1
|
Dowd KA, Schroeder M, Sanchez E, Brumbaugh B, Foreman BM, Burgomaster KE, Shi W, Wang L, Caputo N, Gordon DN, Schwartz CL, Hansen BT, Aleshnick M, Kong WP, Morabito KM, Hickman HD, Graham BS, Fischer ER, Pierson TC. pr-independent biogenesis of infectious mature Zika virus particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612520. [PMID: 39372759 PMCID: PMC11452192 DOI: 10.1101/2024.09.12.612520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Flavivirus assembly at the endoplasmic reticulum is driven by the structural proteins envelope (E) and premembrane (prM). Here, contrary to the established paradigm for flavivirus assembly, we demonstrate that the biogenesis of flavivirus particles does not require an intact prM nor proteolytic activation. The expression of E preceded by a truncated version of prM (M-E) was sufficient for the formation of non-infectious Zika virus subviral particles and pseudo-infectious reporter virions. Subviral particles encoded by a ZIKV M-E DNA vaccine elicited a neutralizing antibody response that was insensitive to the virion maturation state, a feature of flavivirus humoral immunity shown to correlate with protection. M-E vaccines that uniformly present structural features shared with mature virions offer a higher quality and broadly applicable approach to flavivirus vaccination.
Collapse
Affiliation(s)
- Kimberly A. Dowd
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Michelle Schroeder
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Egan Sanchez
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Beniah Brumbaugh
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Bryant M. Foreman
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | | | - Wei Shi
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Lingshu Wang
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Natalie Caputo
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - David N. Gordon
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Cindi L. Schwartz
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Bryan T. Hansen
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Maya Aleshnick
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Wing-Pui Kong
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH; Bethesda, 20892, USA
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Elizabeth R. Fischer
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Theodore C. Pierson
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| |
Collapse
|
2
|
Tandavanitj R, Setthapramote C, De Lorenzo G, Sanchez-Velazquez R, Clark JJ, Rocchi M, McInnes C, Kohl A, Patel AH. Virus-like particles of louping ill virus elicit potent neutralizing antibodies targeting multimers of viral envelope protein. Vaccine 2024; 42:2429-2437. [PMID: 38458875 DOI: 10.1016/j.vaccine.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Louping ill virus (LIV) is a tick-borne flavivirus that predominantly causes disease in livestock, especially sheep in the British Isles. A preventive vaccine, previously approved for veterinary use but now discontinued, was based on an inactivated whole virion that likely provided protection by induction of neutralizing antibodies recognizing the viral envelope (E) protein. A major disadvantage of the inactivated vaccine was the need for high containment facilities for the propagation of infectious virus, as mandated by the hazard group 3 status of the virus. This study aimed to develop high-efficacy non-infectious protein-based vaccine candidates. Specifically, soluble envelope protein (sE), and virus-like particles (VLPs), comprised of the precursor of membrane and envelope proteins, were generated, characterized, and studied for their immunogenicity in mice. Results showed that the VLPs induced more potent virus neutralizing response compared to sE, even though the total anti-envelope IgG content induced by the two antigens was similar. Depletion of anti-monomeric E protein antibodies from mouse immune sera suggested that the neutralizing antibodies elicited by the VLPs targeted epitopes spanning the highly organized structure of multimer of the E protein, whereas the antibody response induced by sE focused on E monomers. Thus, our results indicate that VLPs represent a promising LIV vaccine candidate.
Collapse
Affiliation(s)
- Rapeepat Tandavanitj
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, United Kingdom; Biologicals Research Group, Research and Development Institute, The Government Pharmaceutical Organization, Bangkok 10400, Thailand
| | - Chayanee Setthapramote
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, United Kingdom; Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, United Kingdom
| | | | - Jordan J Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, United Kingdom
| | - Mara Rocchi
- Moredun Research Institute, Midlothian EH26 0PZ, Scotland, United Kingdom
| | - Colin McInnes
- Moredun Research Institute, Midlothian EH26 0PZ, Scotland, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, United Kingdom; Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, United Kingdom.
| |
Collapse
|
3
|
Liu J, Guo Z, Li W, Zhang X, Liang C, Cui Z. Packaging Quantum Dots in Viral Particles via a Strep-tag II/Streptavidin System for Single-Virus Tracking. NANO LETTERS 2024; 24:2821-2830. [PMID: 38407052 DOI: 10.1021/acs.nanolett.3c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-virus tracking provides a powerful tool for studying virus infection with high spatiotemporal resolution. Quantum dots (QDs) are used to label and track viral particles due to their brightness and photostability. However, labeling viral particles with QDs is not easy. We developed a new method for labeling viral particles with QDs by using the Strep-tag II/streptavidin system. In this method, QDs were site-specifically ligated to viral proteins in live cells and then packaged into viral-like particles (VLPs) of tick-borne encephalitis virus (TBEV) and Ebola virus during viral assembly. With TBEV VLP-QDs, we tracked the clathrin-mediated endocytic entry of TBEV and studied its intracellular dynamics at the single-particle level. Our Strep-tag II/streptavidin labeling procedure eliminates the need for BirA protein expression or biotin addition, providing a simple and general method for site-specifically labeling viral particles with QDs for single-virus tracking.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Cuiqin Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
5
|
Ishida K, Yagi H, Kato Y, Morita E. N-linked glycosylation of flavivirus E protein contributes to viral particle formation. PLoS Pathog 2023; 19:e1011681. [PMID: 37819933 PMCID: PMC10593244 DOI: 10.1371/journal.ppat.1011681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
In the case of the Japanese encephalitis virus (JEV), the envelope protein (E), a major component of viral particles, contains a highly conserved N-linked glycosylation site (E: N154). Glycosylation of the E protein is thought to play an important role in the ability of the virus to attach to target cells during transmission; however, its role in viral particle formation and release remains poorly understood. In this study, we investigated the role of N-glycosylation of flaviviral structural proteins in viral particle formation and secretion by introducing mutations in viral structural proteins or cellular factors involved in glycoprotein transport and processing. The number of secreted subviral particles (SVPs) was significantly reduced in N154A, a glycosylation-null mutant, but increased in D67N, a mutant containing additional glycosylation sites, indicating that the amount of E glycosylation regulates the release of SVPs. SVP secretion was reduced in cells deficient in galactose, sialic acid, and N-acetylglucosamine modifications in the Golgi apparatus; however, these reductions were not significant, suggesting that glycosylation mainly plays a role in pre-Golgi transport. Fluorescent labeling of SVPs using a split green fluorescent protein (GFP) system and time-lapse imaging by retention using selective hooks (RUSH) system revealed that the glycosylation-deficient mutant was arrested before endoplasmic reticulum (ER)- Golgi transport. However, the absence of ERGIC-53 and ERGIC-L, ER-Golgi transport cargo receptors that recognize sugar chains on cargo proteins, does not impair SVP secretion. In contrast, the solubility of the N154A mutant of E or the N15A/T17A mutant of prM in cells was markedly lower than that of the wild type, and proteasome-mediated rapid degradation of these mutants was observed, indicating the significance of glycosylation of both prM and E in proper protein folding and assembly of viral particles in the ER.
Collapse
Affiliation(s)
- Kotaro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| |
Collapse
|
6
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
7
|
Pulkkinen LIA, Barrass SV, Lindgren M, Pace H, Överby AK, Anastasina M, Bally M, Lundmark R, Butcher SJ. Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathog 2023; 19:e1011125. [PMID: 36787339 PMCID: PMC9970071 DOI: 10.1371/journal.ppat.1011125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.
Collapse
Affiliation(s)
- Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sarah Victoria Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marie Lindgren
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Hudson Pace
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marta Bally
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Lundmark
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail: (SJB); (RL)
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (SJB); (RL)
| |
Collapse
|
8
|
Keelapang P, Supasa P, Sriburi R, Puttikhunt C, Cardosa J, Kasinrerk W, Malasit P, Sittisombut N. A group of infection-enhancing and focus size-reducing monoclonal antibodies recognized an 'a and c' strands epitope in the pr domain of Dengue Virus prM. Virus Res 2023; 323:199015. [PMID: 36455752 PMCID: PMC9742851 DOI: 10.1016/j.virusres.2022.199015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Partial cleavage of a dengue virus envelope protein, prM, by furin results in a mixture of extracellular particles with variable levels of maturation and infectivity. Partially mature particles can infect leukocytes via interaction between the prM-anti-prM antibody complex with Fcγ receptors. Known prM epitopes involved in antibody-mediated infection are localized to the pr domain. In this study, a group of murine anti-prM monoclonal antibodies with strong infection-enhancing activity was found to reduce the focus size of subsets of multiple dengue serotypes that they could enhance. By employing sets of overlapping peptides, four antibodies recognizing 2-mercaptoethanol-insensitive epitopes were mapped to a common tetrapeptide located distantly in the b-c loop and furin binding site. Substitution mutations of each, or both, of the tetrapeptides in virus-like particles, however, failed to reduce binding. Further mapping experiments were performed using immature virus-like particles with abolished furin binding site to minimize the differential influence of various pr substitutions on pr-M cleavage. Reduction of antibody binding was detected when single alanine substitutions were introduced into the 'a' strand and 'c' strand of pr domain. These findings suggest that the pr 'a and c' strands region is the major binding site of these unusual focus size-reducing anti-prM antibodies.
