1
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Prabakar RK, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the phenotypic states of human innate-like T cells: Comparative insights with conventional T cells and mouse models. Cell Rep 2024; 43:114705. [PMID: 39264810 PMCID: PMC11552652 DOI: 10.1016/j.celrep.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity. We explore the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single-cell RNA sequencing (scRNA-seq) and flow cytometry. In human blood, the majority of Tinn cells share an effector program driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type 1/type 17 effector potential. Cross-species analysis uncovers species-specific distinctions, including the absence of type 2 Tinn cells in humans, which implies distinct immune regulatory mechanisms across species.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Joanne Domenico
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Spengler
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rishvanth K Prabakar
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Norman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah V Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
3
|
Lei Z, Yu J, Wu Y, Shen J, Lin S, Xue W, Mao C, Tang R, Sun H, Qi X, Wang X, Xu L, Wei C, Wang X, Chen H, Hao P, Yin W, Zhu J, Li Y, Wu Y, Liu S, Liang H, Chen X, Su C, Zhou S. CD1d protects against hepatocyte apoptosis in non-alcoholic steatohepatitis. J Hepatol 2024; 80:194-208. [PMID: 38438948 DOI: 10.1016/j.jhep.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.
Collapse
Affiliation(s)
- Zhigang Lei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaojiao Yu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Wu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junyao Shen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijie Xue
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxu Mao
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoran Sun
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohong Wang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowei Wang
- Department of Blood Transfusion, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Hao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wen Yin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shouguo Liu
- Center for Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chuan Su
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Sha Zhou
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the Phenotypic States of Human innate-like T Cells: Comparative Insights with Conventional T Cells and Mouse Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570707. [PMID: 38105962 PMCID: PMC10723458 DOI: 10.1101/2023.12.07.570707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity, having the ability to mount rapid responses following activation. In mice, this ability is acquired during thymic development. We explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vδ2+Vγ9+ T cells, share an effector program characterized by the expression of unique chemokine and cytokine receptors, and cytotoxic molecules. This program is driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn cells in humans, which implies distinct immune regulatory mechanisms across species. The study provides insights into the development and functionality of Tinn cells, emphasizing their role in immune responses and their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paul J. Norman
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Hannah V. Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
5
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
7
|
Lin Q, Kuypers M, Liu Z, Copeland JK, Chan D, Robertson SJ, Kontogiannis J, Guttman DS, Banks EK, Philpott DJ, Mallevaey T. Invariant natural killer T cells minimally influence gut microbiota composition in mice. Gut Microbes 2022; 14:2104087. [PMID: 35912530 PMCID: PMC9348128 DOI: 10.1080/19490976.2022.2104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Invariant Natural Killer T (iNKT) cells are unconventional T cells that respond to glycolipid antigens found in microbes in a CD1d-dependent manner. iNKT cells exert innate-like functions and produce copious amounts of cytokines, chemokines and cytotoxic molecules within only minutes of activation. As such, iNKT cells can fuel or dampen inflammation in a context-dependent manner. In addition, iNKT cells provide potent immunity against bacteria, viruses, parasites and fungi. Although microbiota-iNKT cell interactions are not well-characterized, mounting evidence suggests that microbiota colonization early in life impacts iNKT cell homeostasis and functions in disease. In this study, we showed that CD1d-/- and Vα14 Tg mice, which lack and have increased numbers of iNKT cells, respectively, had no significant alterations in gut microbiota composition compared to their littermate controls. Furthermore, specific iNKT cell activation by glycolipid antigens only resulted in a transient and minimal shift in microbiota composition when compared to the natural drift found in our colony. Our findings demonstrate that iNKT cells have little to no influence in regulating commensal bacteria at steady state.Abbreviations: iNKT: invariant Natural Killer T cell; αGC: α-galactosylceramide.
Collapse
Affiliation(s)
- Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, ON, Canada,CONTACT Thierry Mallevaey University of Toronto, Department of Immunology, Medical Sciences Building, Room 7334,1 King’s College Circle, Toronto, OntarioM5S 1A8, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Zhewei Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Donny Chan
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Susan J Robertson
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jean Kontogiannis
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - E. Kate Banks
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, ON, Canada,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Burn OK, Farrand K, Pritchard T, Draper S, Tang CW, Mooney AH, Schmidt AJ, Yang SH, Williams GM, Brimble MA, Kandasamy M, Marshall AJ, Clarke K, Painter GF, Hermans IF, Weinkove R. Glycolipid-peptide conjugate vaccines elicit CD8 + T-cell responses and prevent breast cancer metastasis. Clin Transl Immunology 2022; 11:e1401. [PMID: 35795321 PMCID: PMC9250805 DOI: 10.1002/cti2.1401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
Objectives Metastasis is the principal cause of breast cancer mortality. Vaccines targeting breast cancer antigens have yet to demonstrate clinical efficacy, and there remains an unmet need for safe and effective treatment to reduce the risk of metastasis, particularly for people with triple-negative breast cancer (TNBC). Certain glycolipids can act as vaccine adjuvants by specifically stimulating natural killer T (NKT) cells to provide a universal form of T-cell help. Methods We designed and made a series of conjugate vaccines comprising a prodrug of the NKT cell-activating glycolipid α-galactosylceramide covalently linked to tumor-expressed peptides, and assessed these using E0771- and 4T1-based breast cancer models in vivo. We employed peptides from the model antigen ovalbumin and from clinically relevant breast cancer antigens HER2 and NY-ESO-1. Results Glycolipid-peptide conjugate vaccines that activate NKT cells led to antigen-presenting cell activation, induced inflammatory cytokines, and, compared with peptide alone or admixed peptide and α-galactosylceramide, specifically enhanced CD8+ T-cell responses against tumor-associated peptides. Primary tumor growth was delayed by vaccination in all tumor models. Using 4T1-based cell lines expressing HER2 or NY-ESO-1, a single administration of the relevant conjugate vaccine prevented tumor colonisation of the lung following intravenous inoculation of tumor cells or spontaneous metastasis from breast, respectively. Conclusion Glycolipid-peptide conjugate vaccines that activate NKT cells prevent lung metastasis in breast cancer models and warrant investigation as adjuvant therapies for high-risk breast cancer.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand
| | - Kathryn Farrand
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Tara Pritchard
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Sarah Draper
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Anna H Mooney
- Malaghan Institute of Medical Research Wellington New Zealand
| | | | - Sung H Yang
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | | | - Margaret A Brimble
- School of Chemical Sciences University of Auckland Auckland New Zealand.,School of Biological Sciences University of Auckland Auckland New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine University of Oxford Oxford UK
| | - Andrew J Marshall
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Kate Clarke
- Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| | - Gavin F Painter
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand.,Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| |
Collapse
|
9
|
Prasit KK, Ferrer-Font L, Burn OK, Anderson RJ, Compton BJ, Schmidt AJ, Mayer JU, Chen CJJ, Dasyam N, Ritchie DS, Godfrey DI, Mattarollo SR, Dundar PR, Painter GF, Hermans IF. Intratumoural administration of an NKT cell agonist with CpG promotes NKT cell infiltration associated with an enhanced antitumour response and abscopal effect. Oncoimmunology 2022; 11:2081009. [PMID: 35712122 PMCID: PMC9196710 DOI: 10.1080/2162402x.2022.2081009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intratumoural administration of unmethylated cytosine-phosphate-guanine motifs (CpG) to stimulate toll-like receptor (TLR)-9 has been shown to induce tumour regression in preclinical studies and some efficacy in the clinic. Because activated natural killer T (NKT) cells can cooperate with pattern-recognition via TLRs to improve adaptive immune responses, we assessed the impact of combining a repeated dosing regimen of intratumoural CpG with a single intratumoural dose of the NKT cell agonist α-galactosylceramide (α-GalCer). The combination was superior to CpG alone at inducing regression of established tumours in several murine tumour models, primarily mediated by CD8+ T cells. An antitumour effect on distant untreated tumours (abscopal effect) was reliant on sustained activity of NKT cells and was associated with infiltration of KLRG1+ NKT cells in tumours and draining lymph nodes at both injected and untreated distant sites. Cytometric analysis pointed to increased exposure to type I interferon (IFN) affecting many immune cell types in the tumour and lymphoid organs. Accordingly, antitumour activity was lost in animals in which dendritic cells (DCs) were incapable of signaling through the type I IFN receptor. Studies in conditional ablation models showed that conventional type 1 DCs and plasmacytoid DCs were required for the response. In tumour models where the combined treatment was less effective, the addition of tumour-antigen derived peptide, preferably conjugated to α-GalCer, significantly enhanced the antitumour response. The combination of TLR ligation, NKT cell agonism, and peptide delivery could therefore be adapted to induce responses to both known and unknown antigens.
