1
|
Wang Y, Li S, Ning C, Yang R, Wu Y, Cheng X, Xu J, Wang Y, Liu F, Zhang Y, Hu S, Xiao Y, Li Z, Zhou Z. The outer membrane protein, OMP71, of Riemerella anatipestifer, mediates adhesion and virulence by binding to CD46 in ducks. Vet Res 2024; 55:138. [PMID: 39407352 PMCID: PMC11481396 DOI: 10.1186/s13567-024-01393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The Riemerella anatipestifer bacterium is known to cause infectious serositis in ducklings. Moreover, its adherence to the host's respiratory mucosa is a critical step in pathogenesis. Membrane cofactor protein (MCP; CD46) is a complement regulatory factor on the surface of eukaryotic cell membranes. Bacteria have been found to bind to this protein on host cells. Outer membrane proteins (OMPs) are necessary for adhesion, colonisation, and pathogenicity of Gram-negative bacteria; however, the mechanism by which R. anatipestifer adheres to duck cells remains unclear. In this study, pull-down assays and LC-MS/MS identified eleven OMPs interacting with duck CD46 (dCD46), with OMP71 exhibiting the strongest binding. The ability of an omp71 gene deletion strain to bind dCD46 is weaker than that of the wild-type strain, suggesting that this interaction is important. Further evidence of this interaction was obtained by synthesising OMP71 using an Escherichia coli recombinant protein expression system. Adhesion and invasion assays and protein and antibody blocking assays confirmed that OMP71 promoted the R. anatipestifer YM strain (RA-YM) adhesion to duck embryo fibroblasts (DEFs) by binding to CD46. Tests of the pathogenicity of a Δomp71 mutant strain of RA-YM on ducks compared to the wild-type parent supported the hypothesis that OMP71 was a key virulence factor of RA-YM. In summary, the finding that R. anatipestifer exploits CD46 to bind to host cells via OMP71 increases our understanding of the molecular mechanism of R. anatipestifer invasion. The finding suggests potential targets for preventing and treating diseases related to R. anatipestifer infection.
Collapse
Affiliation(s)
- Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Congran Ning
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jike Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Seuthe IMC, Krause L, Ruwe M, Silling S, Ehrhardt A, Eichhorn S, Ehrke-Schulz E, Park JJH. Expression and prognosis of DSG-2, CXADR, CD46 in head and neck squamous cell carcinoma. Pathol Res Pract 2024; 262:155541. [PMID: 39173463 DOI: 10.1016/j.prp.2024.155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Investigating the expression and prognostic significance of adenovirus receptors DSG-2, CXADR and CD46 in head and neck cancer. METHODS 104 patients with HNSCC (77 OPSCC, 27 LSCC) were retrospectively included in the study. Immunohistochemical staining was performed on all selected slides to detect the expression of DSG-2, CXADR, CD46 and the immunoreactive score (IRS) was determined from the number of positively stained tumor cells and their staining intensity. Furthermore, the respective HPV status was determined by immunohistochemical staining against p16 and HPV-PCR. RESULTS 81.7 % of the tumors showed DSG-2, 34.6 % of the tumors showed CXADR and 57.7 % of the tumors showed CD46 expression. A high DSG-2 IRS correlated significantly with an advanced tumor size (p= 0.003), increased grading (p=0.012) and positive HPV status (p=0.024) in OPSCC. A high CXADR IRS was significantly associated with a positive lymph node status (p= 0.041) in LSCC and an advanced AJCC stage (p= 0.012) and a positive HPV status (p= 0.009) in OPSCC. No significant correlation could be shown regarding CD46 expression and clinical tumor data. There was no effect of DSG-2, CXADR, and CD46 expression on 5-year overall and on 5-year disease-free survival. CONCLUSION No prognostic significance of the expression of DSG-2, CXADR or CD46 in HNSCC was seen. DSG-2, CXADR and CD46 are expressed in HNSCC, so that optimization of oncotherapy with adenoviral vectors appears promising. Due to the significantly increased expression of DSG-2 and CXADR in advanced OPSCC tumors, there is potential for optimizing oncotherapy here in particular.
Collapse
Affiliation(s)
- Inga Marte Charlott Seuthe
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany.
| | - Lea Krause
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany
| | - Markus Ruwe
- Institute for Pathology Hagen, Grünstraße 35, Hagen 58095, Germany
| | - Steffi Silling
- Institute of Virology, National Reference Center for Papilloma, and Polyomaviruses, Faculty of Medicine, University Hospital Cologne, Fürst-Pückler-Straße 56, Cologne 50935, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Faculty of Health, Center of Biomedical Education and Research (ZBAF), Institute for Virology and Microbiology, University of Witten/Herdecke, Stockumer Straße 10, Witten 58453, Germany
| | - Sabine Eichhorn
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany
| | - Eric Ehrke-Schulz
- Department of Human Medicine, Faculty of Health, Center of Biomedical Education and Research (ZBAF), Institute for Virology and Microbiology, University of Witten/Herdecke, Stockumer Straße 10, Witten 58453, Germany
| | - Jonas Jae-Hyun Park
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany
| |
Collapse
|
3
|
Kul E, Okoroafor U, Dougherty A, Palkovic L, Li H, Valiño-Ramos P, Aberman L, Young SM. Development of adenoviral vectors that transduce Purkinje cells and other cerebellar cell-types in the cerebellum of a humanized mouse model. Mol Ther Methods Clin Dev 2024; 32:101243. [PMID: 38605812 PMCID: PMC11007541 DOI: 10.1016/j.omtm.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Viral vector gene therapy has immense promise for treating central nervous system (CNS) disorders. Although adeno-associated virus vectors (AAVs) have had success, their small packaging capacity limits their utility to treat the root cause of many CNS disorders. Adenoviral vectors (Ad) have tremendous potential for CNS gene therapy approaches. Currently, the most common vectors utilize the Group C Ad5 serotype capsid proteins, which rely on the Coxsackievirus-Adenovirus receptor (CAR) to infect cells. However, these Ad5 vectors are unable to transduce many neuronal cell types that are dysfunctional in many CNS disorders. The human CD46 (hCD46) receptor is widely expressed throughout the human CNS and is the primary attachment receptor for many Ad serotypes. Therefore, to overcome the current limitations of Ad vectors to treat CNS disorders, we created chimeric first generation Ad vectors that utilize the hCD46 receptor. Using a "humanized" hCD46 mouse model, we demonstrate these Ad vectors transduce cerebellar cell types, including Purkinje cells, that are refractory to Ad5 transduction. Since Ad vector transduction properties are dependent on their capsid proteins, these chimeric first generation Ad vectors open new avenues for high-capacity helper-dependent adenovirus (HdAd) gene therapy approaches for cerebellar disorders and multiple neurological disorders.
Collapse
Affiliation(s)
- Emre Kul
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Uchechi Okoroafor
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Dougherty
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lauren Palkovic
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Hao Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Paula Valiño-Ramos
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Leah Aberman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Esposito P, Rodriguez C, Gandelman M, Liang J, Ismail N. CD46 expression in the central nervous system of male and female pubescent mice. J Neuroimmunol 2023; 385:578234. [PMID: 37944208 DOI: 10.1016/j.jneuroim.2023.578234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
CD46 is a complementary regulatory protein ubiquitously expressed in human cells, controlling complement system activation. CD46 has further been identified to have several other functions including regulatory T cell induction and intestinal epithelial (IEC) barrier regulation. Activation of CD46 in the IEC can impact intestinal barrier permeability and immune system functioning. CD46 has only been identified in the spermatozoa and retina of mice. In other murine cells, the homologue CRRY is identified to function as the complementary regulator. Due to the identification of CRRY across other wild-type mouse cells and the development of mouse strains transgenic for human CD46, no recent research has been conducted to determine if CD46 is present in non-transgenic mouse strains. Therefore, the current study investigated if CD46 is expressed in the substantia nigra (SN) and caudate putamen (CP) of pubescent CD1 mice and examined the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatment on CD46 expression in the brain. As of 5 weeks of age, mice were administered mixed antimicrobial solution or water with oral gavage twice daily for 7 days. At 6 weeks of age, mice received an intraperitoneal injection of LPS or saline. Mice were euthanized 8 h post-injection and brain samples were collected. Our results indicate that pubescent CD-1 mice express CD46 in the SN and CP. However, LPS-treated mice displayed significantly less CD46 expression in the SN in comparison to saline-treated mice. Furthermore, males displayed more CD46 in the CP compared to females, regardless of LPS and antimicrobial treatments. Our data suggest CD46 is present in CD1 mice and that LPS and antimicrobial treatments impact CD46 protein expression in a sex-dependent manner. These results have important implications for the expression of CD46 in the mouse brain and the understanding of its role in immune system regulation.
