1
|
Wang X, Wang L, Chen Q, Wang K, Wang H, Li D, Gao S, Zeng W, Zhou J. Efficient production of hydroxysalidroside in Escherichia coli via enhanced glycosylation and semi-rational design of UGT85A1. Synth Syst Biotechnol 2025; 10:638-649. [PMID: 40166613 PMCID: PMC11957517 DOI: 10.1016/j.synbio.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Hydroxysalidroside is an important natural phenylethanoid glycoside with broad application prospects in the food and pharmaceutical fields. However, its low concentration in plants and complex extraction hinder its production. Despite being a promising way to synthesize hydroxysalidroside in Escherichia coli, glycosylation remains the limiting factor for its production. A de novo biosynthetic pathway for hydroxysalidroside was successfully constructed in E. coli via the screening of glycosyltransferase, overexpressing phosphoglucomutase (pgm) and UDP-glucose pyrophosphorylase (galU) to ensure a sufficient supply of UDP-glucose (UDPG). Additionally, a semi-rational design of UGT85A1 was conducted to expand the acceptor-binding pocket to eliminate steric hindrance interfering with the binding of hydroxytyrosol. The endogenous genes ushA and otsA were knocked out to further reduce the consumption of UDPG. Finally, a titer of 5837.2 mg/L was achieved in a 5 L fermenter by optimizing the feeding times of carbon sources. This laid the foundation for the subsequent biosynthesis of phenylethanoid glycosides.
Collapse
Affiliation(s)
- Xinru Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qihang Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ke Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Gao Y, Shi Y, Jahan T, Huda MN, Hao L, He Y, Quinet M, Chen H, Zhang K, Zhou M. Buckwheat UDP-Glycosyltransferase FtUGT71K6 and FtUGT71K7 Tandem Repeats Contribute to Drought Tolerance by Regulating Epicatechin Synthesis. PLANT, CELL & ENVIRONMENT 2025; 48:4066-4082. [PMID: 39887720 DOI: 10.1111/pce.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Glycosyltransferase genes are organised as tandem repeats in the buckwheat genome, yet the functional implications and evolutionary significance of duplicated genes remain largely unexplored. In this study, gene family analysis revealed that FtUGT71K6 and FtUGT71K7 are tandem repeats in the buckwheat genome. Moreover, GWAS results for epicatechin suggested that this tandem repeat function was associated with epicatechin content of Tartary buckwheat germplasm, highlighting variations in the promoter haplotypes of FtUGT71K7 influenced epicatechin levels. FtUGT71K6 and FtUGT71K7 were shown to catalyse UDP-glucose conjugation to cyanidin and epicatechin. Furthermore, overexpression of FtUGT71K6 and FtUGT71K7 increased total antioxidant capacity and altered metabolite content of the epicatechin biosynthesis pathway, contributing to improved drought tolerance, while overexpression of FtUGT71K6 significantly improved salt stress tolerance. However, overexpression of these two genes did not contribute to resistance against Rhizoctonia solani. Evolutionary selection pressure analysis suggested positive selection of a critical amino acid ASP-53 in FtUGT71K6 and FtUGT71K7 during the duplication event. Overall, our study indicated that FtUGT71K6 and FtUGT71K7 play crucial roles in drought stress tolerance via modulating epicatechin synthesis in buckwheat.
Collapse
Affiliation(s)
- Yuanfen Gao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Tanzim Jahan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Md Nurul Huda
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Lin Hao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| |
Collapse
|
3
|
Zhao S, Dong G, Liu C, Ding Y, Ma Y, Ma X, Yang X, Liu L, Hou B. Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis. PLANT COMMUNICATIONS 2025; 6:101261. [PMID: 39861946 PMCID: PMC12010377 DOI: 10.1016/j.xplc.2025.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom, regulating many metabolic processes by transferring sugar moieties onto various small molecules. However, their physiological significance in plants remains largely unknown. Here, we reveal the functions and mechanisms of two Arabidopsis UGT genes, UGT73C3 and UGT73C4, which are strongly induced by Pseudomonas syringae pv. tomato (Pst) DC3000. Overexpression of these genes significantly enhanced plant immune response, whereas their loss of function in double mutants led to increased sensitivity to pathogen infections. However, single mutants showed no obvious alteration in pathogen resistance. To further investigate the regulatory mechanisms of UGT73C3/C4 in plant immunity, we conducted comprehensive secondary metabolome analyses and glycoside quantification. Overexpression lines accumulated higher levels of pinoresinol diglucosides than wild-type plants, both before and after Pst DC3000 treatment, whereas double mutants accumulated lower levels. Furthermore, in vitro and in vivo experiments demonstrated that UGT73C3 and UGT73C4 can glycosylate pinoresinol to form pinoresinol monoglucoside and diglucoside. Moreover, pinoresinol glycosylation promotes the plant immune response by increasing reactive oxygen species production and callose deposition. Additionally, the transcription factor HB34 was found to activate UGT73C3 and UGT73C4 transcription and play a key role in plant immunity. Overall, this study reveals a novel pathway in which UGT73C3/C4-mediated pinoresinol glycosylation, regulated by HB34, enhances the plant immune response.
Collapse
Affiliation(s)
- Shuman Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guangrui Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chonglin Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yi Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yuqing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xinmei Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xianqin Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Lv G, Xia Y, Jing S, Zhang B, Zhang Z, Qin Y, Hu G, Zhao J. Molecular mechanism of differences in anthocyanin components between pericarp and red hairy root of early maturing litchi cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109895. [PMID: 40220670 DOI: 10.1016/j.plaphy.2025.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Glycosylation of anthocyanin plays an important role in increasing its stability and diversity in plants. Here, we identified a glucosyltransferase gene responsible for the anthocyanin components in Litchi chinensis Sonn. Cyanidin-3-rutinoside is the main anthocyanins of pericarps and red hairy roots overexpressing MYB transcription factor LcMYB1 in the late maturing cultivars. However, in the early maturing cultivars, the anthocyanins in the pericarps is dominated by cyanidin-3-glucoside, and the anthocyanins in the red hairy roots overexpressing LcMYB1 is dominated by cyanidin-3-rutinoside. Enzyme assays highlighted notable differences in flavonoid 3-O-rhamnosyltransferase (F3RT) activity between the pericarps and red hairy roots overexpressing LcMYB1 in the early maturing cultivars. Two differentially expressed genes (DEGs), LcF3RT1 and LcF3RT2, were significantly up-regulated in the red hairy roots overexpressing LcMYB1. Yeast one-hybrid and dual luciferase reporter assays revealed that LcMYB1 could bind to the promoter of LcF3RT2 and significantly activate its expression. Functional validation showed that LcF3RT2 could catalyze the conversion of cyanidin-3-glucoside into cyanidin-3-rutinoside, leading to the differences on anthocyanin components in pericarps and red hairy roots of early maturing litchi cultivars. Our results will provide insights into the regulation and glycosylation modification of anthocyanins in litchi as well as in other plants.
Collapse
Affiliation(s)
- Guohao Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yingsheng Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiqi Jing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Ding X, Diao S, Zhang Y, Luan Q, Li Y, Jiang J, Wu HX. Insights into PeERF168 gene in slash pine terpene biosynthesis: Integrating high-throughput phenotyping, GWAS, and transgenic studies. Int J Biol Macromol 2025; 300:139728. [PMID: 39855531 DOI: 10.1016/j.ijbiomac.2025.139728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Resin biosynthesis in conifer is a complex process, controlled by multiple quantitative trait loci (QTLs). Quantifying resin components is traditionally expensive and labor-intensive. In this study, we employed near infrared (NIR) spectroscopy to quantify resin components in Slash pine using 240 genotypes. A partial least squares regression model was applied to identify the characteristic bands responsed to variations in Alpha and Beta pinene levels. Genome-wide association study (GWAS) identified 35 significant SNPs involved in terpenoid precursor biosynthesis, transport, modification, and abiotic stress resistance. eQTL mapping co-localized four candidate genes: PeCHITINASE (c166891.graph_c0), PeGLYCOSYLTRANSFERASE (c160167.graph_c0), PeASIL2 (c324347.graph_c0), and PeERF168 (c311225.graph_c0). Mutations in two SNPs increased the expression of PeASIL2 and PeERF168, leading to higher levels of Alpha and Beta pinene. Further heterologous transformation experiments confirmed that the PeERF168 gene regulates the concentration of both monoterpenes and sesquiterpenes. These findings provide valuable insights into the molecular mechanisms of resin biosynthesis, facilitating cost-effective gene discovery through high-throughput resin component detection and genomics integration, with substantial potential to enhance molecular breeding and improve resin yield and quality.
Collapse
Affiliation(s)
- Xianyin Ding
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; National Forestry and Grassland Engineering Technology Research Center of Exotic Pine Cultivation, Hangzhou 311400, China
| | - Shu Diao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; National Forestry and Grassland Engineering Technology Research Center of Exotic Pine Cultivation, Hangzhou 311400, China
| | - Yini Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qifu Luan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; National Forestry and Grassland Engineering Technology Research Center of Exotic Pine Cultivation, Hangzhou 311400, China.
| | - Yanjie Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; National Forestry and Grassland Engineering Technology Research Center of Exotic Pine Cultivation, Hangzhou 311400, China.
| | - Jingmin Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; National Forestry and Grassland Engineering Technology Research Center of Exotic Pine Cultivation, Hangzhou 311400, China
| | - Harry X Wu
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| |
Collapse
|
6
|
Mascuñano B, Coto-Elena J, Guerrero-Sánchez VM, Paniagua C, Blanco-Portales R, Caballero JL, Trapero-Casas JL, Jiménez-Díaz RM, Pliego-Alfaro F, Mercado JA, Muñoz-Blanco J, Molina-Hidalgo FJ. Transcriptome analysis of wild olive (Olea Europaea L. subsp. europaea var. sylvestris) clone AC18 provides insight into the role of lignin as a constitutive defense mechanism underlying resistance to Verticillium wilt. BMC PLANT BIOLOGY 2025; 25:292. [PMID: 40045216 PMCID: PMC11884133 DOI: 10.1186/s12870-025-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Host resistance is the most effective and practical control method for the management of Verticillium wilt in olive caused by Verticillium dahliae, which remains as one of the major current threats to this crop. Regrettably, most olive cultivars of agronomic and commercial interest are susceptible to V. dahliae. We previously demonstrated that wild olive (Olea europaea L. subsp. europaea var. sylvestris) clone AC18 harbours resistance to the highly virulent defoliating (D) V. dahliae pathotype, which may be valuable as rootstock and for breeding new, resistant olive cultivars. Mechanisms underlying disease resistance may be of constitutive or induced nature. In this work we aim to unravel constitutive defences that may be involved in AC18 resistance, by comparing the transcriptome from uninfected stems, of AC18 with that of the highly susceptible wild olive clone AC15, GO-term enrichment analysis revealed terms related to systemic acquired resistance, plant cell wall biogenesis and assembly, and phenylpropanoid and lignin metabolism. qRT-PCR analysis of phenylpropanoid and lignin metabolism-related genes showed differences in their expression between the two wild olive clones. Phenolic content of stem cell walls was higher in the resistant AC18. The total lignin content was similar in resistant and susceptible clones, but they differed in monolignol composition. Results from this work identifies putative key genes in wild olive that could aid in breeding olive cultivars resistant, to D. V. dahliae. The research highlights the constitutive defence mechanisms that are effective in protecting against pathogens and our findings may contribute to the deciphering the molecular basis of VW resistance in olive and the conservation and utilization of wild olive genetic resources to tackle future agricultural challenges towards.