Collapse
Affiliation(s)
- Kef K Prasit
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Laura Ferrer-Font
- Maurice Wilkins Centre, Auckland, New Zealand.,Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Alfonso J Schmidt
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Chun-Jen J Chen
- Maurice Wilkins Centre, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - David S Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - P Rod Dundar
- Maurice Wilkins Centre, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| |
Collapse
|
10
|
Krovi SH, Loh L, Spengler A, Brunetti T, Gapin L. Current insights in mouse iNKT and MAIT cell development using single cell transcriptomics data. Semin Immunol 2022; 60:101658. [PMID: 36182863 DOI: 10.1016/j.smim.2022.101658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023]
Abstract
Innate T (Tinn) cells are a collection of T cells with important regulatory functions that have a crucial role in immunity towards tumors, bacteria, viruses, and in cell-mediated autoimmunity. In mice, the two main αβ Tinn cell subsets include the invariant NKT (iNKT) cells that recognize glycolipid antigens presented by non-polymorphic CD1d molecules and the mucosal associated invariant T (MAIT) cells that recognize vitamin B metabolites presented by the non-polymorphic MR1 molecules. Due to their ability to promptly secrete large quantities of cytokines either after T cell antigen receptor (TCR) activation or upon exposure to tissue- and antigen-presenting cell-derived cytokines, Tinn cells are thought to act as a bridge between the innate and adaptive immune systems and have the ability to shape the overall immune response. Their swift response reflects the early acquisition of helper effector programs during their development in the thymus, independently of pathogen exposure and prior to taking up residence in peripheral tissues. Several studies recently profiled, in an unbiased manner, the transcriptomes of mouse thymic iNKT and MAIT cells at the single cell level. Based on these data, we re-examine in this review how Tinn cells develop in the mouse thymus and undergo effector differentiation.
Collapse
Affiliation(s)
| | - Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
11
|
Dinh XT, Stanley D, Smith LD, Moreau M, Berzins SP, Gemiarto A, Baxter AG, Jordan MA. Modulation of TCR signalling components occurs prior to positive selection and lineage commitment in iNKT cells. Sci Rep 2021; 11:23650. [PMID: 34880299 PMCID: PMC8655039 DOI: 10.1038/s41598-021-02885-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
iNKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. Their unique functional characteristics are induced by a transcriptional program initiated by positive selection mediated by CD1d expressed by CD4+CD8+ (double positive, DP) thymocytes. Here, using a novel Vα14 TCR transgenic strain bearing greatly expanded numbers of CD24hiCD44loNKT cells, we examined transcriptional events in four immature thymic iNKT cell subsets. A transcriptional regulatory network approach identified transcriptional changes in proximal components of the TCR signalling cascade in DP NKT cells. Subsequently, positive and negative selection, and lineage commitment, occurred at the transition from DP NKT to CD4 NKT. Thus, this study introduces previously unrecognised steps in early NKT cell development, and separates the events associated with modulation of the T cell signalling cascade prior to changes associated with positive selection and lineage commitment.
Collapse
Affiliation(s)
- Xuyen T. Dinh
- grid.1011.10000 0004 0474 1797Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, The Science Place, Building 142, James Cook University, Townsville, QLD 4811 Australia ,Hai Duong Medical Technical University, Hai Duong, Viet Nam
| | - Dragana Stanley
- grid.1023.00000 0001 2193 0854School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702 Australia
| | - Letitia D. Smith
- grid.1011.10000 0004 0474 1797Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, The Science Place, Building 142, James Cook University, Townsville, QLD 4811 Australia
| | - Morgane Moreau
- grid.1011.10000 0004 0474 1797Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, The Science Place, Building 142, James Cook University, Townsville, QLD 4811 Australia
| | - Stuart P. Berzins
- grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC 3350 Australia ,grid.1008.90000 0001 2179 088XPeter Doherty Institute for Immunity and Infection, University of Melbourne, Parkville, VIC 3050 Australia
| | - Adrian Gemiarto
- grid.1011.10000 0004 0474 1797Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, The Science Place, Building 142, James Cook University, Townsville, QLD 4811 Australia
| | - Alan G. Baxter
- grid.1011.10000 0004 0474 1797Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, The Science Place, Building 142, James Cook University, Townsville, QLD 4811 Australia
| | - Margaret A. Jordan
- grid.1011.10000 0004 0474 1797Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, The Science Place, Building 142, James Cook University, Townsville, QLD 4811 Australia
| |
Collapse
|
12
|
Xu Y, Ma J, Luo H, Shi Y, Liu H, Sun A, Xu C, Ji H, Liu X. Chromatin assembly factor 1B critically controls the early development but not function acquisition of invariant natural killer T cells in mice. Eur J Immunol 2021; 51:1698-1714. [PMID: 33949677 DOI: 10.1002/eji.202049074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
CD4+ CD8+ double-positive thymocytes give rise to both conventional TCRαβ+ T cells and invariant natural killer T cells (iNKT cells), but these two kinds of cells display different characteristics. The molecular mechanism underlying iNKT cell lineage development and function acquisition remain to be elucidated. We show that the loss of chromatin assembly factor 1B (CHAF1b) maintains the normal development of conventional TCRαβ+ T cells but severely impairs early development of iNKT cells. This dysregulation is accompanied by the impairment in chromatin activation and gene transcription at Vα14-Jα18 locus. Notably, ectopic expression of a Vα14-Jα18 TCR rescues Chaf1b-deficient iNKT cell developmental defects. Moreover, cytokine secretion and antitumor activity are substantially maintained in Vα14-Jα18 TCR transgene-rescued Chaf1b-deficient iNKT cells. Our study identifies CHAF1b as a critical factor that controls the early development but not function acquisition of iNKT cells via lineage- and stage-specific regulation.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Junwei Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haorui Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, P. R. China
| |
Collapse
|
13
|
Ceramide Synthase 2 Null Mice Are Protected from Ovalbumin-Induced Asthma with Higher T Cell Receptor Signal Strength in CD4+ T Cells. Int J Mol Sci 2021; 22:ijms22052713. [PMID: 33800208 PMCID: PMC7962461 DOI: 10.3390/ijms22052713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.