Collapse
Affiliation(s)
- Pasquale Esposito
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Cloudia Rodriguez
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michelle Gandelman
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jacky Liang
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
5
|
Lamothe-Reyes Y, Figueroa M, Sánchez O. Host cell factors involved in classical swine fever virus entry. Vet Res 2023; 54:115. [PMID: 38041163 PMCID: PMC10693020 DOI: 10.1186/s13567-023-01238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023] Open
Abstract
Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowledge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide a rational basis for the development of nonvaccinal alternatives for CSFV control.
Collapse
Affiliation(s)
- Yaneysis Lamothe-Reyes
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Oliberto Sánchez
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
6
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
7
|
Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020; 21:ijms21186828. [PMID: 32957644 PMCID: PMC7554712 DOI: 10.3390/ijms21186828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.
Collapse
|
8
|
Marchica V, Franceschi V, Vescovini R, Storti P, Vicario E, Toscani D, Zorzoli A, Airoldi I, Dalla Palma B, Campanini N, Martella E, Mancini C, Costa F, Donofrio G, Giuliani N. Bovine pestivirus is a new alternative virus for multiple myeloma oncolytic virotherapy. J Hematol Oncol 2020; 13:89. [PMID: 32653014 PMCID: PMC7353805 DOI: 10.1186/s13045-020-00919-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oncolytic viruses have shown promising results for the treatment of multiple myeloma. However, the use of human viruses is limited by the patients' antiviral immune response. In this study, we investigated an alternative oncolytic strategy using non-human pathogen viruses as the bovine viral diarrhea virus (BVDV) that were able to interact with CD46. METHODS We treated several human myeloma cell lines and non-myeloma cell lines with BVDV to evaluate the expression of CD46 and to study the effect on cell viability by flow cytometry. The possible synergistic effect of bortezomib in combination with BVDV was also tested. Moreover, we infected the bone marrow mononuclear cells obtained from myeloma patients and we checked the BVDV effect on different cell populations, defined by CD138, CD14, CD3, CD19, and CD56 expression evaluated by flow cytometry. Finally, the in vivo BVDV effect was tested in NOD-SCID mice injected subcutaneously with myeloma cell lines. RESULTS Human myeloma cells were selectively sensitive to BVDV treatment with an increase of cell death and, consequently, of apoptotic markers. Consistently, bone marrow mononuclear cells isolated from myeloma patients treated with BVDV, showed a significant selective decrease of the percentage of viable CD138+ cells. Interestingly, bortezomib pre-treatment significantly increased the cytotoxic effect of BVDV in myeloma cell lines with a synergistic effect. Finally, the in vitro data were confirmed in an in vivo myeloma mouse model showing that BVDV treatment significantly reduced the tumoral burden compared to the vehicle. CONCLUSIONS Overall, our data indicate, for the first time, a direct oncolytic effect of the BVDV in human myeloma cells suggesting its possible use as novel alternative anti-myeloma virotherapy strategy.
Collapse
Affiliation(s)
| | | | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Emanuela Vicario
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Irma Airoldi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | | | - Eugenia Martella
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Cristina Mancini
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy.
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy.
| |
Collapse
|
9
|
Ma WJ, Shi YH, Chen J. Ayu (Plecoglossus altivelis) CD46 isoforms protect the cells from autologous complement attack. FISH & SHELLFISH IMMUNOLOGY 2020; 102:267-275. [PMID: 32360277 DOI: 10.1016/j.fsi.2020.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
CD46 is an important immune regulatory receptor with multiple functions. However, studies on the function of teleost CD46, especially the different CD46 isoforms are limited. In this study, we identified three membrane cofactor protein (MCP, CD46) gene isoforms from ayu (Plecoglossus altivelis) and tentatively named as PaCD46 isoforms. PaCD46 isoforms were generated by alternative splicing and all consisted of four conserved short consensus repeats (SCRs), and the variable serine-threonine-proline-rich domain, transmembrane hydrophobic domain, and cytoplasmic tail. Phylogenetic analysis showed that the isoforms clustered together with other fish CD46 and then with higher animal CD46. Western blotting analysis of peripheral blood mononuclear cells (PBMC) revealed three bands, all of which had much larger molecular weights than the theoretical values of the three PaCD46 isoforms. Moreover, three PaCD46 isoforms were individually expressed on HEK293 cells, and Western blotting showed the similar band profile to that of PBMC. The recombinant extracellular domain of the PaCD46 isoforms, obtained by expression in Pichia pastoris, significantly reduced hemolysis activity of ayu sera. Furthermore, each of the three PaCD46 isoforms respectively protected the HEK293 cells expressing the isoform. The isoforms were also identified for their protection of autologous PBMC from complement activation. These results provided the first evidence that PaCD46 isoforms may be complement regulatory proteins to prevent complement-induced damage to self-tissue.
Collapse
Affiliation(s)
- Wen-Jing Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yu-Hong Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
10
|
Abstract
In this chapter, we present an overview on betaherpesvirus entry, with a focus on human cytomegalovirus, human herpesvirus 6A and human herpesvirus 6B. Human cytomegalovirus (HCMV) is a complex human pathogen with a genome of 235kb encoding more than 200 genes. It infects a broad range of cell types by switching its viral ligand on the virion, using the trimer gH/gL/gO for infection of fibroblasts and the pentamer gH/gL/UL128/UL130/UL131 for infection of other cells such as epithelial and endothelial cells, leading to membrane fusion mediated by the fusion protein gB. Adding to this scenario, however, accumulating data reveal the actual complexity in the viral entry process of HCMV with an intricate interplay among viral and host factors. Key novel findings include the identification of entry receptors platelet-derived growth factor-α receptor (PDGFRα) and Netropilin-2 (Nrp2) for trimer and pentamer, respectively, the determination of atomic structures of the fusion protein gB and the pentamer, and the in situ visualization of the state and arrangement of functional glycoproteins on virion. This is covered in the first part of this review. The second part focusses on HHV-6 which is a T lymphotropic virus categorized as two distinct virus species, HHV-6A and HHV-6B based on differences in epidemiological, biological, and immunological aspects, although homology of their entire genome sequences is nearly 90%. HHV-6B is a causative agent of exanthema subitum (ES), but the role of HHV-6A is unknown. HHV-6B reactivation occasionally causes encephalitis in patients with hematopoietic stem cell transplant. The HHV-6 specific envelope glycoprotein complex, gH/gL/gQ1/gQ2 is a viral ligand for the entry receptor. Recently, each virus has been found to recognize a different cellular receptor, CD46 for HHV 6A amd CD134 for HHV 6B. These findings show that distinct receptor recognition differing between both viruses could explain their different pathogenesis.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
11
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Agodi A. Complement System and Age-Related Macular Degeneration: Implications of Gene-Environment Interaction for Preventive and Personalized Medicine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7532507. [PMID: 30225264 PMCID: PMC6129329 DOI: 10.1155/2018/7532507] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is the most common cause of visual loss in developed countries, with a significant economic and social burden on public health. Although genome-wide and gene-candidate studies have been enabled to identify genetic variants in the complement system associated with AMD pathogenesis, the effect of gene-environment interaction is still under debate. In this review we provide an overview of the role of complement system and its genetic variants in AMD, summarizing the consequences of the interaction between genetic and environmental risk factors on AMD onset, progression, and therapeutic response. Finally, we discuss the perspectives of current evidence in the field of genomics driven personalized medicine and public health.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Maria Grazia Mazzone
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy
| | - Francesco Giuliano
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|
13
|
Consequences of dysregulated complement regulators on red blood cells. Blood Rev 2018; 32:280-288. [PMID: 29397262 DOI: 10.1016/j.blre.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/07/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
The complement system represents the first line of defense that is involved in the clearance of pathogens, dying cells and immune complexes via opsonization, induction of an inflammatory response and the formation of a lytic pore. Red blood cells (RBCs) are very important for the delivery of oxygen to tissues and are continuously in contact with complement proteins in the blood plasma. To prevent complement activation on RBCs, various complement regulatory proteins can be found in plasma and on the cell membrane. RBCs are special cells without a nucleus and having a slightly different make-up of complement regulators than nucleated cells, as membrane cofactor protein (MCP) is not expressed and complement receptor 1 (CR1) is highly expressed. Decreased expression and/or function of complement regulatory proteins may result in unwanted complement activation and accelerated removal of RBCs. This review describes complement regulation on RBCs and the consequences when this regulation is out of balance.
