1
|
Suzuki K, Okawa Y, Akter S, Ito H, Shiba Y. Arf GTPase-Activating proteins ADAP1 and ARAP1 regulate incorporation of CD63 in multivesicular bodies. Biol Open 2024; 13:bio060338. [PMID: 38682696 PMCID: PMC11103404 DOI: 10.1242/bio.060338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
Arf GTPase-activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors. ArfGAPs are critical for cargo sorting in the Golgi-to-ER traffic. However, the role of ArfGAPs in sorting into intralumenal vesicles (ILVs) in multivesicular bodies (MVBs) in post-Golgi traffic remains unclear. Exosomes are extracellular vesicles (EVs) of endosomal origin. CD63 is an EV marker. CD63 is enriched ILVs in MVBs of cells. However, the secretion of CD63 positive EVs has not been consistent with the data on CD63 localization in MVBs, and how CD63-containing EVs are formed is yet to be understood. To elucidate the mechanism of CD63 transport to ILVs, we focused on CD63 localization in MVBs and searched for the ArfGAPs involved in CD63 localization. We observed that ADAP1 and ARAP1 depletion inhibited CD63 localization to enlarged endosomes after Rab5Q79L overexpression. We tested epidermal growth factor (EGF) and CD9 localization in MVBs. We observed that ADAP1 and ARAP1 depletion inhibited CD9 localization in enlarged endosomes but not EGF. Our results indicate ADAP1 and ARAP1, regulate incorporation of CD63 and CD9, but not EGF, in overlapped and different MVBs. Our work will contribute to distinguish heterogenous ILVs and exosomes by ArfGAPs.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Yoshitaka Okawa
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Sharmin Akter
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Haruki Ito
- Biological Sciences Course, Faculty of Science and Engineering, Iwate University, 020-8551, Morioka, Japan
| | - Yoko Shiba
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
- Biological Sciences Course, Faculty of Science and Engineering, Iwate University, 020-8551, Morioka, Japan
| |
Collapse
|
2
|
Khan H, Harripaul R, Mikhailov A, Herzi S, Bowers S, Ayub M, Shabbir MI, Vincent JB. Biallelic variants identified in 36 Pakistani families and trios with autism spectrum disorder. Sci Rep 2024; 14:9230. [PMID: 38649688 PMCID: PMC11035605 DOI: 10.1038/s41598-024-57942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
With its high rate of consanguineous marriages and diverse ethnic population, little is currently understood about the genetic architecture of autism spectrum disorder (ASD) in Pakistan. Pakistan has a highly ethnically diverse population, yet with a high proportion of endogamous marriages, and is therefore anticipated to be enriched for biallelic disease-relate variants. Here, we attempt to determine the underlying genetic abnormalities causing ASD in thirty-six small simplex or multiplex families from Pakistan. Microarray genotyping followed by homozygosity mapping, copy number variation analysis, and whole exome sequencing were used to identify candidate. Given the high levels of consanguineous marriages among these families, autosomal recessively inherited variants were prioritized, however de novo/dominant and X-linked variants were also identified. The selected variants were validated using Sanger sequencing. Here we report the identification of sixteen rare or novel coding variants in fifteen genes (ARAP1, CDKL5, CSMD2, EFCAB12, EIF3H, GML, NEDD4, PDZD4, POLR3G, SLC35A2, TMEM214, TMEM232, TRANK1, TTC19, and ZNF292) in affected members in eight of the families, including ten homozygous variants in four families (nine missense, one loss of function). Three heterozygous de novo mutations were also identified (in ARAP1, CSMD2, and NEDD4), and variants in known X-linked neurodevelopmental disorder genes CDKL5 and SLC35A2. The current study offers information on the genetic variability associated with ASD in Pakistan, and demonstrates a marked enrichment for biallelic variants over that reported in outbreeding populations. This information will be useful for improving approaches for studying ASD in populations where endogamy is commonly practiced.
Collapse
Affiliation(s)
- Hamid Khan
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sumayah Herzi
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sonya Bowers
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | | | - Muhammad Imran Shabbir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Du W, Novin A, Liu Y, Afzal J, Liu S, Suhail Y, Kshitiz. Stable and Oscillatory Hypoxia Differentially Regulate Invasibility of Breast Cancer Associated Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586706. [PMID: 38585723 PMCID: PMC10996662 DOI: 10.1101/2024.03.26.586706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
As local regions in the tumor outstrip their oxygen supply, hypoxia can develop, affecting not only the cancer cells, but also other cells in the microenvironment, including cancer associated fibroblasts (CAFs). Hypoxia is also not necessarily stable over time, and can fluctuate or oscillate. Hypoxia Inducible Factor-1 is the master regulator of cellular response to hypoxia, and can also exhibit oscillations in its activity. To understand how stable, and fluctuating hypoxia influence breast CAFs, we measured changes in gene expression in CAFs in normoxia, hypoxia, and oscillatory hypoxia, as well as measured change in their capacity to resist, or assist breast cancer invasion. We show that hypoxia has a profound effect on breast CAFs causing activation of key pathways associated with fibroblast activation, but reduce myofibroblast activation and traction force generation. We also found that oscillatory hypoxia, while expectedly resulted in a "sub-hypoxic" response in gene expression, it resulted in specific activation of pathways associated with actin polymerization and actomyosin maturation. Using traction force microscopy, and a nanopatterned stromal invasion assay, we show that oscillatory hypoxia increases contractile force generation vs stable hypoxia, and increases heterogeneity in force generation response, while also additively enhancing invasibility of CAFs to MDA-MB-231 invasion. Our data show that stable and unstable hypoxia can regulate many mechnobiological characteristics of CAFs, and can contribute to transformation of CAFs to assist cancer dissemination and onset of metastasis.
Collapse
Affiliation(s)
- Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Junaid Afzal
- Department of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
4
|
Zhang Z, Xie W, Gong B, Liang X, Yu H, Yu Y, Dong Z, Shao F. ARAP1 negatively regulates stress fibers formation and metastasis in lung adenocarcinoma via controlling Rho signaling. Discov Oncol 2023; 14:214. [PMID: 38008882 PMCID: PMC10678915 DOI: 10.1007/s12672-023-00832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
Small GTPases regulate multiple important cellular behaviors and their activities are strictly controlled by a mass of regulators. The dysfunction or abnormal expression of small GTPases or their regulators was frequently observed in various cancers. Here, we analyzed the expression and prognostic correlation of several GTPases and related regulators based on the TCGA database and found that Ankyrin Repeat and PH Domain 1 (ARAP1), a GTPase activating protein (GAP), is reduced in lung adenocarcinoma tissues compared to normal tissues and displays a positive correlation with overall survival (OS) and progression-free survival (PFS) of patients with lung adenocarcinoma. qPCR and western blot verified that ARAP1 is frequently downregulated in lung adenocarcinoma tumor tissues and cancer cells, and its downregulation might be mediated by epigenetic modification. Moreover, metastatic assays showed that overexpression of ARAP1 significantly inhibits metastasis of lung adenocarcinoma in vitro and in vivo. We further demonstrated that Rho signaling inhibition, mediated by RhoGAP activity of ARAP1, majorly contributes to suppressing migration and invasion of lung adenocarcinoma cancer cells via inhibiting stress fibers formation. In summary, this study indicates that ARAP1 may serve as a potential prognostic predictor and a metastatic suppressor in lung adenocarcinoma via its RhoGAP activity.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Wenran Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Bojiang Gong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Xue Liang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Hongjia Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Yanwen Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Zhixiong Dong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China.
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Fanggui Shao
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Bergen J, Karasova M, Bileck A, Pignitter M, Marko D, Gerner C, Del Favero G. Exposure to dietary fatty acids oleic and palmitic acid alters structure and mechanotransduction of intestinal cells in vitro. Arch Toxicol 2023; 97:1659-1675. [PMID: 37117602 PMCID: PMC10182945 DOI: 10.1007/s00204-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Martina Karasova
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Rosenberg EM, Jian X, Soubias O, Yoon HY, Yadav MP, Hammoudeh S, Pallikkuth S, Akpan I, Chen PW, Maity TK, Jenkins LM, Yohe ME, Byrd RA, Randazzo PA. The small molecule inhibitor NAV-2729 has a complex target profile including multiple ADP-ribosylation factor regulatory proteins. J Biol Chem 2023; 299:102992. [PMID: 36758799 PMCID: PMC10023970 DOI: 10.1016/j.jbc.2023.102992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
The ADP-ribosylation factor (Arf) GTPases and their regulatory proteins are implicated in cancer progression. NAV-2729 was previously identified as a specific inhibitor of Arf6 that reduced progression of uveal melanoma in an orthotopic xenograft. Here, our goal was to assess the inhibitory effects of NAV-2729 on the proliferation of additional cell types. We found NAV-2729 inhibited proliferation of multiple cell lines, but Arf6 expression did not correlate with NAV-2729 sensitivity, and knockdown of Arf6 affected neither cell viability nor sensitivity to NAV-2729. Furthermore, binding to native Arf6 was not detected; however, we determined that NAV-2729 inhibited both Arf exchange factors and Arf GTPase-activating proteins. ASAP1, a GTPase-activating protein linked to cancer progression, was further investigated. We demonstrated that NAV-2729 bound to the PH domain of ASAP1 and changed ASAP1 cellular distribution. However, ASAP1 knockdown did not fully recapitulate the cytoskeletal effects of NAV-2729 nor affect cell proliferation. Finally, our screens identified 48 other possible targets of NAV-2729. These results illustrate the complexities of defining targets of small molecules and identify NAV-2729 as a model PH domain-binding inhibitor.