Collapse
|
14
|
Lei Z, Tang R, Qi Q, Gu P, Wang J, Xu L, Wei C, Pu Y, Qi X, Chen Y, Yu B, Yu Y, Chen X, Zhu J, Li Y, Zhou S, Su C. Hepatocyte CD1d protects against liver immunopathology in mice with schistosomiasis japonica. Immunology 2020; 162:328-338. [PMID: 33283278 DOI: 10.1111/imm.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease with over 250 million people infected worldwide. The main clinically important species Schistosoma mansoni (S. mansoni) and Schistosoma japonicum (S. japonicum) cause inflammatory responses against tissue-trapped eggs, resulting in formation of granulomas mainly in host liver. Persistent granulomatous response results in severe fibrosis in the liver, leading to irreversible impairment of the liver and even death of the host. CD1d, a highly conserved MHC class I-like molecule, is expressed by both haematopoietic and non-haematopoietic cells. CD1d on antigen-presenting cells (APCs) of haematopoietic origin presents pathogen-derived lipid antigens to natural killer T (NKT) cells, which enables them to rapidly produce large amounts of various cytokines and facilitate CD4+ T helper (Th) cell differentiation upon invading pathogens. Noteworthy, hepatocytes of non-haematopoietic origin have recently been shown to be involved in maintaining liver NKT cell homeostasis through a CD1d-dependent manner. However, whether hepatocyte CD1d-dependent regulation of NKT cell homeostasis also modulates CD4+ Th cell responses and liver immunopathology in murine schistosomiasis remains to be addressed. Here, we show in mice that CD1d expression on hepatocytes was decreased dramatically upon S. japonicum infection, accompanied by increased NKT cells, as well as upregulated Th1 and Th2 responses. Overexpression of CD1d in hepatocytes significantly decreased local NKT numbers and cytokines (IFN-γ, IL-4, IL-13), concomitantly with downregulation of both Th1 and Th2 responses and alleviation in pathological damage in livers of S. japonicum-infected mice. These findings highlight the potential of hepatocyte CD1d-targeted therapies for liver immunopathology control in schistosomiasis.
Collapse
Affiliation(s)
- Zhigang Lei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Gu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junling Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Pu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Beibei Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanxiong Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Genardi S, Visvabharathy L, Cao L, Morgun E, Cui Y, Qi C, Chen YH, Gapin L, Berdyshev E, Wang CR. Type II Natural Killer T Cells Contribute to Protection Against Systemic Methicillin-Resistant Staphylococcus aureus Infection. Front Immunol 2020; 11:610010. [PMID: 33312179 PMCID: PMC7708336 DOI: 10.3389/fimmu.2020.610010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (SA) bacteremia is responsible for over 10,000 deaths in the hospital setting each year. Both conventional CD4+ T cells and γδ T cells play protective roles in SA infection through secretion of IFN-γ and IL-17. However, the role of other unconventional T cells in SA infection is largely unknown. Natural killer T (NKT) cells, a subset of innate-like T cells, are activated rapidly in response to a wide range of self and microbial lipid antigens presented by MHC I-like molecule CD1d. NKT cells are divided into two groups, invariant NKT (iNKT) and type II NKT cells, based on TCR usage. Using mice lacking either iNKT cells or both types of NKT cells, we show that both NKT cell subsets are activated after systemic SA infection and produce IFN-γ in response to SA antigen, however type II NKT cells are sufficient to control bacterial burden and inflammatory infiltrate in infected organs. This protective capacity was specific for NKT cells, as mice lacking mucosal associated invariant T (MAIT) cells, another innate-like T cell subset, had no increased susceptibility to SA systemic infection. We identify polar lipid species from SA that induce IFN-γ production from type II NKT cells, which requires both CD1d-TCR engagement and IL-12 production by antigen presenting cells. We also demonstrate that a population of T cells enriched for type II NKT cells are increased in PBMC of SA bacteremic patients compared to healthy controls. Therefore, type II NKT cells perform effector functions that enhance control of SA infection prior to conventional T cell activation and recognize SA-derived lipid antigens. As CD1d is highly conserved in humans, these CD1d-restricted SA lipid antigens could be used in the design of next generation SA vaccines targeting cell-mediated immunity.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Liang Cao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eva Morgun
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yongyong Cui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
16
|
Biswas TK, VanderLaan PA, Que X, Gonen A, Krishack P, Binder CJ, Witztum JL, Getz GS, Reardon CA. CD1d Selectively Down Regulates the Expression of the Oxidized Phospholipid-Specific E06 IgM Natural Antibody in Ldlr-/- Mice. Antibodies (Basel) 2020; 9:antib9030030. [PMID: 32635160 PMCID: PMC7551411 DOI: 10.3390/antib9030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Natural antibodies (NAbs) are important regulators of tissue homeostasis and inflammation and are thought to have diverse protective roles in a variety of pathological states. E06 is a T15 idiotype IgM NAb exclusively produced by B-1 cells, which recognizes the phosphocholine (PC) head group in oxidized phospholipids on the surface of apoptotic cells and in oxidized LDL (OxLDL), and the PC present on the cell wall of Streptococcus pneumoniae. Here we report that titers of the E06 NAb are selectively increased several-fold in Cd1d-deficient mice, whereas total IgM and IgM antibodies recognizing other oxidation specific epitopes such as in malondialdehyde-modified LDL (MDA-LDL) and OxLDL were not increased. The high titers of E06 in Cd1d-deficient mice are not due to a global increase in IgM-secreting B-1 cells, but they are specifically due to an expansion of E06-secreting splenic B-1 cells. Thus, CD1d-mediated regulation appeared to be suppressive in nature and specific for E06 IgM-secreting cells. The CD1d-mediated regulation of the E06 NAb generation is a novel mechanism that regulates the production of this specific oxidation epitope recognizing NAb.
Collapse
Affiliation(s)
- Tapan K. Biswas
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
| | - Paul A. VanderLaan
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (X.Q.); (A.G.); (J.L.W.)
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (X.Q.); (A.G.); (J.L.W.)
| | - Paulette Krishack
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria;
| | - Joseph L. Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (X.Q.); (A.G.); (J.L.W.)
| | - Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
- Correspondence: (G.S.G.); (C.A.R.)
| | - Catherine A. Reardon
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (T.K.B.); (P.A.V.); (P.K.)
- Correspondence: (G.S.G.); (C.A.R.)
| |
Collapse
|
17
|
Lo HC, Xu Z, Kim IS, Pingel B, Aguirre S, Kodali S, Liu J, Zhang W, Muscarella AM, Hein SM, Krupnick AS, Neilson JR, Paust S, Rosen JM, Wang H, Zhang XHF. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. NATURE CANCER 2020; 1:709-722. [PMID: 35122036 DOI: 10.1038/s43018-020-0068-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Polyclonal metastases frequently arise from clusters of circulating tumor cells (CTCs). CTC clusters metastasize better than single CTCs, but the underlying molecular mechanisms are poorly understood. Here, we show that polyclonal metastatic seeds exhibit higher resistance to natural killer (NK) cell killing. Using breast cancer models, we observed higher proportions of polyclonal lung metastasis in immunocompetent mice compared with mice lacking NK cells. Depleting NK cells selectively increased monoclonal but not polyclonal metastases, suggesting that CTC clusters are less sensitive to NK-mediated suppression. Transcriptional analyses revealed that clusters have elevated expression of cell-cell adhesion and epithelial genes, which is associated with decreased expression of NK cell activating ligands. Furthermore, perturbing tumor cell epithelial status altered NK ligand expression and sensitivity to NK-mediated killing. Collectively, our findings show that NK cells can determine the fate of CTCs of different epithelial and mesenchymal states, and impact metastatic clonal evolution by favoring polyclonal seeding.