Collapse
|
14
|
On the value of therapeutic interventions targeting the complement system in acute myocardial infarction. Transl Res 2017; 182:103-122. [PMID: 27810412 DOI: 10.1016/j.trsl.2016.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/12/2023]
Abstract
The complement system plays an important role in the inflammatory response subsequent to acute myocardial infarction (AMI). The aim of this study is to create a systematic overview of studies that have investigated therapeutic administration of complement inhibitors in both AMI animal models and human clinical trials. To enable extrapolation of observations from included animal studies toward post-AMI clinical trials, ex vivo studies on isolated hearts and proof-of-principle studies on inhibitor administration before experimental AMI induction were excluded. Positive therapeutic effects in AMI animal models have been described for cobra venom factor, soluble complement receptor 1, C1-esterase inhibitor (C1-inh), FUT-175, C1s-inhibitor, anti-C5, ADC-1004, clusterin, and glycosaminoglycans. Two types of complement inhibitors have been tested in clinical trials, being C1-inh and anti-C5. Pexelizumab (anti-C5) did not result in reproducible beneficial effects for AMI patients. Beneficial effects were reported in AMI patients for C1-inhibitor, albeit in small patient groups. In general, despite the absence of consistent positive effects in clinical trials thus far, the complement system remains a potentially interesting target for therapy in AMI patients. Based on the study designs of previous animal studies and clinical trials, we discuss several issues which require attention in the design of future studies: adjustment of clinical trial design to precise mechanism of action of administered inhibitor, optimizing the duration of therapy, and optimization of time point(s) on which therapeutic effects will be evaluated.
Collapse
|
15
|
Kolev M, Kemper C. Keeping It All Going-Complement Meets Metabolism. Front Immunol 2017; 8:1. [PMID: 28149297 PMCID: PMC5241319 DOI: 10.3389/fimmu.2017.00001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023] Open
Abstract
The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather “predictable” but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.
Collapse
Affiliation(s)
- Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital , London , UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK; Laboratory of Molecular Immunology, The Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
16
|
Role of CD46 Polymorphisms in the Occurrence of Disease in Young Chinese Men With Human Adenovirus Type 55 Infection. Disaster Med Public Health Prep 2016; 12:427-430. [PMID: 27645610 DOI: 10.1017/dmp.2016.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Human adenovirus type 55 (HAdV-55) has recently caused multiple outbreaks. This study examined polymorphisms in CD46 to determine their involvement in HAdV-55 infection. METHODS A total of 214 study subjects infected with HAdV-55 were included in our study. The study subjects were divided into those with silent infections (n=91), minor infections (n=85), and severe infections (n=38). Ten single nucleotide polymorphisms (SNPs) from CD46 were examined. RESULTS Compared with the AA genotype, the TT genotype at rs2724385 (CD46, A/T) was associated with a protective effect against disease occurrence, with an odds ratio (95% confidence interval) of 0.20 (0.04-0.97) (P=0.038). There were no significant differences between the patients with minor and severe infection and those who had silent HAdV-55 infection in the other CD46 SNPs. We next compared the polymorphisms of these genes according to disease severity in HAdV-55-infected patients with clinical symptoms. The results showed that there were no significant differences between minor infections and severe infections. CONCLUSIONS Our results suggested that the CD46 SNP at rs2724385 is associated with the occurrence of disease in HAdV-55-infected patients. A much larger number of samples is required to understand the role of CD46 polymorphisms in the occurrence and progression of infection by HAdV-55. (Disaster Med Public Health Preparedness. 2018;12:427-430).
Collapse
|
17
|
Alzamel N, Bayrou C, Decreux A, Desmecht D. Soluble forms of CD46 are detected in Bos taurus plasma and neutralize BVDV, the bovine pestivirus. Comp Immunol Microbiol Infect Dis 2016; 49:39-46. [PMID: 27865262 DOI: 10.1016/j.cimid.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 07/19/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022]
Abstract
The pestivirus bovine viral diarrhea virus (BVDV) is known to bind to the CD46 molecule, which subsequently promotes entry of the virus. Mapping of the BVD-virion-binding site has shown that two peptides, 66EQIV69 and 82GQVLAL87, located on antiparallel beta sheets in the most distal complement control protein module (CCP1), provide the attachment platform. In the present study, we reveal new CD46-encoding transcripts that are predicted to encode CCP1-containing soluble forms. Further, we show that the serum of most adult cattle contains soluble CD46 (sCD46) and that a recombinant soluble isoform neutralizes BVDV infectivity in an in vitro assay. We have then established an ELISA for determination of plasma sCD46 in a large cohort of animals. Overall, serum sCD46 amounts to 8±18ng/mL (mean±SD, n=440), with a IC [95-105] ranging from 6,4 to 9,8ng/mL and extreme values between 0 and 178ng/mL. We found that sCD46 is not detectable in fetal and neonatal sera and that its plasma concentration increases progressively up to adulthood. We also detected high- and low-sCD46 performers and show that this phenotype does not depend of environment. As modern rearing techniques make it possible to disseminate genetically-determined phenotypes very quickly in a population, a large-scale study examining whether high-sCD46 animals provide epidemiological protection against BVDV infection and transmission should be undertaken.
Collapse
Affiliation(s)
- Nidal Alzamel
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium
| | - Calixte Bayrou
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium
| | - Annabelle Decreux
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium
| | - Daniel Desmecht
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium.
| |
Collapse
|
18
|
Hay J, Carter D, Lieber A, Astier AL. Recombinant Ad35 adenoviral proteins as potent modulators of human T cell activation. Immunology 2014; 144:453-460. [PMID: 25251258 PMCID: PMC4557682 DOI: 10.1111/imm.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022] Open
Abstract
The protein CD46 protects cells from complement attack by regulating cleavage of C3b and C3d. CD46 also regulates the adaptive immune response by controlling T cell activation and differentiation. Co-engagement of the T cell receptor and CD46 notably drives T cell differentiation by switching production of IFNγ to secretion of anti-inflammatory IL-10. This regulatory pathway is altered in several chronic inflammatory diseases highlighting its key role for immune homeostasis. The manipulation of the CD46 pathway may therefore provide a powerful means to regulate immune responses. Herein, we investigated the effect of recombinant proteins derived from the fiber knob of the adenovirus serotype 35 (Ad35) that uses CD46 as its entry receptor, on human T cell activation. We compared the effects of Ad35K++, engineered to exhibit enhanced affinity to CD46, and of Ad35K-, mutated in the binding site for CD46. Ad35K++ profoundly affects T cell activation by decreasing the levels of CD46 at the surface of primary T cells, and impairing T cell co-activation, shown by decreased CD25 expression, reduced proliferation and lower secretion of IL-10 and IFNγ. In contrast, Ad35K- acts a potent coactivator of T cells, enhancing T cell proliferation and cytokine production. These data show that recombinant Ad35 proteins are potent modulators of human T cell activation, and support their further development as potential drugs targeting T cell responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joanne Hay
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| | - Darrick Carter
- PAI Life Sciences Inc.Seattle, WA, USA
- Compliment Corp.Seattle, WA, USA
| | - André Lieber
- Department of Medical Genetics, University of WashingtonSeattle, WA, USA
| | - Anne L Astier
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| |
Collapse
|
19
|
Toivonen R, Koskenvuo J, Merentie M, Söderström M, Ylä-Herttuala S, Savontaus M. Intracardiac injection of a capsid-modified Ad5/35 results in decreased heart toxicity when compared to standard Ad5. Virol J 2012. [PMID: 23190872 PMCID: PMC3546865 DOI: 10.1186/1743-422x-9-296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Clinical gene therapy trials for cardiovascular diseases have demonstrated the crucial role of efficient gene delivery and transfection technologies in achieving clinically relevant results. We hypothesized that the use of tropism-modified adenoviruses would improve transduction efficacy and to this end we analyzed the transduction efficiency and toxicity of standard Ad5 and tropism-modified Ad5/35 in combination with ultrasound-guided intramyocardial gene delivery. METHODS Ultrasound-guided intracardiac injections were used to deliver 1 × 10(10) pfu/ml Ad5-lacZ and Ad5/35-lacZ vectors into mouse left ventricle wall. Since Ad5/35 uses human CD46 as its primary receptor, we used transgenic hCD46Ge mice expressing human CD46 at levels comparable to man. Mice were sacrificed 6 or 14 days post-injection and immunohistochemistry and X-gal staining were used to detect transgene and viral receptor expression. Virus-induced cardiac toxicity was evaluated by a pathologist. RESULTS The intramyocardial injection was well tolerated and both Ad5-lacZ and Ad5/35-lacZ were able to give robust transgene expression after a single injection. Interestingly, while Ad5-lacZ was able to generate greater transgene expression than Ad5/35-lacZ, it also evoked more severe tissue damage with large areas of interstitial inflammatory cell infiltration and myocyte necrosis. CONCLUSIONS Ultrasound-guided intramyocardial injection is an effective and safe way to deliver vectors to the heart. The observed severe tissue damage of Ad5-lacZ greatly undermines the efficient transgene expression and suggests that Ad5/35 capsid modification can result in safer adenoviral vectors for cardiovascular gene therapy, although at the cost of some vector transduction efficacy.