Collapse
Affiliation(s)
- Eric M Rosenberg
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Olivier Soubias
- Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mukesh P Yadav
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sarah Hammoudeh
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA; Laboratory of Cell and Developmental Signaling, Center for Cancer Research, Frederick, Maryland, USA
| | - R Andrew Byrd
- Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Zhuo Y, Robleto VL, Marchese A. Proximity Labeling to Identify β-Arrestin1 Binding Partners Downstream of Ligand-Activated G Protein-Coupled Receptors. Int J Mol Sci 2023; 24:3285. [PMID: 36834700 PMCID: PMC9967311 DOI: 10.3390/ijms24043285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
β-arrestins are multifaceted adaptor proteins that regulate various aspects of G protein-coupled receptor (GPCR) signaling. β-arrestins are recruited to agonist-activated and phosphorylated GPCRs at the plasma membrane, thereby preventing G protein coupling, while also targeting GPCRs for internalization via clathrin-coated pits. In addition, β-arrestins can activate various effector molecules to prosecute their role in GPCR signaling; however, the full extent of their interacting partners remains unknown. To discover potentially novel β-arrestin interacting partners, we used APEX-based proximity labeling coupled with affinity purification and quantitative mass spectrometry. We appended APEX in-frame to the C-terminus of β-arrestin1 (βarr1-APEX), which we show does not impact its ability to support agonist-stimulated internalization of GPCRs. By using coimmunoprecipitation, we show that βarr1-APEX interacts with known interacting proteins. Furthermore, following agonist stimulation βarr1-APEX labeled known βarr1-interacting partners as assessed by streptavidin affinity purification and immunoblotting. Aliquots were prepared in a similar manner and analyzed by tandem mass tag labeling and high-content quantitative mass spectrometry. Several proteins were found to be increased in abundance following GPCR stimulation. Biochemical experiments confirmed two novel proteins that interact with β-arrestin1, which we predict are novel ligand-stimulated βarr1 interacting partners. Our study highlights that βarr1-APEX-based proximity labeling represents a valuable approach to identifying novel players involved in GPCR signaling.
Collapse
Affiliation(s)
| | | | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Zlobin AS, Volkova NA, Zinovieva NA, Iolchiev BS, Bagirov VA, Borodin PM, Axenovich TI, Tsepilov YA. Loci Associated with Negative Heterosis for Viability and Meat Productivity in Interspecific Sheep Hybrids. Animals (Basel) 2023; 13:ani13010184. [PMID: 36611792 PMCID: PMC9817718 DOI: 10.3390/ani13010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Negative heterosis can occur on different economically important traits, but the exact biological mechanisms of this phenomenon are still unknown. The present study focuses on determining the genetic factors associated with negative heterosis in interspecific hybrids between domestic sheep (Ovis aries) and argali (Ovis ammon). One locus (rs417431015) associated with viability and two loci (rs413302370, rs402808951) associated with meat productivity were identified. One gene (ARAP2) was prioritized for viability and three for meat productivity (PDE2A, ARAP1, and PCDH15). The loci associated with meat productivity were demonstrated to fit the overdominant inheritance model and could potentially be involved int negative heterosis mechanisms.
Collapse
Affiliation(s)
- Alexander S. Zlobin
- Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences SB RAS, 630090 Novosibirsk, Russia
| | - Natalia A. Volkova
- L.K. Ernst Federal Science Center for Animal Husbandry, 101000 Moscow, Russia
| | | | - Baylar S. Iolchiev
- L.K. Ernst Federal Science Center for Animal Husbandry, 101000 Moscow, Russia
| | - Vugar A. Bagirov
- L.K. Ernst Federal Science Center for Animal Husbandry, 101000 Moscow, Russia
| | - Pavel M. Borodin
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | | | - Yakov A. Tsepilov
- Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences SB RAS, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
9
|
Shao A, Lopez AJ, Chen J, Tham A, Javier S, Quiroz A, Frick S, Levine EM, Lloyd KCK, Leonard BC, Murphy CJ, Glaser TM, Moshiri A. Arap1 loss causes retinal pigment epithelium phagocytic dysfunction and subsequent photoreceptor death. Dis Model Mech 2022; 15:276063. [PMID: 35758026 PMCID: PMC9346516 DOI: 10.1242/dmm.049343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Retinitis pigmentosa (RP), a retinal degenerative disease, is the leading cause of heritable blindness. Previously, we described that Arap1−/− mice develop a similar pattern of photoreceptor degeneration. Arap1 is an Arf-directed GTPase-activating protein shown to modulate actin cytoskeletal dynamics. Curiously, Arap1 expression was detected in Müller glia and retinal pigment epithelium (RPE), but not the photoreceptors themselves. In this study, we generated conditional knockout mice for Müller glia/RPE, Müller glia and RPE via targeting Rlbp1, Glast and Vmd2 promoters, respectively, to drive Cre recombinase expression to knock out Arap1. Vmd2-Cre Arap1tm1c/tm1c and Rlbp1-Cre Arap1tm1c/tm1c mice, but not Glast-Cre Arap1tm1c/tm1c mice, recapitulated the phenotype originally observed in germline Arap1−/− mice. Mass spectrometry analysis of human ARAP1 co-immunoprecipitation identified candidate binding partners of ARAP1, revealing potential interactants involved in phagocytosis, cytoskeletal composition, intracellular trafficking and endocytosis. Quantification of outer segment phagocytosis in vivo demonstrated a clear phagocytic defect in Arap1−/− mice compared to Arap1+/+ controls. We conclude that Arap1 expression in RPE is necessary for photoreceptor survival due to its indispensable function in RPE phagocytosis. This article has an associated First Person interview with the first author of the paper. Summary: We provide evidence that Arap1 expression in retinal pigment epithelium (RPE) is essential for maintaining photoreceptor health due to its indispensable role in RPE phagocytosis.
Collapse
Affiliation(s)
- Andy Shao
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Antonio Jacobo Lopez
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - JiaJia Chen
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Addy Tham
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Seanne Javier
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Alejandra Quiroz
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Sonia Frick
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, USA
| | - K C Kent Lloyd
- Mouse Biology Program, U.C. Davis, Davis, CA, USA.,Department of Surgery, School of Medicine, U.C. Davis, Sacramento, CA, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, U.C. Davis, Davis, CA, USA
| | - Christopher J Murphy
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA.,Department of Surgical and Radiological Sciences, School of Veterinary Medicine, U.C. Davis, Davis, CA, USA
| | - Thomas M Glaser
- Department of Cell Biology and Human Anatomy, School of Medicine, U.C. Davis, Davis, CA, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| |
Collapse
|
10
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
11
|
Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. mBio 2021; 12:e0239721. [PMID: 34903051 PMCID: PMC8669492 DOI: 10.1128/mbio.02397-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways.
Collapse
|
12
|
Qin X, Zhang Y, He Y, Chen K, Zhang Y, Li P, Jiang Y, Li S, Li T, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Shear stress triggered circular dorsal ruffles formation to facilitate cancer cell migration. Arch Biochem Biophys 2021; 709:108967. [PMID: 34157295 DOI: 10.1016/j.abb.2021.108967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Circular dorsal ruffles (CDRs) are a kind of special ring-shaped membrane structure rich in F-actin, it is highly involved in the invasion-metastasis of tumor. Shear stress is one of the biophysical elements that affects the fate of tumor cells. However, how shear stress contributes to the CDRs formation is still unclear. In this study, we found that shear stress stimulated the formation of CDRs and promoted the migration of human breast MDA-MB-231 carcinoma cells. Integrin-linked kinase (ILK) mediated the recruiting of ADP-ribosylation factors (ARAP1/Arf1) to CDRs. Meanwhile, the transfection of ARAP1 or Arf1 mutant decreased the number of cells with CDRs, the CDRs areas and perimeters, thus blocked the cancer cell migration. This indicated that the ARAP1/Arf1 were necessary for the CDRs formation and cancer cell migration. Further study revealed that shear stress could stimulate the formation of intracellular macropinocytosis (MPS) thus promoted the ARAP1/Arf1 transportation to early endosome to regulate cancer cell migration after the depolymerization of CDRs. Our study elucidates that the CDRs formation is essential in shear stress-induced breast cancer cell migration, which provides a new research target for exploring the cytoskeletal mechanisms of breast cancer malignance.
Collapse
Affiliation(s)
- Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuehui Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuchen He
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Kang Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
13
|
Imran Alsous J, Romeo N, Jackson JA, Mason FM, Dunkel J, Martin AC. Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. Proc Natl Acad Sci U S A 2021; 118:e2019749118. [PMID: 33658367 PMCID: PMC7958293 DOI: 10.1073/pnas.2019749118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
From insects to mice, oocytes develop within cysts alongside nurse-like sister germ cells. Prior to fertilization, the nurse cells' cytoplasmic contents are transported into the oocyte, which grows as its sister cells regress and die. Although critical for fertility, the biological and physical mechanisms underlying this transport process are poorly understood. Here, we combined live imaging of germline cysts, genetic perturbations, and mathematical modeling to investigate the dynamics and mechanisms that enable directional and complete cytoplasmic transport in Drosophila melanogaster egg chambers. We discovered that during "nurse cell (NC) dumping" most cytoplasm is transported into the oocyte independently of changes in myosin-II contractility, with dynamics instead explained by an effective Young-Laplace law, suggesting hydraulic transport induced by baseline cell-surface tension. A minimal flow-network model inspired by the famous two-balloon experiment and motivated by genetic analysis of a myosin mutant correctly predicts the directionality, intercellular pattern, and time scale of transport. Long thought to trigger transport through "squeezing," changes in actomyosin contractility are required only once NC volume has become comparable to nuclear volume, in the form of surface contractile waves that drive NC dumping to completion. Our work thus demonstrates how biological and physical mechanisms cooperate to enable a critical developmental process that, until now, was thought to be mainly biochemically regulated.
