1
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Drosu N, Bjornevik K, Cortese M, Levy M, Sollid LM. Coeliac disease as a model for understanding multiple sclerosis. Nat Rev Neurol 2024; 20:685-690. [PMID: 39379493 DOI: 10.1038/s41582-024-01025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The genetic architecture of multiple sclerosis (MS) is similar to that of coeliac disease, with human leukocyte antigen (HLA) being the greatest genetic determinant in both diseases. Furthermore, similar to the involvement of gluten in coeliac disease, Epstein-Barr virus (EBV) infection is now widely considered to be an important environmental factor in MS. The molecular basis for the HLA association in coeliac disease is well defined, and B cells have a clear role in antigen presentation to gluten-specific CD4+ T cells. By contrast, the mechanisms underlying the HLA association of MS are unknown but accumulating evidence indicates a similar role of B cells acting as antigen-presenting cells. The growing parallels suggest that much could be learned about the mechanisms of MS by using coeliac disease as a model. In this Perspective article, we discuss the insights that could be gained from these parallels and consider the possibility of antiviral treatment against EBV as a therapy for MS that is analogous to the gluten-free diet in coeliac disease.
Collapse
Affiliation(s)
- Natalia Drosu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marianna Cortese
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ludvig M Sollid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| |
Collapse
|
3
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Liang Y, Chen X, Zhang X, Guo C, Zhang Y. Virus-driven dysregulation of the BCR pathway: a potential mechanism for the high prevalence of HIV related B-cell lymphoma. Ann Hematol 2024:10.1007/s00277-024-05959-7. [PMID: 39196379 DOI: 10.1007/s00277-024-05959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
In people living with HIV (PLWH), the susceptibility to malignancies is notably augmented, with lymphoma emerging as a predominant malignancy. Even in the antiretroviral therapy (ART) era, aggressive B-cell lymphoma stands out as a paramount concern. Yet, the pathogenesis of HIV related lymphoma (HRL) largely remains an enigma. Recent insights underscore the pivotal role of the dysregulated B cell receptor (BCR) signaling cascade, evidencing its oncogenic potential across a spectrum of lymphomas. Intricate interplays between HIV and BCR structural-functional integrity have been identified in PLWH. In this review, we elucidated the mechanism by which the BCR signaling pathway is involved in HRL, mainly including the following aspects: HIV can reshape BCR structure by modulating of activation-induced cytidine deaminase (AID) and recombination-activating gene (RAG) dynamics; HIV can act as a chronic antigen to activate the BCR signaling pathway, such as upregulating PI3K and MAPK signaling pathway and reducing the expression of CD300a; HIV co-infection with other oncogenic viruses may also influence tumor formation mediated by the BCR signaling pathway. This review aims to elucidate the intricate regulation of the BCR signaling pathway by HIV in B cell lymphoma, providing a novel perspective on the pathogenesis of lymphoma in HIV-affected environments.
Collapse
Affiliation(s)
- Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiping Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing100069, China.
| |
Collapse
|
5
|
Sun Y, Shi D, Sun J, Zhang Y, Liu W, Luo B. Regulation mechanism of EBV-encoded EBER1 and LMP2A on YAP1 and the impact of YAP1 on the EBV infection status in EBV-associated gastric carcinoma. Virus Res 2024; 343:199352. [PMID: 38462175 PMCID: PMC10982081 DOI: 10.1016/j.virusres.2024.199352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This study aims to explore the role and regulatory mechanism of Yes-associated protein 1 (YAP1) in the development of Epstein-Barr virus-associated gastric cancer (EBVaGC). Here we showed that EBV can upregulate the expression and activity of YAP1 protein through its encoded latent products EBV-encoded small RNA 1 (EBER1) and latent membrane protein 2A (LMP2A), enhancing the malignant characteristics of EBVaGC cells. In addition, we also showed that overexpression of YAP1 induced the expression of EBV encoding latent and lytic phase genes and proteins in the epithelial cell line AGS-EBV infected with EBV, and increased the copy number of the EBV genome, while loss of YAP1 expression reduced the aforementioned indicators. Moreover, we found that YAP1 enhanced EBV lytic reactivation induced by two known activators, 12-O-tetradecanoylhorbol-13-acetate (TPA) and sodium butyrate (NaB). These results indicated a bidirectional regulatory mechanism between EBV and YAP1 proteins, providing new experimental evidence for further understanding the regulation of EBV infection patterns and carcinogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiting Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, ZiBo 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Incrocci R, Monroy Del Toro R, Devitt G, Salimian M, Braich K, Swanson-Mungerson M. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) Enhances ATP Production in B Cell Tumors through mTOR and HIF-1α. Int J Mol Sci 2024; 25:3944. [PMID: 38612754 PMCID: PMC11012313 DOI: 10.3390/ijms25073944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Epstein-Barr Virus (EBV) exists in a latent state in 90% of the world's population and is linked to numerous cancers, such as Burkitt's Lymphoma, Hodgkin's, and non-Hodgkin's Lymphoma. One EBV latency protein, latency membrane protein 2A (LMP2A), is expressed in multiple latency phenotypes. LMP2A signaling has been extensively studied and one target of LMP2A is the mammalian target of rapamycin (mTOR). Since mTOR has been linked to reprogramming tumor metabolism and increasing levels of hypoxia-inducible factor 1 α (HIF-1α), we hypothesized that LMP2A would increase HIF-1α levels to enhance ATP generation in B lymphoma cell lines. Our data indicate that LMP2A increases ATP generation in multiple Burkitt lymphoma cell lines that were dependent on HIF-1α. Subsequent studies indicate that the addition of the mTOR inhibitor, rapamycin, blocked the LMP2A-dependent increase in HIF-1α. Further studies demonstrate that LMP2A does not increase HIF-1α levels by increasing HIF-1α RNA or STAT3 activation. In contrast, LMP2A and mTOR-dependent increase in HIF-1α required mTOR-dependent phosphorylation of p70 S6 Kinase and 4E-BP1. These findings implicate the importance of LMP2A in promoting B cell lymphoma survival by increasing ATP generation and identifying potential pharmaceutical targets to treat EBV-associated tumors.
Collapse
Affiliation(s)
- Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Rosalinda Monroy Del Toro
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Grace Devitt
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Melody Salimian
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Kamaljit Braich
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| |
Collapse
|
7
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
9
|
Rambold U, Sperling S, Chew Z, Wang Y, Steer B, Zeller K, Strobl LJ, Zimber-Strobl U, Adler H. A Mouse Model to Study the Pathogenesis of γ-herpesviral Infections in Germinal Center B Cells. Cells 2023; 12:2780. [PMID: 38132100 PMCID: PMC10741729 DOI: 10.3390/cells12242780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein-Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel in vivo model enabling the analysis of genetically modified viruses in combination with genetically modified GC B cells. As a murine γ-herpesvirus, we used MHV-68 closely mirroring the biology of EBV. Our key finding was that Cre-mediated recombination can be successfully induced by an MHV-68 infection in GC B cells from Cγ1-Cre mice allowing for deletion or activation of loxP-flanked cellular genes. The implementation of PrimeFlow RNA assay for MHV-68 demonstrated the enrichment of MHV-68 in GC and isotype-switched B cells. As illustrations of virus and cellular modifications, we inserted the EBV gene LMP2A into the MHV-68 genome and induced constitutively active CD30-signaling in GC B cells through MHV-68 infections, respectively. While the LMP2A-expressing MHV-68 behaved similarly to wildtype MHV-68, virally induced constitutively active CD30-signaling in GC B cells led to the expansion of a pre-plasmablastic population. The findings underscore the potential of our novel tools to address crucial questions about the interaction between herpesviral infections and deregulated cellular gene-expression in future studies.