Collapse
Affiliation(s)
- Beatriz Mascuñano
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - Jerónimo Coto-Elena
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Víctor M Guerrero-Sánchez
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
- Vascular Pathophysiology Area, Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Candelas Paniagua
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - José L Trapero-Casas
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Rafael M Jiménez-Díaz
- Agronomy Department, University of Córdoba, Edificio C4 Celestino Mutis. Campus de Rabanales, Córdoba, E-14014, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - José A Mercado
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain.
| | - Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain.
| |
Collapse
|
7
|
Liao B, Liu X, Li Y, Ge Y, Liang X, Liao Z, Zhao C, Cao J, Wang H, Li S, Wang Y, Wang D, Ge Z, Wu X, Sun C. Functional Characterization of a Highly Efficient UDP-Glucosyltransferase CitUGT72AZ4 Involved in the Biosynthesis of Flavonoid Glycosides in Citrus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5450-5464. [PMID: 39964809 DOI: 10.1021/acs.jafc.4c07454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Citrus is an important dietary source of flavonoid glycosides, and UDP-glycosyltransferases (UGTs) are the key enzymes responsible for their glycosylation. In this study, a genome-wide analysis of the CitUGT gene family was conducted to identify CitUGTs that contribute to flavonoid 4'-O-glucosides biosynthesis. Our analysis identified 136 CitUGTs in the Citrus clementina genome, classifying them into 18 phylogenetic groups (A-R) and 25 families. This classification was strongly supported by consistent gene structures and motif patterns. Moreover, we identified a CitUGT gene (Ciclev10025462m, designated CitUGT72AZ4) that encodes flavonoid 4'-O-glucosyltransferase for the first time in citrus. This enzyme preferentially glycosylated the 4'-OH group of multiple flavonoids, exhibiting higher catalytic efficiency toward quercetin and three flavones in vitro. Virus-induced gene silencing of CitUGT72AZ4 significantly decreased the accumulation of flavonoid 4'-O-glucosides. These results indicated that CitUGT72AZ4 participated in the biosynthesis of flavonoid 4'-O-glucoside in citrus. Overall, our findings provide valuable insights into the CitUGT gene family and contribute to its functional characterization.
Collapse
Affiliation(s)
- Bin Liao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yujia Li
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yongfu Ge
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhenkun Liao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Huixin Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Shaojia Li
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Dengliang Wang
- Institute of Fruit Tree Research, Quzhou Academy of Agriculture and Forestry Acience, Quzhou 324000, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiaodan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
8
|
Frommann JF, Pucker B, Sielmann LM, Müller C, Weisshaar B, Stracke R, Schweiger R. Metabolic fingerprinting reveals roles of Arabidopsis thaliana BGLU1, BGLU3, and BGLU4 in glycosylation of various flavonoids. PHYTOCHEMISTRY 2025; 231:114338. [PMID: 39603578 DOI: 10.1016/j.phytochem.2024.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Flavonoids are specialized metabolites that play important roles in plants, including interactions with the environment. The high structural diversity of this metabolite group is largely due to enzyme-mediated modifications of flavonoid core skeletons. In particular, glycosylation with different sugars is very common. In this study, the functions of the Arabidopsis thaliana glycoside hydrolase family 1-type glycosyltransferase proteins BGLU1, BGLU3, and BGLU4 were investigated, using a reverse genetics approach and untargeted metabolic fingerprinting. We screened for metabolic differences between A. thaliana wild type, loss-of-function mutants, and overexpression lines and partially identified differentially accumulating metabolites, which are putative products and/or substrates of the BGLU enzymes. Our study revealed that the investigated BGLU proteins are glycosyltransferases involved in the glycosylation of already glycosylated flavonoids using different substrates. While BGLU1 appears to be involved in the rhamnosylation of a kaempferol diglycoside in leaves, BGLU3 and BGLU4 are likely involved in the glycosylation of quercetin diglycosides in A. thaliana seeds. In addition, we present evidence that BGLU3 is a multifunctional enzyme that catalyzes other metabolic reactions with more complex substrates. This study deepens our understanding of the metabolic pathways and enzymes that contribute to the high structural diversity of flavonoids.
Collapse
Affiliation(s)
- Jana-Freja Frommann
- Department of Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Boas Pucker
- Department of Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Lennart Malte Sielmann
- Department of Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Department of Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Ralf Stracke
- Department of Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany.
| | - Rabea Schweiger
- Department of Chemical Ecology, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Mekonnen DW, Ghirardo A, Zhang W, Schäffner AR. The branched-chain amino acid-related isoleucic acid: recent research advances. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:195-202. [PMID: 39844635 PMCID: PMC11846628 DOI: 10.1111/plb.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Isoleucic acid (ILA) was identified in human patients with maple syrup urine disease (MSUD) half a century ago. MSUD patients, who are defective in the catabolism of branched-chain amino acids (BCAAs), that is, isoleucine, leucine, and valine, have urine with a unique maple syrup odour related to the accumulation of BCAA breakdown products, largely 2-keto acid derivatives and their reduced 2-hydroxy acids including ILA. A decade ago, ILA was identified in Arabidopsis thaliana. Subsequent studies in other plant species indicated that ILA is a ubiquitously present compound. Since its identification in plants, several efforts have been made to understand the biological significance and metabolic pathway of ILA. ILA plays a positive role in plant signalling for defence responses against bacterial pathogens by increasing the abundance of salicylic acid aglycone through competitive inhibition of SA deactivation by glucosylation. Here, we review recent progress in the characterization of ILA biosynthesis and function in plants and discuss current knowledge gaps and future directions in ILA research.
Collapse
Affiliation(s)
- D. W. Mekonnen
- Division of Agricultural Biotechnology, Institute of BiotechnologyBahir Dar UniversityBahir DarEthiopia
- Department of Environmental Health, Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - A. Ghirardo
- Department of Environmental Health, Research Unit Environmental SimulationHelmholtz Zentrum MünchenNeuherbergGermany
| | - W. Zhang
- Department of Environmental Health, Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
- College of Life SciencesJiangsu UniversityJiangsuChina
| | - A. R. Schäffner
- Department of Environmental Health, Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
10
|
Qian J, Ren C, Wang F, Cao Y, Guo Y, Zhao X, Liu Y, Zhu C, Li X, Xu H, Chen J, Chen K, Li X. Genome-wide identification of UDP-glycosyltransferases involved in flavonol glycosylation induced by UV-B irradiation in Eriobotrya japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109481. [PMID: 39805168 DOI: 10.1016/j.plaphy.2025.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Flavonol glycosides are secondary metabolites important for plant development and stress defense such as UV-B irradiation. UDP-glycosyltransferase (UGT) catalyzes the last step in the biosynthesis of flavonol glycosides. Eriobotrya japonica is abundant in flavonol glycosides, but UGTs responsible for accumulation of flavonol glycosides remain unknown. Here, 13 flavonol glycosides including monoglycosides and diglycosides were characterized in different tissues of loquat by LC-MS/MS. UV-B irradiation significantly increased the accumulation of four quercetin glycosides and two kaempferol glycosides in loquat fruit. Based on UGT gene family analysis, transcriptome analysis, enzyme assays of recombinant proteins as well as transient overexpression assays in Nicotiana benthamiana, three UGTs were identified, i.e. EjUGT78T4 as flavonol 3-O-galactosyltransferase, EjUGT78S3 as flavonol 3-O-glucosyltransferase, and EjUGT91AK7 as flavonol 1 → 6 rhamnosyltransferase. This work elucidates the formation of flavonol glycosides in loquat through UGT-mediated glycosylation.
Collapse
Affiliation(s)
- Jiafei Qian
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Chuanhong Ren
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Fan Wang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yunlin Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yan Guo
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoyong Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yilong Liu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Changqing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Hongxia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Junwei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2025; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Wang P, Yan P, Li Z, Jiang J, Lin Y, Ye W. Transcriptomic and Metabolomic Insights into Key Genes Involved in Kinsenoside Biosynthesis in Anoectochilus roxburghii. PLANTS (BASEL, SWITZERLAND) 2025; 14:688. [PMID: 40094578 PMCID: PMC11902215 DOI: 10.3390/plants14050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
As the main active ingredient in Anoectochilus roxburghii, kinsenoside has important health and medical effects including hepatoprotective, anti-oxidant, and bacteriostasis, among others. In recent years, with the limited application of high-throughput technology to A. roxburghii, there has been no research on the key regulatory genes involved in the synthesis of kinsenoside. Therefore, we examined three species of A. roxburghii that are widely planted in mainland China and Taiwan Province, A. roxburghii cultivar 'Jian ye', Anoectochilus formosanus, and Anoectochilus burmannicus, determining the content of kinsenoside, performing transcriptomic and metabolomic sequencing, identifying UDP glycosyltransferases, and screening for UDP glycosyltransferases that may be involved in kinsenoside synthesis. The results showed that among the three species of A. roxburghii, the content of kinsenoside in A. roxburghii cv. 'Jian ye' was the highest. Transcriptome and metabolome data showed that A. roxburghii cv. 'Jian ye' and the two other species of A. roxburghii have 3702 and 5369 differentially expressed genes and 69 and 120 differentially accumulated metabolites, respectively. Meanwhile, differentially expressed genes and differentially accumulated metabolites are enriched in the glucose metabolism and hormone pathways. We also treated the A. roxburghii samples with exogenous auxin and characterized the related genes. In A. roxburghii, we identified 73 members of the UDP glycosyltransferase family. Through phylogenetic tree, transcriptome data expression profile, and qPCR analyses, we screened for members that may be involved in the synthesis of kinsenoside. In summary, the results of this study provide insights for breeding high-kinsenoside-content and high-intron varieties of A. roxburghii.
