(s)
- Connor S Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anna N Reich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Stephanie Gaglione
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Ellen J Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Jiayi Dong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | | | - Vintus Okonkwo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Michael Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie K Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
| |
Collapse
|
36
|
Paniskaki K, Anft M, Meister TL, Marheinecke C, Pfaender S, Skrzypczyk S, Seibert FS, Thieme CJ, Konik MJ, Dolff S, Anastasiou O, Holzer B, Dittmer U, Queren C, Fricke L, Rohn H, Westhoff TH, Witzke O, Stervbo U, Roch T, Babel N. Immune Response in Moderate to Critical Breakthrough COVID-19 Infection After mRNA Vaccination. Front Immunol 2022; 13:816220. [PMID: 35145522 PMCID: PMC8821964 DOI: 10.3389/fimmu.2022.816220] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) can trigger severe endemic waves and vaccine breakthrough infections (VBI). We analyzed the cellular and humoral immune response in 8 patients infected with the alpha variant, resulting in moderate to fatal COVID-19 disease manifestation, after double mRNA-based anti-SARS-CoV-2 vaccination. In contrast to the uninfected vaccinated control cohort, the diseased individuals had no detectable high-avidity spike (S)-reactive CD4+ and CD8+ T cells against the alpha variant and wild type (WT) at disease onset, whereas a robust CD4+ T-cell response against the N- and M-proteins was generated. Furthermore, a delayed alpha S-reactive high-avidity CD4+ T-cell response was mounted during disease progression. Compared to the vaccinated control donors, these patients also had lower neutralizing antibody titers against the alpha variant at disease onset. The delayed development of alpha S-specific cellular and humoral immunity upon VBI indicates reduced immunogenicity against the S-protein of the alpha VOC, while there was a higher and earlier N- and M-reactive T-cell response. Our findings do not undermine the current vaccination strategies but underline a potential need for the inclusion of VBI patients in alternative vaccination strategies and additional antigenic targets in next-generation SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Toni L. Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Corinna Marheinecke
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Felix S. Seibert
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Constantin J. Thieme
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health at Charité – University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Margarethe J. Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Olympia Anastasiou
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bodo Holzer
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Lutz Fricke
- Dialysis Center Dialyse Bochum, Bochum, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Timm H. Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health at Charité – University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health at Charité – University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- *Correspondence: Nina Babel, ;
| |
Collapse
|
37
|
Voynova E, Hawk N, Flomerfelt FA, Telford WG, Gress RE, Kanakry JA, Kovalovsky D. Increased Activity of a NK-Specific CAR-NK Framework Targeting CD3 and CD5 for T-Cell Leukemias. Cancers (Basel) 2022; 14:cancers14030524. [PMID: 35158792 PMCID: PMC8833462 DOI: 10.3390/cancers14030524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chimeric antigen receptors (CAR) can redirect the activity of NK cells to target T-cell malignancies. Our results identify that recognition of CD5 molecules in malignant T cells by the CAR leads to improved antitumor response compared to targeting CD3, due to strong downregulation of the CD3 antigen after CD3-CAR treatment. We have also identified that a specific CAR-NK framework has superior activity than a CAR-T framework on NK effector cells. Abstract NK effector cells expressing a CAR construct may be used to target T-lineage markers. In this work, we compared the activity of a NK-specific CAR-NK and a CAR-T framework when expressed on NK effector cells to target CD3 and CD5 in T-cell malignancies. Our results show that CD3-CAR-T is more active than CD5-CAR-T to eliminate malignant T cells in vitro, however, CD3-CAR-T were less efficient to eliminate tumor cells in vivo, while CD5-CAR-T had antitumor activity in a diffuse xenograft model. Lack of in vivo efficacy correlated with downregulation of CD3 levels in target T cells after coculture with CD3-CAR effector cells. The CAR-NK framework greatly improved the efficacy of CARs leading to increased degranulation, cytokine secretion and elimination of the tumor xenograft by CD5-CAR-NK effector cells. Finally, all CAR constructs were similarly effective to eliminate malignant T cells in vitro. Our results show that the NK-CAR framework improves the activity of CARs in NK cells and that CD5 would be a better target than CD3 for T-cell malignancies, as dynamic downregulation of target expression may affect in vivo efficacy.