Collapse
Affiliation(s)
- Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
| | - Stefanie Sperling
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Zakir Chew
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Yan Wang
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Beatrix Steer
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
| | - Krisztina Zeller
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Lothar J. Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), 80336 Munich, Germany
| |
Collapse
|
10
|
Zhao G, Bu G, Liu G, Kong X, Sun C, Li Z, Dai D, Sun H, Kang Y, Feng G, Zhong Q, Zeng M. mRNA-based Vaccines Targeting the T-cell Epitope-rich Domain of Epstein Barr Virus Latent Proteins Elicit Robust Anti-Tumor Immunity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302116. [PMID: 37890462 PMCID: PMC10724410 DOI: 10.1002/advs.202302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/04/2023] [Indexed: 10/29/2023]
Abstract
Epstein-Barr virus (EBV) is associated with various malignancies and infects >90% of the global population. EBV latent proteins are expressed in numerous EBV-associated cancers and contribute to carcinogenesis, making them critical therapeutic targets for these cancers. Thus, this study aims to develop mRNA-based therapeutic vaccines that express the T-cell-epitope-rich domain of truncated latent proteins of EBV, including truncatedlatent membrane protein 2A (Trunc-LMP2A), truncated EBV nuclear antigen 1 (Trunc-EBNA1), and Trunc-EBNA3A. The vaccines effectively activate both cellular and humoral immunity in mice and show promising results in suppressing tumor progression and improving survival time in tumor-bearing mice. Furthermore, it is observed that the truncated forms of the antigens, Trunc-LMP2A, Trunc-EBNA1, and Trunc-EBNA3A, are more effective than full-length antigens in activating antigen-specific immune responses. In summary, the findings demonstrate the effectiveness of mRNA-based therapeutic vaccines targeting the T-cell-epitope-rich domain of EBV latent proteins and providing new treatment options for EBV-associated cancers.
Collapse
Affiliation(s)
- Ge‐Xin Zhao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Long Bu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gang‐Feng Liu
- Department of Head and Neck Surgery Section IIThe Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital519 Kunzhou RoadKunming650118China
| | - Xiang‐Wei Kong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Cong Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Qian Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dan‐Ling Dai
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Xia Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yin‐Feng Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qian Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
11
|
Kolijn PM, Langerak AW. Immune dysregulation as a leading principle for lymphoma development in diverse immunological backgrounds. Immunol Lett 2023; 263:46-59. [PMID: 37774986 DOI: 10.1016/j.imlet.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies arising from lymphocytes, which poses a significant challenge in terms of diagnosis and treatment due to its diverse subtypes and underlying mechanisms. This review aims to explore the shared and distinct features of various forms of lymphoma predisposing conditions, with a focus on genetic, immunological and molecular aspects. While diseases such as autoimmune disorders, inborn errors of immunity and iatrogenic immunodeficiencies are biologically and immunologically distinct, each of these diseases results in profound immune dysregulation and a predisposition to lymphoma development. Interestingly, the increased risk is often skewed towards a particular subtype of lymphoma. Patients with inborn errors of immunity in particular present with extreme forms of lymphoma predisposition, providing a unique opportunity to study the underlying mechanisms. External factors such as chronic infections and environmental exposures further modulate the risk of lymphoma development. Common features of conditions predisposing to lymphoma include: persistent inflammation, recurrent DNA damage or malfunctioning DNA repair, impaired tumor surveillance and viral clearance, and dysregulation of fundamental cellular processes such as activation, proliferation and apoptosis. Our growing understanding of the underlying mechanisms of lymphomagenesis provides opportunities for early detection, prevention and tailored treatment of lymphoma development.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
13
|
Care MA, Stephenson S, Owen R, Doody GM, Tooze RM. Spontaneous EBV-Reactivation during B Cell Differentiation as a Model for Polymorphic EBV-Driven Lymphoproliferation. Cancers (Basel) 2023; 15:3083. [PMID: 37370694 PMCID: PMC10296496 DOI: 10.3390/cancers15123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Epstein-Barr virus (EBV)-driven B cell neoplasms arise from the reactivation of latently infected B cells. In a subset of patients, EBV was seen to drive a polymorphous lymphoproliferative disorder (LPD) in which B cell differentiation was retained. In this work, spontaneous EBV reactivation following B cell mitogen stimulation was shown to provide a potential model of polymorphic EBV-driven LPD. Here, we developed an in vitro model of plasma cell (PC) differentiation from peripheral blood memory B cells. To assess the frequency and phenotypes of EBV-associated populations derived during differentiation, we analysed eight differentiations during the PC stage with a targeted single-cell gene expression panel. We identified subpopulations of EBV-gene expressing cells with PC and/or B cell expression features in differentiations from all tested donors. EBV-associated cells varied in frequency, ranging from 3-28% of cells. Most EBV-associated cells expressed PC genes such as XBP1 or MZB1, and in all samples these included a quiescent PC fraction that lacked cell a cycle gene expression. With increasing EBV-associated cells, populations with B cell features became prominent, co-expressing a germinal centre (GC) and activating B cell gene patterns. The presence of highly proliferative EBV-associated cells was linked to retained MS4A1/CD20 expression and IGHM and IGHD co-expression, while IGHM class-switched cells were enriched in quiescent PC fractions. Thus, patterns of gene expression in primary EBV reactivation were shown to include features related to GC B cells, which was also observed in EBV-transformed lymphoblastoid cell lines. This suggests a particular association between spontaneously developing EBV-expansions and IgM+ IgD+ non-switched B cells.
Collapse
Affiliation(s)
- Matthew A. Care
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Stephenson
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
| | - Roger Owen
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| | - Gina M. Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
| | - Reuben M. Tooze
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| |
Collapse
|
14
|
Yang L, Pu J, Cai F, Zhang Y, Gao R, Zhuang S, Liang Y, Wu Z, Pan S, Song J, Han F, Tang J, Wang X. Chronic Epstein-Barr virus infection: A potential junction between primary Sjögren's syndrome and lymphoma. Cytokine 2023; 168:156227. [PMID: 37244248 DOI: 10.1016/j.cyto.2023.156227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that targets exocrine glands, leading to exocrine dysfunction. Due to its propensity to infect epithelial and B cells, Epstein-Barr virus (EBV) is hypothesized to be related with pSS. Through molecular mimicry, the synthesis of specific antigens, and the release of inflammatory cytokines, EBV contributes to the development of pSS. Lymphoma is the most lethal outcome of EBV infection and the development of pSS. As a population-wide virus, EBV has had a significant role in the development of lymphoma in people with pSS. In the review, we will discuss the possible causes of the disease.