Collapse
Affiliation(s)
- Hin Ching Lo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ik Sun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Bradley Pingel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Srikanth Kodali
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Aaron M Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sarah M Hein
- Courier Therapeutics, Houston, TX, USA
- Texas Medical Center Innovation Institute, Houston, TX, USA
| | - Alexander S Krupnick
- Department of Surgery, Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Joel R Neilson
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Visvabharathy L, Genardi S, Cao L, He Y, Alonzo F, Berdyshev E, Wang CR. Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog 2020; 16:e1008443. [PMID: 32343740 PMCID: PMC7188215 DOI: 10.1371/journal.ppat.1008443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, United States of America
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| |
Collapse
|
19
|
Abstract
NKT cells are a small but influential member of the T cell family, recognizing lipids presented by the non-classical MHC-like molecule CD1d rather than peptides presented by classical MHC molecules. They bridge between the innate and adaptive immune systems, serving as rapid responders but also allowing the T cell immune system to recognize lipid antigens, for example derived from tumors or bacteria. They also serve as potent regulatory cells, controlling other immune responses. Type I NKT cells use a semi-invariant T cell receptor (TCR) whereas type II use diverse TCRs. Most often, type I NKT cells promote tumor immunity whereas type II tend to suppress it, and the two subtypes crossregulate each other, forming an immunoregulatory axis. Lack of tools to study these important cells has limited the understanding of these, but newer tools have allowed great advances, especially in mouse models. These range from transgenic and knock-out mice to CD1d tetramers carrying ligands for type I or II NKT cells, to antibodies and NKT cell hybridomas. Here we describe these complementary tools and approaches and their use to study NKT cells and their role in the immunology and immunotherapy of cancer.
Collapse
Affiliation(s)
- Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Purevdorj B Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
VanderLaan PA, Reardon CA, Cabana VG, Wang CR, Getz GS. Invariant Natural Killer T-Cells and Total CD1d Restricted Cells Differentially Influence Lipid Metabolism and Atherosclerosis in Low Density Receptor Deficient Mice. Int J Mol Sci 2019; 20:ijms20184566. [PMID: 31540125 PMCID: PMC6770011 DOI: 10.3390/ijms20184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct subset of lymphocytes that bridge the innate and adaptive immune response and can be divided into type I invariant NKT cells (iNKT) and type II NKT cells. The objective of this study is to examine the effects of NKT cell on lipid metabolism and the initiation and progression of atherosclerosis in LDL receptor deficient (LDLR−/−) mice. Mice were fed an atherogenic diet for 4 or 8 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured. The selective absence of iNKT cells in Jα18−/−LDLR−/− mice led to an increase in plasma cholesterol levels in female mice. Transgenic Vα14tg/LDLR−/− mice with elevated numbers of iNKT cells had increased late atherosclerosis of the innominate artery, though absence of either iNKT cells or all NKT cells and other CD1d expressing cells had varying effects on atherosclerotic lesion burden in the ascending aortic arch and aortic root. These studies not only highlight the potential modulatory role played by NKT cells in atherosclerosis and lipid metabolism, but also raise the possibility that divergent roles may be played by iNKT and CD1d restricted cells such as type II NKT cells or other CD1d expressing cells.
Collapse
Affiliation(s)
- Paul A VanderLaan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, 633 Clark St, Evanston, IL 60208, USA.
| | - Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Singh AK, Rhost S, Löfbom L, Cardell SL. Defining a novel subset of CD1d-dependent type II natural killer T cells using natural killer cell-associated markers. Scand J Immunol 2019; 90:e12794. [PMID: 31141185 PMCID: PMC6851763 DOI: 10.1111/sji.12794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
Natural killer T (NKT) cells are αβ T cell receptor (TCR) expressing innate‐like T cells that display natural killer (NK) cell markers. Based on TCR characteristics, they are divided into two groups restricted to the MHC class I‐like molecule CD1d. Type I NKT cells, most extensively studied, are identified by a semi‐invariant Vα14‐Jα18 (mouse, Vα24‐Jα18 in humans) TCR reactive to the prototypic ligand α‐galactosylceramide presented on CD1d. In contrast, type II NKT cells display diverse TCR reacting to different CD1d‐presented ligands. There are no reagents that identify all type II NKT cells, limiting their exploration. Here, we searched for novel type II NKT cells by comparing Jα18−/−MHCII−/− mice that harbour type II but not type I NKT cells, and CD1d−/−MHCII−/− mice, lacking all NKT cells. We identified significantly larger populations of CD4+ and CD4−CD8− (double negative, DN) TCRβ+ cells expressing NKG2D or NKG2A/C/E in Jα18−/−MHCII−/− mice compared with CD1d−/−MHCII−/− mice, suggesting that 30%‐50% of these cells were type II NKT cells. They expressed CD122, NK1.1, CXCR3 and intermediate/low levels of CD45RB. Further, the CD4+ subset was CD69+, while the DN cells were CD49b+ and CD62L+. Both subsets expressed the NKT cell‐associated promyelocytic leukaemia zinc finger (PLZF) transcription factor and Tbet, while fewer cells expressed RORγt. NKG2D+ CD4+ and DN populations were producers of IFN‐γ, but rarely IL‐4 and IL‐17. Taken together, we identify a novel subset of primary CD4+ and DN type II NKT cells that expresses NKG2 receptors have typical NKT cell phenotypes and a TH1‐like cytokine production.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sara Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Hyde EJ, Wakelin KA, Daniels NJ, Ghosh S, Ronchese F. Similar immune mechanisms control experimental airway eosinophilia elicited by different allergens and treatment protocols. BMC Immunol 2019; 20:18. [PMID: 31164097 PMCID: PMC6549380 DOI: 10.1186/s12865-019-0295-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background Mouse models have been extremely valuable in identifying the fundamental mechanisms of airway inflammation that underlie human allergic asthma. Several models are commonly used, employing different methods and routes of sensitisation, and allergens of varying clinical relevance. Although all models elicit similar hallmarks of allergic airway inflammation, including airway eosinophilia, goblet cell hyperplasia and cellular infiltration in lung, it is not established whether they do so by involving the same mechanisms. Results We compared the impact of inactivation of various innate or adaptive immune genes, as well as sex, in different models of allergic airway inflammation in mice of C57BL/6 background. Chicken ovalbumin (OVA) and house dust mite (HDM) were used as allergens in settings of single or multiple intranasal (i.n.) challenges, after sensitisation in adjuvant or in adjuvant-free conditions. Eosinophil numbers in the broncho-alveolar lavage and lung histopathology were assessed in each model. We found that Major Histocompatibility Complex Class II (MHCII) deficiency and lack of conventional CD4+ T cells had the most profound effect, essentially ablating airway eosinophilia and goblet cell hyperplasia in all models. In contrast, Thymic stromal lymphopoietin receptor (TSLPR) deficiency greatly reduced eosinophilia but had a variable effect on goblet cells. CD1d deficiency and lack of Natural Killer T (NKT) cells moderately impaired inflammation in OVA models but not HDM, whereas sex affected the response to HDM but not OVA. Lastly, defective Toll-like receptor (TLR)4 expression had only a relatively modest overall impact on inflammation. Conclusion All the models studied were comparably dependent on adaptive CD4+ T cell responses and TSLP. In contrast, sex, NKT cells and TLR4 appeared to play subtler and more variable roles that were dependent on the type of allergen and mode of immunization and challenge. These results are consistent with clinical data suggesting a key role of CD4+ T cells and TSLP in patients with allergic asthma. Electronic supplementary material The online version of this article (10.1186/s12865-019-0295-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn J Hyde
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Kirsty A Wakelin
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Naomi J Daniels
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Sayani Ghosh
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6021, New Zealand.