Collapse
|
38
|
James CA, Xu Y, Aguilar MS, Jing L, Layton ED, Gilleron M, Minnaard AJ, Scriba TJ, Day CL, Warren EH, Koelle DM, Seshadri C. CD4 and CD8 co-receptors modulate functional avidity of CD1b-restricted T cells. Nat Commun 2022; 13:78. [PMID: 35013257 PMCID: PMC8748927 DOI: 10.1038/s41467-021-27764-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.
Collapse
Affiliation(s)
- Charlotte A James
- Molecular Medicine and Mechanisms of Disease PhD Program (M3D), Department of Pathology, University of Washington, Seattle, WA, USA
| | - Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Erik D Layton
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077, Toulouse, France
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Cheryl L Day
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Edus H Warren
- Molecular Medicine and Mechanisms of Disease PhD Program (M3D), Department of Pathology, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David M Koelle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Tuberculosis Research and Training Center, Seattle, WA, USA.
| |
Collapse
|
39
|
Wang H, Song X, Shen L, Wang X, Xu C. Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 2021; 8:123-134. [PMID: 34810156 DOI: 10.1016/j.trecan.2021.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/15/2022]
Abstract
Engineered T cell therapies, mainly chimeric antigen receptor (CAR)-T and T cell receptor (TCR)-T, have become the new frontier of cancer treatment. CAR-T and TCR-T therapies differ in many aspects, including cell persistence and toxicity, leading to different therapeutic outcomes. Both TCR and CAR recognize antigens and trigger T cell mediated antitumor response, but they have distinct molecular structures and signaling properties. TCR represents one of the most complex receptors, while CAR is a single-chain chimera integrating modules from multiple immune receptors. Understanding the mechanisms underlying the strengths and limitations of both systems can pave the way for the development of next-generation T cell therapy. This review synthesizes recent findings on TCR and CAR signaling and highlights the potential strategies of T cell engineering by signaling refinement.
Collapse
Affiliation(s)
- Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Xianming Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Siokis A, Robert PA, Demetriou P, Kvalvaag A, Valvo S, Mayya V, Dustin ML, Meyer-Hermann M. Characterization of mechanisms positioning costimulatory complexes in immune synapses. iScience 2021; 24:103100. [PMID: 34622155 PMCID: PMC8479700 DOI: 10.1016/j.isci.2021.103100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Small immunoglobulin superfamily (sIGSF) adhesion complexes form a corolla of microdomains around an integrin ring and secretory core during immunological synapse (IS) formation. The corolla recruits and retains major costimulatory/checkpoint complexes, such as CD28, making forces that govern corolla formation of particular interest. Here, we investigated the mechanisms underlying molecular reorganization of CD2, an adhesion and costimulatory molecule of the sIGSF family during IS formation. Computer simulations showed passive distal exclusion of CD2 complexes under weak interactions with the ramified F-actin transport network. Attractive forces between CD2 and CD28 complexes relocate CD28 from the IS center to the corolla. Size-based sorting interactions with large glycocalyx components, such as CD45, or short-range CD2 self-attraction successfully explain the corolla 'petals.' This establishes a general simulation framework for complex pattern formation observed in cell-bilayer and cell-cell interfaces, and the suggestion of new therapeutic targets, where boosting or impairing characteristic pattern formation can be pivotal.
Collapse
Affiliation(s)
- Anastasios Siokis
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | - Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | - Philippos Demetriou
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Viveka Mayya
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
41
|
Eriksson AM, Leikfoss IS, Abrahamsen G, Sundvold V, Isom MM, Keshari PK, Rognes T, Landsverk OJB, Bos SD, Harbo HF, Spurkland A, Berge T. Exploring the role of the multiple sclerosis susceptibility gene CLEC16A in T cells. Scand J Immunol 2021; 94:e13050. [PMID: 34643957 DOI: 10.1111/sji.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
C-type lectin-like domain family 16 member A (CLEC16A) is associated with autoimmune disorders, including multiple sclerosis (MS), but its functional relevance is not completely understood. CLEC16A is expressed in several immune cells, where it affects autophagic processes and receptor expression. Recently, we reported that the risk genotype of an MS-associated single nucleotide polymorphism in CLEC16A intron 19 is associated with higher expression of CLEC16A in CD4+ T cells. Here, we show that CLEC16A expression is induced in CD4+ T cells upon T cell activation. By the use of imaging flow cytometry and confocal microscopy, we demonstrate that CLEC16A is located in Rab4a-positive recycling endosomes in Jurkat TAg T cells. CLEC16A knock-down in Jurkat cells resulted in lower cell surface expression of the T cell receptor, however, this did not have a major impact on T cell activation response in vitro in Jurkat nor in human, primary CD4+ T cells.