Collapse
Affiliation(s)
- Raine Toivonen
- Turku Centre for biotechnology, University of Turku, Tykistökatu 6B 5th floor, Turku, FIN-20520, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Features of Human Herpesvirus-6A and -6B Entry. Adv Virol 2012; 2012:384069. [PMID: 23133452 PMCID: PMC3485865 DOI: 10.1155/2012/384069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/25/2012] [Indexed: 11/23/2022] Open
Abstract
Human herpesvirus-6 (HHV-6) is a T lymphotropic herpesvirus belonging to the Betaherpesvirinae subfamily. HHV-6 was long classified into variants A and B (HHV-6A and HHV-6B); however, recently, HHV-6A and HHV-6B were reclassified as different species. The process of herpesvirus entry into target cells is complicated, and in the case of HHV-6A and HHV-6B, the detailed mechanism remains to be elucidated, although both viruses are known to enter cells via endocytosis. In this paper, (1) findings about the cellular receptor and its ligand for HHV-6A and HHV-6B are summarized, and (2) a schematic model of HHV-6A's replication cycle, including its entry, is presented. In addition, (3) reports showing the importance of lipids in both the HHV-6A envelope and target-cell membrane for viral entry are reviewed, and (4) glycoproteins involved in cell fusion are discussed.
Collapse
|
21
|
Marvin SA, Wiethoff CM. Emerging roles for ubiquitin in adenovirus cell entry. Biol Cell 2012; 104:188-98. [PMID: 22251092 DOI: 10.1111/boc.201100096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/13/2012] [Indexed: 11/28/2022]
Abstract
Adenovirus relies on numerous interactions between viral and host cell proteins to efficiently enter cells. Undoubtedly, post-translational modifications of host and cellular proteins can impact the efficiency of this cell entry process. Ubiquitylation, once simply thought of as a modification targeting proteins for proteasomal degradation, is now known to regulate protein trafficking within cells, protein-protein interactions and cell signalling pathways. Accumulating evidence suggests that protein ubiquitylation can influence all stages of the life cycle of other viruses such as cell entry, replication and egress. Until recently, the influence of ubiquitylation has only been documented during adenovirus replication. This review highlights the most recent evidence demonstrating direct engagement of host ubiquitylation and SUMOylation machinery by adenovirus during cell entry. Additionally, potential roles for host protein ubiquitylation and the potential for adenovirus regulation of host ubiquitylation machinery during cell entry are discussed.
Collapse
Affiliation(s)
- Shauna A Marvin
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
22
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
23
|
Lingappa JR, Dumitrescu L, Zimmer SM, Lynfield R, McNicholl JM, Messonnier NE, Whitney CG, Crawford DC. Identifying host genetic risk factors in the context of public health surveillance for invasive pneumococcal disease. PLoS One 2011; 6:e23413. [PMID: 21858107 PMCID: PMC3156135 DOI: 10.1371/journal.pone.0023413] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/16/2011] [Indexed: 11/18/2022] Open
Abstract
Host genetic factors that modify risk of pneumococcal disease may help target future public health interventions to individuals at highest risk of disease. We linked data from population-based surveillance for invasive pneumococcal disease (IPD) with state-based newborn dried bloodspot repositories to identify biological samples from individuals who developed invasive pneumococcal disease. Genomic DNA was extracted from 366 case and 732 anonymous control samples. TagSNPs were selected in 34 candidate genes thought to be associated with host response to invasive pneumococcal disease, and a total of 326 variants were successfully genotyped. Among 543 European Americans (EA) (182 cases and 361 controls), and 166 African Americans (AA) (53 cases and 113 controls), common variants in surfactant protein D (SFTPD) are consistently underrepresented in IPD. SFTPD variants with the strongest association for IPD are intronic rs17886286 (allelic OR 0.45, 95% confidence interval (CI) [0.25, 0.82], with p = 0.007) in EA and 5' flanking rs12219080 (allelic OR 0.32, 95%CI [0.13, 0.78], with p = 0.009) in AA. Variants in CD46 and IL1R1 are also associated with IPD in both EA and AA, but with effects in different directions; FAS, IL1B, IL4, IL10, IL12B, SFTPA1, SFTPB, and PTAFR variants are associated (p≤0.05) with IPD in EA or AA. We conclude that variants in SFTPD may protect against IPD in EA and AA and genetic variation in other host response pathways may also contribute to risk of IPD. While our associations are not corrected for multiple comparisons and therefore must be replicated in additional cohorts, this pilot study underscores the feasibility of integrating public health surveillance with existing, prospectively collected, newborn dried blood spot repositories to identify host genetic factors associated with infectious diseases.
Collapse
Affiliation(s)
- Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ni Choileain S, Astier AL. CD46 processing: a means of expression. Immunobiology 2011; 217:169-75. [PMID: 21742405 DOI: 10.1016/j.imbio.2011.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
Abstract
CD46 is a ubiquitously expressed type I transmembrane protein, first identified as a regulator of complement activation, and later as an entry receptor for a variety of pathogens. The last decade has also revealed the role of CD46 in regulating the adaptive immune response, acting as an additional costimulatory molecule for human T cells and inducing their differentiation into Tr1 cells, a subset of regulatory T cells. Interestingly, CD46 regulatory pathways are defective in T cells from patients with multiple sclerosis, asthma and rheumatoid arthritis, illustrating its importance in regulating T cell homeostasis. Indeed, CD46 expression at the cell surface is tightly regulated in many different cell types, highlighting its importance in several biological processes. Notably, CD46 is the target of enzymatic processing, being cleaved by metalloproteinases and by the presenilin/gamma secretase complex. This processing is required for its functions, at least in T cells. This review will summarize the latest updates on the regulation of CD46 expression and on its effects on T cell activation.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- MRC Centre for Inflammation Research, Centre for MS Research, University of Edinburgh, UK
| | | |
Collapse
|
25
|
Ni Choileain S, Astier AL. CD46 plasticity and its inflammatory bias in multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2011; 59:49-59. [PMID: 21267793 DOI: 10.1007/s00005-010-0109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/16/2010] [Indexed: 01/13/2023]
Abstract
Known as a link to the adaptive immune system, a complement regulator, a "pathogen magnet" and more recently as an inducer of autophagy, CD46 is the human receptor that refuses to be put in a box. This review summarizes the current roles of CD46 during immune responses and highlights the role of CD46 as both a promoter and attenuator of the immune response. In patients with multiple sclerosis (MS), CD46 responses are overwhelmingly pro-inflammatory with notable defects in cytokine and chemokine production. Understanding the role of CD46 as an inflammatory regulator is a distant goal considering the darkness in which its regulatory mechanisms reside. Further research into the regulation of CD46 expression through its internalization and processing will undoubtedly extend our knowledge of how the balance is tipped in favor of inflammation in MS patients.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
26
|
Ni Choileain S, Weyand NJ, Neumann C, Thomas J, So M, Astier AL. The dynamic processing of CD46 intracellular domains provides a molecular rheostat for T cell activation. PLoS One 2011; 6:e16287. [PMID: 21283821 PMCID: PMC3023775 DOI: 10.1371/journal.pone.0016287] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022] Open
Abstract
Background Adequate termination of an immune response is as important as the induction of an appropriate response. CD46, a regulator of complement activity, promotes T cell activation and differentiation towards a regulatory Tr1 phenotype. This Tr1 differentiation pathway is defective in patients with MS, asthma and rheumatoid arthritis, underlying its importance in controlling T cell function and the need to understand its regulatory mechanisms. CD46 has two cytoplasmic tails, Cyt1 and Cyt2, derived from alternative splicing, which are co-expressed in all nucleated human cells. The regulation of their expression and precise functions in regulating human T cell activation has not been fully elucidated. Methodology/Principal Findings Here, we first report the novel role of CD46 in terminating T cell activation. Second, we demonstrate that its functions as an activator and inhibitor of T cell responses are mediated through the temporal processing of its cytoplasmic tails. Cyt1 processing is required to turn T cell activation on, while processing of Cyt2 switches T cell activation off, as demonstrated by proliferation, CD25 expression and cytokine secretion. Both tails require processing by Presenilin/γSecretase (P/γS) to exert these functions. This was confirmed by expressing wild-type Cyt1 and Cyt2 tails and uncleavable mutant tails in primary T cells. The role of CD46 tails was also demonstrated with T cells expressing CD19 ectodomain-CD46 C-Terminal Fragment (CTF) fusions, which allowed specific triggering of each tail individually. Conclusions/Significance We conclude that CD46 acts as a molecular rheostat to control human T cell activation through the regulation of processing of its cytoplasmic tails.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nathan J. Weyand
- BIO5 Institute and Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Christian Neumann
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joelle Thomas
- Université Lyon 1, Lyon, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, France
| | - Magdalene So
- BIO5 Institute and Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anne L. Astier
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Gustafsson DJ, Andersson EK, Hu YL, Marttila M, Lindman K, Strand M, Wang L, Mei YF. Adenovirus 11p downregulates CD46 early in infection. Virology 2010; 405:474-82. [PMID: 20638094 DOI: 10.1016/j.virol.2010.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/13/2010] [Accepted: 06/11/2010] [Indexed: 01/25/2023]
Abstract
Adenovirus 11 prototype (Ad11p), belonging to species B, uses CD46 as an attachment receptor. CD46, a complement regulatory molecule, is expressed on all human nucleated cells. We show here that Ad11p virions downregulate CD46 on the surface of K562 cells as early as 5min p.i. Specific binding to CD46 by the Ad11p fiber knob was required to mediate downregulation. The complement regulatory factors CD55 and CD59 were also reduced to a significant extent as a consequence of Ad11p binding to K562 cells. In contrast, binding of Ad7p did not result in downregulation of CD46 early in infection. Thus, the presumed interaction between Ad7p and CD46 did not have the same consequences as the Ad11p-CD46 interaction, the latter virus (Ad11p) being a promising gene therapy vector candidate. These findings may lead to a better understanding of the pathogenesis of species B adenovirus infections.