Collapse
Affiliation(s)
- Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Medical Biotechnology Research Unit. National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Piyada Supasa
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit. National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand; Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand; Division of Dengue Hemorrhagic Fever Research and Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jane Cardosa
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit. National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand; Division of Dengue Hemorrhagic Fever Research and Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Medical Biotechnology Research Unit. National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| |
Collapse
|
9
|
Konevtsova OV, Golushko IY, Podgornik R, Rochal SB. Hidden symmetry of the flavivirus protein shell and pH-controlled reconstruction of the viral surface. Biomater Sci 2022; 11:225-234. [PMID: 36426630 DOI: 10.1039/d2bm01562e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using recent Zika virus structural data we reveal a hidden symmetry of protein order in immature and mature flavivirus shells, violating the Caspar-Klug paradigmatic model of capsid structures. We show that proteins of the outer immature shell layer exhibit trihexagonal tiling, while proteins from inner and outer layers conjointly form a double-shelled close-packed structure, based on a common triangular spherical lattice. Within the proposed structural model, we furthermore rationalize the structural organization of misassembled non-infectious subviral particles that have no inner capsid. We consider a pH-controlled structural reconstruction of the outer shell from the trimeric to the dimeric state, and demonstrate that this transition, occurring during the virus maturation, can be induced by changes in protein charges at lower pH, leading to a decrease in the electrostatic interaction free energy. This transition could also be assisted by electrostatic attraction of shell proteins to the interposed lipid membrane substrate separating the shells.
Collapse
Affiliation(s)
- Olga V Konevtsova
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Ivan Yu Golushko
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| |
Collapse
|
10
|
Chikungunya virus assembly and budding visualized in situ using cryogenic electron tomography. Nat Microbiol 2022; 7:1270-1279. [PMID: 35773421 PMCID: PMC9930444 DOI: 10.1038/s41564-022-01164-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/26/2022] [Indexed: 01/30/2023]
Abstract
Chikungunya virus (CHIKV) is a representative alphavirus causing debilitating arthritogenic disease in humans. Alphavirus particles assemble into two icosahedral layers: the glycoprotein spike shell embedded in a lipid envelope and the inner nucleocapsid (NC) core. In contrast to matrix-driven assembly of some enveloped viruses, the assembly/budding process of two-layered icosahedral particles remains poorly understood. Here we used cryogenic electron tomography (cryo-ET) to capture snapshots of the CHIKV assembly in infected human cells. Subvolume classification of the snapshots revealed 12 intermediates representing different stages of assembly at the plasma membrane. Further subtomogram average structures ranging from subnanometre to nanometre resolutions show that immature non-icosahedral NCs function as rough scaffolds to trigger icosahedral assembly of the spike lattice, which in turn progressively transforms the underlying NCs into icosahedral cores during budding. Further, analysis of CHIKV-infected cells treated with budding-inhibiting antibodies revealed wider spaces between spikes than in icosahedral spike lattice, suggesting that spacing spikes apart to prevent their lateral interactions prevents the plasma membrane from bending around the NC, thus blocking virus budding. These findings provide the molecular mechanisms for alphavirus assembly and antibody-mediated budding inhibition that provide valuable insights for the development of broad therapeutics targeting the assembly of icosahedral enveloped viruses.
Collapse
|
11
|
Thompson D, Guenther B, Manayani D, Mendy J, Smith J, Espinosa DA, Harris E, Alexander J, Vang L, Morello CS. Zika virus-like particle vaccine fusion loop mutation increases production yield but fails to protect AG129 mice against Zika virus challenge. PLoS Negl Trop Dis 2022; 16:e0010588. [PMID: 35793354 PMCID: PMC9292115 DOI: 10.1371/journal.pntd.0010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus with maternal infection associated with preterm birth, congenital malformations, and fetal death, and adult infection associated with Guillain-Barré syndrome. Recent widespread endemic transmission of ZIKV and the potential for future outbreaks necessitate the development of an effective vaccine. We developed a ZIKV vaccine candidate based on virus-like-particles (VLPs) generated following transfection of mammalian HEK293T cells using a plasmid encoding the pre-membrane/membrane (prM/M) and envelope (E) structural protein genes. VLPs were collected from cell culture supernatant and purified by column chromatography with yields of approximately 1-2mg/L. To promote increased particle yields, a single amino acid change of phenylalanine to alanine was made in the E fusion loop at position 108 (F108A) of the lead VLP vaccine candidate. This mutation resulted in a modest 2-fold increase in F108A VLP production with no detectable prM processing by furin to a mature particle, in contrast to the lead candidate (parent). To evaluate immunogenicity and efficacy, AG129 mice were immunized with a dose titration of either the immature F108A or lead VLP (each alum adjuvanted). The resulting VLP-specific binding antibody (Ab) levels were comparable. However, geometric mean neutralizing Ab (nAb) titers using a recombinant ZIKV reporter were significantly lower with F108A immunization compared to lead. After virus challenge, all lead VLP-immunized groups showed a significant 3- to 4-Log10 reduction in mean ZIKV RNAemia levels compared with control mice immunized only with alum, but the RNAemia reduction of 0.5 Log10 for F108A groups was statistically similar to the control. Successful viral control by the lead VLP candidate following challenge supports further vaccine development for this candidate. Notably, nAb titer levels in the lead, but not F108A, VLP-immunized mice inversely correlated with RNAemia. Further evaluation of sera by an in vitro Ab-dependent enhancement assay demonstrated that the F108A VLP-induced immune sera had a significantly higher capacity to promote ZIKV infection in FcγR-expressing cells. These data indicate that a single amino acid change in the fusion loop resulted in increased VLP yields but that the immature F108A particles were significantly diminished in their capacity to induce nAbs and provide protection against ZIKV challenge. Zika virus (ZIKV) is transmitted by mosquitoes and is a serious health threat due to potential epidemic spread. Infection in adults may lead to Guillain-Barré syndrome, a neurological disorder, or may cause harm to a developing fetus resulting in preterm birth, fetal death, or devastating congenital malformations. There are currently no approved vaccines against ZIKV. We previously developed a lead candidate vaccine based on a virus-like particle (VLP) that was generated in tissue culture. This ZIKV shell is devoid of any viral genetic material. In previous studies, this lead VLP candidate generated neutralizing antibodies (nAbs) that recognized wild-type ZIKV and prevented viral replication in both mice and non-human primates. To increase production of the lead VLP candidate and decrease cost-of-goods, we introduced a single amino acid change, phenylalanine to alanine, in the envelope glycoprotein. This change resulted in a modest increase in VLP yield. However, this single amino acid change resulted in reduced induction of nAbs following immunization and no significant reduction of RNAemia following challenge compared to the lead candidate. The results of this study suggest this investigational vaccine candidate is not suitable for further vaccine development and that ZIKV VLP maturation may have an important role in protection.
Collapse
Affiliation(s)
- Danielle Thompson
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Ben Guenther
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Darly Manayani
- PaxVax Inc., San Diego, California, United States of America
| | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Jonathan Smith
- PaxVax Inc., San Diego, California, United States of America
| | - Diego A. Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeff Alexander
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- PaxVax Inc., San Diego, California, United States of America
| | - Lo Vang
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | | |
Collapse
|
12
|
Kumar S, Bhardwaj VK, Singh R, Das P, Purohit R. Identification of acridinedione scaffolds as potential inhibitor of DENV-2 C protein: An in silico strategy to combat dengue. J Cell Biochem 2022; 123:935-946. [PMID: 35315127 DOI: 10.1002/jcb.30237] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Dengue is a prominent viral disease transmitted by mosquitoes to humans that affects mainly tropical and subtropical countries worldwide. The global spread of dengue virus (DENV) is mainly occurred by Aedes aegypti and Aedes albopictus mosquitoes. The dengue virus serotypes-2 (DENV-2) is a widely prevalent serotype of DENV, that causes the hemorrhagic fever and bleeding in the mucosa, which can be fatal. In the life cycle of DENV-2, a structural capsid (DENV-2 C) protein forms the nucleocapsid assembly and bind to the viral progeny RNA. For DENV-2 maturation, the nucleocapsid is a vital component. We used virtual ligand screening to filter out the best in-house synthesized acridinedione analogs (DSPD molecules) that could efficiently bind to DENV-2 C protein. The molecular docking and dynamics simulations studies were performed to analyze the effect of DSPD molecules on DENV-2 C protein after binding. Our findings showed that DSPD molecules strongly interacted with DENV-2 C protein, as evident from molecular interactions and several time-dependent molecular dynamics-driven analyses. Moreover, this study was also supported by the thermodynamic binding free energy and steered molecular dynamics simulations. Therefore, we intend to suggest that the DSPD3 molecule could be used as a potential therapeutic molecule against dengue complications as compared to the cocrystallized inhibitor ST-148. However, further studies are required to demonstrate the ability of DSPD3 to induce DENV-2 C tetramer formation.