Collapse
Affiliation(s)
- Anna M Eriksson
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Sørum Leikfoss
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Neuroscience Research Unit, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vibeke Sundvold
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Pankaj K Keshari
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Steffan D Bos
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hanne F Harbo
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Tone Berge
- Neuroscience Research Unit, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
42
|
Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U, Kern F, Schwarz T, Mangold M, Unger C, Dörfler F, Kadler S, Rosowski J, Gürcan K, Uyar-Aydin Z, Frentsch M, Kurth F, Schnatbaum K, Eckey M, Hippenstiel S, Hocke A, Müller MA, Sawitzki B, Miltenyi S, Paul F, Mall MA, Wenschuh H, Voigt S, Drosten C, Lauster R, Lachman N, Sander LE, Corman VM, Röhmel J, Meyer-Arndt L, Thiel A, Giesecke-Thiel C. Cross-reactive CD4 + T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science 2021; 374:eabh1823. [PMID: 34465633 PMCID: PMC10026850 DOI: 10.1126/science.abh1823] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses.
Collapse
Affiliation(s)
- Lucie Loyal
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Larissa Henze
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Beate Kruse
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manuela Dingeldey
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Florian Kern
- JPT Peptide Technologies GmbH, Berlin, Germany
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Tatjana Schwarz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Mangold
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clara Unger
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friederike Dörfler
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Shirin Kadler
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jennifer Rosowski
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Kübrah Gürcan
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Zehra Uyar-Aydin
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Maren Eckey
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A. Müller
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | | | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- Institute for Virology, Universitätsklinikum Essen, Essen, Germany
| | - Christian Drosten
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Roland Lauster
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Nils Lachman
- Institute for Transfusion Medicine, Tissue Typing Laboratory, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M. Corman
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lil Meyer-Arndt
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Corresponding author. (A.T.); (C.G.-T.)
| | - Claudia Giesecke-Thiel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Corresponding author. (A.T.); (C.G.-T.)
| |
Collapse
|
43
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
44
|
Evnouchidou I, Caillens V, Koumantou D, Saveanu L. The role of endocytic trafficking in antigen T Cell Receptor activation. Biomed J 2021; 45:310-320. [PMID: 34592497 PMCID: PMC9250096 DOI: 10.1016/j.bj.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Antigen T cell receptors (TCR) recognize antigenic peptides displayed by the major histocompatibility complex (pMHC) and play a critical role in T cell activation. The levels of TCR complexes at the cell surface, where signaling is initiated, depend on the balance between TCR synthesis, recycling and degradation. Cell surface TCR interaction with pMHC leads to receptor clustering and formation of a tight T cell-APC contact, the immune synapse, from which the activated TCR is internalized. While TCR internalization from the immune synapse has been initially considered to arrest TCR signaling, recent evidence support the hypothesis that the internalized receptor continues to signal from specialized endosomes. Here, we review the molecular mechanisms of TCR endocytosis and recycling, both in steady state and after T cell activation. We then discuss the experimental evidence in favor of endosomal TCR signaling and its possible consequences on T cell activation.
Collapse
Affiliation(s)
- Irini Evnouchidou
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France.
| | - Vivien Caillens
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France
| | - Despoina Koumantou
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France.
| |
Collapse
|
45
|
Ghosh D, Sugimoto H, Lee JY, Qian M. Targeted Mass Spectrometry-Based Approach for the Determination of Intrinsic Internalization Kinetics of Cell-Surface Membrane Protein Targets. Anal Chem 2021; 93:10005-10012. [PMID: 34255494 DOI: 10.1021/acs.analchem.1c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful development of targeted therapeutics aimed at the elimination of diseased cells relies on the target properties and the therapeutics that target them. Currently, target properties have been evaluated through antibody-dependent semiquantitative approaches such as flow cytometry, Western blotting, or microscopy. Since antibodies can alter target properties following binding, antibody-dependent approaches provide at best skewed measurements for target intrinsic properties. To circumvent, here we attempted to develop an antibody-free targeted mass spectrometry-based (ATM) strategy to measure the surface densities and the intrinsic rates (Kint) of CD38 internalization in multiple myeloma cell lines. Using cell-surface biotinylation in conjunction with differential mass tagging to separate inward CD38 molecules from the outbound and nascent ones, the ATM approach revealed diversities in measured CD38 Kint values of 0.239 min-1 S.E. ± 0.076, 0.109 min-1 S.E. ± 0.032, and 0.058 min-1 S.E. ± 0.001 for LP1, NCIH929, and MOLP8 cell lines, respectively. Together with CD38 surface densities, intrinsic Kint values aligned well with the tumor penetration model and supported the outcomes for tumor regression in mouse xenografts upon drug treatment. Additionally, the ATM approach can evaluate molecules with fast Kint as we determined for CTLA4 protein. We believe that the ATM approach has the potential to evaluate diverse cell-surface targets as part of the pharmacological assessment in drug discovery.