Collapse
Affiliation(s)
- Dan J Gustafsson
- Department of Clinical Microbiology, Virology, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Selective transduction of mature DC in human skin and lymph nodes by CD80/CD86-targeted fiber-modified adenovirus-5/3. J Immunother 2010; 32:895-906. [PMID: 19816192 DOI: 10.1097/cji.0b013e3181b56deb] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vivo targeting of dendritic cells (DC) represents an attractive alternative to currently apply ex vivo DC-based genetic tumor vaccination protocols. Finding the optimal vector for in vivo targeting of DC is important for such strategies. We, therefore, tested a panel of subgroup C/B chimeric and fiber-modified adenoviruses (Ads) for their relative capacity to transduce human DC. We made use of in vitro generated Langerhans cells, and of ex vivo human skin and melanoma-draining lymph node derived DC. Of the tested viruses the C/B-chimeric adenovirus serotype 5 (Ad5)/3 virus most efficiently transduced in vitro generated Langerhans cells. In addition, Ad5/3 preferentially targeted mature myeloid DC from human skin and draining lymph node and transduced them at significantly higher frequencies than Ad5. In addition, Ad5/3 was more specific for mature human skin-derived CD1a+ CD83+ DC than the previously reported DC-transducing C/B-chimeric vector Ad5/35, infecting less bystander cells. It was previously reported that Ad5/3 transduced human monocyte-derived DC by binding to the B7 molecules CD80 and CD86. High-efficiency transduction of mature skin-derived DC was similarly shown to be mediated through binding to CD80/CD86 and not to interfere with subsequent T-cell priming. We conclude that Ad5/3, in combination with DC-activating adjuvants, represents a promising therapeutic tool for the in vivo transduction of mature DC, and may be less likely to induce unwanted side effects such as immune tolerance through the infection of nonprofessional antigen-presenting cells.
Collapse
|
29
|
Weyand NJ, Calton CM, Higashi DL, Kanack KJ, So M. Presenilin/gamma-secretase cleaves CD46 in response to Neisseria infection. THE JOURNAL OF IMMUNOLOGY 2009; 184:694-701. [PMID: 20018629 DOI: 10.4049/jimmunol.0900522] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD46 is a type I transmembrane protein with complement and T cell regulatory functions in human cells. CD46 has signaling and receptor properties in immune and nonimmune cells, many of which are dependent on the expression of cytoplasmic tail (cyt) isoforms cyt1 or cyt2. Little is known about how cyt1 and cyt2 mediate cellular responses. We show that CD46-cyt1 and CD46-cyt2 are substrates for presenilin/gamma-secretase (PS/gammaS), an endogenous protease complex that regulates many important signaling proteins through proteolytic processing. PS/gammaS processing of CD46 releases immunoprecipitable cyt1 and cyt2 tail peptides into the cell, is blocked by chemical inhibitors, and is prevented in dominant negative presenilin mutant cell lines. Two human pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, stimulate PS/gammaS processing of CD46-cyt1 and CD46-cyt2. This stimulation requires type IV pili and PilT, the type IV pilus retraction motor, implying that mechanotransduction plays a role in this event. We present a model for PS/gammaS processing of CD46 that provides a mechanism by which signals are transduced via the cyt1 and cyt2 tails to regulate CD46-dependent cellular responses. Our findings have broad implications for understanding the full range of CD46 functions in infection and noninfection situations.
Collapse
Affiliation(s)
- Nathan J Weyand
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The complement system plays a crucial role in the innate defense against common pathogens. Activation of complement leads to robust and efficient proteolytic cascades, which terminate in opsonization and lysis of the pathogen as well as in the generation of the classical inflammatory response through the production of potent proinflammatory molecules. More recently, however, the role of complement in the immune response has been expanded due to observations that link complement activation to adaptive immune responses. It is now appreciated that complement is a functional bridge between innate and adaptive immune responses that allows an integrated host defense to pathogenic challenges. As such, a study of its functions allows insight into the molecular underpinnings of host-pathogen interactions as well as the organization and orchestration of the host immune response. This review attempts to summarize the roles that complement plays in both innate and adaptive immune responses and the consequences of these interactions on host defense.
Collapse
|
31
|
Toivonen R, Mäyränpää MI, Kovanen PT, Savontaus M. Dilated cardiomyopathy alters the expression patterns of CAR and other adenoviral receptors in human heart. Histochem Cell Biol 2009; 133:349-57. [PMID: 19957088 DOI: 10.1007/s00418-009-0666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/03/2023]
Abstract
Gene therapy trials for heart failure have demonstrated the key role of efficient gene transfer in achieving therapeutic efficacy. An attractive approach to improve adenoviral gene transfer is to use alternative virus serotypes with modified tropism. We performed a detailed analysis of cardiac expression of receptors for several adenovirus serotypes with a focus on differential expression of CAR and CD46, as adenoviruses targeting these receptors have been used in various applications. Explanted hearts from patients with DCM and healthy donors were analyzed using Q-RT-PCR, western blot and immunohistochemistry. Q-RT-PCR and Western analyses revealed robust expression of all receptors except CD80 in normal hearts with lower expression levels in DCM. Immunohistochemical analyses demonstrated that CD46 expression was somewhat higher than CAR both in normal and DCM hearts with highest levels of expression in intramyocardial coronary vessels. Total CAR expression was upregulated in DCM. Triple staining on these vessels demonstrated that both CAR and CD46 were confined to the subendothelial layer in normal hearts. The situation was clearly different in DCM, where both CAR and CD46 were expressed by endothelial cells. The induction of expression of CAR and CD46 by endothelial cells in DCM suggests that viruses targeting these receptors could more easily gain entry to heart cells after intravascular administration. This finding thus has potential implications for the development of targeted gene therapy for heart failure.
Collapse
Affiliation(s)
- Raine Toivonen
- Turku Centre for Biotechnology, Abo Academy, University of Turku, Tykistökatu 6 B 5th Floor, 20520, Turku, Finland,
| | | | | | | |
Collapse
|
32
|
Agarwal N, Shusta EV. Multiplex expression cloning of blood-brain barrier membrane proteins. Proteomics 2009; 9:1099-108. [PMID: 19180536 DOI: 10.1002/pmic.200800368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) is a vascular endothelial interface that separates the brain interior from the bloodstream. Membrane proteins resident at the BBB play important functional and regulatory roles. The current study describes the development and successful implementation of a multiplex expression cloning (MEC) method to allow facile identification of BBB membrane proteins. The overriding goal of the MEC approach was to mine a BBB cDNA library and selectively isolate membrane protein-encoding cDNAs. This selection process was achieved via fluorescence-activated cell sorting (FACS) of cDNA-expressing mammalian host cells for those cells that were immunolabeled with a BBB membrane protein-specific polyclonal antiserum (BMSPA). After optimization of the host cell expression system, four selection rounds allowed the isolation of a panel of 15 unique cDNAs that encoded BBB membrane proteins. The identified proteins display significant diversity in structure, function and in vivo expression levels. The MEC approach thus proved effective for conducting moderate throughput membrane proteome analyses of the BBB while limiting any biases caused by membrane protein insolubility or low in vivo expression levels that can complicate other proteomic approaches.