Collapse
Affiliation(s)
- Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada; Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shuqi Zhuang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
15
|
Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis. Viruses 2023; 15:714. [PMID: 36992423 PMCID: PMC10056551 DOI: 10.3390/v15030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first identified human oncogenic virus that can establish asymptomatic life-long persistence. It is associated with a large spectrum of diseases, including benign diseases, a number of lymphoid malignancies, and epithelial cancers. EBV can also transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. Although EBV molecular biology and EBV-related diseases have been continuously investigated for nearly 60 years, the mechanism of viral-mediated transformation, as well as the precise role of EBV in promoting these diseases, remain a major challenge yet to be completely explored. This review will highlight the history of EBV and current advances in EBV-associated diseases, focusing on how this virus provides a paradigm for exploiting the many insights identified through interplay between EBV and its host during oncogenesis, and other related non-malignant disorders.
Collapse
Affiliation(s)
- Hui Yu
- Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Ross AM, Leahy CI, Neylon F, Steigerova J, Flodr P, Navratilova M, Urbankova H, Vrzalikova K, Mundo L, Lazzi S, Leoncini L, Pugh M, Murray PG. Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma. Life (Basel) 2023; 13:521. [PMID: 36836878 PMCID: PMC9967091 DOI: 10.3390/life13020521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Collapse
Affiliation(s)
- Aisling M. Ross
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ciara I. Leahy
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Fiona Neylon
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| | - Patrik Flodr
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Martina Navratilova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky Univesity and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Katerina Vrzalikova
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucia Mundo
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| |
Collapse
|
17
|
Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023; 11:biomedicines11020358. [PMID: 36830895 PMCID: PMC9953236 DOI: 10.3390/biomedicines11020358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.
Collapse
|
18
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
19
|
Regulation of B cell receptor signalling by Epstein-Barr virus nuclear antigens. Biochem J 2022; 479:2395-2417. [PMID: 36383217 PMCID: PMC9788576 DOI: 10.1042/bcj20220417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The cancer-associated Epstein-Barr virus (EBV) latently infects and immortalises B lymphocytes. EBV latent membrane protein 2A and EBV-encoded microRNAs are known to manipulate B cell receptor signalling to control cell growth and survival and suppress lytic replication. Here, we show that the EBV transcription factors EBNA2, 3A, 3B and 3C bind to genomic sites around multiple B cell receptor (BCR) pathway genes, regulate their expression and affect BCR signalling. EBNA2 regulates the majority of BCR pathway genes associated with binding sites, where EBNA3 proteins regulate only 42% of targets predicted by binding. Both EBNA2 and 3 proteins predominantly repress BCR pathway gene expression and target some common genes. EBNA2 and at least one EBNA3 protein repress the central BCR components CD79A and CD79B and the downstream genes BLNK, CD22, CD72, NFATC1, PIK3CG and RASGRP3. Studying repression of CD79B, we show that EBNA2 decreases transcription by disrupting binding of Early B cell Factor-1 to the CD79B promoter. Consistent with repression of BCR signalling, we demonstrate that EBNA2 and EBNA3 proteins suppress the basal or active BCR signalling that culminates in NFAT activation. Additionally, we show that EBNA2, EBNA3A and EBNA3C expression can result in reductions in the active serine 473 phosphorylated form of Akt in certain cell contexts, consistent with transcriptional repression of the PI3K-Akt BCR signalling arm. Overall, we identify EBNA2, EBNA3A and EBNA3C-mediated transcription control of BCR signalling as an additional strategy through which EBV may control the growth and survival of infected B cells and maintain viral latency.
Collapse
|
20
|
Ward BJH, Schaal DL, Nkadi EH, Scott RS. EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses 2022; 14:2700. [PMID: 36560704 PMCID: PMC9783324 DOI: 10.3390/v14122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately 90% of the world's population. The oral cavity serves a central role in the life cycle, transmission, and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically similar cancers often test negative for the virus. However, the presence of EBV is associated with distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes, via manipulation of survival and growth signaling, further implicates the virus as an oncogenic cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and the EBV-dependent mechanisms associated with tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
21
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
22
|
Bu GL, Xie C, Kang YF, Zeng MS, Sun C. How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses 2022; 14:2372. [PMID: 36366470 PMCID: PMC9696472 DOI: 10.3390/v14112372] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
The Epstein-Barr virus (EBV) is associated with a variety of human malignancies, including Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric cancers. EBV infection is crucial for the oncogenesis of its host cells. The prerequisite for the establishment of infection is the virus entry. Interactions of viral membrane glycoproteins and host membrane receptors play important roles in the process of virus entry into host cells. Current studies have shown that the main tropism for EBV are B cells and epithelial cells and that EBV is also found in the tumor cells derived from NK/T cells and leiomyosarcoma. However, the process of EBV infecting B cells and epithelial cells significantly differs, relying on heterogenous glycoprotein-receptor interactions. This review focuses on the tropism and molecular mechanism of EBV infection. We systematically summarize the key molecular events that mediate EBV cell tropism and its entry into target cells and provide a comprehensive overview.
Collapse
Affiliation(s)
- Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
23
|
Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers (Basel) 2022; 14:cancers14174297. [PMID: 36077832 PMCID: PMC9454639 DOI: 10.3390/cancers14174297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Epstein–Barr virus (EBV) contributes to different forms of human cancer, including a subset of classical Hodgkin lymphoma (cHL), a B-cell lymphoma with unusual histological features. Although the pathogenesis of EBV-associated cHL remains to be elucidated, biological investigations point to an important aetiological role for the virus in the development of this tumour. This is even more relevant now considering the potential opportunities that exist to treat EBV-associated disorders, for example, with immunotherapeutics or small molecule inhibitors targeting viral proteins. For this reason, we believe it is now timely to review the association between EBV and cHL and in particular to re-evaluate the impact of EBV status on clinical outcomes in cHL patients. Herein, we also report the impact of EBV on clinical outcomes in a cohort of children and adolescents with cHL. Abstract In this study, we have re-evaluated how EBV status influences clinical outcome. To accomplish this, we performed a literature review of all studies that have reported the effect of EBV status on patient outcome and also explored the effect of EBV positivity on outcome in a clinical trial of children with cHL from the UK. Our literature review revealed that almost all studies of older adults/elderly patients have reported an adverse effect of an EBV-positive status on outcome. In younger adults with cHL, EBV-positive status was either associated with a moderate beneficial effect or no effect, and the results in children and adolescents were conflicting. Our own analysis of a series of 166 children with cHL revealed no difference in overall survival between EBV-positive and EBV-negative groups (p = 0.942, log rank test). However, EBV-positive subjects had significantly longer event-free survival (p = 0.0026). Positive latent membrane protein 1 (LMP1) status was associated with a significantly lower risk of treatment failure in a Cox regression model (HR = 0.21, p = 0.005). In models that controlled for age, gender, and stage, EBV status had a similar effect size and statistical significance. This study highlights the age-related impact of EBV status on outcome in cHL patients and suggests different pathogenic effects of EBV at different stages of life.
Collapse
|
24
|
Latent Membrane Proteins from EBV Differentially Target Cellular Pathways to Accelerate MYC-induced Lymphomagenesis. Blood Adv 2022; 6:4283-4296. [PMID: 35605249 PMCID: PMC9327557 DOI: 10.1182/bloodadvances.2022007695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
EBV LMP1 enhances MYC-mediated degradation of the p27kip1 tumor suppressor and accelerates MYC-induced lymphomagenesis. EBV LMP1 and LMP2A differentially use G1-specific cell cycle and BCR-mediated signaling to accelerate MYC-induced lymphomagenesis.