Collapse
Affiliation(s)
- Sachin Kumar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vijay K Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pralay Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Department of Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Diosa-Toro M, Kennedy DR, Chuo V, Popov VL, Pompon J, Garcia-Blanco MA. Y-Box Binding Protein 1 Interacts with Dengue Virus Nucleocapsid and Mediates Viral Assembly. mBio 2022; 13:e0019622. [PMID: 35189699 PMCID: PMC8903895 DOI: 10.1128/mbio.00196-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Infection with dengue virus (DENV) induces vast rearrangements of the endoplasmic reticulum, which allows the compartmentalization of viral RNA replication and particle assembly. Both processes occur in concert with viral and cellular proteins. Prior studies from our group suggest that the host RNA-binding protein (RBP) Y-box binding protein 1 (YBX1) is required for a late step in the DENV replication cycle. Here we report that YBX1 interacts with the viral nucleocapsid, distributes to DENV assembly sites and is required for efficient assembly of intracellular infectious virions and their secretion. Genetic ablation of YBX1 decreased the spatial proximity between capsid and envelope, increased the susceptibility of envelope to proteinase K mediated degradation, resulted in the formation of rough empty-looking particles, and decreased the secretion of viral particles. We propose a model wherein YBX1 enables the interaction between the viral nucleocapsid with the structural protein E, which is required for proper assembly of intracellular virus particles and their secretion. IMPORTANCE The global incidence of dengue virus (DENV) infections has steadily increased over the past decades representing an enormous challenge for public health. During infection, DENV viral RNA interacts with numerous host RNA binding proteins (RBPs) that aid viral replication and thus constitute potential molecular targets to curb infection. We recently reported that Y-box-binding protein 1 (YBX1) interacts with DENV RNA and is required at a late step of the replication cycle. Here we describe the molecular mechanism by which YBX1 mediates DENV infection. We show that YBX1 interacts with the viral nucleocapsid, distributes to DENV assembly sites and is required for efficient assembly of intracellular infectious virions. These results provide important insights into DENV assembly, revealing novel functions of host RBPs during viral infection and opening new avenues for antiviral intervention.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Debbie R. Kennedy
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Mariano A. Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
Hsieh SC, Tsai WY, Wang WK. Obtention of Dengue Virus Membrane Proteins and Role for Virus Assembly. Methods Mol Biol 2022; 2409:63-76. [PMID: 34709636 DOI: 10.1007/978-1-0716-1879-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The four serotypes of dengue virus (DENV), belonging to the genus Flavivirus in the family Flaviviridae, are the leading cause of arboviral diseases in humans. The clinical presentations range from dengue fever to dengue hemorrhagic fever and dengue shock syndrome. Despite decades of efforts on developing intervention strategies against DENV, there is no licensed antiviral, and safe and effective vaccines remain challenging. Similar to other flaviviruses, the assembly of DENV particles occurs in the membranes derived from endoplasmic reticulum; immature virions bud into the lumen followed by maturation in the trans-Golgi and transport through the secretary pathway. A unique feature of flavivirus replication is the production of small and slowly sedimenting subviral particles, known as virus-like particles (VLPs). Co-expression of premembrane (prM) and envelope (E) proteins can generate recombinant VLPs, which are biophysically and antigenically similar to infectious virions and have been employed to study the function of prM and E proteins, assembly, serodiagnostic antigens, and vaccine candidates. Previously, we have developed several assays including sucrose cushion ultracentrifugation, sucrose gradient ultracentrifugation, membrane flotation, subcellular fractionation, and glycosidase digestion assay to exploit the interaction between DENV prM and E proteins, membrane association, subcellular localization, glycosylation pattern, and assembly of VLPs and replicon particles. The information derived from these assays have implications to further our understanding of DENV assembly, replication cycle, intervention strategies, and pathogenesis.
Collapse
Affiliation(s)
- Szu-Chia Hsieh
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Wen-Yang Tsai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
15
|
Cuevas-Juárez E, Pando-Robles V, Palomares LA. Flavivirus vaccines: Virus-like particles and single-round infectious particles as promising alternatives. Vaccine 2021; 39:6990-7000. [PMID: 34753613 DOI: 10.1016/j.vaccine.2021.10.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
The genus flavivirus of the Flaviridae family includes several human pathogens, like dengue, Zika, Japanese encephalitis, and yellow fever virus. These viruses continue to be a significant threat to human health. Vaccination remains the most useful approach to reduce the impact of flavivirus fever. However, currently available vaccines can induce severe side effects or have low effectiveness. An alternative is the use of recombinant vaccines, of which virus-like particles (VLP) and single-round infectious particles (SRIP) are of especial interest. VLP consist of the virus structural proteins produced in a heterologous system that self-assemble in a structure almost identical to the native virus. They are highly immunogenic and have been effective vaccines for other viruses for over 30 years. SRIP are promising vaccine candidates, as they induce both cellular and humoral responses, as viral proteins are expressed. Here, the state of the art to produce both types of particles and their use as vaccines against flaviviruses are discussed. We summarize the different approaches used for the design and production of flavivirus VLP and SRIP, the evidence for their safety and efficacy, and the main challenges for their use as commercial vaccines.
Collapse
Affiliation(s)
- Esmeralda Cuevas-Juárez
- Departamento de Medicina Molecular y Bioprocesos. Instituto de Biotecnología. Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, México.
| | - Victoria Pando-Robles
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Ave. Universidad 655. Cuernavaca, Morelos 62100. México.
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos. Instituto de Biotecnología. Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
16
|
York SB, Sun L, Cone AS, Duke LC, Cheerathodi MR, Meckes DG. Zika Virus Hijacks Extracellular Vesicle Tetraspanin Pathways for Cell-to-Cell Transmission. mSphere 2021; 6:e0019221. [PMID: 34190582 PMCID: PMC8265634 DOI: 10.1128/msphere.00192-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells which carry signaling factors, proteins, and microRNAs that mediate intercellular communication. Accumulating evidence supports an important role of EVs in the progression of neurological conditions and both the spread and pathogenesis of infectious diseases. It has recently been demonstrated that EVs from hepatitis C virus (HCV)-infected individuals and cells contained replicative-competent viral RNA that was capable of infecting hepatocytes. Being a member of the same viral family, it is likely the Zika virus also hijacks EV pathways to package viral components and secrete vesicles that are infectious and potentially less immunogenic. As EVs have been shown to cross blood-brain and placental barriers, it is possible that Zika virus could usurp normal EV biology to gain access to the brain or developing fetus. Here, we demonstrate that Zika virus-infected cells secrete distinct EV subpopulations with specific viral protein profiles and infectious genomes. Zika virus infection resulted in the enhanced production of EVs with various sizes and densities compared to those released from noninfected cells. We also show that the EV-enriched tetraspanin CD63 regulates the release of EVs and Zika viral genomes and capsids following infection. Overall, these findings provide evidence for an alternative means of Zika virus transmission and demonstrate the role of EV biogenesis and trafficking proteins in the modulation of Zika virus infection and virion morphogenesis. IMPORTANCE Zika virus is a reemerging infectious disease that spread rapidly across the Caribbean and South America. Infection of pregnant women during the first trimester has been linked to microcephaly, a neurological condition where babies are born with smaller heads due to abnormal brain development. Babies born with microcephaly can develop convulsions and suffer disabilities as they age. Despite the significance of Zika virus, little is known about how the virus infects the fetus or causes disease. Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells that are present in all biological fluids. EVs carry signaling factors, proteins, and microRNAs that mediate intercellular communication. EVs have been shown to be a means by which some viruses can alter cellular environments and cross previously unpassable cellular barriers. Thus, gaining a greater understanding of how Zika virus affects EV cargo may aid in the development of better diagnostics, targeted therapeutics, and/or prophylactic treatments.