Collapse
Affiliation(s)
- Jasmin Imran Alsous
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nicolas Romeo
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138
| | - Frank M Mason
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
14
|
Abstract
Rho GTPases are known to play an essential role in fundamental processes such as defining cell shape, polarity and migration. As such, the majority of Rho GTPases localize and function at, or close to, the plasma membrane. However, it is becoming increasingly clear that a number of Rho family proteins are also associated with the Golgi complex, where they not only regulate events at this organelle but also more widely across the cell. Given the central location of this organelle, and the numerous membrane trafficking pathways that connect it to both the endocytic and secretory systems of cells, it is clear that the Golgi is fundamental for maintaining cellular homoeostasis. In this review, we describe these GTPases in the context of how they regulate Golgi architecture, membrane trafficking into and away from this organelle, and cell polarity and migration. We summarize the key findings that show the growing importance of the pool of Rho GTPases associated with Golgi function, namely Cdc42, RhoA, RhoD, RhoBTB1 and RhoBTB3, and we discuss how they act in concert with other key families of molecules associated with the Golgi, including Rab GTPases and matrix proteins.
Collapse
Affiliation(s)
- Margaritha M Mysior
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| |
Collapse
|
15
|
Blangy A, Bompard G, Guerit D, Marie P, Maurin J, Morel A, Vives V. The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis. J Cell Sci 2020; 133:133/13/jcs244798. [PMID: 32611680 DOI: 10.1242/jcs.244798] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoclasts are giant multinucleated myeloid cells specialized for bone resorption, which is essential for the preservation of bone health throughout life. The activity of osteoclasts relies on the typical organization of osteoclast cytoskeleton components into a highly complex structure comprising actin, microtubules and other cytoskeletal proteins that constitutes the backbone of the bone resorption apparatus. The development of methods to differentiate osteoclasts in culture and manipulate them genetically, as well as improvements in cell imaging technologies, has shed light onto the molecular mechanisms that control the structure and dynamics of the osteoclast cytoskeleton, and thus the mechanism of bone resorption. Although essential for normal bone physiology, abnormal osteoclast activity can cause bone defects, in particular their hyper-activation is commonly associated with many pathologies, hormonal imbalance and medical treatments. Increased bone degradation by osteoclasts provokes progressive bone loss, leading to osteoporosis, with the resulting bone frailty leading to fractures, loss of autonomy and premature death. In this context, the osteoclast cytoskeleton has recently proven to be a relevant therapeutic target for controlling pathological bone resorption levels. Here, we review the present knowledge on the regulatory mechanisms of the osteoclast cytoskeleton that control their bone resorption activity in normal and pathological conditions.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Guillaume Bompard
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - David Guerit
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Pauline Marie
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Justine Maurin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Virginie Vives
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| |
Collapse
|
16
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
17
|
AGAP1 regulates subcellular localization of FilGAP and control cancer cell invasion. Biochem Biophys Res Commun 2020; 522:676-683. [DOI: 10.1016/j.bbrc.2019.11.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
|
18
|
Li L, Xu L, Wen S, Yang Y, Li X, Fan Q. The effect of lncRNA-ARAP1-AS2/ARAP1 on high glucose-induced cytoskeleton rearrangement and epithelial-mesenchymal transition in human renal tubular epithelial cells. J Cell Physiol 2020; 235:5787-5795. [PMID: 31975379 DOI: 10.1002/jcp.29512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
The epithelial-mesenchymal transition (EMT) plays an important role in diabetic renal fibrosis. The ARAP1 gene is located near risk alleles for Type 2 diabetes, and its function has been linked to cytoskeleton rearrangement, Golgi apparatus remodeling, and endocytic trafficking of membrane receptors. The role of ARAP1 and its antisense RNA, ARAP1-AS2, in the pathogenesis of diabetes is unclear. To clarify the roles of ARAP1 and its antisense RNA in diabetes and related complications, we examined if the expression of these transcripts changed under high glucose (HG) conditions. To do this, we examined transcript levels in HK-2 cells, and explored the roles of ARAP1 and ARAP1-AS2 in the EMT process in HK-2 cells. We found increased expression of ARAP1-AS2 and ARAP1 in HK-2 cells under HG condition, and observed that the overexpression of ARAP1-AS2 significantly increased the EMT process. In addition, HG upregulated Cdc42-GTP levels in HK-2 cells, and increased cytoskeleton rearrangement, cell viability, and migration. After knockdown of ARAP1, the level of Cdc42-GTP was decreased; cytoskeleton reorganization, cell viability, and migration processes were decreased; and EMT and expression of fibrosis marker protein. Overall, our results indicated that ARAP1-AS2/ARAP1 may participate in cytoskeleton rearrangement and EMT processes in HK-2 cells through increased Cdc42-GTP levels.
Collapse
Affiliation(s)
- Lulu Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li Xu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Laboratory Medicine, First Hospital of China Medical University, Shenyang, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Yang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuling Fan
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Nadaraja S, Schledermann D, Herrstedt J, Østrup O, Ditzel HJ. ARAP1 is an independent prognostic biomarker in older women with ovarian high-grade serous adenocarcinoma receiving first-line platinum-based antineoplastic therapy. Acta Oncol 2020; 59:40-47. [PMID: 31478407 DOI: 10.1080/0284186x.2019.1657941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Little is known about the biological factors influencing ovarian cancer (OC) patient outcome, especially in older patients who are often underrepresented in clinical trials. We examined alterations in the transcriptomic profile of primary high-grade serous carcinoma (HGSC) samples from older OC patients (>70 years) receiving first-line platinum-based treatment to identify potential biomarkers for prediction of response to this therapy.Material and methods: Tumor samples from 50 HGSC patients were identified from a retrospective cohort, analyzed by gene expression array. The protein expression of selected biomarkers was examined using immunohistochemistry (IHC).Results: Gene expression profiling revealed 81 genes with significantly altered expression in patients experiencing progression after first-line platinum-based treatment within 6 months versus those who progressed later than 12 months. Expression of ankyrin repeat and PH domain 1 (ARAP1) was significantly lower in the group with early versus late progression (p ≤ .01). Correlation between ARAP1 expression and outcome was further confirmed by IHC staining in the discovery cohort (χ2-test, p = .004) and in independent validation cohorts. The sensitivity of ARAP1 allowed identification of 64.7% of patients with early progression in the discovery population, with a specificity of 78.6% and a negative predictive value of 78.6%. Multivariate regression analysis identified ARAP1 as an independent prognostic factor.Conclusions: This hypothesis generating study suggests that low expression of ARAP1 is an independent prognostic biomarker of shorter RFS in older patients with HGSC receiving first-line platinum-based antineoplastic therapy, which could be used to identify patients who should receive more intensive treatment and closer surveillance.
Collapse
Affiliation(s)
- Sambavy Nadaraja
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Doris Schledermann
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Jørn Herrstedt
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
- Department of Clinical Oncology, Zealand University Hospital, Roskilde, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik J. Ditzel
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
20
|
McCormick B, Craig HE, Chu JY, Carlin LM, Canel M, Wollweber F, Toivakka M, Michael M, Astier AL, Norton L, Lilja J, Felton JM, Sasaki T, Ivaska J, Hers I, Dransfield I, Rossi AG, Vermeren S. A Negative Feedback Loop Regulates Integrin Inactivation and Promotes Neutrophil Recruitment to Inflammatory Sites. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1579-1588. [PMID: 31427445 PMCID: PMC6731454 DOI: 10.4049/jimmunol.1900443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.
Collapse
Affiliation(s)
- Barry McCormick
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Helen E Craig
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Julia Y Chu
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Marta Canel
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Florian Wollweber
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Matilda Toivakka
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Melina Michael
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Anne L Astier
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Laura Norton
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Jennifer M Felton
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Johanna Ivaska
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
21
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
22
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
23
|
Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Int J Mol Sci 2019; 20:ijms20020442. [PMID: 30669557 PMCID: PMC6358971 DOI: 10.3390/ijms20020442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
Collapse
Affiliation(s)
- Christine E Tanna
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Louisa B Goss
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Calvin G Ludwig
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
24
|
Moore BA, Leonard BC, Sebbag L, Edwards SG, Cooper A, Imai DM, Straiton E, Santos L, Reilly C, Griffey SM, Bower L, Clary D, Mason J, Roux MJ, Meziane H, Herault Y, McKerlie C, Flenniken AM, Nutter LMJ, Berberovic Z, Owen C, Newbigging S, Adissu H, Eskandarian M, Hsu CW, Kalaga S, Udensi U, Asomugha C, Bohat R, Gallegos JJ, Seavitt JR, Heaney JD, Beaudet AL, Dickinson ME, Justice MJ, Philip V, Kumar V, Svenson KL, Braun RE, Wells S, Cater H, Stewart M, Clementson-Mobbs S, Joynson R, Gao X, Suzuki T, Wakana S, Smedley D, Seong JK, Tocchini-Valentini G, Moore M, Fletcher C, Karp N, Ramirez-Solis R, White JK, de Angelis MH, Wurst W, Thomasy SM, Flicek P, Parkinson H, Brown SDM, Meehan TF, Nishina PM, Murray SA, Krebs MP, Mallon AM, Lloyd KCK, Murphy CJ, Moshiri A. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun Biol 2018; 1:236. [PMID: 30588515 PMCID: PMC6303268 DOI: 10.1038/s42003-018-0226-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease. Bret Moore et al. from the International Mouse Phenotyping Consortium report the identification of 347 mouse genes that influence ocular phenotypes when knocked out. 75% of the identified genes have not previously been associated with any ocular pathology.