MYC translocations in association with Epstein-Barr virus (EBV) infection are often observed in B-cell lymphomas. A subset of Burkitt lymphoma (BL) expresses EBV latent membrane proteins 1 and 2A (LMP1 and LMP2A) in addition to the typical restricted EBV latent gene expression. EBV-associated diffuse large B-cell lymphoma (DLBCL) typically exhibits latency type II or III and expresses LMP1. Here, we investigate the role of LMP1 in MYC-driven lymphomagenesis in our murine model. λ-MYC mice develop tumors having a “starry sky” appearance and have abnormal p53 expression that is also observed in human BL. LMP2A/λ-MYC double-transgenic mice develop tumors significantly faster than mice only expressing MYC. Similar to LMP2A/λ-MYC mice, LMP1/λ-MYC mice also have accelerated MYC-driven lymphomagenesis. As observed in LMP2A/λ-MYC mice, p27kip1 was degraded in LMP1/λ-MYC pretumor and tumor B cells. Coexpression of LMP1 and LMP2A resulted in the enhancement of B cell proliferation. In contrast to LMP2A, the inhibition of Syk or cyclin-dependant kinase (CDK)4/6 activity did not effectively inhibit LMP1-mediated MYC lymphomagenesis. Also, in contrast to LMP2A, LMP1 did not lessen abnormal p53 expression in λ-MYC tumors. To investigate the significance of LMP1 expression in human BL development, we reanalyzed RNA sequencing (RNA-Seq) data of primary human BL from previous studies. Interestingly, p53 mutations were less observed in LMP1-expressing BL, although they were not significantly changed by EBV infection, indicating LMP1 may lessen p53 mutations in human primary BL. This suggests that LMP1 effects in EBV-associated human BL vary from what we observe in our murine model. Finally, our studies suggest a novel pathogenic role of LMP1 in lymphomagenesis.
Collapse
|
25
|
Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein–Barr Virus-Associated Malignancies. Viruses 2022; 14:v14051017. [PMID: 35632758 PMCID: PMC9146158 DOI: 10.3390/v14051017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The Epstein–Barr virus (EBV) can cause different types of cancer in human beings when the virus infects different cell types with various latent patterns. EBV shapes a distinct and immunosuppressive tumor microenvironment (TME) to its benefit by influencing and interacting with different components in the TME. Different EBV-associated malignancies adopt similar but slightly specific immunosuppressive mechanisms by encoding different EBV products to escape both innate and adaptive immune responses. Strategies reversing the immunosuppressive TME of EBV-associated malignancies have been under evaluation in clinical practice. As the interactions among EBV, tumor cells, and TME are intricate, in this review, we mainly discuss the epidemiology of EBV, the life cycle of EBV, the cellular and molecular composition of TME, and a landscape of different EBV-associated malignancies and immunotherapy by targeting the TME.
Collapse
|
26
|
Rapid single-cell identification of Epstein-Barr virus-specific T-cell receptors for cellular therapy. Cytotherapy 2022; 24:818-826. [PMID: 35525797 DOI: 10.1016/j.jcyt.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Epstein-Barr virus (EBV) is associated with solid and hematopoietic malignancies. After allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening condition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-specific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR) repertoire and requires a specific memory compartment that is non-existent in seronegative individuals. The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T cells and recognize EBV-infected cells. METHODS AND RESULTS Mononuclear cells from six stem cell grafts were expanded in vitro with three HLA-B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent and lytic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and TCRαβ-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A*02:01-restricted dominant TCRs were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To confirm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA-B*35:01- and four HLA-A*02:01-restricted TCRs were expressed on human peripheral blood lymphocytes. All TCR-transduced cells recognized EBV-infected lymphoblastoid cell lines. CONCLUSIONS The authors' approach provides sets of EBV epitope-specific TCRs in two different HLA contexts. Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice with exactly defined proportions of target-specific T cells, can be tracked in vivo and will help to overcome unmet clinical needs in the treatment and prophylaxis of EBV reactivation and associated malignancies.
Collapse
|
27
|
Sánchez‐Ponce Y, Fuentes‐Pananá EM. Molecular and immune interactions between β‐ and γ‐herpesviruses in the immunocompromised host. J Leukoc Biol 2022; 112:79-95. [DOI: 10.1002/jlb.4mr1221-452r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yessica Sánchez‐Ponce
- Research Unit in Virology and Cancer Children's Hospital of Mexico Federico Gómez Mexico City Mexico
- Postgraduate Program in Biological Science National Autonomous University of Mexico Mexico City Mexico
| | | |
Collapse
|
28
|
Han S, Tay JK, Loh CJL, Chu AJM, Yeong JPS, Lim CM, Toh HC. Epstein–Barr Virus Epithelial Cancers—A Comprehensive Understanding to Drive Novel Therapies. Front Immunol 2021; 12:734293. [PMID: 34956172 PMCID: PMC8702733 DOI: 10.3389/fimmu.2021.734293] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous oncovirus associated with specific epithelial and lymphoid cancers. Among the epithelial cancers, nasopharyngeal carcinoma (NPC), lymphoepithelioma-like carcinoma (LELC), and EBV-associated gastric cancers (EBVaGC) are the most common. The role of EBV in the pathogenesis of NPC and in the modulation of its tumour immune microenvironment (TIME) has been increasingly well described. Much less is known about the pathogenesis and tumour–microenvironment interactions in other EBV-associated epithelial cancers. Despite the expression of EBV-related viral oncoproteins and a generally immune-inflamed cancer subtype, EBV-associated epithelial cancers have limited systemic therapeutic options beyond conventional chemotherapy. Immune checkpoint inhibitors are effective only in a minority of these patients and even less efficacious with molecular targeting drugs. Here, we examine the key similarities and differences of NPC, LELC, and EBVaGC and comprehensively describe the clinical, pathological, and molecular characteristics of these cancers. A deeper comparative understanding of these EBV-driven cancers can potentially uncover targets in the tumour, TIME, and stroma, which may guide future drug development and cast light on resistance to immunotherapy.
Collapse
Affiliation(s)
- Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joshua K. Tay
- Department of Otolaryngology—Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | | | | | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chwee Ming Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- *Correspondence: Han Chong Toh,
| |
Collapse
|
29
|
Gao L, Zhou L, Huang X. Identification of Novel Kinase-Transcription Factor-mRNA-miRNA Regulatory Network in Nasopharyngeal Carcinoma by Bioinformatics Analysis. Int J Gen Med 2021; 14:7453-7469. [PMID: 34744455 PMCID: PMC8566004 DOI: 10.2147/ijgm.s327657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck. This study aimed to investigate the crucial genes and regulatory networks involved in the carcinogenesis of NPC using a bioinformatics approach. Methods Five mRNA and two miRNA expression datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and miRNAs (DEMs) between NPC and normal samples were analyzed using R software. The WebGestalt tool was used for functional enrichment analysis, and protein-protein interaction (PPI) network analysis of DEGs was performed using STRING database. Transcription factors (TFs) were predicted using TRRUST and Transcriptional Regulatory Element Database (TRED). Kinases were identified using X2Kgui. The miRNAs of DEGs were predicted using miRWalk database. A kinase-TF-mRNA-miRNA integrated network was constructed, and hub nodes were selected. The hub genes were validated using NPC datasets from the GEO and Oncomine databases. Finally, candidate small-molecule agents were predicted using CMap. Results A total of 122 DEGs and 44 DEMs were identified. DEGs were associated with the immune response, leukocyte activation, endoplasmic reticulum stress in GO analysis, and the NF-κB signaling pathway in KEGG analysis. Four significant modules were identified using PPI network analysis. Subsequently, 26 TFs, 73 kinases, and 2499 miRNAs were predicted. The predicted miRNAs were cross-referenced with DEMs, and seven overlapping miRNAs were selected. In the kinase-TF-mRNA-miRNA integrated network, eight genes (PTGS2, FN1, MMP1, PLAU, MMP3, CD19, BMP2, and PIGR) were identified as hub genes. Hub genes were validated with consistent results, indicating the reliability of our findings. Finally, six candidate small-molecule agents (phenoxybenzamine, luteolin, thioguanosine, reserpine, blebbistatin, and camptothecin) were predicted. Conclusion We identified DEGs and an NPC regulatory network involving kinases, TFs, mRNAs, and miRNAs, which might provide promising insight into the pathogenesis, treatment, and prognosis of NPC.