Collapse
Affiliation(s)
- Sara B. York
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Li Sun
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Allaura S. Cone
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Leanne C. Duke
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Mujeeb R. Cheerathodi
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - David G. Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| |
Collapse
|
17
|
Maciejewski S, Ruckwardt TJ, Morabito KM, Foreman BM, Burgomaster KE, Gordon DN, Pelc RS, DeMaso CR, Ko SY, Fisher BE, Yang ES, Nair D, Foulds KE, Todd JP, Kong WP, Roy V, Aleshnick M, Speer SD, Bourne N, Barrett AD, Nason MC, Roederer M, Gaudinski MR, Chen GL, Dowd KA, Ledgerwood JE, Alter G, Mascola JR, Graham BS, Pierson TC. Distinct neutralizing antibody correlates of protection among related Zika virus vaccines identify a role for antibody quality. Sci Transl Med 2021; 12:12/547/eaaw9066. [PMID: 32522807 DOI: 10.1126/scitranslmed.aaw9066] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/29/2019] [Accepted: 05/19/2020] [Indexed: 12/25/2022]
Abstract
The emergence of Zika virus (ZIKV) in the Americas stimulated the development of multiple ZIKV vaccine candidates. We previously developed two related DNA vaccine candidates encoding ZIKV structural proteins that were immunogenic in animal models and humans. We sought to identify neutralizing antibody (NAb) properties induced by each vaccine that correlated with protection in nonhuman primates (NHPs). Despite eliciting equivalent NAb titers in NHPs, these vaccines were not equally protective. The transfer of equivalent titers of vaccine-elicited NAb into AG129 mice also revealed nonequivalent protection, indicating qualitative differences among antibodies (Abs) elicited by these vaccines. Both vaccines elicited Abs with similar binding titers against envelope protein monomers and those incorporated into virus-like particles, as well as a comparable capacity to orchestrate phagocytosis. Functional analysis of vaccine-elicited NAbs from NHPs and humans revealed a capacity to neutralize the structurally mature form of the ZIKV virion that varied in magnitude among vaccine candidates. Conversely, sensitivity to the virion maturation state was not a characteristic of NAbs induced by natural or experimental infection. Passive transfer experiments in mice revealed that neutralization of mature ZIKV virions more accurately predicts protection from ZIKV infection. These findings demonstrate that NAb correlates of protection may differ among vaccine antigens when assayed using standard neutralization platforms and suggest that measurements of Ab quality, including the capacity to neutralize mature virions, will be critical for defining correlates of ZIKV vaccine-induced immunity.
Collapse
Affiliation(s)
| | | | | | - Bryant M Foreman
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - David N Gordon
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Rebecca S Pelc
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Sung-Youl Ko
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Deepika Nair
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - John Paul Todd
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Vicky Roy
- Ragon Institute, Cambridge, MA 02139, USA
| | - Maya Aleshnick
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Scott D Speer
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Nigel Bourne
- Department of Microbiology and Immunology, Department of Pathology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D Barrett
- Department of Microbiology and Immunology, Department of Pathology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Bethesda, MD 20852, USA
| | - Mario Roederer
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Grace L Chen
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
18
|
Tsai WY, Driesse K, Tsai JJ, Hsieh SC, Sznajder Granat R, Jenkins O, Chang GJ, Wang WK. Enzyme-linked immunosorbent assays using virus-like particles containing mutations of conserved residues on envelope protein can distinguish three flavivirus infections. Emerg Microbes Infect 2021; 9:1722-1732. [PMID: 32684139 PMCID: PMC7473235 DOI: 10.1080/22221751.2020.1797540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The recent outbreaks of Zika virus (ZIKV) in flavivirus-endemic regions highlight the need for sensitive and specific serological tests. Previously we and others reported key fusion loop (FL) residues and/or BC loop (BCL) residues on dengue virus (DENV) envelope protein recognized by flavivirus cross-reactive human monoclonal antibodies and polyclonal sera. To improve ZIKV serodiagnosis, we employed wild type (WT) and FL or FL/BCL mutant virus-like particles (VLP) of ZIKV, DENV1 and West Nile virus (WNV) in enzyme linked immunosorbent assays (ELISA), and tested convalescent-phase serum or plasma samples from reverse-transcription PCR-confirmed cases with different ZIKV, DENV and WNV infections. For IgG ELISA, ZIKV WT-VLP had a sensitivity of 100% and specificity of 52.9%, which was improved to 83.3% by FL/BCL mutant VLP and 92.2% by the ratio of relative optical density of mutant to WT VLP. Similarly, DENV1 and WNV WT-VLP had a sensitivity/specificity of 100%/70.0% and 100%/56.3%, respectively; the specificity was improved to 93.3% and 83.0% by FL mutant VLP. For IgM ELISA, ZIKV, DENV1 and WNV WT-VLP had a specificity of 96.4%, 92.3% and 91.4%, respectively, for primary infection; the specificity was improved to 93.7–99.3% by FL or FL/BCL mutant VLP. An algorithm based on a combination of mutant and WT-VLP IgG ELISA is proposed to discriminate primary ZIKV, DENV and WNV infections as well as secondary DENV and ZIKV infection with previous DENV infections; this could be a powerful tool to better understand the seroprevalence and pathogenesis of ZIKV in regions where multiple flaviviruses co-circulate.
Collapse
Affiliation(s)
- Wen-Yang Tsai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kaitlin Driesse
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Hsieh
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Olivia Jenkins
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Gwong-Jen Chang
- Division of Vector-Borne Diseases, Center for Disease Control and Prevention, US Department of Health and Human Service, Fort Collins, CO, USA
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
19
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
20
|
Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021; 296:198343. [PMID: 33607183 DOI: 10.1016/j.virusres.2021.198343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Flaviviruses are the fastest spreading arthropod-borne viruses that cause severe symptoms such as hepatitis, hemorrhagic fever, encephalitis, and congenital deformities. Nearly 40 % of the entire human population is at risk of flavivirus epidemics. Yet, effective vaccination is restricted only to a few flaviviruses such as yellow fever and Japanese encephalitis viruses, and most recently for select cases of dengue virus infections. Despite the global spread of dengue virus, and emergence of new threats such as Zika virus and a new genotype of Japanese encephalitis virus, insights into flavivirus targets for potentially broad-spectrum vaccination are limited. In this review article, we highlight biochemical and structural differences in flavivirus proteins critical for virus assembly and host interactions. A comparative sequence analysis of pH-responsive properties of viral structural proteins identifies trends in conservation of complementary acidic-basic character between interacting viral structural proteins. This is highly relevant to the understanding of pH-sensitive differences in virus assembly in organelles such as neutral ER and acidic Golgi. Surface residues in viral interfaces identified by structural approaches are shown to demonstrate partial conservation, further reinforcing virus-specificity in assembly and interactions with host proteins. A comparative analysis of epitope conservation in emerging flaviviruses identifies therapeutic antibody candidates that have potential as broad spectrum anti-virals, thus providing a path towards development of vaccines.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette IN 47907, USA
| | - Asma Rehman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St. Baltimore MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville MD 20850, USA.
| |
Collapse
|
21
|
Universal Dengue Vaccine Elicits Neutralizing Antibodies against Strains from All Four Dengue Virus Serotypes. J Virol 2021; 95:JVI.00658-20. [PMID: 33208445 DOI: 10.1128/jvi.00658-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Any potential dengue virus (DENV) vaccine needs to elicit protective immunity against strains from all four serotypes to avoid potential antibody-dependent enhancement (ADE). In this study, four independent DENV envelope (E) glycoproteins were generated using wild-type E sequences from viruses isolated between 1943 and 2006 using computationally optimized broadly reactive antigen (COBRA) methodology. COBRA and wild-type E antigens were expressed on the surface of subvirion viral particles (SVPs). Four separate wild-type E antigens were used for each serotype. Mice vaccinated with wild-type DENV SVPs had anti-E IgG antibodies that neutralized serotype-specific viruses. COBRA DENV SVPs elicited a broader breadth of antibodies that neutralized strains across all four serotypes. Two COBRA DENV vaccine candidates that elicited the broadest breadth of neutralizing antibodies in mice were used to vaccinate rhesus macaques (Macaca mulatta) that either were immunologically naive to any DENV serotype or had preexisting antibodies to DENV. Antibodies elicited by COBRA DENV E immunogens neutralized all 12 strains of DENV in vitro, which was comparable to antibodies elicited by a tetravalent wild-type E SVP vaccination mixture. Therefore, using a single DENV COBRA E protein can elicit neutralizing antibodies against strains representing all four serotypes of DENV in both naive and dengue virus-preimmune populations.IMPORTANCE Dengue virus infects millions of people living in tropical areas of the world. Dengue virus-induced diseases can range from mild to severe with death. An effective vaccine will need to neutralize viruses from all four serotypes of dengue virus without inducing enhanced disease. A dengue virus E vaccine candidate generated by computationally optimized broadly reactive antigen algorithms elicits broadly neutralizing protection for currently circulating strains from all four serotypes regardless of immune status. Most dengue vaccines in development formulate four separate components based on prM-E from a wild-type strain representing each serotype. Designing a monovalent vaccine that elicits protective immunity against all four serotypes is an effective and economical strategy.
Collapse
|
22
|
Lan Q, Shu Y, Li L, Shan X, Ma D, Li T, Wang X, Pan Y, Chen J, Zhang J, Liu P, Sun Q. Molecular characterization of structural protein genes of dengue virus serotype 1 epidemic in Yunnan, Southwest China, in 2018. Arch Virol 2021; 166:863-870. [PMID: 33495898 PMCID: PMC7831630 DOI: 10.1007/s00705-020-04942-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/12/2020] [Indexed: 01/02/2023]
Abstract
A dengue virus serotype 1 (DENV-1) epidemic occurred from October to December 2018 in Xishuangbanna, Yunnan, Southwest China, neighboring Myanmar, Laos, and Vietnam. In this study, we investigated the molecular characteristics, evolution, and potential source of DENV from Xishuangbanna. The C (capsid), prM (premembrane), and E (envelope) genes of DENV isolated from 87 serum samples obtained from local patients were amplified and sequenced, and the sequences were evaluated by identification of mutations, phylogenetic and homologous recombination analysis, and secondary structure prediction. Phylogenetic analysis showed that all of the epidemic DENV strains from Xishuangbanna could be grouped in a branch with DENV-1 isolates, and were most similar to the Fujian 2005 (China, DQ193572) and Singapore 2016 (MF314188) strains. When compared with DENV-1SS (the standard strain), there were 31 non-synonymous mutations, but no obvious homologous recombination signal was found. Secondary structure prediction showed that some changes had occurred in a helical region in proteins of the MN123849 and MN123854 strains, but there were few changes in the disordered region. This study reveals the molecular characteristics of the structural genes of the Xishuangbanna epidemic strains in 2018 and provides a reference for molecular epidemiology, infection, and pathogenicity research and vaccine development.