Collapse
Affiliation(s)
- Peiyu Wang
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Peipei Yan
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Zunwen Li
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Yuling Lin
- Institute of Horticultural Biotechnolngy Fujian Aoriculture and Forestry University, Fuzhou 350002, China
| | - Wei Ye
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| |
Collapse
|
13
|
Jo S, El-Demerdash A, Owen C, Srivastava V, Wu D, Kikuchi S, Reed J, Hodgson H, Harkess A, Shu S, Plott C, Jenkins J, Williams M, Boston LB, Lacchini E, Qu T, Goossens A, Grimwood J, Schmutz J, Leebens-Mack J, Osbourn A. Unlocking saponin biosynthesis in soapwort. Nat Chem Biol 2025; 21:215-226. [PMID: 39043959 PMCID: PMC11782082 DOI: 10.1038/s41589-024-01681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Soapwort (Saponaria officinalis) is a flowering plant from the Caryophyllaceae family with a long history of human use as a traditional source of soap. Its detergent properties are because of the production of polar compounds (saponins), of which the oleanane-based triterpenoid saponins, saponariosides A and B, are the major components. Soapwort saponins have anticancer properties and are also of interest as endosomal escape enhancers for targeted tumor therapies. Intriguingly, these saponins share common structural features with the vaccine adjuvant QS-21 and, thus, represent a potential alternative supply of saponin adjuvant precursors. Here, we sequence the S. officinalis genome and, through genome mining and combinatorial expression, identify 14 enzymes that complete the biosynthetic pathway to saponarioside B. These enzymes include a noncanonical cytosolic GH1 (glycoside hydrolase family 1) transglycosidase required for the addition of D-quinovose. Our results open avenues for accessing and engineering natural and new-to-nature pharmaceuticals, drug delivery agents and potential immunostimulants.
Collapse
Affiliation(s)
- Seohyun Jo
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Amr El-Demerdash
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | - Charlotte Owen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Vikas Srivastava
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Botany, School of Life Sciences, Central University of Jammu, Jammu, India
| | - Dewei Wu
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Shingo Kikuchi
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - James Reed
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hannah Hodgson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Tongtong Qu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA, USA
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
14
|
Shen Y, Li J, Cai X, Jin J, Li D, Wu H, Dong W, Guo Y, Sun M, Sun X. Investigation of the potential regulation of the UDP-glycosyltransferase genes on rice grain size and abiotic stress response. Gene 2025; 933:149003. [PMID: 39406292 DOI: 10.1016/j.gene.2024.149003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Uridine diphosphate (UDP) glycosyltransferases (UGTs) are widely involved in various metabolic processes. In the present study, we performed a genome-wide survey and identified 199 Oryza sativa UGT genes (OsUGTs), which were classified into 17 groups. We showed that tandem duplication played a major role in the expansion of the OsUGT family, which experienced purifying selection during the evolution process. 163 OsUGTs were expressed in at least one of the six tested tissues, and were clustered into three groups according to their tissue expression profiles. By using the RFGB database, we identified different haplotypes of seven OsUGTs that were highly expressed in seeds, and showed significant differences in grain size among different haplotypes. Moreover, our results also uncovered differential responses of OsUGTs expression to abiotic stresses and hormone treatments, including drought, salt, cold, heat, ABA, JA and AUXIN. By using quantitative real-time PCR, we further confirmed the differential expression of nine selected OsUGTs under ABA, JA, salt, drought and cold treatments, among which OsUGT5 and OsUGT182 were induced by all these five treatments. Our results provide insight into the role of several UGT genes for physiological responses, which will facilitate to investigate their function in regulating rice development and abiotic stress responses.
Collapse
Affiliation(s)
- Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianwei Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jun Jin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongpeng Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hao Wu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Weifeng Dong
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yongxia Guo
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
15
|
Ma Y, Song J, Sheng S, Wang D, Wang T, Wang N, Chen A, Wang L, Peng Y, Ma Y, Lv Z, Zhu X, Hou H. Genome-wide characterization of Solanum tuberosum UGT gene family and functional analysis of StUGT178 in salt tolerance. BMC Genomics 2024; 25:1206. [PMID: 39695388 DOI: 10.1186/s12864-024-11140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
UDP-glycosyltransferases (UGTs) widely exist in plants and play essential roles in catalyzing the glycosylation reaction associated with metabolic processes. UGT gene family has been identified in many species to date. However, the comprehensive identification and systematic analysis have not been documented yet in the latest potato genome. In this study, a total of 295 UGT members (StUGT) were identified and found to be unevenly distributed on twelve chromosomes of potato. All StUGT genes were classified into 17 groups (A-P, R) and the UGT genes within the same groups have similar structural characterization. Tandem duplication was the major driving force for the StUGT gene expansion. The prediction of cis-acting elements showed that the development process, light, phytohormone, and abiotic stress-responsive elements generally existed in StUGT promoter regions. Analysis of spatial and temporal expression patterns demonstrated that StUGT genes were widely and differentially expressed in various tissues. Additionally, to investigate the salt stress-responsive genes, we analyzed the expression profiles of the StUGT genes under salt treatment. A total of 50 and 20 StUGT genes were continuously up- and down-regulated, respectively, implicating that these genes were involved in the regulation of salt tolerance. Among them, the StUGT178 gene, which was significantly induced by salt stress and contains salt-responsive element, was considered as one of the most relevant candidate genes. Transient transformation of the StUGT178 promoter in tobacco revealed that the transcriptional activation activity of the StUGT178 gene was strengthened under salt treatment. Furthermore, the heterologous expressions of the promoter and coding protein of the StUGT178 gene in Arabidopsis further demonstrated that the StUGT178 gene significantly responds to salt treatment, and enhanced salinity tolerance by regulating antioxidant enzyme activity and H2O2 accumulation. These results provide comprehensive information for a better understanding of the StUGT genes and offer a foundation for uncovering their function associated with salt stress in potato.
Collapse
Affiliation(s)
- Yu Ma
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jiafeng Song
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Suao Sheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Daijuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Tongtong Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Nan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Airu Chen
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lixia Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yaxuan Peng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yuhan Ma
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaoyan Lv
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaobiao Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hualan Hou
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
16
|
Wolters SM, Laibach N, Riekötter J, Roelfs KU, Müller B, Eirich J, Twyman RM, Finkemeier I, Prüfer D, Schulze Gronover C. The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1498737. [PMID: 39735776 PMCID: PMC11671276 DOI: 10.3389/fpls.2024.1498737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
The Russian dandelion (Taraxacum koksaghyz) is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5. These three proteins support NR synthesis by maintaining rubber particle stability. We used homology-based searches to identify the whole TkSRPP gene family and qPCR to create their spatial expression profiles. Affinity enrichment-mass spectrometry was applied to identify TkSRPP3/4/5 protein interaction partners in T. koksaghyz latex and selected interaction partners were analyzed using qPCR, confocal laser scanning microscopy and heterologous expression in yeast. We identified 17 SRPP-like sequences in the T. koksaghyz genome, including three apparent pseudogenes, 10 paralogs arranged as an inverted repeat in a cluster with TkSRPP3/4/5, and one separate gene (TkSRPP6). Their sequence diversity and different expression profiles indicated distinct functions and the latex interactomes obtained for TkSRPP3/4/5 suggested that TkSRPP4 is a promiscuous hub protein that binds many partners from different compartments, whereas TkSRPP3 and 5 have more focused interactomes. Two interactors shared by TkSRPP3/4/5 (TkSRPP6 and TkUGT80B1) were chosen for independent validation and detailed characterization. TkUGT80B1 triterpenoid glycosylating activity provided first evidence for triterpenoid saponin synthesis in T. koksaghyz latex. Based on its identified interaction partners, TkSRPP4 appears to play a special role in the endoplasmic reticulum, interacting with lipidmodifying enzymes that may facilitate rubber particle formation. TkSRPP5 appears to be involved in GTPase-dependent signaling and TkSRPP3 may act as part of a kinase signaling cascade, with roles in stress tolerance. TkSRPP interaction with TkUGT80B1 draws a new connection between TkSRPPs and triterpenoid saponin synthesis in T. koksaghyz latex. Our data contribute to the functional differentiation between TkSRPP paralogs and demonstrate unexpected interactions that will help to further elucidate the network of proteins linking TkSRPPs, stress responses and NR biosynthesis within the cellular complexity of latex.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jenny Riekötter
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
17
|
Yu L, He K, Wu Y, Hao K, Wang Y, Yao J, Zhao Y, Yu Q, Shen Y, Chen M, Xu K, Zhang X, Zhang L. UGT708S6 from Dendrobium catenatum, catalyzes the formation of flavonoid C-glycosides. BMC Biotechnol 2024; 24:94. [PMID: 39563265 DOI: 10.1186/s12896-024-00923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Dendrobium catenatum is a perennial herb of the genus Dendrobium orchidaceae. It has been known as "Golden Grass, Soft Gold" since ancient times with effects of strengthening the body, benefiting the stomach, generating body fluid, nourishing Yin and clearing internal heat. The flowers of D. catenatum have anti-oxidation, immune regulation and other biological activities. The composition analysis of flowers showed that flavonoid glycosides were significantly accumulated in floral tissue. However, in the flowers of D. catenatum, there was only one case of the UDP-glycosyltransferase (UGT) responsible for the glycosylation of flavonoids has been reported. RESULT In this study, a new UGT (named UGT708S6) was cloned from D. catenatum flowers rich in O-glycosides and C-glycosides, and its function and biochemical properties were characterized. Through homology comparison and molecular docking, we identified the key amino acid residues affecting the catalytic function of UGT708S6. The glycosyltransferase UGT708S6 was characterized and demonstrated C-glycosyltransferase (CGT) activity in vitro assay using phloretin and 2-hydroxynaringenin as sugar acceptors. The catalytic promiscuity assay revealed that UGT708S6 has a clear sugar donor preference, and displayed O-glycosyltransferase (OGT) activity towards luteolin, naringenin and liquiritigenin. Furthermore, the catalytic characteristics of UGT708S6 were explored, shedding light on the structural basis of substrate promiscuity and the catalytic mechanism involved in the formation of flavonoid C-glycosides. R271 was a key amino acid residue site that sustained the catalytic reaction. The smaller binding pocket resulted in the production of new O-glycosides and the reduction of C-glycosides. This highlighted the importance of the binding pocket in determining whether C-glycosides or O-glycosides were produced. CONCLUSIONS The findings suggest that UGT708S6 holds promise as a new glycosyltransferase for synthesizing flavonoid glycosides and offer valuable insights for further understanding the catalytic mechanisms of flavonoid glycosyltransferases.