Collapse
Affiliation(s)
- Li Gao
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Lei Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xinsheng Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Verdu-Bou M, Tapia G, Hernandez-Rodriguez A, Navarro JT. Clinical and Therapeutic Implications of Epstein-Barr Virus in HIV-Related Lymphomas. Cancers (Basel) 2021; 13:5534. [PMID: 34771697 PMCID: PMC8583310 DOI: 10.3390/cancers13215534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
The incidence of lymphomas is increased in people living with HIV (PLWH). Aggressive B-cell non-Hodgkin lymphomas (NHLs) are the most common and are considered an AIDS-defining cancer (ADC). Although Hodgkin lymphoma (HL) is not considered an ADC, its incidence is also increased in PLWH. Among all HIV-related lymphomas (HRL), the prevalence of Epstein-Barr virus (EBV) is high. It has been shown that EBV is involved in different lymphomagenic mechanisms mediated by some of its proteins, contributing to the development of different lymphoma subtypes. Additionally, cooperation between both HIV and EBV can lead to the proliferation of aberrant B-cells, thereby being an additional lymphomagenic mechanism in EBV-associated HRL. Despite the close relationship between EBV and HRL, the impact of EBV on clinical aspects has not been extensively studied. These lymphomas are treated with the same therapeutic regimens as the general population in combination with cART. Nevertheless, new therapeutic strategies targeting EBV are promising for these lymphomas. In this article, the different types of HRL are extensively reviewed, focusing on the influence of EBV on the epidemiology, pathogenesis, clinical presentation, and pathological characteristics of each lymphoma subtype. Moreover, novel therapies targeting EBV and future strategies to treat HRL harboring EBV are discussed.
Collapse
Affiliation(s)
- Miriam Verdu-Bou
- Lymphoid Neoplasms Group, Josep Carreras Leukaemia Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
| | - Gustavo Tapia
- Department of Pathology, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Agueda Hernandez-Rodriguez
- Department of Microbiology, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Jose-Tomas Navarro
- Lymphoid Neoplasms Group, Josep Carreras Leukaemia Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Department of Hematology, Institut Català d’Oncologia-Germans Trias i Pujol Hospital, 08916 Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
31
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
32
|
A Comprehensive Insight into the Role of Exosomes in Viral Infection: Dual Faces Bearing Different Functions. Pharmaceutics 2021; 13:pharmaceutics13091405. [PMID: 34575480 PMCID: PMC8466084 DOI: 10.3390/pharmaceutics13091405] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) subtype, exosome is an extracellular nano-vesicle that sheds from cells’ surface and originates as intraluminal vesicles during endocytosis. Firstly, it was thought to be a way for the cell to get rid of unwanted materials as it loaded selectively with a variety of cellular molecules, including RNAs, proteins, and lipids. However, it has been found to play a crucial role in several biological processes such as immune modulation, cellular communication, and their role as vehicles to transport biologically active molecules. The latest discoveries have revealed that many viruses export their viral elements within cellular factors using exosomes. Hijacking the exosomal pathway by viruses influences downstream processes such as viral propagation and cellular immunity and modulates the cellular microenvironment. In this manuscript, we reviewed exosomes biogenesis and their role in the immune response to viral infection. In addition, we provided a summary of how some pathogenic viruses hijacked this normal physiological process. Viral components are harbored in exosomes and the role of these exosomes in viral infection is discussed. Understanding the nature of exosomes and their role in viral infections is fundamental for future development for them to be used as a vaccine or as a non-classical therapeutic strategy to control several viral infections.
Collapse
|
33
|
Hodgkin Lymphoma in People Living with HIV. Cancers (Basel) 2021; 13:cancers13174366. [PMID: 34503176 PMCID: PMC8430611 DOI: 10.3390/cancers13174366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a non-AIDS defining neoplasm, but people living with HIV (PLWH) have between a 5- and 26-fold higher risk of developing it than the general population. Epstein-Barr virus is present in almost all HIV-related HL cases, and plays an important role in its etiopathogenesis. Despite the aggressive characteristics, the prognosis of HL affecting PLWH is similar to that of the general population if patients are treated following the same recommendations. Administration of cART concomitantly with chemotherapy is highly recommended. However, this combination may be challenging due to drug–drug interactions and overlapping toxicity. Thus, interdisciplinary collaboration between hemato-oncologists and HIV specialists is crucial for the optimal treatment of both lymphoma and HIV infection. Abstract Despite widespread use of combined antiretroviral therapy (cART) and increased life expectancy in people living with HIV (PLWH), HIV-related lymphomas (HRL) remain a leading cause of cancer morbidity and mortality for PLWH, even in patients optimally treated with cART. While the incidence of aggressive forms of non-Hodgkin lymphoma decreased after the advent of cART, incidence of Hodgkin lymphoma (HL) has increased among PLWH in recent decades. The coinfection of Epstein–Barr virus plays a crucial role in the pathogenesis of HL in the HIV setting. Currently, PLWH with HRL, including HL, are treated similarly to HIV-negative patients and, importantly, the prognosis of HL in PLWH is approaching that of the general population. In this regard, effective cART during chemotherapy is strongly recommended since it has been shown to improve survival rates in all lymphoma subtypes, including HL. As a consequence, interdisciplinary collaboration between HIV specialists and hemato-oncologists for the management of potential drug–drug interactions and overlapping toxicities between antiretroviral and antineoplastic drugs is crucial for the optimal treatment of PLWH with HL. In this article the authors review and update the epidemiological, clinical and biological aspects of HL presenting in PLWH with special emphasis on advances in prognosis and the factors that have contributed to it.
Collapse
|
34
|
Molecular Interactions between Two LMP2A PY Motifs of EBV and WW Domains of E3 Ubiquitin Ligase AIP4. Life (Basel) 2021; 11:life11050379. [PMID: 33922228 PMCID: PMC8190631 DOI: 10.3390/life11050379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Interactions involving Epstein–Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin–protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded anti-parallel β-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with the XP groove of the WW2 domain (residues located around the third β-strand), and then residues between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2 domain. In particular, the residue Val15 in the hairpin loop region between β1 and β2 of the WW2 domain exhibited unique changes depending on the terminal residues of the PY motif. This result suggested that the hairpin loop is responsible for additional interactions outside the XP groove, and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide interactions can stabilize the complex formed between the PY and WW domains.