Collapse
Affiliation(s)
- Bret A Moore
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lionel Sebbag
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Sydney G Edwards
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Ann Cooper
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ewan Straiton
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Luis Santos
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Christopher Reilly
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lynette Bower
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - David Clary
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Hamid Meziane
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | | | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Celeste Owen
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Hibret Adissu
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mohammed Eskandarian
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Uchechukwu Udensi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ritu Bohat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juan J Gallegos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica J Justice
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vivek Philip
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Sara Wells
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Michelle Stewart
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Sharon Clementson-Mobbs
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Russell Joynson
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | | | | | - Damian Smedley
- Clinical Pharmacology, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - J K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Glauco Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, I-00015, Monterotondo Scalo, Italy
| | - Mark Moore
- International Mouse Phenotyping Consortium, San Anselmo, CA, 94960, USA
| | | | - Natasha Karp
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ramiro Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | | | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - K C Kent Lloyd
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA. .,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
25
|
Luo R, Chen PW, Kuo JC, Jenkins L, Jian X, Waterman CM, Randazzo PA. ARAP2 inhibits Akt independently of its effects on focal adhesions. Biol Cell 2018; 110:257-270. [PMID: 30144359 DOI: 10.1111/boc.201800044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND INFORMATION ARAP2, an Arf GTPase-activating protein (Arf GAP) that binds to adaptor protein with PH domain, PTB domain and leucine zipper motifs 1 (APPL1), regulates focal adhesions (FAs). APPL1 affects FA dynamics by regulating Akt. Here, we tested the hypothesis that ARAP2 affects FAs in part by regulating Akt through APPL1. RESULTS We found that ARAP2 controlled FA dynamics dependent on its enzymatic Arf GAP activity. In some cells, ARAP2 also regulated phosphoAkt (pAkt) levels. However, ARAP2 control of FAs did not require Akt and conversely, the effects on pAkt were independent of FAs. Reducing ARAP2 expression reduced the size and number of FAs in U118, HeLa and MDA-MB-231 cells. Decreasing ARAP2 expression increased pAkt in U118 cells and HeLa cells and overexpressing ARAP2 decreased pAkt in U118 cells; in contrast, ARAP2 had no effect on pAkt in MDA-MB-231 cells. An Akt inhibitor did not block the effect of reduced ARAP2 on FAs in U118. Furthermore, the effect of ARAP2 on Akt did not require Arf GAP activity, which is necessary for effects on FAs and integrin traffic. Altering FAs by other means did not induce the same changes in pAkt as those seen by reducing ARAP2 in U118 cells. In addition, we discovered that ARAP2 and APPL1 had co-ordinated effects on pAkt in U118 cells. Reduced APPL1 expression, as for ARAP2, increased pAkt in U118 and the effect of reduced APPL1 expression was reversed by overexpressing ARAP2. Conversely, the effect of reduced ARAP2 expression was reversed by overexpressing APPL1. ARAP2 is an Arf GAP that has previously been reported to affect FAs by regulating Arf6 and integrin trafficking and to bind to the adaptor proteins APPL1. Here, we report that ARAP2 suppresses pAkt levels in cells co-ordinately with APPL1 and independently of GAP activity and its effect on the dynamic behaviour of FAs. CONCLUSIONS We conclude that ARAP2 affects Akt signalling in some cells by a mechanism independent of FAs or membrane traffic. SIGNIFICANCE Our results highlight an Arf GAP-independent function of ARAP2 in regulating Akt activity and distinguish the effect of ARAP2 on Akt from that on FAs and integrin trafficking, which requires regulation of Arf6.
Collapse
Affiliation(s)
- Ruibai Luo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA.,Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Jean-Cheng Kuo
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lisa Jenkins
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
26
|
Segeletz S, Danglot L, Galli T, Hoflack B. ARAP1 Bridges Actin Dynamics and AP-3-Dependent Membrane Traffic in Bone-Digesting Osteoclasts. iScience 2018; 6:199-211. [PMID: 30240610 PMCID: PMC6137390 DOI: 10.1016/j.isci.2018.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/06/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022] Open
Abstract
Bone-resorbing osteoclasts play a central role in bone remodeling and its pathology. To digest bone, osteoclasts re-organize both F-actin, to assemble podosomes/sealing zones, and membrane traffic, to form bone-facing ruffled borders enriched in lysosomal membrane proteins. It remains elusive how these processes are coordinated. Here, we show that ARAP1 (ArfGAP with RhoGAP domain, ankyrin repeat and PH domain-containing protein 1) fulfills this function. At podosomes/sealing zones, ARAP1 is part of a protein complex where its RhoGAP domain regulates actin dynamics. At endosomes, ARAP1 interacts with AP-3 adaptor complexes where its Arf-GAP domain regulates the Arf1-dependent AP-3 binding to membranes and, consequently lysosomal membrane protein transport to ruffled borders. Accordingly, ARAP1 or AP-3 depletion in osteoclasts alters their capacity to digest bone in vitro. and AP-3δ-deficient mocha mice, a model of the Hermansky-Pudlak storage pool syndrome, develop osteoporosis. Thus, ARAP1 bridges F-actin and membrane dynamics in osteoclasts for proper bone homeostasis. ARAP1 is a bridging factor controlling actin and membrane dynamics in osteoclasts ARAP1 controls podosome dynamics and AP-3 coat recruitment to membranes AP-3 controls targeting of lysosomal membrane proteins to the ruffled border AP-3-deficient mocha mice develop osteoporosis
Collapse
Affiliation(s)
- Sandra Segeletz
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | - Lydia Danglot
- Centre de Psychiatrie et Neurosciences, UMR-S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Thierry Galli
- Centre de Psychiatrie et Neurosciences, UMR-S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, Dresden 01307, Germany.
| |
Collapse
|
27
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Li Q, Yang W, Wang Y, Liu W. Biochemical and Structural Studies of the Interaction between ARAP1 and CIN85. Biochemistry 2018; 57:2132-2139. [PMID: 29589748 DOI: 10.1021/acs.biochem.8b00057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1), Cbl-interacting protein of 85 kDa (CIN85), and casitas B-lineage lymphoma (Cbl) play important roles in epidermal growth factor receptor (EGFR) internalization and recycling. In previous studies, ARAP1 was found to interact with CIN85, and their interaction attenuated the ubiquitination of EGFR. However, the molecular mechanism was still unclear. In this study, we first biochemically and structurally characterized the interaction between ARAP1 and CIN85, and found that the CIN85 SH3B domain bound to the ARAP1 PXPXXRX (except P) XXR/H/K motif with high affinity and specificity. Based on this binding model, we further predicted other potential CIN85 binding partners and tested their interactions biochemically. Moreover, our swapping data and structure alignment analysis suggested that the β2-β3 loops of the CIN85 SH3 domains and the H87ARAP1/E132CIN85 interaction were critical for ARAP1 binding specificity. Finally, our competitive analytical gel-filtration chromatography and isothermal titration calorimetry (ITC) results showed that ARAP1 could compete with Cbl for CIN85 binding, which provides a biochemical basis for the regulatory roles of ARAP1 in the CIN85-mediated EGFR internalizing process.
Collapse
Affiliation(s)
- Qingxia Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute , Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | | | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute , Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute , Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| |
Collapse
|
29
|
Moshiri A, Humpal D, Leonard BC, Imai DM, Tham A, Bower L, Clary D, Glaser TM, Lloyd KCK, Murphy CJ. Arap1 Deficiency Causes Photoreceptor Degeneration in Mice. Invest Ophthalmol Vis Sci 2017; 58:1709-1718. [PMID: 28324111 PMCID: PMC5361582 DOI: 10.1167/iovs.16-20062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/26/2016] [Indexed: 12/30/2022] Open
Abstract
Purpose Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the control of GTPase-activating proteins (GAPs). Arap1 is an Arf-directed GAP that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome, but the diversity of its functions is incompletely understood. The aim of this study was to determine the role of Arap1 in the mammalian retina. Methods Genetically engineered Arap1 knockout mice were screened for ocular abnormalities in the National Institutes of Health Knockout Mouse Production and Phenotyping (KOMP2) Project. Arap1 knockout and wild-type eyes were imaged using optical coherence tomography and fundus photography, and analyzed by immunohistochemistry. Results Arap1-/- mice develop a normal appearing retina, but undergo photoreceptor degeneration starting at 4 weeks postnatal age. The fundus appearance of mutants is notable for pigmentary changes, optic nerve pallor, vascular attenuation, and outer retinal thinning, reminiscent of retinitis pigmentosa in humans. Immunohistochemical studies suggest the cell death is predominantly in the outer nuclear layer. Functional evaluation of the retina by electroretinography reveals amplitudes are reduced. Arap1 is detected most notably in Müller glia, and not in photoreceptors, implicating a role for Müller glia in photoreceptor survival. Conclusions Arap1 is necessary for normal photoreceptor survival in mice, and may be a novel gene relevant to human retinal degenerative processes, although its mechanism is unknown. Further studies in this mouse model of retinal degeneration will give insights into the cellular functions and signaling pathways in which Arap1 participates.