Collapse
Affiliation(s)
- Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Navy Special Medical Centre, Second Military Medical University, Shanghai, 200433, China
| | - Kun He
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Kai Hao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Qiaoxian Yu
- Zhejiang Senyu Co., Ltd, Jinhua, Zhejiang, 312000, China
| | - Yanghui Shen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, 322300, China
| | - Mengxuan Chen
- Shanghai Analytical Applications Center, Shimadzu (China) Co., LTD, Shanghai, 200030, China
| | - Ke Xu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
18
|
Chen M, Liu M, Wang C, Sun Z, Lu A, Yang X, Ma J. Critical radicle length window governing loss of dehydration tolerance in germinated Perilla seeds: insights from physiological and transcriptomic analyses. BMC PLANT BIOLOGY 2024; 24:1078. [PMID: 39543497 PMCID: PMC11566475 DOI: 10.1186/s12870-024-05801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Perilla (Perilla frutescens L. Britt.) is an important oilseed and medicinal crop that frequently faces seasonal drought stress during seed germination, leading to a loss of dehydration tolerance (DT), which affects seed emergence and significantly reduces yield. DT has been successfully re-established for many species seeds. However, the physiological mechanisms and gene networks that regulate Perilla's response to DT loss remain unclear. RESULTS Phenotypic analysis determined that the window for DT in Perilla seeds occurs at radicle lengths of 0-4 mm. Integrating physiological and transcriptomic analyses revealed that the loss of DT promotes the production of reactive oxygen species (ROS) and regulates oxidase activity and gene expression. This implies that DT may influence seed germination by modulating ROS activity. Four radicle length (i.e., 0, 1, 3, and 4 mm) stages were analyzed, and 262 differentially expressed genes (DEGs) were identified that responded to DT. The majority of these genes were associated with epigenetics, cell function, and transport mechanisms. Analysis of expression data shows that desiccation inhibits the signaling network of genes encoding small secreted peptides (SSPs) and receptor-like protein kinases (RLKs). Finally, a relevant network diagram of DT response was proposed. Based on this information, we have revealed the metabolism regulation maps of the four main pathways involving these DEGs (i.e., metabolic pathways, cell cycle, plant hormone signal transduction, and motor proteins). CONCLUSIONS In conclusion, these findings deepen our understanding of gene network responses to DT during Perilla seed germination and provide potential target genes for the genetic improvement of drought resistance in this crop.
Collapse
Affiliation(s)
- Minghao Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mingwang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglong Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhichao Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ailian Lu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaohuan Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinhu Ma
- School of Innovation and Intrepreneurship, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
19
|
Santos LDF, Lautru S, Pernodet JL. Genetic Engineering Approaches for the Microbial Production of Vanillin. Biomolecules 2024; 14:1413. [PMID: 39595589 PMCID: PMC11591617 DOI: 10.3390/biom14111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Vanilla flavour is widely used in various industries and is the most broadly used flavouring agent in the food industry. The demand for this flavour is, therefore, extremely high, yet vanilla bean extracts can only meet about 1% of the overall demand. Vanillin, the main constituent of vanilla flavour, can easily be obtained through chemical synthesis. Nonetheless, consumer demands for natural products and environmentally friendly industrial processes drive the development of biotechnological approaches for its production. Some microorganisms can naturally produce vanillin when fed with various substrates, including eugenol, isoeugenol, and ferulic acid. The characterisation of the genes and enzymes involved in these bioconversion pathways, as well as progress in the understanding of vanillin biosynthesis in Vanilla orchids, allowed the development of genetic engineering and synthetic biology approaches to increase vanillin production in naturally vanillin-producing microorganisms, or to implement novel vanillin biosynthetic pathways in microbial chassis. This review summarises and discusses these genetic engineering and synthetic biology approaches for the microbial production of vanillin.
Collapse
Affiliation(s)
| | - Sylvie Lautru
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Jean-Luc Pernodet
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
20
|
Laoué J, Havaux M, Ksas B, Orts JP, Reiter IM, Fernandez C, Ormeno E. A decade of rain exclusion in a Mediterranean forest reveals trade-offs of leaf chemical defenses and drought legacy effects. Sci Rep 2024; 14:24119. [PMID: 39406765 PMCID: PMC11480208 DOI: 10.1038/s41598-024-71417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Increasing aridity in the Mediterranean region will result in longer and recurrent drought. These changes could strongly modify plant defenses, endangering tree survival. We investigate the response of chemical defenses from central and specialized metabolism in Quercus pubescens Willd. to future Mediterranean drought using a long-term drought experiment in natura where trees have been submitted to amplified drought (~ -30% annual precipitation) since April 2012. We focused on leaf metabolites including chlorophylls and carotenoids (central metabolism) and flavonols (specialized metabolism). Measurements were performed in summer from 2016 to 2022. Amplified drought led to higher concentrations of total photosynthetic pigments over the 2016-2022 period. However, it also led to lower AZ/VAZ and flavonol concentrations. Additionally, chemical defenses of Q. pubescens responded to previous precipitation where low precipitation 1 year and/or 2 years preceding sampling was associated to low concentrations of VAZ, flavonol and high neoxanthin concentrations. Our study indicates that the decline of flavonol concentration under long-term drought is counterbalanced by a higher production of several central metabolites. Such results are potentially due to an adjustment in tree metabolism, highlighting the importance of performing long-term experimental studies in natura for assessing drought legacy effects and thus forest adaptation to climate change.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| | - Michel Havaux
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Jean-Philippe Orts
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | | | - Catherine Fernandez
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | - Elena Ormeno
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| |
Collapse
|
21
|
Kang SH, Shin SY, Kang BH, Chowdhury S, Lee WH, Kim WJ, Lee JD, Lee S, Choi YM, Ha BK. Screening Germplasms and Detecting Quantitative Trait Loci for High Sucrose Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:2815. [PMID: 39409683 PMCID: PMC11478759 DOI: 10.3390/plants13192815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024]
Abstract
Sucrose is a desirable component of processed soybean foods and animal feed, and thus, its content is used as an important characteristic for assessing the quality of soybean seeds. However, few studies have focused on the quantitative trait loci (QTLs) associated with sucrose regulation in soybean seeds. This study aims to measure the sucrose content of 1014 soybean accessions and identify genes related to high sucrose levels using QTL analysis. Colorimetric analysis based on the enzymatic reaction of invertase (INV) and glucose oxidase (GOD) was employed to test the germplasms. A total of six high-sucrose genetic resources (IT186230, IT195321, IT263138, IT263276, IT263286, and IT276521) and two low-sucrose genetic resources (IT025668 and IT274054) were identified. Two F2:3 populations, IT186230 × IT025668 and Ilmi × IT186230, were then established from these germplasms. QTL analysis identified four QTLs (qSUC6.1, qSUC11.1, qSUC15.1, and qSUC17.1), explaining 7.3-27.6% of the phenotypic variation in the sugar content. Twenty candidate genes were found at the four QTLs. Notably, Glyma.17G152300, located in the qSUC17.1 QTL region, exhibited a 17-fold higher gene expression in the high-sucrose germplasm IT186230 compared to the control germplasm Ilmi, confirming its role as a major gene regulating the sucrose content in soybean. These results may assist in marker-assisted selection for breeding programs that aim to develop soybean lines with a higher sucrose content.
Collapse
Affiliation(s)
- Se-Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-H.K.); (S.-Y.S.); (B.H.K.); (S.C.); (W.-H.L.)
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo-Young Shin
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-H.K.); (S.-Y.S.); (B.H.K.); (S.C.); (W.-H.L.)
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byeong Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-H.K.); (S.-Y.S.); (B.H.K.); (S.C.); (W.-H.L.)
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sreeparna Chowdhury
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-H.K.); (S.-Y.S.); (B.H.K.); (S.C.); (W.-H.L.)
| | - Won-Ho Lee
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-H.K.); (S.-Y.S.); (B.H.K.); (S.C.); (W.-H.L.)
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woon Ji Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea;
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-H.K.); (S.-Y.S.); (B.H.K.); (S.C.); (W.-H.L.)
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
22
|
Cao Y, Han Z, Zhang Z, He L, Huang C, Chen J, Dai F, Xuan L, Yan S, Si Z, Hu Y, Zhang T. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. PLANT COMMUNICATIONS 2024; 5:100938. [PMID: 38689494 PMCID: PMC11369780 DOI: 10.1016/j.xplc.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.
Collapse
Affiliation(s)
- Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
23
|
Liu C, Li Q, Peng S, He L, Lin R, Zhang J, Cui P, Liu H. O-Glycosyltransferase Gene BnaC09.OGT Involved in Regulation of Unsaturated Fatty Acid Biosynthesis for Enhancing Osmotic Stress Tolerance in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1964. [PMID: 39065490 PMCID: PMC11280806 DOI: 10.3390/plants13141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Osmotic stress is a major threaten to the growth and yield stability of Brassica napus. Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc) is ubiquitous in plants, and participates in a variety of signal transduction and metabolic regulation. However, studies on the role of O-GlcNAc transferase (OGT) in osmotic stress tolerance of plants are limited. In previous study, a O-glycosyltransferase, named BnaC09.OGT, was identified from the B. napus variety 'Zhongshuang 11' by yeast one hybrid with promoter of BnaA01.GPAT9. It was found that BnaC09.OGT localized in both nucleus and cytoplasm. The spatiotemporal expression pattern of BnaC09.OGT exhibited tissue specificity in developmental seed, especially in 15 days after pollination. In view of osmotic stress inducing, the BnaC09.OGT overexpression and knockout transgenic lines were constructed for biological function study. Phenotypic analysis of BnaC09.OGT overexpression seedlings demonstrated that BnaC09.OGT could enhance osmotic stress tolerance than WT and knockout lines in euphylla stage under 15% PEG6000 treatment after 7 days. In addition, compared with WT and knockout lines, overexpression of BnaC09.OGT had significantly higher activities of antioxidant enzymes (SOD and POD), higher content of soluble saccharide, and while significantly less content of malondialdehyde, proline and anthocyanidin under 15% PEG6000 treatment after 7 days. On the other hand, the unsaturated fatty acid content of BnaC09.OGT overexpression was significantly higher than that of WT and knockout lines, so it is speculated that the BnaC09.OGT could increase unsaturated fatty acid biosynthesis for osmotic stress tolerance by promoting the expression of BnaA01.GPAT9 in glycerolipid biosynthesis. In summary, the above results revealed that the function of BnaC09.OGT provides new insight for the analysis of the pathway of O-glycosylation in regulating osmotic stress tolerance in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Cui
- The College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (C.L.); (Q.L.); (S.P.); (L.H.); (R.L.); (J.Z.)