Collapse
Affiliation(s)
- Dhimankrishna Ghosh
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| | - Hiroshi Sugimoto
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| | - Janice Y Lee
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| | - Mark Qian
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Éliás S, Schmidt A, Gomez-Cabrero D, Tegnér J. Gene Regulatory Network of Human GM-CSF-Secreting T Helper Cells. J Immunol Res 2021; 2021:8880585. [PMID: 34285924 PMCID: PMC8275380 DOI: 10.1155/2021/8880585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
GM-CSF produced by autoreactive CD4-positive T helper cells is involved in the pathogenesis of autoimmune diseases, such as multiple sclerosis. However, the molecular regulators that establish and maintain the features of GM-CSF-positive CD4 T cells are unknown. In order to identify these regulators, we isolated human GM-CSF-producing CD4 T cells from human peripheral blood by using a cytokine capture assay. We compared these cells to the corresponding GM-CSF-negative fraction, and furthermore, we studied naïve CD4 T cells, memory CD4 T cells, and bulk CD4 T cells from the same individuals as additional control cell populations. As a result, we provide a rich resource of integrated chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) data from these primary human CD4 T cell subsets and we show that the identified signatures are associated with human autoimmune diseases, especially multiple sclerosis. By combining information about mRNA expression, DNA accessibility, and predicted transcription factor binding, we reconstructed directed gene regulatory networks connecting transcription factors to their targets, which comprise putative key regulators of human GM-CSF-positive CD4 T cells as well as memory CD4 T cells. Our results suggest potential therapeutic targets to be investigated in the future in human autoimmune disease.
Collapse
Affiliation(s)
- Szabolcs Éliás
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, UK
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| |
Collapse
|
47
|
Rana J, Perry DJ, Kumar SRP, Muñoz-Melero M, Saboungi R, Brusko TM, Biswas M. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol Ther 2021; 29:2660-2676. [PMID: 33940160 PMCID: PMC8417451 DOI: 10.1016/j.ymthe.2021.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) control immune responses in autoimmune disease, transplantation, and enable antigen-specific tolerance induction in protein-replacement therapies. Tregs can exert a broad array of suppressive functions through their T cell receptor (TCR) in a tissue-directed and antigen-specific manner. This capacity can now be harnessed for tolerance induction by "redirecting" polyclonal Tregs to overcome low inherent precursor frequencies and simultaneously augment suppressive functions. With the use of hemophilia A as a model, we sought to engineer antigen-specific Tregs to suppress antibody formation against the soluble therapeutic protein factor (F)VIII in a major histocompatibility complex (MHC)-independent fashion. Surprisingly, high-affinity chimeric antigen receptor (CAR)-Treg engagement induced a robust effector phenotype that was distinct from the activation signature observed for endogenous thymic Tregs, which resulted in the loss of suppressive activity. Targeted mutations in the CD3ζ or CD28 signaling motifs or interleukin (IL)-10 overexpression were not sufficient to restore tolerance. In contrast, complexing TCR-based signaling with single-chain variable fragment (scFv) recognition to generate TCR fusion construct (TRuC)-Tregs delivered controlled antigen-specific signaling via engagement of the entire TCR complex, thereby directing functional suppression of the FVIII-specific antibody response. These data suggest that cellular therapies employing engineered receptor Tregs will require regulation of activation thresholds to maintain optimal suppressive function.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Rania Saboungi
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
48
|
Greenman R, Pizem Y, Haus-Cohen M, Horev G, Denkberg G, Shen-Orr S, Rubinstein J, Reiter Y. Phenotypic Models of CAR T-Cell Activation Elucidate the Pivotal Regulatory Role of CAR Downmodulation. Mol Cancer Ther 2021; 20:946-957. [PMID: 33649103 DOI: 10.1158/1535-7163.mct-19-1110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Adoptive cell immunotherapy with chimeric antigen receptor (CAR) showed limited potency in solid tumors, despite durable remissions for hematopoietic malignancies. Therefore, an investigation of ways to enhance the efficacy of CARs' antitumor response has been engaged upon. We previously examined the interplay between the biophysical parameters of CAR binding (i.e., affinity, avidity, and antigen density), as regulators of CAR T-cell activity and detected nonmonotonic behaviors of affinity and antigen density and an interrelation between avidity and antigen density. Here, we built an evolving phenotypic model of CAR T-cell regulation, which suggested that receptor downmodulation is a key determinant of CAR T-cell function. We verified this assumption by measuring and manipulating receptor downmodulation and intracellular signaling processes. CAR downmodulation inhibition, via actin polymerization inhibition, but not inhibition of regulatory inhibitory phosphatases, was able to increase CAR T-cell responses. In addition, we documented trogocytosis in CAR T cells that depends on actin polymerization. In summary, our study modeled the parameters that govern CAR T-cell engagement and revealed an underappreciated mechanism of T-cell regulation. These results have a potential to predict and therefore advance the rational design of CAR T cells for adoptive cell treatments.See related article on p. 872.