Collapse
Affiliation(s)
- Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis, Sacramento, California, United States
| | - Devin Humpal
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis, Sacramento, California, United States
| | - Brian C. Leonard
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, U.C. Davis, Davis, California, United States
| | - Denise M. Imai
- Comparative Pathology Laboratory, U.C. Davis, Davis, California, United States
| | - Addy Tham
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis, Sacramento, California, United States
| | - Lynette Bower
- Mouse Biology Program, U.C. Davis, Davis, California, United States
| | - Dave Clary
- Mouse Biology Program, U.C. Davis, Davis, California, United States
| | - Thomas M. Glaser
- Department of Cell Biology and Human Anatomy, U.C. Davis, Davis, California, United States
| | - K. C. Kent Lloyd
- Mouse Biology Program, U.C. Davis, Davis, California, United States
| | - Christopher J. Murphy
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis, Sacramento, California, United States
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, U.C. Davis, Davis, California, United States
| |
Collapse
|
30
|
Abstract
Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Cristina Casalou
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Alexandra Faustino
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal.,b ProRegeM PhD Program, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Duarte C Barral
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| |
Collapse
|
31
|
Mason FM, Xie S, Vasquez CG, Tworoger M, Martin AC. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. J Cell Biol 2016; 214:603-17. [PMID: 27551058 PMCID: PMC5004446 DOI: 10.1083/jcb.201603077] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 12/05/2022] Open
Abstract
During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding.
Collapse
Affiliation(s)
- Frank M Mason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Shicong Xie
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Claudia G Vasquez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael Tworoger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
32
|
Luo R, Chen PW, Wagenbach M, Jian X, Jenkins L, Wordeman L, Randazzo PA. Direct Functional Interaction of the Kinesin-13 Family Member Kinesin-like Protein 2A (Kif2A) and Arf GAP with GTP-binding Protein-like, Ankyrin Repeats and PH Domains1 (AGAP1). J Biol Chem 2016; 291:21350-21362. [PMID: 27531749 DOI: 10.1074/jbc.m116.732479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/09/2016] [Indexed: 11/06/2022] Open
Abstract
The molecular basis for control of the cytoskeleton by the Arf GTPase-activating protein AGAP1 has not been characterized. AGAP1 is composed of G-protein-like (GLD), pleckstrin homology (PH), Arf GAP, and ankyrin repeat domains. Kif2A was identified in screens for proteins that bind to AGAP1. The GLD and PH domains of AGAP1 bound the motor domain of Kif2A. Kif2A increased GAP activity of AGAP1, and a protein composed of the GLD and PH domains of AGAP1 increased ATPase activity of Kif2A. Knockdown (KD) of Kif2A or AGAP1 slowed cell migration and accelerated cell spreading. The effect of Kif2A KD on spreading could be rescued by expression of Kif2A-GFP or FLAG-AGAP1, but not by Kif2C-GFP. The effect of AGAP1 KD could be rescued by FLAG-AGAP1, but not by an AGAP1 mutant that did not bind Kif2A efficiently, ArfGAP1-HA or Kif2A-GFP. Taken together, the results support the hypothesis that the Kif2A·AGAP1 complex contributes to control of cytoskeleton remodeling involved in cell movement.
Collapse
Affiliation(s)
- Ruibai Luo
- From the Laboratory of Cellular and Molecular Biology and
| | - Pei-Wen Chen
- From the Laboratory of Cellular and Molecular Biology and.,the Department of Biology, Grinnell College, Grinnell, Iowa 50112, and
| | - Michael Wagenbach
- the Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195
| | - Xiaoying Jian
- From the Laboratory of Cellular and Molecular Biology and
| | - Lisa Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Linda Wordeman
- the Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195
| | | |
Collapse
|
33
|
Bao H, Li F, Wang C, Wang N, Jiang Y, Tang Y, Wu J, Shi Y. Structural Basis for the Specific Recognition of RhoA by the Dual GTPase-activating Protein ARAP3. J Biol Chem 2016; 291:16709-19. [PMID: 27311713 DOI: 10.1074/jbc.m116.736140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 02/04/2023] Open
Abstract
ARAP3 (Arf-GAP with Rho-GAP domain, ANK repeat, and PH domain-containing protein 3) is unique for its dual specificity GAPs (GTPase-activating protein) activity for Arf6 (ADP-ribosylation factor 6) and RhoA (Ras homolog gene family member A) regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP and is involved in regulation of cell shape and adhesion. However, the molecular interface between the ARAP3-RhoGAP domain and RhoA is unknown, as is the substrates specificity of the RhoGAP domain. In this study, we solved the crystal structure of RhoA in complex with the RhoGAP domain of ARAP3. The structure of the complex presented a clear interface between the RhoGAP domain and RhoA. By analyzing the crystal structure and in combination with in vitro GTPase activity assays and isothermal titration calorimetry experiments, we identified the crucial residues affecting RhoGAP activity and substrates specificity among RhoA, Rac1 (Ras-related C3 botulinum toxin substrate 1), and Cdc42 (cell division control protein 42 homolog).
Collapse
Affiliation(s)
- Hongyu Bao
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fudong Li
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chongyuan Wang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Na Wang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yiyang Jiang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yajun Tang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jihui Wu
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yunyu Shi
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
34
|
Naramoto S, Dainobu T, Tokunaga H, Kyozuka J, Fukuda H. Cellular and developmental function of ACAP type ARF-GAP proteins are diverged in plant cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:309-314. [PMID: 31274992 PMCID: PMC6565945 DOI: 10.5511/plantbiotechnology.16.0309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/09/2016] [Indexed: 05/29/2023]
Abstract
Vesicle transport is crucial for various cellular functions and development of multicellular organisms. ARF-GAP is one of the key regulators of vesicle transport and is diverse family of proteins. Arabidopsis has 15 ARF-GAP proteins and four members are classified as ACAP type ARF-GAP proteins. Our previous study identified that VASCULAR NETWORK DEFECTIVE3 (VAN3), an ACAP ARF-GAP, played crucial roles in leaf vascular formation. However, it remains question how other members of plant ACAP ARF-GAPs function in cellular and developmental processes. To characterize these, we analyzed spatial expression pattern and subcellular localization of VAN3 and three other ACAPs, so called VAN3-like proteins (VALs). Expression pattern analysis revealed that they were expressed in distinctive developmental processes. Subcellular localization analysis in protoplast cells indicated that in contrast to VAN3, which localizes on trans-Golgi networks/early endosomes (TGNs/EEs), VAL1 and VAL2 were localized on ARA6-labelled endosomes, and VAL3 resided mainly in the cytoplasm. These results indicated that VAN3 and VALs are differently expressed in a tissue level and function in different intracellular compartments, in spite of their significant sequence similarities. These findings suggested functional divergence among plant ACAPs. Cellular localizations of all members of animal ACAP proteins are identical. Therefore our findings also suggested that plant evolved ACAP proteins in plant specific manner.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Tomoko Dainobu
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiroki Tokunaga
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Junko Kyozuka
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134050. [PMID: 26090378 PMCID: PMC4450212 DOI: 10.1155/2015/134050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/24/2022]
Abstract
To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma.
Collapse
|
36
|
Breznau EB, Semack AC, Higashi T, Miller AL. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells. Mol Biol Cell 2015; 26:2439-55. [PMID: 25947135 PMCID: PMC4571299 DOI: 10.1091/mbc.e14-11-1553] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/30/2015] [Indexed: 12/17/2022] Open
Abstract
MgcRacGAP's role in regulating the spatiotemporal dynamics of active RhoA and Rac1 in epithelial cells is investigated. MgcRacGAP's GAP activity down-regulates RhoA at the furrow and both RhoA and Rac1 at cell–cell junctions in dividing epithelial cells and is required for successful cytokinesis and cell–cell junction structure. MgcRacGAP's ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc's GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc's function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc's role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc's GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc's GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc's GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure.