| | - Hongbo Liu
- The College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (C.L.); (Q.L.); (S.P.); (L.H.); (R.L.); (J.Z.)
| |
Collapse
|
24
|
Yang X, Yang M, Ye P, Li H, Li Z, Zeng S, Wang Y. Characterization of dicaffeoylspermidine derivatives related glucosyltransferases during fruit development of goji berry. Food Chem 2024; 442:138432. [PMID: 38241991 DOI: 10.1016/j.foodchem.2024.138432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The fruit of Lycium barbarum (Lb), known as red goji berry, is a "superfruit" due to its abundance of bioactive compounds. Among these compounds, dicaffeoylspermidine derivatives (DCSPDs) have anti-oxidant and anti-Alzheimer's Disease activity. This study employed ultra-high-performance liquid chromatography with tandem mass spectrometry to investigate metabolic changes during the development and ripening stages of red goji berries. Totally 97 compounds, including 51 DCSPDs, were tentatively identified. Correlation analysis of these DCSPDs revealed that glycosyltransferases (GTs) play an important role in the formation of glycosylated DCSPDs. In vitro experiments characterized 3 novel GTs could add a glucosyl moiety to N1-caffeoyl-N10-dihydrocaffeoyl spermidine. Homologous GTs from L. ruthenicum (Lr) exhibited similar activity, despite the absence of abundant glycosylated DCSPDs in Lr. These findings provide insights into the metabolic changes and interconnections among active compounds in red goji berries. The identified GTs hold potential for metabolic engineering of DCSPDs and functional food development.
Collapse
Affiliation(s)
- Xiaoman Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meizhen Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Peng Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Hanxiang Li
- Institutional Center for Shared Technologies and Facilities, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhongxi Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shaohua Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Science, Gannan Normal University, Ganzhou 341000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Science, Gannan Normal University, Ganzhou 341000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Shi Y, Chen Z, Shen M, Li Q, Wang S, Jiang J, Zeng W. Identification and Functional Verification of the Glycosyltransferase Gene Family Involved in Flavonoid Synthesis in Rubus chingii Hu. PLANTS (BASEL, SWITZERLAND) 2024; 13:1390. [PMID: 38794460 PMCID: PMC11125054 DOI: 10.3390/plants13101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Glycosylation is catalyzed by UDP-glycosyltransferase (UGT) and plays an important role in enriching the diversity of flavonoids. Rubus plants contain a lot of natural flavonoid glycosides, which are important plants with a homology of medicine and food. However, information about the Rubus UGT gene family is very limited. In this study, we carried out genome-wide analysis and identified the 172, 121, 130, 121 UGT genes in R. chingii, R. corchorifolius, R. idaeus, and R. occidentalis, respectively, and divided them into 18 groups. The analysis of the protein motif and gene structure showed that there were structural and functional conservations in the same group, but there were differences among different groups. Gene replication analysis showed that raspberry and dicotyledons had a higher homology. The expansion of the UGTs gene family was mainly driven by tandem replication events, and experienced purified selection during the long evolution of the raspberry. Cis-acting element analysis showed that they were related to plant growth and development, hormone regulation, and stress response. In addition, according to a comprehensive analysis of the co-expression network constructed by transcriptome data and phylogenetic homology, RchUGT169 was identified as a flavonoid glucosyltransferase. Through the transient expression in tobacco, it was verified that RchUGT169 could catalyze the conversion of kaempferol and quercetin to the corresponding flavonoid glycosides. In conclusion, this research enriched the understanding of the diversity of UGTs in Rubus and determined that RcUGT169 can catalyze flavonoids.
Collapse
Affiliation(s)
- Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Mingkai Shen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Qianfan Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Shunli Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Jingyong Jiang
- Institute of Horticulture, Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| |
Collapse
|
26
|
Ware I, Franke K, Frolov A, Bureiko K, Kysil E, Yahayu M, El Enshasy HA, Wessjohann LA. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:30. [PMID: 38743199 PMCID: PMC11093948 DOI: 10.1007/s13659-024-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia, offering both health and culinary benefits. In this study the secondary metabolites in different organs of P. sarmentosum were identified and their relative abundances were characterized. The metabolic profiles of leaves, roots, stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry (LC-HR-MS) and the data subsequently analyzed using multivariate statistical methods. Manual interpretation of the tandem mass spectrometric (MS/MS) fragmentation patterns revealed the presence of 154 tentatively identified metabolites, mostly represented by alkaloids and flavonoids. Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids, lignans and phenyl propanoids in leaves, aporphines in stems, piperamides in fruits and lignan-amides in roots. Overall, this study provides extensive data on the metabolite composition of P. sarmentosum, supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs. This can be used to optimize production and harvesting as well as to maximize the plant's economic value as herbal medicine or in food applications.
Collapse
Affiliation(s)
- Ismail Ware
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Maizatulakmal Yahayu
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, 21934, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
27
|
Hurrah IM, Kumar A, Abbas N. Functional characterisation of Artemisia annua jasmonic acid carboxyl methyltransferase: a key enzyme enhancing artemisinin biosynthesis. PLANTA 2024; 259:152. [PMID: 38735012 DOI: 10.1007/s00425-024-04433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.
Collapse
Affiliation(s)
- Ishfaq Majid Hurrah
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
28
|
Chen B, Wang X, Yu H, Dong N, Li J, Chang X, Wang J, Jiang C, Liu J, Chi X, Zha L, Gui S. Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in drought stress of Platycodon grandiflorus. FRONTIERS IN PLANT SCIENCE 2024; 15:1363251. [PMID: 38742211 PMCID: PMC11089202 DOI: 10.3389/fpls.2024.1363251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Introduction The uridine diphosphate (UDP)-glycosyltransferase (UGT) family is the largest glycosyltransferase family, which is involved in the biosynthesis of natural plant products and response to abiotic stress. UGT has been studied in many medicinal plants, but there are few reports on Platycodon grandiflorus. This study is devoted to genome-wide analysis of UGT family and identification of UGT genes involved in drought stress of Platycodon grandiflorus (PgUGTs). Methods The genome data of Platycodon grandiflorus was used for genome-wide identification of PgUGTs, online website and bioinformatics analysis software was used to conduct bioinformatics analysis of PgUGT genes and the genes highly responsive to drought stress were screened out by qRT-PCR, these genes were cloned and conducted bioinformatics analysis. Results A total of 75 PgUGT genes were identified in P.grandiflorus genome and clustered into 14 subgroups. The PgUGTs were distributed on nine chromosomes, containing multiple cis-acting elements and 22 pairs of duplicate genes were identified. Protein-protein interaction analysis was performed to predict the interaction between PgUGT proteins. Additionally, six genes were upregulated after 3d under drought stress and three genes (PGrchr09G0563, PGrchr06G0523, PGrchr06G1266) responded significantly to drought stress, as confirmed by qRT-PCR. This was especially true for PGrchr06G1266, the expression of which increased 16.21-fold after 3d of treatment. We cloned and conducted bioinformatics analysis of three candidate genes, both of which contained conserved motifs and several cis-acting elements related to stress response, PGrchr06G1266 contained the most elements. Discussion PgGT1 was confirmed to catalyze the C-3 position of platycodin D and only eight amino acids showed differences between gene PGr008G1527 and PgGT1, which means PGr008G1527 may be able to catalyze the C-3 position of platycodin D in the same manner as PgGT1. Seven genes were highly expressed in the roots, stems, and leaves, these genes may play important roles in the development of the roots, stems, and leaves of P. grandiflorus. Three genes were highly responsive to drought stress, among which the expression of PGrchr06G1266 was increased 16.21-fold after 3d of drought stress treatment, indicating that PGrchr06G1266 plays an important role in drought stress tolerance. To summarize, this study laied the foundation to better understand the molecular bases of responses to drought stress and the biosynthesis of platycodin.
Collapse
Affiliation(s)
- Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Xinrui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chao Jiang
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Liu
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiulian Chi
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
29
|
Sun X, Ke Z, Zheng D, She M, Wu Z, Li QX, Zhang Z. Cloning, Expression, and Functional Characterization of Two Highly Efficient Flavonoid-di- O-glycosyltransferases ZmUGT84A1 and ZmUGT84A2 from Maize ( Zea mays L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7354-7363. [PMID: 38511857 DOI: 10.1021/acs.jafc.3c06327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The maize (Zea mays L.) glycosyltransferase family 1 comprises many uridine diphosphate glycosyltransferase (UGT) members. However, UGT activities and biochemical functions have seldom been revealed. In this study, the genes of two flavonoid di-O-glycosyltransferases ZmUGT84A1 and ZmUGT84A2 were cloned from maize plant and expressed in Escherichia coli. Phylogenetic analysis showed that the two enzymes were homologous to AtUGT84A1 and AtUGT84A3. The two recombinant enzymes showed a high conversion rate of luteolin to its glucosides, mainly 4',7-di-O-glucoside and minorly 3',7-di-O-glucoside in two-step glycosylation reactions in vitro. Moreover, the recombinant ZmUGT84A1 and ZmUGT84A2 had a broad substrate spectrum, converting eriodictyol, naringenin, apigenin, quercetin, and kaempferol to monoglucosides and diglucosides. The highly efficient ZmUGT84A1 and ZmUGT84A2 may be used as a tool for the effective synthesis of various flavonoid O-glycosides and as markers for crop breeding to increase O-glycosyl flavonoid content in food.