Collapse
Affiliation(s)
- Qingping Lan
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Yun Shu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Linhao Li
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Tingting Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Pinghua Liu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China.
| | - Qiangming Sun
- Institute of Medical Biology, Chinese academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China. .,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, People's Republic of China.
| |
Collapse
|
23
|
Wong R, Belk JA, Govero J, Uhrlaub JL, Reinartz D, Zhao H, Errico JM, D'Souza L, Ripperger TJ, Nikolich-Zugich J, Shlomchik MJ, Satpathy AT, Fremont DH, Diamond MS, Bhattacharya D. Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity 2020; 53:1078-1094.e7. [PMID: 33010224 DOI: 10.1016/j.immuni.2020.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Memory B cells (MBCs) can respond to heterologous antigens either by molding new specificities through secondary germinal centers (GCs) or by selecting preexisting clones without further affinity maturation. To distinguish these mechanisms in flavivirus infections and immunizations, we studied recall responses to envelope protein domain III (DIII). Conditional deletion of activation-induced cytidine deaminase (AID) between heterologous challenges of West Nile, Japanese encephalitis, Zika, and dengue viruses did not affect recall responses. DIII-specific MBCs were contained mostly within the plasma-cell-biased CD80+ subset, and few GCs arose following heterologous boosters, demonstrating that recall responses are confined by preexisting clonal diversity. Measurement of monoclonal antibody (mAb) binding affinity to DIII proteins, timed AID deletion, single-cell RNA sequencing, and lineage tracing experiments point to selection of relatively low-affinity MBCs as a mechanism to promote diversity. Engineering immunogens to avoid this MBC diversity may facilitate flavivirus-type-specific vaccines with minimized potential for infection enhancement.
Collapse
Affiliation(s)
- Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Dakota Reinartz
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John M Errico
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lucas D'Souza
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
24
|
He Y, Wang M, Chen S, Cheng A. The role of capsid in the flaviviral life cycle and perspectives for vaccine development. Vaccine 2020; 38:6872-6881. [PMID: 32950301 PMCID: PMC7495249 DOI: 10.1016/j.vaccine.2020.08.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/09/2023]
Abstract
The structure and function of flaviviral capsid are very flexible. The capsid gene contains conserved RNA secondary structures. Both steps of assembly and dissociation of nucleocapsid complexes are obscure. Capsid mutant viruses are highly attenuated and immunogenic. ΔC-replicon and single-round infectious particles are promising vaccine approaches.
The arthropod-borne flaviviruses cause a series of diseases in humans and pose a significant threat to global public health. In this review, we aimed to summarize the structure of the capsid protein (CP), its relevant multiple functions in the viral life cycle and innovative vaccines targeting CP. The flaviviral CP is the smallest structural protein and forms a homodimer by antiparallel α-helixes. Its primary function is to package the genomic RNA; however, both steps of assembly and dissociation of nucleocapsid complexes (NCs) have been obscure until now; in fact, flaviviral budding is NC-free, demonstrated by the subviral particles that generally exist in flavivirus infection. In infected cells, CPs associate with lipid droplets, which possibly store CPs prior to packaging. However, the function of nuclear localization of CPs remains unknown. Moreover, introducing deletions into CPs can be used to rationally design safe and effective live-attenuated vaccines or noninfectious replicon vaccines and single-round infectious particles, the latter two representing promising approaches for innovative flaviviral vaccine development.
Collapse
Affiliation(s)
- Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
25
|
Zhang N, Li C, Jiang S, Du L. Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030481. [PMID: 32867194 PMCID: PMC7565697 DOI: 10.3390/vaccines8030481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
Flaviviruses include several medically important viruses, such as Zika virus (ZIKV), Dengue virus (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV). They have expanded in geographic distribution and refocused international attention in recent years. Vaccination is one of the most effective public health strategies for combating flavivirus infections. In this review, we summarized virus-like particle (VLP)-based vaccines against the above four mentioned flaviviruses. Potential strategies to improve the efficacy of VLP-based flavivirus vaccines were also illustrated. The applications of flavivirus VLPs as tools for viral detection and antiviral drug screening were finally proposed.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Shibo Jiang
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| |
Collapse
|
26
|
Luisi K, Morabito KM, Burgomaster KE, Sharma M, Kong WP, Foreman BM, Patel S, Fisher B, Aleshnick MA, Laliberte J, Wallace M, Ruckwardt TJ, Gordon DN, Linton C, Ruggiero N, Cohen JL, Johnson R, Aggarwal K, Ko SY, Yang ES, Pelc RS, Dowd KA, O’Hagan D, Ulmer J, Mossman S, Sambor A, Lepine E, Mascola JR, Pierson TC, Graham BS, Yu D. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. SCIENCE ADVANCES 2020; 6:eaba5068. [PMID: 32821824 PMCID: PMC7413734 DOI: 10.1126/sciadv.aba5068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/26/2020] [Indexed: 05/15/2023]
Abstract
Zika virus (ZIKV) is the cause of a pandemic associated with microcephaly in newborns and Guillain-Barre syndrome in adults. Currently, there are no available treatments or vaccines for ZIKV, and the development of a safe and effective vaccine is a high priority for many global health organizations. We describe the development of ZIKV vaccine candidates using the self-amplifying messenger RNA (SAM) platform technology delivered by cationic nanoemulsion (CNE) that allows bedside mixing and is particularly useful for rapid responses to pandemic outbreaks. Two immunizations of either of the two lead SAM (CNE) vaccine candidates elicited potent neutralizing antibody responses to ZIKV in mice and nonhuman primates. Both SAM (CNE) vaccines protected these animals from ZIKV challenge, with one candidate providing complete protection against ZIKV infection in nonhuman primates. The data provide a preclinical proof of concept that a SAM (CNE) vaccine candidate can rapidly elicit protective immunity against ZIKV.
Collapse
Affiliation(s)
| | - Kaitlyn M. Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine E. Burgomaster
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryant M. Foreman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Brian Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maya A. Aleshnick
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David N. Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca S. Pelc
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly A. Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C. Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (D.Y.); (B.S.G.); (T.C.P.)
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (D.Y.); (B.S.G.); (T.C.P.)
| | - Dong Yu
- GSK Vaccines, Rockville, MD 20850, USA
- Corresponding author. (D.Y.); (B.S.G.); (T.C.P.)
| |
Collapse
|
27
|
Kaufman F, Dostálková A, Pekárek L, Thanh TD, Kapisheva M, Hadravová R, Bednárová L, Novotný R, Křížová I, Černý J, Grubhoffer L, Ruml T, Hrabal R, Rumlová M. Characterization and in vitro assembly of tick-borne encephalitis virus C protein. FEBS Lett 2020; 594:1989-2004. [PMID: 32510601 DOI: 10.1002/1873-3468.13857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.
Collapse
Affiliation(s)
- Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Lukáš Pekárek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Tung Dinh Thanh
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Romana Hadravová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radim Novotný
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Prague, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Richard Hrabal
- NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
28
|
Affiliation(s)
- Ter Yong Tan
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
29
|
Hirsch J, Faber BW, Crowe JE, Verstrepen B, Cornelissen G. E. coli production process yields stable dengue 1 virus-sized particles (VSPs). Vaccine 2020; 38:3305-3312. [PMID: 32197924 DOI: 10.1016/j.vaccine.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
Dengue fever is one of the most wide-spread vector-borne diseases in the world. Although dengue-associated mortality is low, morbidity and economic impact are high. Current licensed vaccines are limited and mediate only partial protection, thus a cost-effective vaccine with improved efficacy is strongly needed. In this work, recombinant dengue serotype 1 E protein was produced in E. coli, inclusion bodies were isolated and the E protein solubilized in urea and purified using an immobilized metal chelate affinity column. The protein was refolded by dialysis in order to obtain virus-like particles (VLPs). Particle assembly was confirmed using size-exclusion chromatography, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy and stimulated emission depletion fluorescence (STED) microscopy. Particle diameter was strongly dependent on temperature, pH, buffer salt composition, and addition of L-arginine. Particles were stable in carbonate buffer at pH 9.5 and higher at 4 °C and did not aggregate during short-term temperature increase up to 55 °C. However, on basis of the above analyses, especially the results of DLS, TEM and STED, it was concluded that the particles obtained did not have an optimal virus-like structure and were therefore designated "virus-sized particles" (VSPs) rather than VLPs. Immunization of rabbits with the particles did not induce neutralizing antibodies, despite the recognition of the native virus by rabbit antibodies. As the titers against the immunogen were much higher than against the (heat-inactivated) virus, it is assumed that the conformation of the particles at the time of immunization was not optimal. Studies are currently underway to improve the quality of the E protein virus-sized particles towards true virus-like particles in order to optimize its potential as a dengue vaccine candidate.