Collapse
Affiliation(s)
- Elaina B Breznau
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ansley C Semack
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109 Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
37
|
Song Y, Jiang J, Vermeren S, Tong W. ARAP3 functions in hematopoietic stem cells. PLoS One 2014; 9:e116107. [PMID: 25542002 PMCID: PMC4277471 DOI: 10.1371/journal.pone.0116107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
ARAP3 is a GTPase-activating protein (GAP) that inactivates Arf6 and RhoA small GTPases. ARAP3 deficiency in mice causes a sprouting angiogenic defect resulting in embryonic lethality by E11. Mice with an ARAP3 R302,303A mutation (Arap3KI/KI) that prevents activation by phosphoinositide-3-kinase (PI3K) have a similar angiogenic phenotype, although some animals survive to adulthood. Here, we report that hematopoietic stem cells (HSCs) from rare adult Arap3KI/KI bone marrow are compromised in their ability to reconstitute recipient mice and to self-renew. To elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in hematopoiesis, we conditionally deleted Arap3 in hematopoietic cells and in several cell types within the HSC niche. Excision of Arap3 in hematopoietic cells using Vav1-Cre does not alter the ability of ARAP3-deficient progenitor cells to proliferate and differentiate in vitro or ARAP3-deficient HSCs to provide multi-lineage reconstitution and to undergo self-renewal in vivo. Thus, our data suggest that ARAP3 does not play a cell-autonomous role in HSPCs. Deletion of Arap3 in osteoblasts and mesenchymal stromal cells using Prx1-Cre resulted in no discernable phenotypes in hematopoietic development or HSC homeostasis in adult mice. In contrast, deletion of Arap3 using vascular endothelial cadherin (VEC or Cdh5)-driven Cre resulted in embryonic lethality, however HSCs from surviving adult mice were largely normal. Reverse transplantations into VEC-driven Arap3 conditional knockout mice revealed no discernable difference in HSC frequencies or function in comparison to control mice. Taken together, our investigation suggests that despite a critical role for ARAP3 in embryonic vascular development, its loss in endothelial cells minimally impacts HSCs in adult bone marrow.
Collapse
Affiliation(s)
- Yiwen Song
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sonja Vermeren
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Wei Tong
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
Mammalian cells have many membranous organelles that require proper composition of proteins and lipids. Cargo sorting is a process required for transporting specific proteins and lipids to appropriate organelles, and if this process is disrupted, organelle function as well as cell function is disrupted. ArfGAP family proteins have been found to be critical for receptor sorting. In this review, we summarize our recent knowledge about the mechanism of cargo sorting that require function of ArfGAPs in promoting the formation of transport vesicles, and discuss the involvement of specific ArfGAPs for the sorting of a variety of receptors, such as MPR, EGFR, TfR, Glut4, TRAIL-R1/DR4, M5-muscarinic receptor, c-KIT, rhodopsin and β1-integrin. Given the importance of many of these receptors to human disease, the studies of ArfGAPs may provide novel therapeutic strategies in addition to providing mechanistic insight of receptor sorting.
Collapse
Affiliation(s)
- Yoko Shiba
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD20892, USA
| |
Collapse
|
39
|
Jung EJ, Park HB, Lee JB, Yoo CK, Kim BM, Kim HI, Cho IC, Lim HT. Genome-wide association study identifies quantitative trait loci affecting hematological traits in an F2 intercross between Landrace and Korean native pigs. Anim Genet 2014; 45:534-41. [PMID: 24797309 DOI: 10.1111/age.12175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
Abstract
Changes affecting the status of health and robustness can bring about physiological alterations including hematological parameters in swine. To identify quantitative trait loci (QTL) associated with eight hematological traits (one leukocyte trait, six erythrocyte traits and one platelet trait), we conducted a genome-wide association study using the PorcineSNP60K BeadChip in a resource population derived from an intercross between Landrace and Korean native pigs. A total of 36 740 SNPs from 816 F2 progeny were analyzed for each blood-related trait after filtering for quality control. Data were analyzed by the genome-wide rapid association using mixed model and regression (GRAMMAR) approach. A total of 257 significant SNPs (P < 1.36 × 10(-6) ) on SSC3, 6, 8, 13 and 17 were identified for blood-related traits in this study. Interestingly, the genomic region between 17.9 and 130 Mb on SSC8 was found to be significantly associated with red blood cell, mean corpuscular volume and mean corpuscular hemoglobin. Our results include the identification of five significant SNPs within five candidate genes (KIT, IL15, TXK, ARAP2 and ERG) for hematopoiesis. Further validation of these identified SNPs could give valuable information for understanding the variation of hematological traits in pigs.
Collapse
Affiliation(s)
- E J Jung
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bickeböller M, Tagscherer KE, Kloor M, Jansen L, Chang-Claude J, Brenner H, Hoffmeister M, Toth C, Schirmacher P, Roth W, Bläker H. Functional characterization of the tumor-suppressor MARCKS in colorectal cancer and its association with survival. Oncogene 2014; 34:1150-9. [DOI: 10.1038/onc.2014.40] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 12/14/2022]
|
41
|
A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet 2014; 94:186-97. [PMID: 24439111 DOI: 10.1016/j.ajhg.2013.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified more than 70 loci associated with type 2 diabetes (T2D), but for most, the underlying causal variants, associated genes, and functional mechanisms remain unknown. At a T2D- and fasting-proinsulin-associated locus on 11q13.4, we have identified a functional regulatory DNA variant, a candidate target gene, and a plausible underlying molecular mechanism. Fine mapping, conditional analyses, and exome array genotyping in 8,635 individuals from the Metabolic Syndrome in Men study confirmed a single major association signal between fasting proinsulin and noncoding variants (p = 7.4 × 10(-50)). Measurement of allele-specific mRNA levels in human pancreatic islet samples heterozygous for rs11603334 showed that the T2D-risk and proinsulin-decreasing allele (C) is associated with increased ARAP1 expression (p < 0.02). We evaluated four candidate functional SNPs for allelic effects on transcriptional activity by performing reporter assays in rodent pancreatic beta cell lines. The C allele of rs11603334, located near one of the ARAP1 promoters, exhibited 2-fold higher transcriptional activity than did the T allele (p < 0.0001); three other candidate SNPs showed no allelic differences. Electrophoretic mobility shift assays demonstrated decreased binding of pancreatic beta cell transcriptional regulators PAX6 and PAX4 to the rs11603334 C allele. Collectively, these data suggest that the T2D-risk allele of rs11603334 could abrogate binding of a complex containing PAX6 and PAX4 and thus lead to increased promoter activity and ARAP1 expression in human pancreatic islets. This work suggests that increased ARAP1 expression might contribute to T2D susceptibility at this GWAS locus.
Collapse
|
42
|
Juvin V, Malek M, Anderson KE, Dion C, Chessa T, Lecureuil C, Ferguson GJ, Cosulich S, Hawkins PT, Stephens LR. Signaling via class IA Phosphoinositide 3-kinases (PI3K) in human, breast-derived cell lines. PLoS One 2013; 8:e75045. [PMID: 24124465 PMCID: PMC3790768 DOI: 10.1371/journal.pone.0075045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/08/2013] [Indexed: 02/01/2023] Open
Abstract
We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ) and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110β>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not β- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not β- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/-) cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110β, but not α- or δ- activity; in PTEN(-/-) MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110β function in the absence of PTEN.
Collapse
Affiliation(s)
| | | | | | - Carine Dion
- The Babraham Institute, Babraham, Cambridge, United Kingdom
| | - Tamara Chessa
- The Babraham Institute, Babraham, Cambridge, United Kingdom
| | | | | | - Sabina Cosulich
- The Babraham Institute, Babraham, Cambridge, United Kingdom
- Astrazeneca, Macclesfield United Kingdom
| | | | - Len R. Stephens
- The Babraham Institute, Babraham, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Tsygankova OM, Wang H, Meinkoth JL. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem 2013; 288:24636-46. [PMID: 23864657 DOI: 10.1074/jbc.m113.464594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells.
Collapse
Affiliation(s)
- Oxana M Tsygankova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA
| | | | | |
Collapse
|
44
|
Mo XY, Li T, Hu ZP. Decreased levels of cell-division cycle 42 (Cdc42) protein in peripheral lymphocytes from ischaemic stroke patients are associated with Golgi apparatus function. J Int Med Res 2013; 41:642-53. [PMID: 23696594 DOI: 10.1177/0300060513480093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To investigate levels of cell-division cycle 42 (Cdc42) protein, and their relationship with Golgi apparatus function in peripheral lymphocytes, in patients following ischaemic stroke. METHODS Patients with acute cerebral ischaemic stroke (within 24-72 h of the onset of focal neurological symptoms) and healthy control subjects were enrolled in this prospective case-control study. The cellular location of Cdc42 in peripheral lymphocytes was demonstrated using immunofluorescence. Protein levels of Cdc42 and trans-golgi network protein 2 (TGN46) in peripheral lymphocytes were determined by immunocytochemical staining and Western blotting. RESULTS A total of 38 patients with stroke and 38 control subjects were studied. The mean ± SD percentage of Cdc42-positive lymphocytes from patients with stroke was significantly lower than that in control subjects (39.53 ± 13.55% versus 66.61 ± 23.30%, respectively). Similar findings were demonstrated for TGN46. Cdc42 levels were positively correlated with TGN46 levels (r = 0.92). CONCLUSIONS Acute ischaemic stroke was associated with reduced levels of Cdc42 protein. These findings might lead to the development of drugs that could have therapeutic benefits in patients with acute ischaemic stroke.