Collapse
Affiliation(s)
- Xiaorong Sun
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhao Ke
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 100096, China
| | - Dengyu Zheng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng She
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434022, China
| | - Zhongyi Wu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Zhongbao Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
30
|
Wang X, Yang J, Hu H, Yuan T, Zhao Y, Liu Y, Li W, Liu J. Genome-Wide Analysis and Identification of UDP Glycosyltransferases Responsive to Chinese Wheat Mosaic Virus Resistance in Nicotiana benthamiana. Viruses 2024; 16:489. [PMID: 38675832 PMCID: PMC11054786 DOI: 10.3390/v16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Glycosylation, a dynamic modification prevalent in viruses and higher eukaryotes, is principally regulated by uridine diphosphate (UDP)-glycosyltransferases (UGTs) in plants. Although UGTs are involved in plant defense responses, their responses to most pathogens, especially plant viruses, remain unclear. Here, we aimed to identify UGTs in the whole genome of Nicotiana benthamiana (N. benthamiana) and to analyze their function in Chinese wheat mosaic virus (CWMV) infection. A total of 147 NbUGTs were identified in N. benthamiana. To conduct a phylogenetic analysis, the UGT protein sequences of N. benthamiana and Arabidopsis thaliana were aligned. The gene structure and conserved motifs of the UGTs were also analyzed. Additionally, the physicochemical properties and predictable subcellular localization were examined in detail. Analysis of cis-acting elements in the putative promoter revealed that NbUGTs were involved in temperature, defense, and hormone responses. The expression levels of 20 NbUGTs containing defense-related cis-acting elements were assessed in CWMV-infected N. benthamiana, revealing a significant upregulation of 8 NbUGTs. Subcellular localization analysis of three NbUGTs (NbUGT12, NbUGT16 and NbUGT17) revealed their predominant localization in the cytoplasm of N. benthamiana leaves, and NbUGT12 was also distributed in the chloroplasts. CWMV infection did not alter the subcellular localization of NbUGT12, NbUGT16, and NbUGT17. Transient overexpression of NbUGT12, NbUGT16, and NbUGT17 enhanced CWMV infection, whereas the knockdown of NbUGT12, NbUGT16 and NbUGT17 inhibited CWMV infection in N. benthamiana. These NbUGTs could serve as potential susceptibility genes to facilitate CWMV infection. Overall, the findings throw light on the evolution and function of NbUGTs.
Collapse
Affiliation(s)
- Xia Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (X.W.); (H.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Haichao Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (X.W.); (H.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Tangyu Yuan
- Yantai Academy of Agricultural Science, No. 26 Gangcheng West Street, Fushan District, Yantai City 265500, China;
| | - Yingjie Zhao
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Ying Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (X.W.); (H.H.)
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| |
Collapse
|
31
|
Guan H, Zhang Y, Li J, Zhu Z, Chang J, Bakari A, Chen S, Zheng K, Cao S. Analysis of the UDP-Glucosyltransferase ( UGT) Gene Family and Its Functional Involvement in Drought and Salt Stress Tolerance in Phoebe bournei. PLANTS (BASEL, SWITZERLAND) 2024; 13:722. [PMID: 38475568 DOI: 10.3390/plants13050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Uridine diphosphate glycosyltransferases (UDP-GTs, UGTs), which are regulated by UGT genes, play a crucial role in glycosylation. In vivo, the activity of UGT genes can affect the availability of metabolites and the rate at which they can be eliminated from the body. UGT genes can exert their regulatory effects through mechanisms such as post-transcriptional modification, substrate subtype specificity, and drug interactions. Phoebe bournei is an economically significant tree species that is endemic to southern China. Despite extensive studies on the UGT gene family in various species, a comprehensive investigation of the UGT family in P. bournei has not been reported. Therefore, we conducted a systematic analysis to identify 156 UGT genes within the entire P. bournei genome, all of which contained the PSPG box. The PbUGT family consists of 14 subfamilies, consistent with Arabidopsis thaliana. We observed varying expression levels of PbUGT genes across different tissues in P. bournei, with the following average expression hierarchy: leaf > stem xylem > stem bark > root xylem > root bark. Covariance analysis revealed stronger covariance between P. bournei and closely related species. In addition, we stressed the seedlings with 10% NaCl and 10% PEG-6000. The PbUGT genes exhibited differential expression under drought and salt stresses, with specific expression patterns observed under each stress condition. Our findings shed light on the transcriptional response of PbUGT factors to drought and salt stresses, thereby establishing a foundation for future investigations into the role of PbUGT transcription factors.
Collapse
Affiliation(s)
- Hengfeng Guan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhening Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiarui Chang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Almas Bakari
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
32
|
Qi J, Kang SJ, Zhao L, Gao JM, Liu C. Natural and engineered xylosyl products from microbial source. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:13. [PMID: 38296905 PMCID: PMC10830979 DOI: 10.1007/s13659-024-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Glycosylation is a prevalent post-modification found in natural products and has a significant impact on the structural diversity and activity variation of natural products. Glucosylation is the most common type of glycosylation, whereas xylosylation is relatively rare. Despite their unique chemical structures and beneficial activities, xylosylated natural products from microorganisms have received little attention. This review provides, for the first time, a comprehensive summary of 126 microbial-derived xylosylated natural products, including xylosyl-cyathane diterpenes, xylosylated triterpenes, xylosyl aromatic compounds, and others. Among these compounds, xylosyl-cyathane diterpenes represent the highest number of derivatives, followed by xylosylated triterpenes. Xylosyl compounds from bacterial sources have less defined structural profiles compared to those from fungi. The characterization of xylosyltransferase EriJ from Basidiomycota extended the structural diversity of xylosyl cyathane diterpenes. This work provides a valuable reference for the research and use of xylosyltransferase for drug discovery and synthetic chemistry. Further work is needed to explore the potential applications of microbial derived xylosyl compounds and to develop novel xylosyl transferases. With the deepening of genomic sequencing of medicinal fungi, more biosynthesis of bioactive xylosyl compounds is expected to be elucidated in the future.
Collapse
Affiliation(s)
- Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, 710077, China.
- Key Laboratory for Enzyme and Enzyme‑Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Shi-Jie Kang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ling Zhao
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, 710077, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Chengwei Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory for Enzyme and Enzyme‑Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
33
|
Jing T, Du W, Qian X, Wang K, Luo L, Zhang X, Deng Y, Li B, Gao T, Zhang M, Guo D, Jiang H, Liu Y, Schwab W, Sun X, Song C. UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding. PLANT, CELL & ENVIRONMENT 2024; 47:682-697. [PMID: 37882446 DOI: 10.1111/pce.14751] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.
Collapse
Affiliation(s)
- Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaona Qian
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Kai Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Lanxin Luo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueying Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanni Deng
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Bo Li
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Hao Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuantao Liu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
34
|
Li C, Zhang Y. Glycosylation and methylation in the biosynthesis of isoflavonoids in Pueraria lobata. FRONTIERS IN PLANT SCIENCE 2023; 14:1330586. [PMID: 38162309 PMCID: PMC10757850 DOI: 10.3389/fpls.2023.1330586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
The pathway for forming isoflavonoid skeletal structure is primarily restricted to the Leguminosae family. Subsequent decorations on the compound backbone by tailoring enzymes would change their biological and medicinal properties. Pueraria lobata is a leguminous plant, and as a traditional Chinese medicine its roots have been ascribed a number of pharmacological activities. Glycosylation and methylation are the main modifying processes in isoflavonoid metabolism in P. lobata roots, resulting in the accumulation of unique glycosylated and methylated end isoflavonoid compounds. For instance, daidzein 8-C-glucoside (i.e., puerarin) and puerarin derivatives are produced only by the Pueraria genus. Puerarin has been established as a clinical drug for curing cardiovascular diseases. To better understand the characteristic isoflavonoid metabolism in P. lobata, this review attempts to summarize the research progress made with understanding the main glycosylation and methylation of isoflavonoids in P. lobata and their biosynthetic enzymes.
Collapse
Affiliation(s)
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
35
|
Liu M, Sui Y, Yu C, Wang X, Zhang W, Wang B, Yan J, Duan L. Coronatine-Induced Maize Defense against Gibberella Stalk Rot by Activating Antioxidants and Phytohormone Signaling. J Fungi (Basel) 2023; 9:1155. [PMID: 38132756 PMCID: PMC10744721 DOI: 10.3390/jof9121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most destructive diseases, Gibberella stalk rot (GSR), caused by Fusarium graminearum, reduces maize yields significantly. An induced resistance response is a potent and cost-effective plant defense against pathogen attack. The functional counterpart of JAs, coronatine (COR), has attracted a lot of interest recently due to its ability to control plant growth and stimulate secondary metabolism. Although several studies have focused on COR as a plant immune elicitor to improve plant resistance to pathogens, the effectiveness and underlying mechanisms of the suppressive ability against COR to F. graminearum in maize have been limited. We investigated the potential physiological and molecular mechanisms of COR in modulating maize resistance to F. graminearum. COR treatment strongly enhanced disease resistance and promoted stomatal closure with H2O2 accumulation, and 10 μg/mL was confirmed as the best concentration. COR treatment increased defense-related enzyme activity and decreased the malondialdehyde content with enhanced antioxidant enzyme activity. To identify candidate resistance genes and gain insight into the molecular mechanism of GSR resistance associated with COR, we integrated transcriptomic and metabolomic data to systemically explore the defense mechanisms of COR, and multiple hub genes were pinpointed using weighted gene correlation network analysis (WGCNA). We discovered 6 significant modules containing 10 candidate genes: WRKY transcription factor (LOC100279570), calcium-binding protein (LOC100382070), NBR1-like protein (LOC100275089), amino acid permease (LOC100382244), glutathione S-transferase (LOC541830), HXXXD-type acyl-transferase (LOC100191608), prolin-rich extensin-like receptor protein kinase (LOC100501564), AP2-like ethylene-responsive transcription factor (LOC100384380), basic leucine zipper (LOC100275351), and glycosyltransferase (LOC606486), which are highly correlated with the jasmonic acid-ethylene signaling pathway and antioxidants. In addition, a core set of metabolites, including alpha-linolenic acid metabolism and flavonoids biosynthesis linked to the hub genes, were identified. Taken together, our research revealed differentially expressed key genes and metabolites, as well as co-expression networks, associated with COR treatment of maize stems after F. graminearum infection. In addition, COR-treated maize had higher JA (JA-Ile and Me-JA) levels. We postulated that COR plays a positive role in maize resistance to F. graminearum by regulating antioxidant levels and the JA signaling pathway, and the flavonoid biosynthesis pathway is also involved in the resistance response against GSR.
Collapse
Affiliation(s)
- Mei Liu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yiping Sui
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Chunxin Yu
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Baomin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Wu Y, Liu J, Jiao B, Wang T, Sun S, Huang B. Genome-Wide Analysis of Family-1 UDP-Glycosyltransferases in Potato ( Solanum tuberosum L.): Identification, Phylogenetic Analysis and Determination of Response to Osmotic Stress. Genes (Basel) 2023; 14:2144. [PMID: 38136966 PMCID: PMC10742590 DOI: 10.3390/genes14122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Family-1 UDP-glycosyltransferases (UGTs) are the most common and functional glycosyltransferases in the plant world. UGT is closely related to plant growth and the response to abiotic stress. However, despite systematic research, our understanding of potato UGT genes is still unclear. In this study, we identified 174 potato UGT proteins based on their conserved plant secondary product glycosyltransferase (PSPG) motifs. Phylogenetic analyses were used to compare these proteins with Arabidopsis UGTs and other plant UGTs, and it was found that they could be clustered into 18 distinct groups. Patterns of intron gain/loss and intron phases within potato UGTs revealed highly conserved intron insertion events. The promoter cis-elements of these 174 UGT genes were systematically investigated. The promoter regions of these UGT genes are known to contain various classes of cis-acting compounds. These include elements that are light-responsive, phytohormone-responsive, and stress-responsive. Transcriptome data analysis established that 25, 10, 6, and 4 of these 174 UGT genes were specifically expressed in leaves, roots, stolons, and young tubers, respectively. The mannitol-treated transcriptomic data showed thirty-eight UGT genes were significantly upregulated. The quantitative real-time PCR results showed that the four genes were all responsive to osmotic stress under a 10% PEG6000 treatment. The results of our study provide a basis for clarifying the molecular mechanism of potato osmotic stress resistance and better understanding its function in the future.