Collapse
Affiliation(s)
- Janet Hirsch
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands.
| | - James E Crowe
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN 37232-0417, USA.
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands.
| | - Gesine Cornelissen
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| |
Collapse
|
30
|
Tan TY, Fibriansah G, Kostyuchenko VA, Ng TS, Lim XX, Zhang S, Lim XN, Wang J, Shi J, Morais MC, Corti D, Lok SM. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat Commun 2020; 11:895. [PMID: 32060358 PMCID: PMC7021721 DOI: 10.1038/s41467-020-14647-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/18/2020] [Indexed: 01/22/2023] Open
Abstract
Structures of flavivirus (dengue virus and Zika virus) particles are known to near-atomic resolution and show detailed structure and arrangement of their surface proteins (E and prM in immature virus or M in mature virus). By contrast, the arrangement of the capsid proteins:RNA complex, which forms the core of the particle, is poorly understood, likely due to inherent dynamics. Here, we stabilize immature Zika virus via an antibody that binds across the E and prM proteins, resulting in a subnanometer resolution structure of capsid proteins within the virus particle. Fitting of the capsid protein into densities shows the presence of a helix previously thought to be removed via proteolysis. This structure illuminates capsid protein quaternary organization, including its orientation relative to the lipid membrane and the genomic RNA, and its interactions with the transmembrane regions of the surface proteins. Results show the capsid protein plays a central role in the flavivirus assembly process.
Collapse
Affiliation(s)
- Ter Yong Tan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Victor A Kostyuchenko
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Thiam-Seng Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Xin-Xiang Lim
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Shuijun Zhang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Xin-Ni Lim
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Jiaqi Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Jian Shi
- CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Inc., CH-6500, Bellinzona, Switzerland
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore.
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.
| |
Collapse
|
31
|
Li L, Zhang Y, Dong J, Zhang J, Zhang C, Qin J, Sun M, Xu Z. Development of chimeric virus-like particles containing the E glycoprotein of duck Tembusu virus. Vet Microbiol 2019; 238:108425. [PMID: 31648723 DOI: 10.1016/j.vetmic.2019.108425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
Duck Tembusu virus (DTMUV) has caused enormous economic losses to the poultry industry in China. In the current study, we generated chimeric virus-like particles (VLPs) containing E protein of the DTMUV and HA2 protein of the H3N2 avian influenza virus (AIV). The chimeric VLPs could induce specific antibody responses in both mice (n = 5/group) and ducks (n = 10/group). After immunizing ducklings with the chimeric VLPs, all immunized ducks (n = 10/group) were 100% (10/10) protected against homologous DTMUV strain and virus shedding was not detected on day 5 post-challenge, whereas 60% (6/10) of the ducklings immunized with PBS presented typical symptoms with a virus shedding rate of 90% (9/10). Furthermore, viral loads were significantly decreased in the birds of the chimeric VLPs immunized group, comparing to that of the PBS immunized group. Our data demonstrated that the chimeric VLPs used in the current study could be applied as a potential vaccine candidate to control DTMUV infections in young ducks.
Collapse
Affiliation(s)
- Linlin Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiawen Dong
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Junqing Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Chunhong Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jianru Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Minhua Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China.
| | - Zhihong Xu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Kudlacek ST, Metz SW. Focused dengue vaccine development: outwitting nature's design. Pathog Dis 2019; 77:5307883. [PMID: 30726906 DOI: 10.1093/femspd/ftz003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
The four DENV serotypes are mosquito-borne pathogens that belong to the Flavivirus genus. These viruses present a major global health burden, being endemic in over 120 countries, causing ∼390 million reported infections yearly, with clinical symptoms ranging from mild fever to severe and potentially fatal hemorrhagic syndromes. Development of a safe and efficacious DENV vaccine is challenging because of the need to induce immunity against all four serotypes simultaneously, as immunity against one serotype can potentially enhance disease caused by a heterotypic secondary infection. So far, live-virus particle-based vaccine approaches struggle with inducing protective tetravalent immunity, while recombinant subunit approaches that use the envelope protein (E) as the major antigen, are gaining promise in preclinical studies. However, E-based subunits require further development and characterization to be used as effective vaccine antigens against DENV. In this review, we will address the shortcomings of recombinant E-based antigens and will discuss potential solutions to enhance E-based subunit antigen immunogenicity and vaccine efficacy.
Collapse
Affiliation(s)
- Stephan T Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina, 125 Mason Farm Road, 6230E Marisco Hall, Chapel Hill, NC 27599, USA
| | - Stefan W Metz
- Department of Microbiology and Immunology, University of North Carolina, 125 Mason Farm Road, 6230E Marisco Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Dowd KA, Pierson TC. The Many Faces of a Dynamic Virion: Implications of Viral Breathing on Flavivirus Biology and Immunogenicity. Annu Rev Virol 2019; 5:185-207. [PMID: 30265634 DOI: 10.1146/annurev-virology-092917-043300] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flaviviruses are arthropod-borne RNA viruses that are a significant threat to global health due to their widespread distribution, ability to cause severe disease in humans, and capacity for explosive spread following introduction into new regions. Members of this genus include dengue, tick-borne encephalitis, yellow fever, and Zika viruses. Vaccination has been a highly successful means to control flaviviruses, and neutralizing antibodies are an important component of a protective immune response. High-resolution structures of flavivirus structural proteins and virions, alone and in complex with antibodies, provide a detailed understanding of viral fusion mechanisms and virus-antibody interactions. However, mounting evidence suggests these structures provide only a snapshot of an otherwise structurally dynamic virus particle. The contribution of the structural ensemble arising from viral breathing to the biology, antigenicity, and immunity of flaviviruses is discussed, including implications for the development and evaluation of flavivirus vaccines.
Collapse
Affiliation(s)
- Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
34
|
Abstract
The emergence of Zika virus in Brazil and its association with microcephaly and Guillain-Barré syndrome led to accelerated vaccine development efforts. Based on prior flavivirus vaccine development programs, knowledge of flavivirus particle structure, definition of E dimers as the key antigenic target, and deep understanding of neutralizing mechanisms, multiple vaccine strategies have advanced to the stage of clinical evaluation with unprecedented speed. These include nucleic acid (DNA and messenger RNA), whole-inactivated virus, live-attenuated or chimeric virus, and protein or viruslike particle vaccines. Within a year from the declaration by the World Health Organization of Zika virus as a Public Health Emergency of International Concern, multiple vaccine candidates entered clinical trials, now totaling 7 products with an additional 40-plus candidate vaccines in preclinical development. The rapid progress in vaccine development demonstrates the capacity of governments, public health organizations, and the scientific community to respond to pandemic threats when sufficient prior knowledge exists, emergency funding is made available, and interagency cooperation is achieved and serves as a paradigm for preparing for future emerging infectious diseases.
Collapse
Affiliation(s)
- Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Pezeshki A, Ovsyannikova IG, McKinney BA, Poland GA, Kennedy RB. The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Rev Vaccines 2019; 18:253-267. [PMID: 30700167 DOI: 10.1080/14760584.2019.1575208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Emerging infectious diseases are a major threat to public health, and while vaccines have proven to be one of the most effective preventive measures for infectious diseases, we still do not have safe and effective vaccines against many human pathogens, and emerging diseases continually pose new threats. The purpose of this review is to discuss how the creation of vaccines for these new threats has been hindered by limitations in the current approach to vaccine development. Recent advances in high-throughput technologies have enabled scientists to apply systems biology approaches to collect and integrate increasingly large datasets that capture comprehensive biological changes induced by vaccines, and then decipher the complex immune response to those vaccines. AREAS COVERED This review covers advances in these technologies and recent publications that describe systems biology approaches to understanding vaccine immune responses and to understanding the rational design of new vaccine candidates. EXPERT OPINION Systems biology approaches to vaccine development provide novel information regarding both the immune response and the underlying mechanisms and can inform vaccine development.