Collapse
Affiliation(s)
- Xiao-Ye Mo
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | | |
Collapse
|
45
|
Clayton EL, Minogue S, Waugh MG. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog Lipid Res 2013; 52:294-304. [PMID: 23608234 PMCID: PMC3989048 DOI: 10.1016/j.plipres.2013.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/08/2013] [Indexed: 12/19/2022]
Abstract
The four mammalian phosphatidylinositol 4-kinases modulate inter-organelle lipid trafficking, phosphoinositide signalling and intracellular vesicle trafficking. In addition to catalytic domains required for the synthesis of PI4P, the phosphatidylinositol 4-kinases also contain isoform-specific structural motifs that mediate interactions with proteins such as AP-3 and the E3 ubiquitin ligase Itch, and such structural differences determine isoform-specific roles in membrane trafficking. Moreover, different permutations of phosphatidylinositol 4-kinase isozymes may be required for a single cellular function such as occurs during distinct stages of GPCR signalling and in Golgi to lysosome trafficking. Phosphatidylinositol 4-kinases have recently been implicated in human disease. Emerging paradigms include increased phosphatidylinositol 4-kinase expression in some cancers, impaired functioning associated with neurological pathologies, the subversion of PI4P trafficking functions in bacterial infection and the activation of lipid kinase activity in viral disease. We discuss how the diverse and sometimes overlapping functions of the phosphatidylinositol 4-kinases present challenges for the design of isoform-specific inhibitors in a therapeutic context.
Collapse
Affiliation(s)
- Emma L Clayton
- UCL Institute for Liver & Digestive Health, UCL Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | |
Collapse
|
46
|
Abstract
Small GTPases regulate a wide range of homeostatic processes such as cytoskeletal dynamics, organelle homeostasis, cell migration and vesicle trafficking, as well as in pathologic conditions such as carcinogenesis and metastatic spreading. Therefore, it is important to understand the regulation of small GTPase signaling, but this is complicated by the fact that crosstalk exists between different GTPase families and that we have to understand how they signal in time and space. The Golgi apparatus represents a hub for several signaling molecules and its importance in this field is constantly increasing. In this review we will discuss small GTPases signaling at the Golgi apparatus. Then, we will highlight recent work that contributed to a better understanding of crosstalk between different small GTPase families, with a special emphasis on their crosstalk at the Golgi apparatus. Finally, we will give a brief overview of available methods and tools to investigate spatio-temporal small GTPase crosstalk.
Collapse
Affiliation(s)
- Francesco Baschieri
- Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
47
|
Chen PW, Jian X, Luo R, Randazzo PA. Approaches to studying Arf GAPs in cells: in vitro assay with isolated focal adhesions. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 17:17.13.1-17.13.20. [PMID: 23129116 DOI: 10.1002/0471143030.cb1713s55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Arf GAPs are a family of proteins with a common catalytic function of hydrolyzing GTP bound to ADP-ribosylation factors (Arf) with proposed cellular functions that are diverse (Inoue and Randazzo, 2007; Kahn et al., 2008). Understanding the biochemistry of the Arf GAPs is valuable for designing and interpreting experiments using standard cell biology techniques described elsewhere. The following briefly reviews some common approaches for in vivo studies of Arf GAPs and discusses the use of isolated cellular organelles to complement in vivo experiments. Detailed protocols for examining the activity of Arf GAPs in whole cell lysates and in association with isolated focal adhesions are provided.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | |
Collapse
|
48
|
Chen PW, Jian X, Yoon HY, Randazzo PA. ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. J Biol Chem 2013; 288:5849-60. [PMID: 23295182 DOI: 10.1074/jbc.m112.415778] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Focal adhesions (FAs) are dynamic structures that connect the actin cytoskeleton with the extracellular matrix. At least six ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), including ARAP2 (an Arf6 GAP), are implicated in regulation of FAs but the mechanisms for most are not well defined. Although Rac1 has been reported to function downstream of Arf6 to control membrane ruffling and cell migration, this pathway has not been directly examined as a regulator of FAs. Here we test the hypothesis that ARAP2 promotes the growth of FAs by converting Arf6·GTP to Arf6·GDP thereby preventing the activation of the Rho family GTP-binding protein Rac1. Reduced expression of ARAP2 decreased the number and size of FAs in cells and increased cellular Arf6·GTP and Rac1·GTP levels. Overexpression of ARAP2 had the opposite effects. The effects of ARAP2 on FAs and Rac1 were dependent on a functional ArfGAP domain. Constitutively active Arf6 affected FAs in the same way as did reduced ARAP2 expression and dominant negative mutants of Arf6 and Rac1 reversed the effect of reduced ARAP2 expression. However, neither dominant negative Arf6 nor Rac1 had the same effect as ARAP2 overexpression. We conclude that changes in Arf6 and Rac1 activities are necessary but not sufficient for ARAP2 to promote the growth of FAs and we speculate that ARAP2 has additional functions that are effector in nature to promote or stabilize FAs.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
49
|
Ravichandran A, Low BC. SmgGDS antagonizes BPGAP1-induced Ras/ERK activation and neuritogenesis in PC12 cell differentiation. Mol Biol Cell 2012; 24:145-56. [PMID: 23155002 PMCID: PMC3541961 DOI: 10.1091/mbc.e12-04-0300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BPGAP1 controls morphogenesis, migration, and ERK signaling by the concerted action of its multiple domains. Its BCH domain targets K-Ras and induces robust ERK activation and neuronal differentiation in a process antagonized by SmgGDS. The results highlight unique cross-talk of two regulators of GTPases in Ras/ERK signaling and differentiation. BPGAP1 is a Rho GTPase-activating protein (RhoGAP) that regulates cell morphogenesis, cell migration, and ERK signaling by the concerted action of its proline-rich region (PRR), RhoGAP domain, and the BNIP-2 and Cdc42GAP homology (BCH) domain. Although multiple cellular targets for the PRR and RhoGAP have been identified, and their functions delineated, the mechanism by which the BCH domain regulates functions of BPGAP1 remains unclear. Here we show that its BCH domain induced robust ERK activation leading to PC12 cell differentiation by targeting specifically to K-Ras. Such stimulatory effect was inhibited, however, by both dominant-negative mutants of Mek2 (Mek2-K101A) and K-Ras (K-Ras-S17N) and also by the small G-protein GDP dissociation stimulator (SmgGDS). Consequently SmgGDS knockdown released this inhibition and resulted in a superinduction of K-Ras activation and PC12 differentiation mediated by BCH domain. These results demonstrate the versatility of the BCH domain of BPGAP1 in regulating ERK signaling by involving K-Ras and SmgGDS and support the unique role of BPGAP1 as a dual regulator for Ras and Rho signaling in cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Aarthi Ravichandran
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | | |
Collapse
|
50
|
Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson T, Kanoni S, Ladenvall C, Lagou V, Lahti J, Lecoeur C, Liu Y, Martinez-Larrad MT, Montasser ME, Navarro P, Perry JRB, Rasmussen-Torvik LJ, Salo P, Sattar N, Shungin D, Strawbridge RJ, Tanaka T, van Duijn CM, An P, de Andrade M, Andrews JS, Aspelund T, Atalay M, Aulchenko Y, Balkau B, Bandinelli S, Beckmann JS, Beilby JP, Bellis C, Bergman RN, Blangero J, Boban M, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Borecki IB, Böttcher Y, Bouchard C, Brunner E, Budimir D, Campbell H, Carlson O, Chines PS, Clarke R, Collins FS, Corbatón-Anchuelo A, Couper D, de Faire U, Dedoussis GV, Deloukas P, Dimitriou M, Egan JM, Eiriksdottir G, Erdos MR, Eriksson JG, Eury E, Ferrucci L, Ford I, Forouhi NG, Fox CS, Franzosi MG, Franks PW, Frayling TM, Froguel P, Galan P, de Geus E, Gigante B, Glazer NL, Goel A, Groop L, Gudnason V, Hallmans G, Hamsten A, Hansson O, Harris TB, Hayward C, Heath S, Hercberg S, Hicks AA, Hingorani A, Hofman A, Hui J, Hung J, Jarvelin MR, Jhun MA, Johnson PC, Jukema JW, Jula A, Kao W, Kaprio J, Kardia SLR, Keinanen-Kiukaanniemi S, Kivimaki M, Kolcic I, Kovacs P, Kumari M, Kuusisto J, Kyvik KO, Laakso M, Lakka T, Lannfelt L, Lathrop GM, Launer LJ, Leander K, Li G, Lind L, Lindstrom J, Lobbens S, Loos RJF, Luan J, Lyssenko V, Mägi R, Magnusson PKE, Marmot M, Meneton P, Mohlke KL, Mooser V, Morken MA, Miljkovic I, Narisu N, O’Connell J, Ong KK, Oostra BA, Palmer LJ, Palotie A, Pankow JS, Peden JF, Pedersen NL, Pehlic M, Peltonen L, Penninx B, Pericic M, Perola M, Perusse L, Peyser PA, Polasek O, Pramstaller PP, Province MA, Räikkönen K, Rauramaa R, Rehnberg E, Rice K, Rotter JI, Rudan I, Ruokonen A, Saaristo T, Sabater-Lleal M, Salomaa V, Savage DB, Saxena R, Schwarz P, Seedorf U, Sennblad B, Serrano-Rios M, Shuldiner AR, Sijbrands EJ, Siscovick DS, Smit JH, Small KS, Smith NL, Smith AV, Stančáková A, Stirrups K, Stumvoll M, Sun YV, Swift AJ, Tönjes A, Tuomilehto J, Trompet S, Uitterlinden AG, Uusitupa M, Vikström M, Vitart V, Vohl MC, Voight BF, Vollenweider P, Waeber G, Waterworth DM, Watkins H, Wheeler E, Widen E, Wild SH, Willems SM, Willemsen G, Wilson JF, Witteman JC, Wright AF, Yaghootkar H, Zelenika D, Zemunik T, Zgaga L, Wareham NJ, McCarthy MI, Barroso I, Watanabe RM, Florez JC, Dupuis J, Meigs JB, Langenberg C. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 2012; 44:659-69. [PMID: 22581228 PMCID: PMC3613127 DOI: 10.1038/ng.2274] [Citation(s) in RCA: 615] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 04/13/2012] [Indexed: 12/15/2022]
Abstract
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Collapse
Affiliation(s)
- Alisa K. Manning
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts
| | - Marie-France Hivert
- General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Jonna L. Grimsby
- General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nabila Bouatia-Naji
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Han Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Denis Rybin
- Boston University Data Coordinating Center, Boston, Massachusetts, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Lawrence F. Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Inga Prokopenko
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Daniel Barnes
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Gemma Cadby
- Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research. Toronto, Canada
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
| | - Jouke-Jan Hottenga
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anne U. Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Toby Johnson
- Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stavroula Kanoni
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Vasiliki Lagou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Cecile Lecoeur
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maria Teresa Martinez-Larrad
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - May E. Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Pau Navarro
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - John R. B. Perry
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Perttu Salo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Dmitry Shungin
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Genetic Epidemiology & Clinical Research Group, Umeå University Hospital, Umeå, Sweden
- Department of Odontology, Umeå University, Sweden
| | - Rona J. Strawbridge
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Centre for medical systems biology, Netherlands Genomics Initiative, The Hague
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
| | - Ping An
- Department of Genetics Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeanette S. Andrews
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Mustafa Atalay
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Yurii Aulchenko
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Beverley Balkau