Collapse
Affiliation(s)
- Yongchao Wu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Jie Liu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Baozhen Jiao
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Tingting Wang
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Sifan Sun
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Binquan Huang
- School of Agriculture, Yunnan University, Kunming 650504, China
| |
Collapse
|
37
|
Bethke G, Huang Y, Hensel G, Heinen S, Liu C, Wyant SR, Li X, Quin MB, McCormick S, Morrell PL, Dong Y, Kumlehn J, Salvi S, Berthiller F, Muehlbauer GJ. UDP-glucosyltransferase HvUGT13248 confers type II resistance to Fusarium graminearum in barley. PLANT PHYSIOLOGY 2023; 193:2691-2710. [PMID: 37610244 DOI: 10.1093/plphys/kiad467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Fusarium head blight (FHB) of barley (Hordeum vulgare) causes yield losses and accumulation of trichothecene mycotoxins (e.g. deoxynivalenol [DON]) in grains. Glucosylation of DON to the nontoxic DON-3-O-glucoside (D3G) is catalyzed by UDP-glucosyltransferases (UGTs), such as barley UGT13248. We explored the natural diversity of UGT13248 in 496 barley accessions and showed that all carried potential functional alleles of UGT13248, as no genotypes showed strongly increased seedling sensitivity to DON. From a TILLING population, we identified 2 mutant alleles (T368I and H369Y) that, based on protein modeling, likely affect the UDP-glucose binding of UGT13248. In DON feeding experiments, DON-to-D3G conversion was strongly reduced in spikes of these mutants compared to controls, and plants overexpressing UGT13248 showed increased resistance to DON and increased DON-to-D3G conversion. Moreover, field-grown plants carrying the T368I or H369Y mutations inoculated with Fusarium graminearum showed increased FHB disease severity and reduced D3G production. Barley is generally considered to have type II resistance that limits the spread of F. graminearum from the infected spikelet to adjacent spikelets. Point inoculation experiments with F. graminearum showed increased infection spread in T368I and H369Y across the spike compared to wild type, while overexpression plants showed decreased spread of FHB symptoms. Confocal microscopy revealed that F. graminearum spread to distant rachis nodes in T368I and H369Y mutants but was arrested at the rachis node of the inoculated spikelet in wild-type plants. Taken together, our data reveal that UGT13248 confers type II resistance to FHB in barley via conjugation of DON to D3G.
Collapse
Affiliation(s)
- Gerit Bethke
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yadong Huang
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Goetz Hensel
- Department of Physiology and Cell Biology, Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Shane Heinen
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Skylar R Wyant
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Maureen B Quin
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Susan McCormick
- Mycotoxin Prevention and Applied Microbiology Research, USDA-ARS NCAUR, Peoria, IL 61604, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy
| | - Franz Berthiller
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
38
|
Li H, Li Y, Wang X, Jiao Z, Zhang W, Long Y. Characterization of Glycosyltransferase Family 1 (GT1) and Their Potential Roles in Anthocyanin Biosynthesis in Maize. Genes (Basel) 2023; 14:2099. [PMID: 38003042 PMCID: PMC10671782 DOI: 10.3390/genes14112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Glycosyltransferase family 1 (GT1) is a large group of proteins that play critical roles in secondary metabolite biosynthesis in plants. However, the GT1 family is not well studied in maize. In this study, 107 GT1 unigenes were identified in the maize reference genome and classified into 16 groups according to their phylogenetic relationship. GT1s are unevenly distributed across all ten maize chromosomes, occurring as gene clusters in some chromosomes. Collinearity analysis revealed that gene duplication events, whole-genome or segmental duplication, and tandem duplication occurred at a similar frequency, indicating that both types of gene duplication play notable roles in the expansion of the GT1 gene family. Expression analysis showed GT1s expressing in all tissues with specific expression patterns of each GT1, suggesting that they might participate in multiple biological processes during the whole growth and development stages. Furthermore, 16 GT1s were identified to have similar expression patterns to those of anthocyanidin synthase (ANS), the critical enzyme in anthocyanin biosynthesis. Molecular docking was carried out to examine the affinity of GT1s with substrates in anthocyanin biosynthesis. This study provides valuable information on the GT1s of maize and will promote the development of research on their biological functions in the biosynthesis of other secondary metabolites.
Collapse
Affiliation(s)
- Huangai Li
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
| | - Yiping Li
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
| | - Xiaofang Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
| | - Ziwei Jiao
- Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; (Z.J.); (W.Z.)
| | - Wei Zhang
- Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; (Z.J.); (W.Z.)
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
39
|
Wang X, He Y, Sedio BE, Jin L, Ge X, Glomglieng S, Cao M, Yang J, Swenson NG, Yang J. Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecol Lett 2023; 26:1898-1910. [PMID: 37776563 DOI: 10.1111/ele.14308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.
Collapse
Affiliation(s)
- Xuezhao Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, China
| | - Yunyun He
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Texas, Austin, USA
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Lu Jin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuejun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Suphanee Glomglieng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Cao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianhong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Indiana, Notre Dame, USA
| | - Jie Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
40
|
Hao Y, Fu J, Zhang J, Du N, Ta H, Zhu TT, Wang H, Lou HX, Cheng AX. Identification and Functional Characterization of UDP-Glycosyltransferases Involved in Isoflavone Biosynthesis in Astragalus membranaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12775-12784. [PMID: 37604680 DOI: 10.1021/acs.jafc.3c03563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Isoflavones are rich natural compounds present in legumes and are essential for plant growth and development. Moreover, they are beneficial for animals and humans. Isoflavones are primarily found as glycoconjugates, including calycosin-7-O-β-d-glucoside (CG) in Astragalus membranaceus, a legume. However, the glycosylation mechanism of isoflavones in A. membranaceus remains unclear. In the present study, three uridine diphosphate (UDP)-glycosyltransferases (UGTs) that may be involved in the biosynthesis of isoflavone were identified in the transcriptome of A. membranaceus. Enzymatic analysis revealed that AmUGT88E29 and AmUGT88E30 had high catalytic activity toward isoflavones in vitro. In addition, AmUGT88E29 and AmUGT88E30 could accept various flavones, flavanones, flavonols, dihydroflavonols, and dihydrochalcones as substrates. AmUGT71G10 was only active against phloretin and dihydroresveratrol. Overexpression of AmUGT88E29 significantly increased the contents of CG, an isoflavone glucoside, in the hairy roots of A. membranaceus. This study provided candidate AmUGT genes for the potential metabolic engineering of flavonoid compounds in plants and a valuable resource for studying the calycosin glycosides biosynthesis pathway.
Collapse
Affiliation(s)
- Yue Hao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jiaozhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Nihong Du
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - He Ta
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, People's Republic of China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
41
|
Dong M, Li J, Yang D, Li M, Wei J. Biosynthesis and Pharmacological Activities of Flavonoids, Triterpene Saponins and Polysaccharides Derived from Astragalus membranaceus. Molecules 2023; 28:5018. [PMID: 37446680 PMCID: PMC10343288 DOI: 10.3390/molecules28135018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has been widely used in ailments for more than 2000 years. The main bioactive compounds including flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a wide range of biological activities and pharmacological effects. These bioactive compounds have a significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiinflammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream pathway of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide (APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of polysaccharides in A. membranaceus. We further systematically summarized the pharmacological effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis to improve the industrialized production and sustainable supply of natural products with pharmacological activities from A. membranaceus, thereby providing an important guide for their future development trend.
Collapse
Affiliation(s)
- Miaoyin Dong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinjuan Li
- Institute of Agricultural Quality Standards and Testing Technology, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
42
|
Yang Q, Zhang Y, Qu X, Wu F, Li X, Ren M, Tong Y, Wu X, Yang A, Chen Y, Chen S. Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in abiotic stress and flavonol biosynthesis in Nicotiana tabacum. BMC PLANT BIOLOGY 2023; 23:204. [PMID: 37076827 PMCID: PMC10114341 DOI: 10.1186/s12870-023-04208-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Uridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted. RESULTS In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves. CONCLUSION We identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.
Collapse
Affiliation(s)
- Qing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Qujing Tobacco Company of Yunnan Province, Qujing, 655000, China
| | - Yinchao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaoling Qu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiuchun Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Min Ren
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ying Tong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Yong Chen
- China National Tobacco Corporation, Beijing, 100045, China.
| | - Shuai Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
43
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
44
|
Dadras A, Rieseberg TP, Zegers JMS, Fürst-Jansen JMR, Irisarri I, de Vries J, de Vries S. Accessible versatility underpins the deep evolution of plant specialized metabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 24:13-26. [PMID: 39991433 PMCID: PMC11842411 DOI: 10.1007/s11101-023-09863-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/07/2023] [Indexed: 02/25/2025]
Abstract
The evolution of several hallmark traits of land plants is underpinned by phytochemical innovations. The specialized metabolism of plants can appear like a teeming chaos that has yielded an ungraspable array of chemodiversity. Yet, this diversity is the result of evolutionary processes including neutral evolution, drift, and selection that have shaped the metabolomic networks. Deciphering the evolutionary history of the specialized metabolome in the context of plant terrestrialization has only just begun. Studies on phytochemistry of model organisms and crop plants enabled the sketch of a blueprint for the biochemical landscape of land plants and a good idea on the diversity that can be explored. Evolutionary metabolomics has in the past been successfully used to identify traits that were critical for domestication of angiosperms or to unravel key innovations in land plants. Owing to recent advances in the study of non-model land plants and their close streptophyte algal relatives we can now begin to appreciate the variation of metabolic networks across the green lineage-and understand convergent solutions to similar environmental challenges and effects that plant terrestrialization had on these networks. Here, we highlight the significant progress made with regard to identifying metabolomic diversity by adding non-model organisms to the equation. We discuss the role of neutral evolution in the context of metabolomic diversity and the effects that environmental challenges had on the lineage-specific specialized metabolism from an evolutionary point of view.