Collapse
Affiliation(s)
| | | | - Brett A McKinney
- b Department of Mathematics , University of Tulsa , Tulsa , OK , USA.,c Tandy School of Computer Science , University of Tulsa , Tulsa , OK , USA
| | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | |
Collapse
|
36
|
Abstract
Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus within the family Flaviviridae, causes fatal encephalitis with severe sequelae in humans. TBEV is
prevalent over a wide area of the Eurasian continent including Europe, Russia, Far-Eastern Asia, and Japan. While it was previously thought that TBEV was not endemic in Japan, the first
confirmed case of serologically diagnosed TBE was reported in 1993 in the southern area of Hokkaido Prefecture, Japan. In addition, TBEV has been isolated from dogs, wild rodents and ticks
in the area. Our epizootiological survey indicated that endemic foci of TBEV were maintained in Hokkaido and other areas of Honshu. TBEV can be divided into three subtypes based on
phylogenetic analyses. The Japanese isolates were classified as the Far Eastern subtype, which causes severe neural disorders with a higher mortality rate up to 30%. However, how viral
replication and pathogenicity contribute to the neurological manifestations remains unclear. Recent studies have revealed distinctive mechanisms of TBEV pathogenicity and viral genetic
factors associated with virulence. This review discusses the recent findings regarding the epidemiology and pathogenesis of TBEV.
Collapse
Affiliation(s)
- Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
37
|
Pérez P, Q Marín M, Lázaro-Frías A, Jiménez de Oya N, Blázquez AB, Escribano-Romero E, S Sorzano CÓ, Ortego J, Saiz JC, Esteban M, Martín-Acebes MA, García-Arriaza J. A Vaccine Based on a Modified Vaccinia Virus Ankara Vector Expressing Zika Virus Structural Proteins Controls Zika Virus Replication in Mice. Sci Rep 2018; 8:17385. [PMID: 30478418 PMCID: PMC6255889 DOI: 10.1038/s41598-018-35724-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that affects humans and can cause severe neurological complications, including Guillain-Barré syndrome and microcephaly. Since 2007 there have been three large outbreaks; the last and larger spread in the Americas in 2015. Actually, ZIKV is circulating in the Americas, Southeast Asia, and the Pacific Islands, and represents a potential pandemic threat. Given the rapid ZIKV dissemination and the severe neurological and teratogenic sequelae associated with ZIKV infection, the development of a safe and efficacious vaccine is critical. In this study, we have developed and characterized the immunogenicity and efficacy of a novel ZIKV vaccine based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the ZIKV prM and E structural genes (termed MVA-ZIKV). MVA-ZIKV expressed efficiently the ZIKV structural proteins, assembled in virus-like particles (VLPs) and was genetically stable upon nine passages in cell culture. Immunization of mice with MVA-ZIKV elicited antibodies that were able to neutralize ZIKV and induced potent and polyfunctional ZIKV-specific CD8+ T cell responses that were mainly of an effector memory phenotype. Moreover, a single dose of MVA-ZIKV reduced significantly the viremia in susceptible immunocompromised mice challenged with live ZIKV. These findings support the use of MVA-ZIKV as a potential vaccine against ZIKV.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Q Marín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
38
|
Diamond MS, Ledgerwood JE, Pierson TC. Zika Virus Vaccine Development: Progress in the Face of New Challenges. Annu Rev Med 2018; 70:121-135. [PMID: 30388054 DOI: 10.1146/annurev-med-040717-051127] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) emerged at a global level when it spread to the Americas and began causing congenital malformations and microcephaly in 2015. A rapid response by academia, government, public health infrastructure, and industry has enabled the expedited development and testing of a suite of vaccine platforms aiming to control and eliminate ZIKV-induced disease. Analysis of key immunization and pathogenesis studies in multiple animal models, including during pregnancy, has begun to define immune correlates of protection. Nonetheless, the deployment of ZIKV vaccines, along with the confirmation of their safety and efficacy, still has major challenges, one of which is related to the waning of the epidemic. In this review, we discuss the measures that enabled rapid progress and highlight the path forward for successful deployment of ZIKV vaccines.
Collapse
Affiliation(s)
- Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
39
|
Abstract
Flaviviruses assemble initially in an immature, noninfectious state and undergo extensive conformational rearrangements to generate mature virus. Previous cryo-electron microscopy (cryo-EM) structural studies of flaviviruses assumed icosahedral symmetry and showed the concentric organization of the external glycoprotein shell, the lipid membrane, and the internal nucleocapsid core. We show here that when icosahedral symmetry constraints were excluded in calculating the cryo-EM reconstruction of an immature flavivirus, the nucleocapsid core was positioned asymmetrically with respect to the glycoprotein shell. The core was positioned closer to the lipid membrane at the proximal pole, and at the distal pole, the outer glycoprotein spikes and inner membrane leaflet were either perturbed or missing. In contrast, in the asymmetric reconstruction of a mature flavivirus, the core was positioned concentric with the glycoprotein shell. The deviations from icosahedral symmetry demonstrated that the core and glycoproteins have varied interactions, which likely promotes viral assembly and budding.
Collapse
|
40
|
Shen WF, Galula JU, Liu JH, Liao MY, Huang CH, Wang YC, Wu HC, Liang JJ, Lin YL, Whitney MT, Chang GJJ, Chen SR, Wu SR, Chao DY. Epitope resurfacing on dengue virus-like particle vaccine preparation to induce broad neutralizing antibody. eLife 2018; 7:38970. [PMID: 30334522 PMCID: PMC6234032 DOI: 10.7554/elife.38970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
Dengue fever is caused by four different serotypes of dengue virus (DENV) which is the leading cause of worldwide arboviral diseases in humans. Virus-like particles (VLPs) containing flavivirus prM/E proteins have been demonstrated to be a potential vaccine candidate; however, the structure of dengue VLP is poorly understood. Herein VLP derived from DENV serotype-2 were engineered becoming highly matured (mD2VLP) and showed variable size distribution with diameter of ~31 nm forming the major population under cryo-electron microscopy examination. Furthermore, mD2VLP particles of 31 nm diameter possess a T = 1 icosahedral symmetry with a groove located within the E-protein dimers near the 2-fold vertices that exposed highly overlapping, cryptic neutralizing epitopes. Mice vaccinated with mD2VLP generated higher cross-reactive (CR) neutralization antibodies (NtAbs) and were fully protected against all 4 serotypes of DENV. Our results highlight the potential of ‘epitope-resurfaced’ mature-form D2VLPs in inducing quaternary structure-recognizing broad CR NtAbs to guide future dengue vaccine design.
Collapse
Affiliation(s)
- Wen-Fan Shen
- Microbial Genomics Ph.D. Program, National Chung Hsing University and Academia Sinica, Taichung City, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, College of Life Science, National Chung-Hsing University, Taichung City, Taiwan
| | - Mei-Ying Liao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Cheng-Hao Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Yu-Chun Wang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Matthew T Whitney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States
| | - Sheng-Ren Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| |
Collapse
|
41
|
Sager G, Gabaglio S, Sztul E, Belov GA. Role of Host Cell Secretory Machinery in Zika Virus Life Cycle. Viruses 2018; 10:E559. [PMID: 30326556 PMCID: PMC6213159 DOI: 10.3390/v10100559] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The high human cost of Zika virus infections and the rapid establishment of virus circulation in novel areas, including the United States, present an urgent need for countermeasures against this emerging threat. The development of an effective vaccine against Zika virus may be problematic because of the cross reactivity of the antibodies with other flaviviruses leading to antibody-dependent enhancement of infection. Moreover, rapidly replicating positive strand RNA viruses, including Zika virus, generate large spectrum of mutant genomes (quasi species) every replication round, allowing rapid selection of variants resistant to drugs targeting virus-specific proteins. On the other hand, viruses are ultimate cellular parasites and rely on the host metabolism for every step of their life cycle, thus presenting an opportunity to manipulate host processes as an alternative approach to suppress virus replication and spread. Zika and other flaviviruses critically depend on the cellular secretory pathway, which transfers proteins and membranes from the ER through the Golgi to the plasma membrane, for virion assembly, maturation and release. In this review, we summarize the current knowledge of interactions of Zika and similar arthropod-borne flaviviruses with the cellular secretory machinery with a special emphasis on virus-specific changes of the secretory pathway. Identification of the regulatory networks and effector proteins required to accommodate the trafficking of virions, which represent a highly unusual cargo for the secretory pathway, may open an attractive and virtually untapped reservoir of alternative targets for the development of superior anti-viral drugs.
Collapse
Affiliation(s)
- Garrett Sager
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - Samuel Gabaglio
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
42
|
Pulkkinen LIA, Butcher SJ, Anastasina M. Tick-Borne Encephalitis Virus: A Structural View. Viruses 2018; 10:v10070350. [PMID: 29958443 PMCID: PMC6071267 DOI: 10.3390/v10070350] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a growing health concern. It causes a severe disease that can lead to permanent neurological complications or death and the incidence of TBEV infections is constantly rising. Our understanding of TBEV’s structure lags behind that of other flaviviruses, but has advanced recently with the publication of a high-resolution structure of the TBEV virion. The gaps in our knowledge include: aspects of receptor binding, replication and virus assembly. Furthermore, TBEV has mostly been studied in mammalian systems, even though the virus’ interaction with its tick hosts is a central part of its life cycle. Elucidating these aspects of TBEV biology are crucial for the development of TBEV antivirals, as well as the improvement of diagnostics. In this review, we summarise the current structural knowledge on TBEV, bringing attention to the current gaps in our understanding, and propose further research that is needed to truly understand the structural-functional relationship of the virus and its hosts.