- Inserm, CESP Centre for research in Epidemiology and Population Health, Villejuif, France
- University Paris Sud 11, Villejuif, France
| | | | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - John P. Beilby
- PathWest Laboratory Medicine of WA, J Block, QEII Medical Centre, Nedlands, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Australia
- Busselton Population Medical Research Foundation, B Block, QEII Medical Centre, Nedlands, Australia
| | - Claire Bellis
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Richard N. Bergman
- Department of Physiology & Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John Blangero
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mladen Boban
- Department of Pharmacology, Faculty of Medicine, University of Split, Croatia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lori L. Bonnycastle
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Dorret I. Boomsma
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Ingrid B. Borecki
- Department of Genetics Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yvonne Böttcher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Claude Bouchard
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Eric Brunner
- University College London, Department of Epidemiology & Public Health, London, UK
| | - Danijela Budimir
- Department of Pharmacology, Faculty of Medicine, University of Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Olga Carlson
- Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, Maryland, USA
| | - Peter S. Chines
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Robert Clarke
- Clinical Trial Service Unit, University of Oxford, Oxford, UK
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arturo Corbatón-Anchuelo
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - David Couper
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - George V Dedoussis
- Department of Nutrition - Dietetics, Harokopio University, Athens, Greece
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
| | - Maria Dimitriou
- Department of Nutrition - Dietetics, Harokopio University, Athens, Greece
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, Maryland, USA
| | | | - Michael R. Erdos
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Johan G. Eriksson
- Department of General Practice and Primary health Care, University of Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
- Vaasa Central Hospital, Vaasa, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Elodie Eury
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, UK
| | - Nita G. Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Grazia Franzosi
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Paul W Franks
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Genetic Epidemiology & Clinical Research Group, Umeå University Hospital, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
- Institut National de la Recherche Agronomique, Université Paris, Bobigny Cedex, France
| | - Timothy M Frayling
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
| | - Philippe Froguel
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
- Genomic Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Pilar Galan
- Institut National de la Santé et de la Recherche Médicale, Université Paris, Bobigny Cedex, France
| | - Eco de Geus
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Bruna Gigante
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicole L. Glazer
- Department of Medicine, Section of Preventive Medicine and Epidemiology, BU School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, BU School of Public Health, Boston, Massachusetts, USA
| | - Anuj Goel
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Göran Hallmans
- Department of Public Health & Clinical Medicine, Nutrition Research, Umeå University, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Tamara B. Harris
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Simon Heath
- Centre National de Génotypage, Commissariat à L’Energie Atomique, Institut de Génomique, Evry, France
| | - Serge Hercberg
- Institut National de la Santé et de la Recherche Médicale, Université Paris, Bobigny Cedex, France
| | - Andrew A. Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Aroon Hingorani
- Genetic epidemiology group, University College London, Department of Epidemiology & Public Health, London, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
| | - Jennie Hui
- PathWest Laboratory Medicine of WA, J Block, QEII Medical Centre, Nedlands, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Australia
- Busselton Population Medical Research Foundation, B Block, QEII Medical Centre, Nedlands, Australia
- School of Population Health, The University of Western Australia, Nedlands, Australia
| | - Joseph Hung
- Busselton Population Medical Research Foundation, B Block, QEII Medical Centre, Nedlands, Australia
- Sir Charles Gairdner Hospital Unit, School of Medicine & Pharmacology, University of Western Australia, Australia
| | - Marjo Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-HPA Centre for Environment and Health, Faculty of Medicine, Imperial College London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- National Institute of Health and Welfare, Oulu, Finland
| | - Min A. Jhun
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - J Wouter Jukema
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, the Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
| | - Antti Jula
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - W.H. Kao
- Division of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Jaakko Kaprio
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Hjelt Institute, Dept of Public Health, University of Helsinki, Finland
| | - Sharon L. R. Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sirkka Keinanen-Kiukaanniemi
- Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Mika Kivimaki
- University College London, Department of Epidemiology & Public Health, London, UK
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Croatia
| | - Peter Kovacs
- Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany
| | - Meena Kumari
- Genetic epidemiology group, University College London, Department of Epidemiology & Public Health, London, UK
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsten Ohm Kyvik
- Institute of Regional Health Services Research and Professor Odense Patient data Explorative Network (OPEN)
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, Uppsala, Sweden
| | - G Mark Lathrop
- Centre National de Génotypage, Commissariat à L’Energie Atomique, Institut de Génomique, Evry, France
| | - Lenore J. Launer
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Karin Leander
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Guo Li
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
| | - Lars Lind
- Department of Medical Sciences, University Hospital, Uppsala University, Uppsala, Sweden
| | - Jaana Lindstrom
- Diabetes Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Stéphane Lobbens
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Ruth J. F. Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Reedik Mägi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael Marmot
- University College London, Department of Epidemiology & Public Health, London, UK
| | - Pierre Meneton
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Paris, France
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vincent Mooser
- Division of Genetics, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Mario A. Morken
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Iva Miljkovic
- Department of Epidemiology, Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Narisu Narisu
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jeff O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Lyle J. Palmer
- Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research. Toronto, Canada
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki and Helsinki University Central Hospital, Finland
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - John F. Peden
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marina Pehlic
- Department of Biology, Faculty of Medicine, University of Split, Croatia
| | - Leena Peltonen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Brenda Penninx
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Psychiatry, EMGO Institute for Health and Care Research and Institute for Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Markus Perola
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Louis Perusse
- Department of Preventive Medicine, Laval University, Quebec, Canada
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Croatia
| | - Peter P. Pramstaller
- Center for Biomedicine, European Academy Bozen/Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Michael A. Province
- Department of Genetics Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Emil Rehnberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | | | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Global Health, University of Split, Croatia
| | - Aimo Ruokonen
- Institute of Clinical Medicine, University of Oulu, Finland
| | - Timo Saaristo
- Finnish Diabetes Association, Tampere, Finland
- Pirkanmaa Hospital District, Tampere, Finland
| | - Maria Sabater-Lleal
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - David B. Savage
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peter Schwarz
- Department of Medicine, Division Prevention and Care of Diabetes, University of Dresden, Dresden, Germany
| | - Udo Seedorf
- Leibniz Institute for Arteriosclerosis Research, University of Munster, Germany
| | - Bengt Sennblad
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Serrano-Rios
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, USA
| | | | - David S. Siscovick
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Johannes H. Smit
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Nicholas L. Smith
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kathleen Stirrups
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Division of Endocrinology and Diabetes, Leipzig, Germany
| | - Yan V. Sun
- Department of Epidemiology, Emory University, Atlanta, Georgia, US
| | - Amy J. Swift
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anke Tönjes
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Division of Endocrinology and Diabetes, Leipzig, Germany
| | - Jaakko Tuomilehto
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- South Ostrobothnia Central Hospital, Seinäjoki, Finland
- Hospital Universitario La Paz, Madrid, Spain
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
| | - Stella Trompet
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, the Netherlands
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Easten Finland, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
| | - Max Vikström
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Marie-Claude Vohl
- Department of Food Science and Nutrition, Laval University, Quebec, Canada
| | - Benjamin F. Voight
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Peter Vollenweider
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Gerard Waeber
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Dawn M Waterworth
- Division of Genetics, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Hugh Watkins
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eleanor Wheeler
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Sarah H. Wild
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Sara M. Willems
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Jacqueline C.M. Witteman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
| | - Diana Zelenika
- Centre National de Génotypage, Commissariat à L’Energie Atomique, Institut de Génomique, Evry, France
| | - Tatijana Zemunik
- Department of Biology, Faculty of Medicine, University of Split, Croatia
| | - Lina Zgaga
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
- Department of medical statistics, epidemiology and medical informatics, University of Zagreb, Zagreb, Croatia
| | | | | | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Ines Barroso
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Hinxton, UK
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Richard M. Watanabe
- Department of Physiology & Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jose C. Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - James B. Meigs
- General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|