Collapse
Affiliation(s)
- Nitin Agarwal
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
33
|
Csomor P, Szalmás A, Kónya J, Sziklai I, Karosi T. Restriction analysis of otosclerosis-associated CD46 splicing variants. Eur Arch Otorhinolaryngol 2009; 267:219-26. [PMID: 19597833 DOI: 10.1007/s00405-009-1042-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/30/2009] [Indexed: 11/29/2022]
Abstract
Otosclerosis is a primary bone remodeling disorder of the human otic capsule and is associated with persistent measles virus infection. The human cellular receptor of measles virus is the membrane cofactor protein (MCP, CD46), which has 14 well-described splicing variants. Unique CD46 expression pattern of the otic capsule and the stapes footplate may determine the susceptibility for persistent measles virus infection. A total of 51 surgically removed ankylotic stapes footplates were analyzed by histopathological and molecular biological methods, respectively. Nucleic acids were extracted. Measles virus sequences were detected by nucleoprotein RNA-specific reverse transcriptase polymerase chain reaction (RT-PCR). Alternatively spliced RNA of CD46 isoforms was amplified by RT-PCR; cDNA amplimers were separated by SDS poly-acrylamide gel electrophoresis and were purified from the gel. Complementary DNA of CD46 isoforms was restricted by endonuclease enzymes having CD46-specific recognition sites. The presence of viral RNA was associated exclusively with the histopathological diagnosis of otosclerosis; the stapes specimens with negative measles virus belonged to non-otosclerotic stapes fixations. All specimens (N = 51) were characterized by the consecutive expression of five CD46 variants (c, d, e, f and one shorter unidentified isoform). Histologically confirmed ostosclerotic specimens (N = 21) were characterized by increased expression levels of variant "f" and the unknown isoform. Increased expression levels of these isoforms and special CD46 expression pattern of the human otic capsule might produce modified or pathological intracellular signalization that could create the possibility of persistent measles virus infection.
Collapse
Affiliation(s)
- Péter Csomor
- Department of Otolaryngology Head and Neck Surgery, University of Debrecen Medical and Health Science Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | | | | | | | | |
Collapse
|
34
|
Sakurai F. Development and evaluation of a novel gene delivery vehicle composed of adenovirus serotype 35. Biol Pharm Bull 2008; 31:1819-25. [PMID: 18827334 DOI: 10.1248/bpb.31.1819] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacity of gene delivery vehicles is considered to be a critical factor determining the success of gene therapy. To date, various types of gene delivery vehicle have been developed. Among them, recombinant adeno-virus (Ad) vectors have potential that has favored their worldwide use in vitro and in vivo. Conventional Ad vectors are composed of subgroup C Ad serotype 5 (Ad5), although it has been clarified that the drawbacks of Ad5 vectors are a high seroprevalence of Ad5 in adults and low transduction efficiencies in cells lacking the primary receptor for Ad5, coxsackievirus and adenovirus receptor. To overcome these problems, we developed a novel Ad vector fully composed of Ad serotype 35 (Ad35). Ad35 vectors show a wide tropism for human cells because Ad35 binds to human CD46, which is ubiquitously expressed on almost all human cells, as a primary receptor. In addition, anti-Ad5 antibodies do not inhibit Ad35 vector-mediated transduction and the seroprevalence of Ad35 in adults is lower than that of Ad5. This paper reviews our studies on the development and evaluation of Ad35 vectors. Ad vectors derived from other Ad serotypes different from Ad5, including Ad35, are expected to be gene delivery vehicles alternative to conventional Ad5 vectors.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, 7-6-8 Asagi, Saito, Ibaragi, Osaka 567-0085, Japan.
| |
Collapse
|
35
|
Abstract
Measles virus (MV) was isolated in 1954 (Enders and Peeble 1954). It is among the most contagious of viruses and a leading cause of mortality in children in developing countries (Murray and Lopez 1997; Griffin 2001; Bryce et al. 2005). Despite intense research over decades on the biology and pathogenesis of the virus and the successful development in 1963 of an effective MV vaccine (Cutts and Markowitz 1994), cell entry receptor(s) for MV remained unidentified until 1993. Two independent studies showed that transfection of nonsusceptible rodent cells with human CD46 renders these cells permissive to infection with the Edmonston and Halle vaccine strains of measles virus (Dorig et al. 1993; Naniche et al. 1993). A key finding in these investigations was that MV binding and infection was inhibited by monoclonal and polyclonal antibodies to CD46. These reports established CD46 as a MV cell entry receptor. This chapter summarizes the role of CD46 in measles virus infection.
Collapse
Affiliation(s)
- C Kemper
- Division of Rheumatology, St. Louis, MO 63110, USA
| | | |
Collapse
|
36
|
Crawford DC, Zimmer SM, Morin CA, Messonnier NE, Lynfield R, Yi Q, Shephard C, Wong M, Rieder MJ, Livingston RJ, Nickerson DA, Whitney CG, Lingappa J. Integrating host genomics with surveillance for invasive bacterial diseases. Emerg Infect Dis 2008; 14:1138-40. [PMID: 18598642 PMCID: PMC2600343 DOI: 10.3201/eid1407.071287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We tested the feasibility of linking Active Bacterial Core surveillance, a prospective, population-based surveillance system for invasive bacterial disease, to a newborn dried blood spot (nDBS) repository. Using nDBS specimens, we resequenced CD46, putative host gene receptor for Neisseria meningitidis, and identified variants associated with susceptibility to this disease.
Collapse
|
37
|
Wohlfahrt ME, Beard BC, Lieber A, Kiem HP. A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL Leads to enhanced cancer cell killing in human glioblastoma models. Cancer Res 2007; 67:8783-90. [PMID: 17875719 DOI: 10.1158/0008-5472.can-07-0357] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, and patients rarely survive for more than 2 years. Gene therapy may offer new treatment options and improve the prognosis for patients with GBM. Adenovirus-mediated gene therapy strategies for brain tumors have been limited by inefficient gene transfer due to low expression of the adenovirus serotype 5 (Ad5) receptor. We have used an adenovirus vector that specifically replicates in tumor cells and uses an Ad5 capsid and the adenovirus serotype (Ad35) fiber for efficient infection of malignant tumor cells. This vector also expresses adenovirus E1A and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a tumor-specific manner. Here, we show that this oncolytic vector (Ad5/Ad35.IR-E1A/TRAIL) efficiently infects the GBM tumor cell lines SF767, T98G, and U-87 MG. Tumor cell killing was markedly enhanced with Ad5/Ad35.IR-E1A/TRAIL compared with wild-type Ad5 and Ad35 virus or Ad5/Ad35.IR-E1A- vectors without TRAIL expression in vitro. In vivo experiments using s.c. xenografted U-87 MG cells in NOD/SCID mice showed a significant growth delay of tumors after i.t. injection of Ad5/Ad35.IR-E1A/TRAIL, whereas adenovirus wild-type injections showed only marginal or no effect. Our findings indicate that the use of a capsid-modified adenoviral vector, in combination with TRAIL expression, is a promising novel approach for gene therapy of glioblastoma.
Collapse
Affiliation(s)
- Martin E Wohlfahrt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
38
|
Astier AL, Hafler DA. Abnormal Tr1 differentiation in multiple sclerosis. J Neuroimmunol 2007; 191:70-8. [PMID: 17936368 DOI: 10.1016/j.jneuroim.2007.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 09/07/2007] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). In the recent years, accumulating evidence has supported an immunosuppressive role for regulatory T cells (Tregs). Most studies in the context of autoimmunity have focused on the defects of the CD4+CD25 high Tregs. However, we recently demonstrated an altered function of Tr1 Treg cells in MS, characterized by a lack of IL-10 secretion. Therefore, several major regulatory T cell defects are involved in human autoimmune disease. Hence, the induction of Tregs or the stimulation of Treg activity may be beneficial for the treatment of such diseases.