| |
Collapse
|
23
|
Abstract
Natural killer T (NKT) cells are a unique subset of T lymphocytes with the expression of T cell receptor (TCR) and NK cell lineage receptors. These cells can rapidly release large quantities of cytokines and function as a bridge between innate and adaptive immunity. To date, multiple reports have investigated the role of NKT cells under various pathological conditions, such as cancer, autoimmune disease, and infection. Knowledge about NKT cells in neurological diseases is increasing, albeit limited. Here, we review evidence for the involvement of NKT cells in neurological diseases, and discuss immunotherapeutic potential and future study goals. As the development and function of NKT cells become increasingly well understood, the next few years should yield many new insights into NKT cell function, and mechanistic regulation in neurological disorders.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Dashtsoodol N, Bortoluzzi S, Schmidt-Supprian M. T Cell Receptor Expression Timing and Signal Strength in the Functional Differentiation of Invariant Natural Killer T Cells. Front Immunol 2019; 10:841. [PMID: 31080448 PMCID: PMC6497757 DOI: 10.3389/fimmu.2019.00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The CD1d-restricted Vα14 invariant NKT (iNKT) cell lineage in mice (Vα24 in humans) represents an evolutionary conserved innate-like immune cell type that recognizes glycolipid antigens. Because of their unique ability to promptly secrete copious amounts of both pro-inflammatory and anti-inflammatory cytokines, typically produced by different T helper cell types, iNKT cells are implicated in the regulation of various pathologic conditions such as infection, allergy, autoimmune disease, maintenance of transplantation tolerance, and cancer. This striking multifaceted role in immune regulation is correlated with the presence of multiple functionally distinct iNKT cell subsets that can be distinguished based on the expression of characteristic surface markers and transcription factors. However, to date it, remains largely unresolved how this puzzling diversity of iNKT cell functional subsets emerges and what factors dictate the type of effector cell differentiation during the thymic differentiation considering the mono-specific nature of their T cell receptor (TCR) and their selecting molecule CD1d. Here, we summarize recent findings focusing on the role of TCR-mediated signaling and discuss possible mechanisms that may influence the sub-lineage choice of iNKT cells.
Collapse
Affiliation(s)
- Nyambayar Dashtsoodol
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany.,Department of Microbiology and Immunology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sabrina Bortoluzzi
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| | - Marc Schmidt-Supprian
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| |
Collapse
|
25
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
26
|
Cruz Tleugabulova M, Zhao M, Lau I, Kuypers M, Wirianto C, Umaña JM, Lin Q, Kronenberg M, Mallevaey T. The Protein Phosphatase Shp1 Regulates Invariant NKT Cell Effector Differentiation Independently of TCR and Slam Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 202:2276-2286. [PMID: 30796181 DOI: 10.4049/jimmunol.1800844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Invariant NKT (iNKT) cells are innate lipid-reactive T cells that develop and differentiate in the thymus into iNKT1/2/17 subsets, akin to TH1/2/17 conventional CD4 T cell subsets. The factors driving the central priming of iNKT cells remain obscure, although strong/prolonged TCR signals appear to favor iNKT2 cell development. The Src homology 2 domain-containing phosphatase 1 (Shp1) is a protein tyrosine phosphatase that has been identified as a negative regulator of TCR signaling. In this study, we found that mice with a T cell-specific deletion of Shp1 had normal iNKT cell numbers and peripheral distribution. However, iNKT cell differentiation was biased toward the iNKT2/17 subsets in the thymus but not in peripheral tissues. Shp1-deficient iNKT cells were also functionally biased toward the production of TH2 cytokines, such as IL-4 and IL-13. Surprisingly, we found no evidence that Shp1 regulates the TCR and Slamf6 signaling cascades, which have been suggested to promote iNKT2 differentiation. Rather, Shp1 dampened iNKT cell proliferation in response to IL-2, IL-7, and IL-15 but not following TCR engagement. Our findings suggest that Shp1 controls iNKT cell effector differentiation independently of positive selection through the modulation of cytokine responsiveness.
Collapse
Affiliation(s)
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Irene Lau
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Clarissa Wirianto
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Juan Mauricio Umaña
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037; and
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
27
|
Tripathi P, Sedimbi SK, Singh AK, Löfbom L, Issazadeh-Navikas S, Weiss S, Förster I, Karlsson MCI, Yrlid U, Kadri N, Cardell SL. Innate and adaptive stimulation of murine diverse NKT cells result in distinct cellular responses. Eur J Immunol 2018; 49:443-453. [PMID: 30427069 PMCID: PMC6587840 DOI: 10.1002/eji.201847647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα‐chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll‐like receptor (TLR) ligand activation of TCR‐transgenic murine dNKT cells. IFN‐γ production by dNKT cells required dendritic cells (DC), cell‐to‐cell contact and presence of TLR ligands. TLR‐stimulated DC activated dNKT cells to secrete IFN‐γ in a CD1d‐, CD80/86‐ and type I IFN‐independent manner. In contrast, a requirement for IL‐12p40, and a TLR ligand‐selective dependence on IL‐18 or IL‐15 was observed. TLR ligand/DC stimulation provoked early secretion of pro‐inflammatory cytokines by both CD62L+ and CD62L− dNKT cells. However, proliferation was limited. In contrast, TCR/co‐receptor‐mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L− dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co‐receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Saikiran K Sedimbi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, Copenhagen, Denmark
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nadir Kadri
- Center of Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Yang G, Driver JP, Van Kaer L. The Role of Autophagy in iNKT Cell Development. Front Immunol 2018; 9:2653. [PMID: 30487800 PMCID: PMC6246678 DOI: 10.3389/fimmu.2018.02653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T cells that express an invariant T cell receptor (TCR) α-chain and recognize self and foreign glycolipid antigens. They can rapidly respond to agonist activation and stimulate an extensive array of immune responses. Thymic development and function of iNKT cells are regulated by many different cellular processes, including autophagy, a self-degradation mechanism. In this mini review, we discuss the current understanding of how autophagy regulates iNKT cell development and effector lineage differentiation. Importantly, we propose that iNKT cell development is tightly controlled by metabolic reprogramming.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
29
|
Chen Q, Guo X, Deng N, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Nie H. α-galactosylceramide generates lung regulatory T cells through the activated natural killer T cells in mice. J Cell Mol Med 2018; 23:1072-1085. [PMID: 30421497 PMCID: PMC6349240 DOI: 10.1111/jcmm.14008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Our previous study showed that intraperitoneal injection of α-galactosylceramide (α-GalCer) has the ability to activate lung iNKT cells, but α-GalCer-activated iNKT cells do not result in airway inflammation in wild-type (WT) mice. Many studies showed that iNKT cells had the capacity to induce Treg cells, which gave rise to peripheral tolerance. Therefore, we examined the influence of intraperitoneal administration of α-GalCer on the expansion and suppressive activity of lung Treg cells using iNKT cell-knockout mice and co-culture experiments in vitro. We also compared airway inflammation and airway hyperresponsiveness (AHR) after α-GalCer administration in specific anti-CD25 mAb-treated mice. Our data showed that intraperitoneal injection of α-GalCer could promote the expansion of lung Treg cells in WT mice, but not in iNKT cell-knockout mice. However, α-GalCer administration could not boost suppressive activity of Treg cells in WT mice and iNKT cell-knockout mice. Interestingly, functional inactivation of Treg cells could induce airway inflammation and AHR in WT mice treated with α-GalCer. Furthermore, α-GalCer administration could enhance iNKT cells to secrete IL-2, and neutralization of IL-2 reduced the expansion of Treg cells in vivo and in vitro. Thus, intraperitoneal administration of α-GalCer can induce the generation of lung Treg cells in mice through the release of IL-2 by the activated iNKT cells.