Collapse
Affiliation(s)
- Raanan Greenman
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Pizem
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Haus-Cohen
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Guy Horev
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Shai Shen-Orr
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jacob Rubinstein
- Faculty of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoram Reiter
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
49
|
HDAC inhibition prevents transgene expression downregulation and loss-of-function in T-cell-receptor-transduced T cells. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:352-363. [PMID: 33614916 PMCID: PMC7878989 DOI: 10.1016/j.omto.2021.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
T cells that are gene-modified with tumor-specific T cell receptors are a promising treatment for metastatic melanoma patients. In a clinical trial, we treated seven metastatic melanoma patients with autologous T cells transduced to express a tyrosinase-reactive T cell receptor (TCR) (TIL 1383I) and a truncated CD34 molecule as a selection marker. We followed transgene expression in the TCR-transduced T cells after infusion and observed that both lentiviral- and retroviral-transduced T cells lost transgene expression over time, so that by 4 weeks post-transfer, few T cells expressed either lentiviral or retroviral transgenes. Transgene expression was reactivated by stimulation with anti-CD3/anti-CD28 beads and cytokines. TCR-transduced T cell lentiviral and retroviral transgene expression was also downregulated in vitro when T cells were cultured without cytokines. Transduced T cells cultured with interleukin (IL)-15 maintained transgene expression. Culturing gene-modified T cells in the presence of histone deacetylase (HDAC) inhibitors maintained transgene expression and functional TCR-transduced T cell responses to tumor. These results implicate epigenetic processes in the loss of transgene expression in lentiviral- and retroviral-transduced T cells.
Collapse
|
50
|
Castro-Sánchez P, Hernández-Pérez S, Aguilar-Sopeña O, Ramírez-Muñoz R, Rodríguez-Perales S, Torres-Ruiz R, Roda-Navarro P. Fast Diffusion Sustains Plasma Membrane Accumulation of Phosphatase of Regenerating Liver-1. Front Cell Dev Biol 2021; 8:585842. [PMID: 33425892 PMCID: PMC7793866 DOI: 10.3389/fcell.2020.585842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that the accumulation of farnesylated phosphatase of regenerating liver-1 (PRL-1) at the plasma membrane is mediated by static electrostatic interactions of a polybasic region with acidic membrane lipids and assisted by oligomerization. Nonetheless, localization at early and recycling endosomes suggests that the recycling compartment might also contribute to its plasma membrane accumulation. Here, we investigated in live cells the dynamics of PRL-1 fused to the green fluorescent protein (GFP-PRL-1). Blocking the secretory pathway and photobleaching techniques suggested that plasma membrane accumulation of PRL-1 was not sustained by recycling endosomes but by a dynamic exchange of diffusible protein pools. Consistent with this idea, fluorescence correlation spectroscopy in cells overexpressing wild type or monomeric mutants of GFP-PRL-1 measured cytosolic and membrane-diffusing pools of protein that were not dependent on oligomerization. Endogenous expression of GFP-PRL-1 by CRISPR/Cas9 genome edition confirmed the existence of fast diffusing cytosolic and membrane pools of protein. We propose that plasma membrane PRL-1 replenishment is independent of the recycling compartment and the oligomerization state and mainly driven by fast diffusion of the cytosolic pool.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sara Hernández-Pérez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rocia Ramírez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|