Collapse
Affiliation(s)
- Lauri I A Pulkkinen
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Sarah J Butcher
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Maria Anastasina
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
43
|
Nakayasu M, Hirano M, Muto M, Kobayashi S, Kariwa H, Yoshii K. Development of a serodiagnostic IgM-ELISA for tick-borne encephalitis virus using subviral particles with strep-tag. Ticks Tick Borne Dis 2018; 9:1391-1394. [PMID: 29960872 DOI: 10.1016/j.ttbdis.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis in humans. IgM antibody detection is useful for the serological diagnosis of TBEV infection, because IgM has high specificity for each flavivirus and indicates a recent infection. Commercial IgM-ELISA kits are somewhat expensive and difficulties in their sensitivity have been suggested due to their format and formalin-inactivated antigens. Therefore, the development of an inexpensive IgM-ELISA with high specificity and sensitivity is needed. In this study, a μ-capture ELISA was developed to detect TBEV-specific IgM antibodies using subviral particles (SPs) with strep-tag (strep-SP-IgM-ELISA). The results of our strep-SP-IgM-ELISA were highly correlated with diagnoses made by the neutralization test (sensitivity: 94.1%), and our strep-SP-IgM-ELISA could detect anti-TBEV IgM antibodies in patients who could not be diagnosed with the neutralization test. Besides, 51 of 52 positive samples by a commercial IgM-ELISA were also diagnosed as positive by our strep-SP-IgM-ELISA (98.1%), and our strep-SP-IgM-ELISA could detect anti-TBEV IgM antibodies in all samples that were inconclusive based on the commercial IgM-ELISA. Our strep-SP-IgM-ELISA will be useful for diagnoses in TBE-endemic areas.
Collapse
Affiliation(s)
- Miki Nakayasu
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Minato Hirano
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Memi Muto
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
44
|
Boon PLS, Saw WG, Lim XX, Raghuvamsi PV, Huber RG, Marzinek JK, Holdbrook DA, Anand GS, Grüber G, Bond PJ. Partial Intrinsic Disorder Governs the Dengue Capsid Protein Conformational Ensemble. ACS Chem Biol 2018; 13:1621-1630. [PMID: 29792674 DOI: 10.1021/acschembio.8b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 11 kDa, positively charged dengue capsid protein (C protein) exists stably as a homodimer and colocalizes with the viral genome within mature viral particles. Its core is composed of four alpha helices encompassing a small hydrophobic patch that may interact with lipids, but approximately 20% of the protein at the N-terminus is intrinsically disordered, making it challenging to elucidate its conformational landscape. Here, we combine small-angle X-ray scattering (SAXS), amide hydrogen-deuterium exchange mass spectrometry (HDXMS), and atomic-resolution molecular dynamics (MD) simulations to probe the dynamics of dengue C proteins. We show that the use of MD force fields (FFs) optimized for intrinsically disordered proteins (IDPs) is necessary to capture their conformational landscape and validate the computationally generated ensembles with reference to SAXS and HDXMS data. Representative ensembles of the C protein dimer are characterized by alternating, clamp-like exposure and occlusion of the internal hydrophobic patch, as well as by residual helical structure at the disordered N-terminus previously identified as a potential source of autoinhibition. Such dynamics are likely to determine the multifunctionality of the C protein during the flavivirus life cycle and hence impact the design of novel antiviral compounds.
Collapse
Affiliation(s)
- Priscilla L. S. Boon
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, #05-01, 28 Medical Drive, Singapore 117456
| | - Wuan Geok Saw
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| | - Xin Xiang Lim
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Palur Venkata Raghuvamsi
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Roland G. Huber
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
| | - Jan K. Marzinek
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Daniel A. Holdbrook
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
| | - Ganesh S. Anand
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Gerhard Grüber
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| | - Peter J. Bond
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| |
Collapse
|
45
|
Fan YC, Chen JM, Lin JW, Chen YY, Wu GH, Su KH, Chiou MT, Wu SR, Yin JH, Liao JW, Chang GJJ, Chiou SS. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine. Sci Rep 2018; 8:7481. [PMID: 29748549 PMCID: PMC5945781 DOI: 10.1038/s41598-018-25596-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/21/2018] [Indexed: 01/04/2023] Open
Abstract
Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.
Collapse
Affiliation(s)
- Yi-Chin Fan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Jen-Wei Lin
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Guan-Hong Wu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Hsuan Su
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ji-Hang Yin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Gwong-Jen J Chang
- Arboviral Diseases Branch, Center for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
46
|
Metz SW, Thomas A, White L, Stoops M, Corten M, Hannemann H, de Silva AM. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J 2018; 15:60. [PMID: 29609659 PMCID: PMC5879749 DOI: 10.1186/s12985-018-0970-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/20/2018] [Indexed: 11/28/2022] Open
Abstract
Background The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form “rafts” that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. Methods A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. Results VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1–4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. Conclusions This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen. Electronic supplementary material The online version of this article (10.1186/s12985-018-0970-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan W Metz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA.
| | - Ashlie Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Laura White
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Mark Stoops
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Markus Corten
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
47
|
Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun 2018; 9:436. [PMID: 29382836 PMCID: PMC5789857 DOI: 10.1038/s41467-018-02882-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/03/2018] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes 13,000 cases of human meningitis and encephalitis annually. However, the structure of the TBEV virion and its interactions with antibodies are unknown. Here, we present cryo-EM structures of the native TBEV virion and its complex with Fab fragments of neutralizing antibody 19/1786. Flavivirus genome delivery depends on membrane fusion that is triggered at low pH. The virion structure indicates that the repulsive interactions of histidine side chains, which become protonated at low pH, may contribute to the disruption of heterotetramers of the TBEV envelope and membrane proteins and induce detachment of the envelope protein ectodomains from the virus membrane. The Fab fragments bind to 120 out of the 180 envelope glycoproteins of the TBEV virion. Unlike most of the previously studied flavivirus-neutralizing antibodies, the Fab fragments do not lock the E-proteins in the native-like arrangement, but interfere with the process of virus-induced membrane fusion. The tick-borne encephalitis virus (TBEV) causes thousands of cases of meningitis and encephalitis annually. Here, the authors describe a cryo-EM structure of the TBEV virion bound by Fab fragments of the neutralizing antibody 19/1786, revealing a mechanism whereby this antibody prevents virus membrane fusion.
Collapse
|
48
|
Abstract
West Nile virus (WNV) is an arbovirus with increased global incidence in the last decade. It is also a major cause of human encephalitis in the USA. WNV is an arthropod-transmitted virus that mainly affects birds but humans become infected as incidental dead-end hosts which can cause outbreaks in naïve populations. The main vectors of WNV are mosquitoes of the genus Culex, which preferentially feed on birds. As in many other arboviruses, the characteristics that allow Flaviviruses like WNV to replicate and transmit to different hosts are encrypted in their genome, which also contains information for the production of structural and nonstructural proteins needed for host cell infection. WNV and other Flaviviruses have developed different strategies to establish infection, replication, and successful transmission. Most of these strategies include the diversion of the host's immune responses away from the virus. In this review, we describe the molecular structure and protein function of WNV with emphasis on protein involvement in the modulation of antiviral immune responses.
Collapse
|
49
|
New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins. J Comput Aided Mol Des 2017; 31:1009-1019. [DOI: 10.1007/s10822-017-0076-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
50
|
Investigating Tick-borne Flaviviral-like Particles as a Delivery System for Gene Therapy. Curr Ther Res Clin Exp 2017; 88:8-17. [PMID: 30093925 PMCID: PMC6076373 DOI: 10.1016/j.curtheres.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background Research on the biogenesis of tick-borne encephalitis virus (TBEV) would benefit gene therapy. Due to specific arrangements of genes along the TBEV genome, its viral-like particles (VLPs) could be exploited as shuttles to deliver their replicon, which carries therapeutic genes, to immune system cells. Objective To develop a flaviviral vector for gene delivery as a part of gene therapy research that can be expressed in secretable VLP suicidal shuttles and provide abundant unique molecular and structural data supporting this gene therapy concept. Method TBEV structural gene constructs of a Swedish Torö strain were cloned into plasmids driven by the promoters CAG and CMV and then transfected into various cell lines, including COS-1 and BHK-21. Time-course sampling of the cells, culture fluid, cell lysate supernatant, and pellet specimens were performed. Western blotting and electron microscopy analyses of collected specimens were used to investigate molecular and structural processing of TBEV structural proteins. Results Western blotting analysis showed differences between promoters in directing the gene expression of the VLPs constructs. The premature flaviviral polypeptides as well as mature VLPs could be traced. Using electron microscopy, the premature and mature VLP accumulation in cellular compartments—and also endoplasmic reticulum proliferation as a virus factory platform—were observed in addition to secreted VLPs. Conclusions The abundant virologic and cellular findings in this study show the natural processing and safety of inserting flaviviral structural genes into suicidal VLP shuttles. Thus, we propose that these VLPs are a suitable gene delivering system model in gene therapy.
Collapse
|