Collapse
|
35
|
Huang S, Yasuda T. Pathologically Relevant Mouse Models for Epstein-Barr Virus-Associated B Cell Lymphoma. Front Immunol 2021; 12:639844. [PMID: 33732260 PMCID: PMC7959712 DOI: 10.3389/fimmu.2021.639844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
The Epstein–Barr virus (EBV) is endemic in humans and can efficiently transform infected B cells under some circumstances. If an EBV carrier experiences immune suppression, EBV+ B cells can turn into lymphoblasts and exhibit growth expansion that may cause lymphoproliferative diseases which often develop into lymphoma. Our immune system conducts surveillance for EBV+ B cells in order to block spontaneous tumor formation. Here, we summarize the EBV products involved in tumorigenesis, EBV-associated lymphomas, and pathologically relevant mouse models. Preclinical mouse models for a range of EBV-associated diseases not only clear the path to new therapeutic approaches but also aid in our understanding of the nature of lymphomagenesis and immune surveillance.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
36
|
Luo Y, Liu Y, Wang C, Gan R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int 2021; 21:93. [PMID: 33549103 PMCID: PMC7868022 DOI: 10.1186/s12935-021-01793-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with multiple human cancers. EBV-associated cancers are mainly lymphomas derived from B cells and T cells (Hodgkin lymphoma, Burkitt lymphoma, NK/T-cell lymphoma, and posttransplant lymphoproliferative disorder (PTLD)) and carcinomas derived from epithelial cells (nasopharyngeal carcinoma and gastric carcinoma). EBV can induce oncogenesis in its host cell by activating various signaling pathways, such as nuclear factor-κB (NF-κB), phosphoinositide-3-kinase/protein kinase B (PI3K/AKT), Janus kinase/signal transducer and transcription activator (JAK/STAT), mitogen-activated protein kinase (MAPK), transforming growth factor-β (TGF-β), and Wnt/β-catenin, which are regulated by EBV-encoded proteins and noncoding RNA. In this review, we focus on the oncogenic roles of EBV that are mediated through the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Yin Luo
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| | - Runliang Gan
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
37
|
Rosén A, Bergh AC, Gogok P, Evaldsson C, Myhrinder AL, Hellqvist E, Rasul A, Björkholm M, Jansson M, Mansouri L, Liu A, Teh BT, Rosenquist R, Klein E. Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. Oncoimmunology 2021; 1:18-27. [PMID: 22720208 PMCID: PMC3376971 DOI: 10.4161/onci.1.1.18400] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells express the receptor for Epstein-Barr virus (EBV) and can be infected in vitro. Infected cells do not express the growth-promoting set of EBV-encoded genes and therefore they do not yield LCLs, in most experiments. With exceptional clones, lines were obtained however. We describe a new line, HG3, established by in vitro EBV-infection from an IGHV1–2 unmutated CLL patient clone. All cells expressed EBNA-2 and LMP-1, the EBV-encoded genes pivotal for transformation. The karyotype, FISH cytogenetics and SNP-array profile of the line and the patient's ex vivo clone showed biallelic 13q14 deletions with genomic loss of DLEU7, miR15a/miR16–1, the two micro-RNAs that are deleted in 50% of CLL cases. Further features of CLL cells were: expression of CD5/CD20/CD27/CD43 and release of IgM natural antibodies reacting with oxLDL-like epitopes on apoptotic cells (cf. stereotyped subset-1). Comparison with two LCLs established from normal B cells showed 32 genes expressed at higher levels (> 2-fold). Among these were LHX2 and LILRA. These genes may play a role in the development of the disease. LHX2 expression was shown in self-renewing multipotent hematopoietic stem cells, and LILRA4 codes for a receptor for bone marrow stromal cell antigen-2 that contributes to B cell development. Twenty-four genes were expressed at lower levels, among these PARD3 that is essential for asymmetric cell division. These genes may contribute to establish precursors of CLL clones by regulation of cellular phenotype in the hematopoietic compartment. Expression of CD5/CD20/CD27/CD43 and spontaneous production of natural antibodies may identify the CLL cell as a self-renewing B1 lymphocyte.
Collapse
Affiliation(s)
- Anders Rosén
- Department of Clinical and Experimental Medicine; Division of Cell Biology; Linköping University; Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jog NR, James JA. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Front Immunol 2021; 11:623944. [PMID: 33613559 PMCID: PMC7886683 DOI: 10.3389/fimmu.2020.623944] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease. Infections or infectious reactivation are potential triggers for initiation of autoimmunity and for SLE flares. Epstein-Barr virus (EBV) is gamma herpes virus that has been associated with several autoimmune diseases such as SLE, multiple sclerosis, Sjogren’s syndrome, and systemic sclerosis. In this review, we will discuss the recent advances regarding how EBV may contribute to immune dysregulation, and how these mechanisms may relate to SLE disease progression.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Medicine, Pathology, Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
39
|
Role of Epstein-Barr Virus C Promoter Deletion in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13030561. [PMID: 33535665 PMCID: PMC7867172 DOI: 10.3390/cancers13030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The C promoter of Epstein–Barr virus is assumed to be important for B cell growth and transformation. However, we present evidence that promoter activity is not only unneeded for transformation but also that absence of the promoter increased the transformation activity of the virus. We found that the C promoter was lost in some Epstein–Barr virus-associated lymphoma specimens. Therefore, deletion of the promoter could partially account for the tumorigenesis of Epstein–Barr virus-associated lymphomas. Abstract The Epstein–Barr virus (EBV) is the cause of several malignancies, including diffuse large B cell lymphoma (DLBCL). We recently found that EBV genomes in EBV-positive cancer specimens have various deletions (Okuno et al. Nat Microbiol. 2019). Here, we focus on the deletion of C promoter (Cp), which transcribes EBV nuclear antigen (EBNA) genes in type III latency. The Cp deletion found in a DLBCL patient (332 bp) was introduced into EBV-BAC of the B95-8 strain. Interestingly, the dCp virus transformed B cells more efficiently than WT and revertant strains. Deletion of Cp also promoted tumor formation and severe pathogenicity in a mouse xenograft model. RNA sequencing and qRT–PCR analyses revealed that Cp transcription was undetectable in the dCp cells. Instead, transcription from the W promoter (Wp), an alternative promoter for EBNA, was activated in the dCp mutant. We also found that the expression of latent membrane protein 2A (LMP2A) was somehow induced in the dCp mutant. Double knockout of Cp and LMP2A indicated that LMP2A is crucial for B cell transformation, but the increased transformation induced by Cp deletion cannot be explained by LMP2A alone. We also tested the effect of an anti-apoptotic viral BCL2 homolog, BHRF1, because its expression was reportedly induced more efficiently by that of Wp. However, increased growth transformation via Cp deletion was not due to the BHRF1 gene. Taken together, the results indicated that deletion of a specific region in Cp increased in vitro transformation and the rate of progression of EBV-positive lymphoproliferative disorders in vivo. Our data suggest that genomic alteration not only of the host but also the virus promotes EBV-positive tumor generation and expansion, although the molecular mechanism underlying this phenomenon is still unclear. However, LMP2A and BHRF1 are not involved.