Collapse
Affiliation(s)
- Qianhui Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuxue Guo
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nishan Deng
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Liu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ailing Wang
- Nursing Department, Wuhan University School of Health Sciences, Wuhan, China
| | - Ruiyun Li
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Huang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuhong Ding
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongying Yu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Suping Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanxiang Nie
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Garner LC, Klenerman P, Provine NM. Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1478. [PMID: 30013556 PMCID: PMC6036249 DOI: 10.3389/fimmu.2018.01478] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative.
Collapse
Affiliation(s)
- Lucy C. Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Krovi SH, Gapin L. Invariant Natural Killer T Cell Subsets-More Than Just Developmental Intermediates. Front Immunol 2018; 9:1393. [PMID: 29973936 PMCID: PMC6019445 DOI: 10.3389/fimmu.2018.01393] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a CD1d-restricted T cell population that can respond to lipid antigenic stimulation within minutes by secreting a wide variety of cytokines. This broad functional scope has placed iNKT cells at the frontlines of many kinds of immune responses. Although the diverse functional capacities of iNKT cells have long been acknowledged, only recently have distinct iNKT cell subsets, each with a marked functional predisposition, been appreciated. Furthermore, the subsets can frequently occupy distinct niches in different tissues and sometimes establish long-term tissue residency where they can impact homeostasis and respond quickly when they sense perturbations. In this review, we discuss the developmental origins of the iNKT cell subsets, their localization patterns, and detail what is known about how different subsets specifically influence their surroundings in conditions of steady and diseased states.
Collapse
Affiliation(s)
- S. Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
32
|
Ren Y, Sekine-Kondo E, Tateyama M, Kasetthat T, Wongratanacheewin S, Watarai H. New Genetically Manipulated Mice Provide Insights Into the Development and Physiological Functions of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1294. [PMID: 29963043 PMCID: PMC6010523 DOI: 10.3389/fimmu.2018.01294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell subset that exhibits characteristics of both innate immune cells and T cells. They express Vα14-Jα18 (Trav11-Traj18) as an invariant chain of the T cell receptor (TCR) and are restricted to the MHC class I-like monomorphic antigen presenting molecule CD1d. iNKT cells are known as immune regulators that bridge the innate and acquired immune systems by rapid and massive production of a wide range of cytokines, which could enable them to participate in immune responses during various disease states. Thus, Traj18-deficient mice, Cd1d-deficient mice, or iNKT cell-overexpressing mice such as iNKT TCRα transgenic mice and iNKT cell cloned mice which contain a Vα14-Jα18 rearrangement in the TCRα locus are useful experimental models for the analysis of iNKT cells in vivo and in vitro. In this review, we describe the pros and cons of the various available genetically manipulated mice and summarize the insights gained from their study, including the possible roles of iNKT cells in obesity and diabetes.
Collapse
Affiliation(s)
- Yue Ren
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Neurology, The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Etsuko Sekine-Kondo
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Midori Tateyama
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Thitinan Kasetthat
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Satoh M, Iwabuchi K. Role of Natural Killer T Cells in the Development of Obesity and Insulin Resistance: Insights From Recent Progress. Front Immunol 2018; 9:1314. [PMID: 29942311 PMCID: PMC6004523 DOI: 10.3389/fimmu.2018.01314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Natural killer T (NKT) cells play important roles in adipose tissue inflammation, and thus influence the development of diet-induced obesity and insulin resistance. The interactions between cluster of differentiation (CD)1d and NKT T cell receptor are thought to be critical in this process, as demonstrated in two NKT cell-deficient mouse models-systemic CD1d gene knockout (KO) and prototypic Jα18 KO mice. The latter lacks some repertoires besides invariant (i)NKT cells due to manipulation of the Jα18 gene segment; therefore, the role of iNKT vs. variant NKT cells must be reinterpreted considering the availability of new Jα18 KO mice. NKT cells have varied roles in the development of obesity; indeed, studies have reported contradictory results depending on the mouse model, diet, and rearing conditions, all of which could affect the microbiome. In this mini-review, we discuss these points considering recent findings from our laboratory and others as well as the role of NKT cells in the development of obesity and insulin resistance based on data obtained from studies on conditional CD1d1 KO and new Jα18 KO mice generated through gene editing.
Collapse
Affiliation(s)
- Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
34
|
Oleinika K, Rosser EC, Matei DE, Nistala K, Bosma A, Drozdov I, Mauri C. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun 2018; 9:684. [PMID: 29449556 PMCID: PMC5814456 DOI: 10.1038/s41467-018-02911-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Regulatory B cells (Breg) express high levels of CD1d that presents lipid antigens to invariant natural killer T (iNKT) cells. The function of CD1d in Breg biology and iNKT cell activity during inflammation remains unclear. Here we show, using chimeric mice, cell depletion and adoptive cell transfer, that CD1d-lipid presentation by Bregs induces iNKT cells to secrete interferon (IFN)-γ to contribute, partially, to the downregulation of T helper (Th)1 and Th17-adaptive immune responses and ameliorate experimental arthritis. Mice lacking CD1d-expressing B cells develop exacerbated disease compared to wild-type mice, and fail to respond to treatment with the prototypical iNKT cell agonist α-galactosylceramide. The absence of lipid presentation by B cells alters iNKT cell activation with disruption of metabolism regulation and cytokine responses. Thus, we identify a mechanism by which Bregs restrain excessive inflammation via lipid presentation.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes, Regulatory/immunology
- Cells, Cultured
- Galactosylceramides/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- K Oleinika
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK, UK
| | - E C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - D E Matei
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - K Nistala
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - A Bosma
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | | | - C Mauri
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
35
|
Differing roles of CD1d2 and CD1d1 proteins in type I natural killer T cell development and function. Proc Natl Acad Sci U S A 2018; 115:E1204-E1213. [PMID: 29351991 DOI: 10.1073/pnas.1716669115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MHC class I-like CD1 molecules have evolved to present lipid-based antigens to T cells. Differences in the antigen-binding clefts of the CD1 family members determine the conformation and size of the lipids that are presented, although the factors that shape CD1 diversity remain unclear. In mice, two homologous genes, CD1D1 and CD1D2, encode the CD1d protein, which is essential to the development and function of natural killer T (NKT) cells. However, it remains unclear whether both CD1d isoforms are equivalent in their antigen presentation capacity and functions. Here, we report that CD1d2 molecules are expressed in the thymus of some mouse strains, where they select functional type I NKT cells. Intriguingly, the T cell antigen receptor repertoire and phenotype of CD1d2-selected type I NKT cells in CD1D1-/- mice differed from CD1d1-selected type I NKT cells. The structures of CD1d2 in complex with endogenous lipids and a truncated acyl-chain analog of α-galactosylceramide revealed that its A'-pocket was restricted in size compared with CD1d1. Accordingly, CD1d2 molecules could not present glycolipid antigens with long acyl chains efficiently, favoring the presentation of short acyl chain antigens. These results indicate that the two CD1d molecules present different sets of self-antigen(s) in the mouse thymus, thereby impacting the development of invariant NKT cells.