Collapse
Affiliation(s)
- Anne L Astier
- Laboratory of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
39
|
Zipfel PF, Mihlan M, Skerka C. The alternative pathway of complement: a pattern recognition system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:80-92. [PMID: 17892206 DOI: 10.1007/978-0-387-71767-8_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute for Natural Products Research, Jena, Germany.
| | | | | |
Collapse
|
40
|
Suominen E, Toivonen R, Grenman R, Savontaus M. Head and neck cancer cells are efficiently infected by Ad5/35 hybrid virus. J Gene Med 2007; 8:1223-31. [PMID: 16941521 DOI: 10.1002/jgm.957] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Clinical gene therapy trials using standard Ad5-based vectors have thus far demonstrated limited efficacy, most likely due to low expression levels of adenoviral receptors on tumor cells. We sought to analyze adenoviral receptor expression levels on primary head and neck squamous cell carcinoma (HNSCC) cells and to determine whether adenoviral retargeting to the CD46 receptor via the Ad5/35 system would increase therapeutic potential for HNSCC. METHODS We used flow cytometric analyses to determine adenoviral receptor expression levels on nine primary HNSCC cells collected from cancer patients. Adenoviruses Ad5.LacZ and Ad5/35.LacZ were used to analyze the differences in viral transduction both in vitro and in a HNSCC tumor mouse model. RESULTS Flow cytometric analyses demonstrated uniformly high CD46 expression in all cells studied (85-99%). In contrast, coxsackievirus and adenovirus receptor (CAR) expression was substantially lower and highly variable (1.6-62%). Alpha(v) integrin expression was between 39-98%. In situ stainings for beta-galactosidase gene expression demonstrated that Ad5/35.LacZ was clearly more effective than Ad5.LacZ in transducing primary HNSCC cells. Quantification of beta-galactosidase expression revealed up to 65 times higher transgene expression from Ad5/35.LacZ than Ad5.LacZ. In vivo, beta-galactosidase expression was detected in a substantial area after a single intratumoral injection of Ad5/35.LacZ, whereas injection with Ad5.LacZ resulted in gene expression only in a few cells. CONCLUSIONS Our results demonstrate that the low and variable CAR expression levels limit the therapeutic efficacy of Ad5-based strategies for HNSCC. In contrast, the effective in vivo transduction capacity of Ad5/35 warrants further development of this vector for the treatment of head and neck cancer.
Collapse
Affiliation(s)
- Elina Suominen
- Turku Centre for Biotechnology, Abo Akademi University, Turku, Finland
| | | | | | | |
Collapse
|
41
|
Kürn U, Sommer F, Hemmrich G, Bosch TCG, Khalturin K. Allorecognition in urochordates: identification of a highly variable complement receptor-like protein expressed in follicle cells of Ciona. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:360-71. [PMID: 17074389 DOI: 10.1016/j.dci.2006.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/28/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
The evolutionary origin of allorecognition in vertebrates is unknown. Urochordates, being the closest living relatives of vertebrates [Delsuc F, Brinkmann H, Chourrout D, Philippe H]. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006; 439: 965-8], have efficient mechanisms to prevent both allogeneic fusion and self fertilization. To shed light on allorecognition in urochordates and on the molecules involved in preventing self fertilization, we compared gonadal cDNAs of three genetically unrelated Ciona intestinalis individuals by suppression subtractive hybridisation (SSH). Here, we report the discovery and characterization of a highly polymorphic gene coding for a transmembrane protein with several short consensus repeat domains (SCR/CCP). The protein, termed variable complement receptor-like 1 (vCRL1), is structurally similar to vertebrate complement receptors. However, in contrast to vertebrate complement receptors, vCRL1 shows an unprecedented high degree of amino acid variations among Ciona individuals and is expressed in follicle cells as well as in hemocytes. Based on our data we propose that in the absence of MHC Ciona uses variable components of the complement system as individuality markers.
Collapse
Affiliation(s)
- Ulrich Kürn
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | | | |
Collapse
|
42
|
Cummerson JA, Flanagan BF, Spiller DG, Johnson PM. The complement regulatory proteins CD55 (decay accelerating factor) and CD59 are expressed on the inner acrosomal membrane of human spermatozoa as well as CD46 (membrane cofactor protein). Immunology 2006; 118:333-42. [PMID: 16827894 PMCID: PMC1782297 DOI: 10.1111/j.1365-2567.2006.02374.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The complement regulatory proteins CD55 and CD59 are expressed on the plasma membrane of human spermatozoa, whereas CD46 is only on the inner acrosomal membrane (IAM) which becomes surfaced exposed after the acrosome reaction when sperm assume fertilisation-competence. CD55 & CD59, two glycosylphosphatidylinositol (GPI)-anchored proteins, have been detected previously in some studies also in the acrosomal region of chemically fixed spermatozoa but never demonstrated at this site on unfixed spermatozoa. Dual labelling immunofluorescence and confocal microscopy on fresh unfixed spermatozoa, with minimal subsequent time to fixation, has shown CD55 to be markedly expressed on the IAM, more than on the plasma membrane. However, unlike for CD46, CD55 displayed patchy staining over the acrosome, with some variation between individual spermatozoa. All IAM-associated CD55 was localised within GM1-containing lipid rafts. CD59 was expressed also on the IAM, but in a pronounced granular pattern with more variation observed from one spermatozoa to another. Both CD55 & CD59 were released from the IAM by PI-PLC, demonstrating them to be GPI-anchored. Analysis of acrosome-reacted spermatozoal CD55 by Western blotting revealed a novel single 55 kDa protein lacking significant oligosaccharides susceptible to glycosidases. Antibody-induced membrane rafting and release of CD55 & CD59 in vitro may have influenced previous results. Significant coexpression of CD55 & CD46 on the IAM suggests some functional cooperation at this site.
Collapse
Affiliation(s)
- J A Cummerson
- Division of Immunology, School of Infection & Host Defence, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
43
|
Weyand NJ, Lee SW, Higashi DL, Cawley D, Yoshihara P, So M. Monoclonal antibody detection of CD46 clustering beneath Neisseria gonorrhoeae microcolonies. Infect Immun 2006; 74:2428-35. [PMID: 16552073 PMCID: PMC1418945 DOI: 10.1128/iai.74.4.2428-2435.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD46 (membrane cofactor protein), a complement-regulatory protein that participates in innate and acquired immunity, also serves as a receptor for viral and bacterial pathogens. CD46 isoforms terminate in one of two cytoplasmic tails, Cyt1 or Cyt2, which differ in signaling and trafficking properties. Dissecting the functions of the two cytoplasmic tails in these cellular processes has been hampered by the absence of specific reagents. Here we report the construction of Cyt1- and Cyt2-specific monoclonal antibodies (MAbs). These MAbs recognize unique epitopes within the tails and can be used for immunofluorescence microscopy, immunoblotting, and immunoprecipitation. Studies of Neisseria gonorrhoeae-infected cells with the CD46 tail MAbs demonstrate the differential recruitment of Cyt1 and Cyt2 to the cortical plaque.
Collapse
Affiliation(s)
- Nathan J Weyand
- Department of Molecular Microbiology & Immunology, L220, Oregon Health and Science University, Portland, OR 97201-3098, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Gustafsson DJ, Segerman A, Lindman K, Mei YF, Wadell G. The Arg279Gln [corrected] substitution in the adenovirus type 11p (Ad11p) fiber knob abolishes EDTA-resistant binding to A549 and CHO-CD46 cells, converting the phenotype to that of Ad7p. J Virol 2006; 80:1897-905. [PMID: 16439545 PMCID: PMC1367130 DOI: 10.1128/jvi.80.4.1897-1905.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors. However, CD46 did not seem to constitute a functional receptor for Ad7p. Although Ad7p shares high knob amino acid identity with Ad11p, Ad7p is deficient in binding to both sB2AR and CD46. To determine what regions of the Ad11p fiber knob are necessary for sB2AR-CD46 interaction, we constructed recombinant fiber knobs (rFK) with Ad11p/Ad7p chimeras and Ad11p sequences having a single amino acid substitution from Ad7p. Binding of the constructs to A549 and CHO-CD46 BC1 isoform-expressing cells was analyzed by flow cytometry. Our results indicate that an Arg279Gln [corrected] substitution is sufficient to convert the Ad11p receptor-interaction phenotype to that of Ad7p and abolish sB2AR and CD46 interaction. Also a Glu279Arg substitution in Ad7p rFKs increases CD46 binding. Thus, the lateral HI loop of the Ad11p fiber knob seems to be the key determinant for Ad11p sB2AR-CD46 interaction. This result is comparable to another non-coxsackie-adenovirus receptor binding Ad (Ad37p), where substitution of one amino acid abolishes virus-cell interaction. In conjunction with previous results, our findings also strongly suggest that sB2AR is equivalent to CD46.