Collapse
|
40
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
41
|
Thurner L, Hartmann S, Neumann F, Hoth M, Stilgenbauer S, Küppers R, Preuss KD, Bewarder M. Role of Specific B-Cell Receptor Antigens in Lymphomagenesis. Front Oncol 2020; 10:604685. [PMID: 33363034 PMCID: PMC7756126 DOI: 10.3389/fonc.2020.604685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
The B-cell receptor (BCR) signaling pathway is a crucial pathway of B cells, both for their survival and for antigen-mediated activation, proliferation and differentiation. Its activation is also critical for the genesis of many lymphoma types. BCR-mediated lymphoma proliferation may be caused by activating BCR-pathway mutations and/or by active or tonic stimulation of the BCR. BCRs of lymphomas have frequently been described as polyreactive. In this review, the role of specific target antigens of the BCRs of lymphomas is highlighted. These antigens have been found to be restricted to specific lymphoma entities. The antigens can be of infectious origin, such as H. pylori in gastric MALT lymphoma or RpoC of M. catarrhalis in nodular lymphocyte predominant Hodgkin lymphoma, or they are autoantigens. Examples of such autoantigens are the BCR itself in chronic lymphocytic leukemia, LRPAP1 in mantle cell lymphoma, hyper-N-glycosylated SAMD14/neurabin-I in primary central nervous system lymphoma, hypo-phosphorylated ARS2 in diffuse large B-cell lymphoma, and hyper-phosphorylated SLP2, sumoylated HSP90 or saposin C in plasma cell dyscrasia. Notably, atypical posttranslational modifications are often responsible for the immunogenicity of many autoantigens. Possible therapeutic approaches evolving from these specific antigens are discussed.
Collapse
Affiliation(s)
- Lorenz Thurner
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt a. Main, Germany
| | - Frank Neumann
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Ralf Küppers
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.,Deutsches Konsortium für translationale Krebsforschung (DKTK), Partner Site Essen, Essen, Germany
| | - Klaus-Dieter Preuss
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Moritz Bewarder
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
42
|
Nagpal P, Descalzi-Montoya DB, Lodhi N. The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes. Cancer Rep (Hoboken) 2020; 4:e1311. [PMID: 33103852 PMCID: PMC8451374 DOI: 10.1002/cnr2.1311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Classical Hodgkin lymphoma (cHL) is a unique lymphoid malignancy with a tumor microenvironment (TME) consisting of a small number of neoplastic-Hodgkin and Reed-Sternberg (H-RS) cells (<1%), surrounded by a large number of nonneoplastic infiltrating immune cells (>90%). The TME of cHL critically depends on immune cells to support tumor growth as H-RS cells cannot survive and proliferate in isolation. RECENT FINDINGS Programmed cell death protein 1 (PD-1) ligand expressed on H-RS cells inhibits the clearance of tumor by causing T-cell exhaustion. Nivolumab and pembrolizumab, PD-1 inhibitors, have been proven to be effective in treating adult and pediatric patients with R/R cHL. Tumor-associated macrophages (TAMs) are a central component of TME and are known to cause poor prognosis in adult HL. However, the prognostic impact of CD68+ TAMs in pediatric HL remains ambiguous. EBV modulates the tumor milieu of HL and plays a strategic role in immune escape by enrichment of the TME with Treg cells and associated immunosuppressive cytokines in adult HL. In contrast, EBV+ pediatric patients have increased infiltration of CD8+ T-cells and show a better therapeutic response suggesting viral-related TME is distinct in childhood HL. The role of CASP3 in apoptosis of H-RS cells and its correlation with response prediction in adult and pediatric HL suggest it may serve as a potential biomarker. In cHL, CD30, EBV, and NF-κB signaling employ exosomes for cell-cell communication that triggers the migration capacity of fibroblasts, stimulate to produce proinflammatory cytokines, and help to create a tumor-supportive microenvironment. CONCLUSION The cHL microenvironment is distinct in adult and pediatric HL. Future studies are required to understand the role of interplay between H-RS cells and EBV-associated microenvironment and their clinical outcome. They may present novel therapeutic targets for the development of antilymphoma therapy.
Collapse
Affiliation(s)
- Poonam Nagpal
- College of Natural, Applied, and Health Sciences, Kean University, Union, New Jersey, USA
| | - Dante B Descalzi-Montoya
- Center for Discovery and Innovation, The John Theurer Cancer Center, Hackensack-Meridian Health, Nutley, New Jersey, USA
| | - Niraj Lodhi
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Science Center, Abilene, Texas, USA
| |
Collapse
|
43
|
Abstract
Epstein-Barr virus (EBV) infects human B cells and reprograms them to allow virus replication and persistence. One key viral factor in this process is latent membrane protein 2A (LMP2A), which has been described as a B cell receptor (BCR) mimic promoting malignant transformation. However, how LMP2A signaling contributes to tumorigenesis remains elusive. By comparing LMP2A and BCR signaling in primary human B cells using phosphoproteomics and transcriptome profiling, we identified molecular mechanisms through which LMP2A affects B cell biology. Consistent with the literature, we found that LMP2A mimics a subset of BCR signaling events, including tyrosine phosphorylation of the kinase SYK, the calcium initiation complex consisting of BLNK, BTK, and PLCγ2, and its downstream transcription factor NFAT. However, the majority of LMP2A-induced signaling events markedly differed from those induced by BCR stimulation. These included differential phosphorylation of kinases, phosphatases, adaptor proteins, transcription factors such as nuclear factor κB (NF-κB) and TCF3, as well as widespread changes in the transcriptional output of LMP2A-expressing B cells. LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.
Collapse
|
44
|
Lange PT, Damania B. Modeling oncogenic herpesvirus infections in humanized mice. Curr Opin Virol 2020; 44:90-96. [PMID: 32784124 PMCID: PMC7755680 DOI: 10.1016/j.coviro.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
The creation of humanized mice generally involves the reconstitution of immunodeficient mice with human immune constituents. Different methodologies have been employed, and significant progress has been made towards the development of robustly humanized mouse models. Some of the techniques used include the injection of mature human immune cells, the injection of human hematopoietic stem cells (HSCs) capable of reconstituting radiation-depleted murine bone marrow, and the implantation of human fetal liver and thymus fragments under the kidney capsule to create a thymic organoid that can support thympoiesis. This review will serve as a brief introduction to the three most commonly utilized humanized mouse models for the study of gammaherpesvirus-driven pathogenesis, and highlight some of the critical discoveries these models have enabled.
Collapse
Affiliation(s)
- Philip T Lange
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
45
|
Biram A, Shulman Z. T cell help to B cells: Cognate and atypical interactions in peripheral and intestinal lymphoid tissues. Immunol Rev 2020; 296:36-47. [PMID: 32557712 DOI: 10.1111/imr.12890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Enduring immunity against harmful pathogens depends on the generation of immunological memory. Serum immunoglobulins are constantly secreted by long-lived antibody-producing cells, which provide extended protection from recurrent exposures. These cells originate mainly from germinal center structures, wherein B cells introduce mutations to their immunoglobulin genes followed by affinity-based selection. Generation of high-affinity antibodies relies on physical contacts between T and B cells, a process that facilitates the delivery of fate decision signals. T-B cellular engagements are mediated through interactions between the T cell receptor and its cognate peptide presented on B cell major histocompatibility class II molecules. Here, we describe the cellular and molecular aspects of these cognate T-B interactions, and highlight exceptional cases, especially those arising at intestinal lymphoid organs, at which T cells provide help to B cells in an atypical manner, independent of T cell specificity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc Natl Acad Sci U S A 2020; 117:14421-14432. [PMID: 32522871 DOI: 10.1073/pnas.1921139117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.