Collapse
|
36
|
Bennstein SB. Unraveling Natural Killer T-Cells Development. Front Immunol 2018; 8:1950. [PMID: 29375573 PMCID: PMC5767218 DOI: 10.3389/fimmu.2017.01950] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer T-cells are a subset of innate-like T-cells with the ability to bridge innate and adaptive immunity. There is great interest in harnessing these cells to improve tumor therapy; however, greater understanding of invariant NKT (iNKT) cell biology is needed. The first step is to learn more about NKT development within the thymus. Recent studies suggest lineage separation of murine iNKT cells into iNKT1, iNKT2, and iNKT17 cells instead of shared developmental stages. This review will focus on these new studies and will discuss the evidence for lineage separation in contrast to shared developmental stages. The author will also highlight the classifications of murine iNKT cells according to identified transcription factors and cytokine production, and will discuss transcriptional and posttranscriptional regulations, and the role of mammalian target of rapamycin. Finally, the importance of these findings for human cancer therapy will be briefly discussed.
Collapse
Affiliation(s)
- Sabrina Bianca Bennstein
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective. Front Immunol 2017; 8:1858. [PMID: 29312339 PMCID: PMC5743650 DOI: 10.3389/fimmu.2017.01858] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
38
|
McKnight CG, Morris SC, Perkins C, Zhu Z, Hildeman DA, Bendelac A, Finkelman FD. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma. PLoS One 2017; 12:e0188221. [PMID: 29182669 PMCID: PMC5705134 DOI: 10.1371/journal.pone.0188221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD). Because we find 2–3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT) mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb) to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.
Collapse
Affiliation(s)
- Christopher G. McKnight
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Suzanne C. Morris
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Charles Perkins
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| | - Zhenqi Zhu
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| | - Albert Bendelac
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Fred D. Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
39
|
Anderson RJ, Li J, Kedzierski L, Compton BJ, Hayman CM, Osmond TL, Tang CW, Farrand KJ, Koay HF, Almeida CFDSSE, Holz LR, Williams GM, Brimble MA, Wang Z, Koutsakos M, Kedzierska K, Godfrey DI, Hermans IF, Turner SJ, Painter GF. Augmenting Influenza-Specific T Cell Memory Generation with a Natural Killer T Cell-Dependent Glycolipid-Peptide Vaccine. ACS Chem Biol 2017; 12:2898-2905. [PMID: 29043774 DOI: 10.1021/acschembio.7b00845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.
Collapse
Affiliation(s)
- Regan J. Anderson
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
| | - Jasmine Li
- Department
of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lukasz Kedzierski
- Department
of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin J. Compton
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
| | - Colin M. Hayman
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
| | - Taryn L. Osmond
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
| | - Ching-wen Tang
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
| | - Kathryn J. Farrand
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
| | - Hui-Fern Koay
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
- Australian
Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catarina Filipa Dos Santos Sa E. Almeida
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
- Australian
Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lauren R. Holz
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Geoffrey M. Williams
- School
of Biological Sciences, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
| | - Margaret A Brimble
- School
of Biological Sciences, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
| | - Zhongfang Wang
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Marios Koutsakos
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Katherine Kedzierska
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Dale I. Godfrey
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
- Australian
Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
- Avalia Immunotherapies Limited, Gracefield Innovation
Quarter, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
| | - Stephen J. Turner
- Department
of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Gavin F. Painter
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
- Avalia Immunotherapies Limited, Gracefield Innovation
Quarter, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
| |
Collapse
|
40
|
Kumar A, Gordy LE, Bezbradica JS, Stanic AK, Hill TM, Boothby MR, Van Kaer L, Joyce S. NF-κB Protects NKT Cells from Tumor Necrosis Factor Receptor 1-induced Death. Sci Rep 2017; 7:15594. [PMID: 29142275 PMCID: PMC5688132 DOI: 10.1038/s41598-017-15461-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-xL-coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Laura E Gordy
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Aleksandar K Stanic
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M Hill
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA.
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
41
|
Field CS, Hunn MK, Ferguson PM, Ruedl C, Ancelet LR, Hermans IF. Blocking CTLA-4 while priming with a whole cell vaccine reshapes the oligoclonal T cell infiltrate and eradicates tumors in an orthotopic glioma model. Oncoimmunology 2017; 7:e1376154. [PMID: 29296535 DOI: 10.1080/2162402x.2017.1376154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Vaccine-mediated cancer treatment is unlikely to induce long-term survival unless suppressive mechanisms are overcome. Given the success of antibody-mediated immune checkpoint blockade in relieving regulation of endogenous anti-tumor T cell responses in tumor-burdened hosts, we investigated whether checkpoint blockade could improve the efficacy of responses induced with a whole tumor-cell vaccine. We show that administration of a single dose of blocking antibody was sufficient to significantly enhance antitumor activity of the vaccine, inducing complete radiological regression of established intracranial tumors. The antibody or vaccine alone were ineffective in this setting. The antibody had to be administered before, or close to, vaccine administration, suggesting CTLA-4 blockade had an impact on early priming events. The combined treatment resulted in enhanced trapping of leukocytes in the lymphoid tissues, including T cells that had undergone significant proliferation. There were no obvious changes in the stimulatory function of antigen-presenting cells or the number and function of regulatory T cells, suggesting T cells were the targets of the checkpoint blockade. While tumors regressing under combined treatment were highly infiltrated with a variety of leukocytes, tumor eradication was dependent on CD4+ T cells. Analysis of the TCR repertoire showed that the addition of anti-CTLA-4 at priming reshaped the repertoire of tumor infiltrating T cells. In particular, the oligoclonal populations became greater in magnitude and more diverse in specificity. Using anti-CTLA-4 in a restricted way to promote the priming phase of an anti-cancer vaccine may offer a useful way of harnessing clinical benefit from this powerful agent.
Collapse
Affiliation(s)
- Cameron S Field
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Martin K Hunn
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia.,Capital and Coast District Health Board, Wellington, New Zealand
| | - Peter M Ferguson
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lindsay R Ancelet
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| |
Collapse
|
42
|
Vasanthakumar A, Xu D, Lun AT, Kueh AJ, van Gisbergen KP, Iannarella N, Li X, Yu L, Wang D, Williams BR, Lee SC, Majewski IJ, Godfrey DI, Smyth GK, Alexander WS, Herold MJ, Kallies A, Nutt SL, Allan RS. A non-canonical function of Ezh2 preserves immune homeostasis. EMBO Rep 2017; 18:619-631. [PMID: 28223321 DOI: 10.15252/embr.201643237] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 12/22/2022] Open
Abstract
Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis. T-cell-specific depletion of Ezh2 induces a pronounced expansion of natural killer T (NKT) cells, although Ezh2-deficient T cells maintain normal levels of H3K27me3. In contrast, removal of Suz12 or Eed destabilizes canonical PRC2 function and ablates NKT cell development completely. We further show that Ezh2 directly methylates the NKT cell lineage defining transcription factor PLZF, leading to its ubiquitination and subsequent degradation. Sustained PLZF expression in Ezh2-deficient mice is associated with the expansion of a subset of NKT cells that cause immune perturbation. Taken together, we have identified a chromatin-independent function of Ezh2 that impacts on the development of the immune system.