Collapse
Affiliation(s)
- Armin Dadras
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Tim P. Rieseberg
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Jaccoline M. S. Zegers
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Janine M. R. Fürst-Jansen
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077 Göttingen, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Chen Y, Fang T, Su H, Duan S, Ma R, Wang P, Wu L, Sun W, Hu Q, Zhao M, Sun L, Dong X. A reference-grade genome assembly for Astragalus mongholicus and insights into the biosynthesis and high accumulation of triterpenoids and flavonoids in its roots. PLANT COMMUNICATIONS 2023; 4:100469. [PMID: 36307985 PMCID: PMC10030368 DOI: 10.1016/j.xplc.2022.100469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/18/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Astragalus membranaceus var. mongholicus (AMM), a member of the Leguminosae, is one of the most important medicinal plants worldwide. The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine. Here, we report the first chromosome-level reference genome of AMM, comprising nine pseudochromosomes with a total size of 1.47 Gb and 27 868 protein-encoding genes. Comparative genomic analysis reveals that AMM has not experienced an independent whole-genome duplication (WGD) event after the WGD event shared by the Papilionoideae species. Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago, which may explain the large size of the AMM genome. Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded, and our data indicate that tandem duplication has been the main driver for expansion of these families. Among the expanded families, the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM, suggesting their roles in the biosynthesis of phenylpropanoid compounds. The functional versatility of 2,3-oxidosqualene cyclase genes in cluster III may play a critical role in the diversification of triterpenoids in AMM. Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
Collapse
Affiliation(s)
- Yi Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - He Su
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Sifei Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lin Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenbin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qichen Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Yang C, Li X, Zhang Y, Jin H. Transcriptome analysis of Populus × canadensis 'Zhongliao1' in response to low temperature stress. BMC Genomics 2023; 24:77. [PMID: 36803355 PMCID: PMC9936654 DOI: 10.1186/s12864-023-09187-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Low temperatures are known to limit the growth and geographical distribution of poplars. Although some transcriptomic studies have been conducted to explore the response of poplar leaves to cold stress, only a few have comprehensively analyzed the effects of low temperature on the transcriptome of poplars and identified genes related to cold stress response and repair of freeze-thaw injury. RESULTS We exposed the Euramerican poplar Zhongliao1 to low temperatures; after stems were exposed to - 40℃, 4℃, and 20℃, the mixture of phloem and cambium was collected for transcriptome sequencing and bioinformatics analysis. A total of 29,060 genes were detected, including 28,739 known genes and 321 novel genes. Several differentially expressed genes (n = 36) were found to be involved in the Ca2+ signaling pathway, starch-sucrose metabolism pathway, abscisic acid signaling pathway, and DNA repair. They were functionally annotated; glucan endo-1,3-beta-glucosidase and UDP-glucuronosyltransferase genes, for instance, showed a close relationship with cold resistance. The expression of 11 differentially expressed genes was verified by qRT-PCR; RNA-Seq and qRT-PCR data were found to be consistent, which validated the robustness of our RNA-Seq findings. Finally, multiple sequence alignment and evolutionary analysis were performed, the results of which suggested a close association between several novel genes and cold resistance in Zhongliao1. CONCLUSION We believe that the cold resistance and freeze-thaw injury repair genes identified in this study are of great significance for cold tolerance breeding.
Collapse
Affiliation(s)
- Chengchao Yang
- Liaoning Provincial Institute of Poplar, 115213, Gaizhou, China.
| | - Xiaoyu Li
- Liaoning Provincial Institute of Poplar, 115213 Gaizhou, China
| | - Yan Zhang
- Liaoning Provincial Institute of Poplar, 115213 Gaizhou, China
| | - Hua Jin
- grid.440687.90000 0000 9927 2735College of Environment and Bioresources, Dalian Minzu University, 116600 Dalian, China
| |
Collapse
|
47
|
Yao Y, Gu J, Luo Y, Zhang Y, Wang Y, Pang Y, Jia S, Xu C, Li D, Suo F, Shen G, Guo B. A Novel 3- O-rhamnoside: 2″- O-xylosyltransferase Responsible for Terminal Modification of Prenylflavonol Glycosides in Epimedium pubescens Maxim. Int J Mol Sci 2022; 23:16050. [PMID: 36555695 PMCID: PMC9786081 DOI: 10.3390/ijms232416050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prenylated flavonol glycosides in Epimedium plants, as key medicinal components, are known to have great pharmaceutical activities for human health. Among the main prenylated flavonol glycosides, the modification mechanism of different sugar moieties is still not well understood. In the current study, a novel prenylated flavonol rhamnoside xylosyltransferase gene (EpF3R2″XylT) was cloned from E. pubescens, and the enzymatic activity of its decoding proteins was examined in vitro with different prenylated flavonol rhamnoside substrates and different 3-O-monosaccharide moieties. Furthermore, the functional and structural domains of EpF3R2″XylT were analyzed by bioinformatic approaches and 3-D protein structure remodeling. In summary, EpF3R2″XylT was shown to cluster with GGT (glycosyltransferase that glycosylates sugar moieties of glycosides) through phylogenetic analysis. In enzymatic analysis, EpF3R2″XylT was proven to transfer xylose moiety from UDP-xylose to prenylated flavonol rhamnoside at the 2″-OH position of rhamnose. The analysis of enzymatic kinetics showed that EpF3R2″XylT had the highest substrate affinity toward icariin with the lowest Km value of 75.96 ± 11.91 mM. Transient expression of EpF3R2″XylT in tobacco leaf showed functional production of EpF3R2″XylT proteins in planta. EpF3R2″XylT was preferably expressed in the leaves of E. pubescens, which is consistent with the accumulation levels of major prenylflavonol 3-O-triglycoside. The discovery of EpF3R2″XylT will provide an economical and efficient alternative way to produce prenylated flavonol trisaccharides through the biosynthetic approach.
Collapse
Affiliation(s)
- Yu Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiajun Gu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanjiao Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yixin Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yuanyue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Doudou Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Fengmei Suo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Guoan Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
48
|
Yu B, Patterson N, Zaharia LI. Saponin Biosynthesis in Pulses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243505. [PMID: 36559617 PMCID: PMC9780904 DOI: 10.3390/plants11243505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/27/2023]
Abstract
Pulses are a group of leguminous crops that are harvested solely for their dry seeds. As the demand for plant-based proteins grows, pulses are becoming important food crops worldwide. In addition to being a rich source of nutrients, pulses also contain saponins that are traditionally considered anti-nutrients, and impart bitterness and astringency. Saponins are plant secondary metabolites with great structural and functional diversity. Given their diverse functional properties and biological activities, both undesirable and beneficial, saponins have received growing attention. It can be expected that redirecting metabolic fluxes to control the saponin levels and produce desired saponins would be an effective approach to improve the nutritional and sensory quality of the pulses. However, little effort has been made toward understanding saponin biosynthesis in pulses, and, thus there exist sizable knowledge gaps regarding its pathway and regulatory network. In this paper, we summarize the research progress made on saponin biosynthesis in pulses. Additionally, phylogenetic relationships of putative biosynthetic enzymes among multiple pulse species provide a glimpse of the evolutionary routes and functional diversification of saponin biosynthetic enzymes. The review will help us to advance our understanding of saponin biosynthesis and aid in the development of molecular and biotechnological tools for the systematic optimization of metabolic fluxes, in order to produce the desired saponins in pulses.
Collapse
|
49
|
Skrypnik L, Feduraev P, Golovin A, Maslennikov P, Styran T, Antipina M, Riabova A, Katserov D. The Integral Boosting Effect of Selenium on the Secondary Metabolism of Higher Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3432. [PMID: 36559543 PMCID: PMC9788459 DOI: 10.3390/plants11243432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Selenium is a micronutrient with a wide range of functions in animals, including humans, and in microorganisms such as microalgae. However, its role in plant metabolism remains ambiguous. Recent studies of Se supplementation showed that not only does it increase the content of the element itself, but also affects the accumulation of secondary metabolites in plants. The purpose of this review is to analyze and summarize the available data on the place of selenium in the secondary metabolism of plants and its effect on the accumulation of some plant metabolites (S- and N-containing secondary metabolites, terpenes, and phenolic compounds). In addition, possible molecular mechanisms and metabolic pathways underlying these effects are discussed. It should be noted that available data on the effect of Se on the accumulation of secondary metabolites are inconsistent and contradictory. According to some studies, selenium has a positive effect on the accumulation of certain metabolites, while other similar studies show a negative effect or no effect at all. The following aspects were identified as possible ways of regulating plant secondary metabolism by Se-supplementation: changes occurring in primary S/N metabolism, hormonal regulation, redox metabolism, as well as at the transcriptomic level of secondary metabolite biosynthesis. In all likelihood, the confusion in the results can be explained by other, more complex regulatory mechanisms in which selenium is involved and which affect the production of metabolites. Further study on the involvement of various forms of selenium in metabolic and signaling pathways is crucial for a deeper understanding of its role in growth, development, and health of plants, as well as the regulatory mechanisms behind them.
Collapse
|
50
|
Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers. BIOLOGY 2022; 11:biology11121721. [PMID: 36552231 PMCID: PMC9774537 DOI: 10.3390/biology11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Pigments in cyclamen (Cyclamen purpurascens) endows flowers with great ornamental and medicinal values. However, little is known about the biosynthetic pathways of pigments, especially anthocyanins, in cyclamen flowers. Herein, anthocyanins profiling and RNA-Seq were used to decipher the molecular events using cyclamen genotypes of red (HXK) or white (BXK) flowers. We found that red cyclamen petals are rich in cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-O-glucoside, and ruti. In addition, our transcriptomics data revealed 3589 up-regulated genes and 2788 down-regulated genes comparing the BXK to HXK. Our rich dataset also identified eight putative key genes for anthocyanin synthesis, including four chalcone synthase (CHS, g13809_i0, g12097_i0, g18851_i0, g36714_i0), one chalcone isomerase (CHI, g26337_i0), two flavonoid 3-hydroxylase (F3'H, g14710_i0 and g15005_i0), and one anthocyanidin synthase (ANS, g18981_i0). Importantly, we found a 2.5 order of magnitude higher expression of anthocyanin 3-O-glucosyltransferase (g8206_i0), which encodes a key gene in glycosylation of anthocyanins, in HXK compared to BXK. Taken together, our multiomics approach demonstrated massive changes in gene regulatory networks and anthocyanin metabolism in controlling cyclamen flower color.
Collapse
|