Collapse
|
47
|
van Langelaar J, Rijvers L, Smolders J, van Luijn MM. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front Immunol 2020; 11:760. [PMID: 32457742 PMCID: PMC7225320 DOI: 10.3389/fimmu.2020.00760] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Historically, multiple sclerosis (MS) has been viewed as being primarily driven by T cells. However, the effective use of anti-CD20 treatment now also reveals an important role for B cells in MS patients. The results from this treatment put forward T-cell activation rather than antibody production by B cells as a driving force behind MS. The main question of how their interaction provokes both B and T cells to infiltrate the CNS and cause local pathology remains to be answered. In this review, we highlight key pathogenic events involving B and T cells that most likely contribute to the pathogenesis of MS. These include (1) peripheral escape of B cells from T cell-mediated control, (2) interaction of pathogenic B and T cells in secondary lymph nodes, and (3) reactivation of B and T cells accumulating in the CNS. We will focus on the functional programs of CNS-infiltrating lymphocyte subsets in MS patients and discuss how these are defined by mechanisms such as antigen presentation, co-stimulation and cytokine production in the periphery. Furthermore, the potential impact of genetic variants and viral triggers on candidate subsets will be debated in the context of MS.
Collapse
Affiliation(s)
- Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Liza Rijvers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Marvin M. van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
48
|
Kotaki R, Kawashima M, Yamamoto Y, Higuchi H, Nagashima E, Kurosaki N, Takamatsu M, Kikuti YY, Imadome KI, Nakamura N, Kotani A. Dasatinib exacerbates splenomegaly of mice inoculated with Epstein-Barr virus-infected lymphoblastoid cell lines. Sci Rep 2020; 10:4355. [PMID: 32152351 PMCID: PMC7062761 DOI: 10.1038/s41598-020-61300-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Latent infection of Epstein-Barr virus (EBV) is associated with a poor prognosis in patients with B cell malignancy. We examined whether dasatinib, a multi kinase inhibitor, which is broadly used for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia is effective on EBV-positive B cell malignancies, using lymphoblastoid cell lines (LCLs) in vitro and in vivo. As a result, in vitro experiments showed that dasatinib induced cell death of the EBV-LCLs which was not accompanied with a lytic reactivation of EBVs. To evaluate the effectiveness in EBV latency type III represented by immunodeficiency lymphoma, LCL-inoculated immunodeficient NOD/shi-scid/Il2rgnul (NOG) mice were treated with dasatinib. However, in vivo experiments revealed that dasatinib treatment exacerbated tumor cell infiltration into the spleen of LCL-inoculated NOG mice, whereas tumor size at the inoculated site was not affected by the treatment. These results suggest that dasatinib exacerbates the pathogenesis at least in some situations although the drug is effective in vitro. Hence, we should carefully examine a possibility of dasatinib repositioning for EBV+ B cell malignancies.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Masaharu Kawashima
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan.,Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yuichiro Yamamoto
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Hiroshi Higuchi
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan.,Research Institute of Science and Technology, Tokai University, 4-1-1 Kitakinme, Hiratsuka, Kanagawa, Japan
| | - Etsuko Nagashima
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Natsumi Kurosaki
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Masako Takamatsu
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Ken-Ichi Imadome
- Department of Infectious Diseases, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Ai Kotani
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan. .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan. .,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
49
|
Pagning ALN, Tamokou JDD, Muhammad BT, Ngnokam D, AzefackTapondjou L, Ali MS, Hameed MW. Potential anti-proliferative effects of chemical constituents and hemisynthetic derivatives from Scadoxus pseudocaulus ( Amarillydaceae). Afr Health Sci 2020; 20:469-475. [PMID: 33402935 PMCID: PMC7750053 DOI: 10.4314/ahs.v20i1.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Biological significance of Amaryllidaceae is well advocated from the literature. In Cameroon, plants from this family are routinely used for the cure of liver, cancer and cardiovascular diseases. To date, no scientific investigation corresponding to the anti-cancer activity of extracts and isolated compounds of Scadoxus pseudocaulus is available. Objective Current study is focused to elaborate the anti-proliferative effects of natural isolates (compounds 1–6, 9) and hemi-synthetic analogs (compounds 7–8) extracted from S. pseudocaulu. Methods Column chromatography of the ethyl acetate extract followed by purification of different fractions led to the isolation of seven compounds (1 – 6, 9). Esterification reaction of compound 6 was carried out using butyroyl chlorides and triethylamin to produce two derivatives (7 – 8). The cytotoxic activity was performed after staining of treated cells with florescent dye propidium iodide. Dead cells were detected using cytometer FL2 or FL3 channels/filters. Results Trans-derivative of narciclasine (a natural isolate from S. pseudocaulus), was found to be most potent among all tested compounds. Its effects were more significant on low malignant follicular lymphoma (DoHH2 cells) as compared to highly malignant (EBV infected) Burkitts lymphoma (Raji cells). Conclusion From our results, narciclasine appears to hold the potential of a lead molecule that can be used to bridge the therapeutic gaps in cancer research.
Collapse
Affiliation(s)
- Annie Laure Ngankeu Pagning
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P O Box 183, Dschang, Cameroon
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Jean-de-Dieu Tamokou
- Research Unit of Microbiology and antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 067 Dschang, Republic of Cameroon
| | - Bushra Taj Muhammad
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - David Ngnokam
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P O Box 183, Dschang, Cameroon
| | - Leon AzefackTapondjou
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P O Box 183, Dschang, Cameroon
| | - Mohammad Shaiq Ali
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Waqar Hameed
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
50
|
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J Cancer 2020; 11:1737-1750. [PMID: 32194785 PMCID: PMC7052849 DOI: 10.7150/jca.37282] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Epstein Barr virus (EBV) is a cosmopolitan oncogenic virus, infecting about 90% of the world's population and it is associated to tumors originating from both epithelia and hematopoietic cells. Transmission of the virus is mainly through oral secretions; however, transmission through organ transplantation and blood transfusion has been reported. In order to evade immune recognition, EBV establishes latent infection in B lymphocytes where it expresses limited sets of proteins called EBV transcription programs (ETPs), including six nuclear antigens (EBNAs), three latent membrane proteins (LMP), and untranslated RNA called EBV encoded RNA (EBER), shown to efficiently transform B cells into lymphoblastic cells. These programs undergo different patterns of expression which determine the occurrence of distinct types of latency in the pathogenesis of a particular tumor. Hematopoietic cell derived tumors include but not limited to Burkitt's lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and natural killer (NK)/T cell lymphoma. EBV undergoes lytic infection in epithelia cells for amplification of the viral particle for transmission where it expresses lytic stage genes. However, for reasons yet to be unveiled, EBV switches from the expression of lytic stage genes to the expression of ETPs in epithelia cells. The expression of the ETPs lead to the transformation of epithelia cells into permanently proliferating cells, resulting in epithelia cell derived malignancies such as nasopharyngeal cancer, gastric cancer, and breast cancer. In this review, we have summarized the current updates on EBV associated epithelial and B cell-derived malignancies, and the role of EBV latency gene products in the pathogenesis of the cancers, and have suggested areas for future studies when considering therapeutic measures.
Collapse
Affiliation(s)
- Richmond Ayee
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| | | | - Edward Wright
- Department of Biochemistry, University of Sussex, Brighton, U.K
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|