Collapse
Affiliation(s)
- Ajithkumar Vasanthakumar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Dakang Xu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China.,Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Aaron Tl Lun
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Klaas Pjm van Gisbergen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Xiaofang Li
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China.,Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Liang Yu
- Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Die Wang
- Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Bryan Rg Williams
- Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Stanley Cw Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Ian J Majewski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Vic., Australia.,ARC Centre of Excellence for Advanced Molecular Imaging, The University of Melbourne, Parkville, Vic., Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Mathematics and Statistics, The University of Melbourne, Parkville, Vic., Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia .,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia .,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
43
|
Invariant natural killer T cells play dual roles in the development of experimental autoimmune uveoretinitis. Exp Eye Res 2016; 153:79-89. [DOI: 10.1016/j.exer.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
44
|
Selvanantham T, Lin Q, Guo CX, Surendra A, Fieve S, Escalante NK, Guttman DS, Streutker CJ, Robertson SJ, Philpott DJ, Mallevaey T. NKT Cell–Deficient Mice Harbor an Altered Microbiota That Fuels Intestinal Inflammation during Chemically Induced Colitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4464-4472. [DOI: 10.4049/jimmunol.1601410] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
|
45
|
Cruz Tleugabulova M, Escalante NK, Deng S, Fieve S, Ereño-Orbea J, Savage PB, Julien JP, Mallevaey T. Discrete TCR Binding Kinetics Control Invariant NKT Cell Selection and Central Priming. THE JOURNAL OF IMMUNOLOGY 2016; 197:3959-3969. [PMID: 27798168 DOI: 10.4049/jimmunol.1601382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells develop and differentiate in the thymus, segregating into iNKT1/2/17 subsets akin to Th1/2/17 classical CD4+ T cells; however, iNKT TCRs recognize Ags in a fundamentally different way. How the biophysical parameters of iNKT TCRs influence signal strength in vivo and how such signals affect the development and differentiation of these cells are unknown. In this study, we manipulated TCRs in vivo to generate clonotypic iNKT cells using TCR retrogenic chimeras. We report that the biophysical properties of CD1d-lipid-TCR interactions differentially impacted the development and effector differentiation of iNKT cells. Whereas selection efficiency strongly correlated with TCR avidity, TCR signaling, cell-cell conjugate formation, and iNKT effector differentiation correlated with the half-life of CD1d-lipid-TCR interactions. TCR binding properties, however, did not modulate Ag-induced iNKT cytokine production. Our work establishes that discrete TCR interaction kinetics influence iNKT cell development and central priming.
Collapse
Affiliation(s)
| | - Nichole K Escalante
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Stephanie Fieve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - June Ereño-Orbea
- The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jean-Philippe Julien
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
46
|
Hauptmann M, Kolbaum J, Lilla S, Wozniak D, Gharaibeh M, Fleischer B, Keller CA. Protective and Pathogenic Roles of CD8+ T Lymphocytes in Murine Orientia tsutsugamushi Infection. PLoS Negl Trop Dis 2016; 10:e0004991. [PMID: 27606708 PMCID: PMC5015871 DOI: 10.1371/journal.pntd.0004991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/19/2016] [Indexed: 01/12/2023] Open
Abstract
T cells are known to contribute to immune protection against scrub typhus, a potentially fatal infection caused by the obligate intracellular bacterium Orientia (O.) tsutsugamushi. However, the contribution of CD8+ T cells to protection and pathogenesis during O. tsutsugamushi infection is still unknown. Using our recently developed BALB/c mouse model that is based on footpad inoculation of the human-pathogenic Karp strain, we show that activated CD8+ T cells infiltrate spleen and lung during the third week of infection. Depletion of CD8+ T cells with monoclonal antibodies resulted in uncontrolled pathogen growth and mortality. Adoptive transfer of CD8+ T cells from infected animals protected naïve BALB/c mice from lethal outcome of intraperitoneal challenge. In C57Bl/6 mice, the pulmonary lymphocyte compartment showed an increased percentage of CD8+ T cells for at least 135 days post O. tsutsugamushi infection. Depletion of CD8+ T cells at 84 days post infection caused reactivation of bacterial growth. In CD8+ T cell-deficient beta 2-microglobulin knockout mice, bacterial replication was uncontrolled, and all mice succumbed to the infection, despite higher serum IFN-γ levels and stronger macrophage responses in liver and lung. Moreover, we show that CD8+ T cells but not NKT cells were required for hepatocyte injury: elevated concentrations of serum alanine aminotransferase and infection-induced subcapsular necrotic liver lesions surrounded by macrophages were found in C57Bl/6 and CD1d-deficient mice, but not in beta 2-microglobulin knockout mice. In the lungs, peribronchial macrophage infiltrations also depended on CD8+ T cells. In summary, our results demonstrate that CD8+ T cells restrict growth of O. tsutsugamushi during acute and persistent infection, and are required to protect from lethal infections in BALB/c and C57BL/6 mice. However, they also elicit specific pathologic tissue lesions in liver and lung.
Collapse
Affiliation(s)
- Matthias Hauptmann
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Kolbaum
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefanie Lilla
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - David Wozniak
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mohammad Gharaibeh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bernhard Fleischer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian A. Keller
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
47
|
Invariant natural killer T cells: front line fighters in the war against pathogenic microbes. Immunogenetics 2016; 68:639-48. [PMID: 27368411 DOI: 10.1007/s00251-016-0933-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells constitute a unique subset of innate-like T cells that have been shown to have crucial roles in a variety of immune responses. iNKT cells are characterized by their expression of both NK cell markers and an invariant T cell receptor (TCR) α chain, which recognizes glycolipids presented by the MHC class I-like molecule CD1d. Despite having a limited antigen repertoire, the iNKT cell response can be very complex, and participate in both protective and harmful immune responses. The protective role of these cells against a variety of pathogens has been particularly well documented. Through the use of these pathogen models, our knowledge of the breadth of the iNKT cell response has been expanded. Specific iNKT cell antigens have been isolated from several different bacteria, from which iNKT cells are critical for protection in mouse models. These responses can be generated by direct, CD1d-mediated activation, or indirect, cytokine-mediated activation, or a combination of the two. This can lead to secretion of a variety of different Th1, Th2, or Th17 cytokines, which differentially impact the downstream immune response against these pathogens. This critical role is emphasized by the conservation of these cells between mice and humans, warranting further investigation into how iNKT cells participate in protective immune responses, with the ultimate goal of harnessing their potential for treatment.
Collapse
|
48
|
Okuno H, Satoh M, Takeuchi E, Eshima K, Terashima M, Komotori J, Habu S, Tamauchi H, Iwabuchi K. Inhibitory function of NKT cells during early induction phase of nickel allergy. Immunobiology 2016; 221:833-8. [DOI: 10.1016/j.imbio.2016.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
49
|
Zhang J, Bedel R, Krovi SH, Tuttle KD, Zhang B, Gross J, Gapin L, Matsuda JL. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice. Sci Rep 2016; 6:27375. [PMID: 27256918 PMCID: PMC4891675 DOI: 10.1038/srep27375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/13/2016] [Indexed: 11/09/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - Romain Bedel
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - Kathryn D Tuttle
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - Bicheng Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - James Gross
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Jennifer L Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
50
|
Sun L, Middleton DR, Wantuch PL, Ozdilek A, Avci FY. Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology 2016; 26:1029-1040. [PMID: 27236197 DOI: 10.1093/glycob/cww062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease.
Collapse
Affiliation(s)
- Lina Sun
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dustin R Middleton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Paeton L Wantuch
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|