Collapse
Affiliation(s)
- Dan J Gustafsson
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Cassiani-Ingoni R, Greenstone HL, Donati D, Fogdell-Hahn A, Martinelli E, Refai D, Martin R, Berger EA, Jacobson S. CD46 on glial cells can function as a receptor for viral glycoprotein-mediated cell-cell fusion. Glia 2006; 52:252-8. [PMID: 15920733 DOI: 10.1002/glia.20219] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Membrane cofactor protein (CD46) is a regulator of complement activation that also serves as the entry receptor for human herpes virus 6 (HHV-6) and measles virus (MV) into human cells. While it is clear that oligodendrocytes and astrocytes are cell types commonly infected by these viruses, it is unclear whether oligodendrocytes express CD46, or which are the cellular mechanisms underlying the infection. We show that adult oligodendrocytes, as well as astrocytes and microglial cells, express CD46 on the cellular surface. Moreover, we employed a quantitative fusion assay to demonstrate that HHV-6A infection of T lymphocytes enables cell-cell fusion of these cells to astrocytes or to oligodendroglial cells. This fusion is mediated by the interaction between viral glycoproteins expressed on the membrane of the infected cells and CD46 on the glial targets, and is also observed using cells expressing recombinant MV glycoproteins. These data suggest a mechanism that involves cell-cell fusion by which certain viruses could spread the infection from the periphery to the cells in the nervous system.
Collapse
Affiliation(s)
- Riccardo Cassiani-Ingoni
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol 2005; 79:7503-13. [PMID: 15919905 PMCID: PMC1143628 DOI: 10.1128/jvi.79.12.7503-7513.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of pathogens use CD46, a ubiquitously expressed membrane protein that regulates complement activation, as a cellular attachment receptor. While the CD46 binding sites of several pathogens, including measles virus, Neisseria gonorrhea, and human herpesvirus 6, have been described, the region of CD46 responsible for adenovirus binding has not been determined. In this study, we used competition experiments with known CD46 ligands, CD46-specific antibodies, and a set of CD46 mutants to localize the binding domain for the group B adenovirus serotype 35 (Ad35). Our results show that Ad35 competes with measles virus for binding to CD46 but not with complement protein C3b. We further show that this interaction is a protein-protein interaction and that N glycosylations do not critically contribute to infection with Ad35 fiber-containing Ad vectors. Our data demonstrate that the native conformation of the CCP2 domain is crucial for Ad35 binding and that the substitution of amino acids at positions 130 to 135 or 152 to 156 completely abolishes the receptor function of CD46. These regions localize to the same planar face of CD46 and likely form an extended adenovirus binding surface, since no single amino acid substitution within these areas eliminates virus binding. Finally, we demonstrate that the infection with a virus possessing human group B serotype Ad11 fibers is also mediated by the CCP2 domain. This information is important to better characterize the mechanisms of the receptor recognition by adenovirus relative to other pathogens that interact with CD46, and it may help in the design of antiviral therapeutics against adenovirus serotypes that use CD46 as a primary cellular attachment receptor.
Collapse
Affiliation(s)
- Anuj Gaggar
- University of Washington School of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
47
|
Leslie RGQ, Marquart HV, Nielsen CH. The Role of Complement in Immune and Autoimmune Responses. Transfus Med Hemother 2005. [DOI: 10.1159/000083356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Kitagawa Y, Tani H, Limn CK, Matsunaga TM, Moriishi K, Matsuura Y. Ligand-directed gene targeting to mammalian cells by pseudotype baculoviruses. J Virol 2005; 79:3639-52. [PMID: 15731258 PMCID: PMC1075727 DOI: 10.1128/jvi.79.6.3639-3652.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 10/25/2004] [Indexed: 01/24/2023] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can infect a variety of mammalian cells, as well as insect cells, facilitating its use as a viral vector for gene delivery into mammalian cells. Glycoprotein gp64, a major component of the budded AcMNPV envelope, is involved in viral entry into cells by receptor-mediated endocytosis and subsequent membrane fusion. We examined the potential production of pseudotype baculovirus particles transiently carrying ligands of interest in place of gp64 as a method of ligand-directed gene delivery into target cells. During amplification of a gp64-null pseudotype baculovirus carrying a green fluorescent protein gene in gp64-expressing insect cells, however, we observed the high-frequency appearance of a replication-competent virus incorporating the gp64 gene into the viral genome. To avoid generation of replication-competent revertants, we prepared pseudotype baculoviruses by transfection with recombinant bacmids without further amplification in the gp64-expressing cells. We constructed gp64-null recombinant bacmids carrying cDNAs encoding either vesicular stomatitis virus G protein (VSVG) or measles virus receptors (CD46 or SLAM). The VSVG pseudotype baculovirus efficiently transduced a reporter gene into a variety of mammalian cell lines, while CD46 and SLAM pseudotype baculoviruses allowed ligand-receptor-directed reporter gene transduction into target cells expressing measles virus envelope glycoproteins. Gene transduction mediated by the pseudotype baculoviruses could be inhibited by pretreatment with specific antibodies. These results indicate the possible application of pseudotype baculoviruses in ligand-directed gene delivery into target cells.
Collapse
Affiliation(s)
- Yoshinori Kitagawa
- Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Holterman L, Vogels R, van der Vlugt R, Sieuwerts M, Grimbergen J, Kaspers J, Geelen E, van der Helm E, Lemckert A, Gillissen G, Verhaagh S, Custers J, Zuijdgeest D, Berkhout B, Bakker M, Quax P, Goudsmit J, Havenga M. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 2004; 78:13207-15. [PMID: 15542673 PMCID: PMC525025 DOI: 10.1128/jvi.78.23.13207-13215.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A novel plasmid-based adenovirus vector system that enables manufacturing of replication-incompetent (DeltaE1) adenovirus type 11 (Ad11)-based vectors is described. Ad11 vectors are produced on PER.C6/55K cells yielding high-titer vector batches after purification. Ad11 seroprevalence proves to be significantly lower than that of Ad5, and neutralizing antibody titers against Ad11 are low. Ad11 seroprevalence among human immunodeficiency virus-positive (HIV(+)) individuals is as low as that among HIV(-) individuals, independent of the level of immune suppression. The low level of coinciding seroprevalence between Ad11 and Ad35 in addition to a lack of correlation between high neutralizing antibody titers towards either adenovirus strongly suggest that the limited humoral cross-reactive immunity between these two highly related B viruses appears not to preclude the use of both vectors in the same individual. Ad11 transduces primary cells including smooth muscle cells, synoviocytes, and dendritic cells and cardiovascular tissues with higher efficiency than Ad5. Ad11 and Ad35 appear to have a similar tropism as judged by green fluorescent protein expression levels determined by using a panel of cancer cell lines. In addition, Ad5 preimmunization did not significantly affect Ad11-mediated transduction in C57BL/6 mice. We therefore conclude that the Ad11-based vector represents a novel and useful candidate gene transfer vehicle for vaccination and gene therapy.
Collapse
|
50
|
Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N, Lieber A. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9:496-509. [PMID: 15093180 DOI: 10.1016/j.ymthe.2003.12.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 12/17/2003] [Indexed: 01/09/2023] Open
Abstract
We have constructed a new capsid-modified adenovirus (Ad) vector that specifically replicates in tumor cells and expresses TNF-related apoptosis-inducing ligand (TRAIL). The Ad capsid contains short-shafted fibers derived from Ad serotype 35, which allow for efficient infection of malignant tumor cells, and largely avoids innate toxicity after intravenous application. Replication-dependent homologous recombination in Ad genomes was used to achieve tumor-specific expression of Ad E1a (to mediate viral replication) and TRAIL (to mediate apoptosis and enhance release of progeny virus from infected cells). We demonstrated that our oncolytic vector (Ad5/35.IR-E1A/TRAIL) induced apoptosis in human tumor cell lines derived from colorectal, lung, prostate, and liver cancer. Both in vitro and in vivo tumor models showed efficient intratumoral spread of this vector. In a model for metastatic colon cancer, tail vein infusion of Ad5/35.IR-E1A/TRAIL resulted in elimination of preestablished liver metastases. Intravenous injection of this vector caused a transient elevation of serum glutamic pyruvic transaminase in tumor-bearing mice, which we attributed to factors released from apoptotic tumor cells. Liver histology analyzed at day 14 after virus injection did not show signs of hepatocellular damage. This new oncolytic vector represents a potentially efficient means for gene therapy of metastatic cancer.
Collapse
Affiliation(s)
- Pavel Sova
- Department of Pathology, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|