1
|
Feng P, Wu J, Cui H, Huang X, Wang C, Wang C, Li X, Duan W. Effects of environmental concentrations of sulfamethoxazole on Skeletonema costatum and Phaeodactylum tricornutum: Insights into growth, oxidative stress, biochemical components, ultrastructure, and transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116851. [PMID: 39128452 DOI: 10.1016/j.ecoenv.2024.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to assess the ecological risks posed by sulfamethoxazole (SMX) at environmentally relevant concentrations. Specifically, its effects on the growth and biochemical components (total protein, total lipid, and total carbohydrate) of two marine microalgae species, namely Skeletonema costatum (S. costatum) and Phaeodactylum tricornutum (P. tricornutum), were investigated. Our findings revealed that concentrations of SMX below 150 ng/L stimulated the growth of both microalgae. Conversely, at higher concentrations, SMX inhibited their growth while promoting the synthesis of photosynthetic pigments, total protein, total lipid, and total carbohydrate (P < 0.05). Transmission electron microscope (TEM) observations demonstrated significant alterations in the ultrastructure of algal cells exposed to SMX, including nuclear marginalization, increased chloroplast volume, and heightened vacuolation. In addition, when SMX was lower than 250 ng/L, there was no oxidative damage in two microalgae cells. However, when SMX was higher than 250 ng/L, the antioxidant defense system of algal cells was activated to varying degrees, and the level of malondialdehyde (MDA) increased, indicating that algae cells were damaged by oxidation. From the molecular level, environmental concentration of SMX can induce microalgae cells to produce more energy substances, but there are almost no other adverse effects, indicating that the low level of SMX at the actual exposure level was unlikely to threaten P. tricornutum, but a higher concentration can significantly reduce its genetic products, which can affect the changes of its cell structure and damage P. tricornutum to some extent. Therefore, environmental concentration of SMX still has certain potential risks to microalgae. These outcomes improved current understanding of the potential ecological risks associated with SMX in marine environments.
Collapse
Affiliation(s)
- Pengfei Feng
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province 266071, PR China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province 210044, PR China
| | - Chen Wang
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Chenyu Wang
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Xingyu Li
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Weiyan Duan
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China.
| |
Collapse
|
2
|
Teng Y, Yang Y, Wang Z, Guan W, Liu Y, Yu H, Zou L. The cadmium tolerance enhancement through regulating glutathione conferred by vacuolar compartmentalization in Aspergillus sydowii. CHEMOSPHERE 2024; 352:141500. [PMID: 38373444 DOI: 10.1016/j.chemosphere.2024.141500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Aspergillus was found to be a vital hyperaccumulation species for heavy metal removal with admirable tolerance capacity. But the potential tolerance mechanism has not been completely studied. This study quantified the amounts of total cadmium (Cd), Cd2+, glutathione (GSH), and reactive oxygen species (ROS) in the protoplasts and vacuoles of mycelium. We modulated GSH synthesis using buthionine sulfoximine (BSO) and 2-oxothiazolidine-4-carboxylic acid (OTC) to investigate the subcellular regulatory mechanisms of GSH in the accumulation of Cd. The results confirmed that GSH plays a crucial role in vacuolar compartmentalization under Cd stress. GSH and GSSG as a redox buffer to keep the cellular redox state in balance and GSH as a metal chelating agent to reduce toxicity. When regulating the decreased GSH content with BSO, and increased GSH content with OTC, the system of Cd-GSH-ROS can change accordingly, this also supported that vacuolar compartmentalization is a detoxification strategy that can modulate the transport and storage of substances inside and outside the vacuole reasonably. Interestingly, GSH tended to be distributed in the cytoplasm, the battleground of redox takes place in the cytoplasm but not in the vacuole. These finding potentially has implications for the understanding of tolerance behavior and detoxification mechanisms of cells. In the future bioremediation of Cd in soil, the efficiency of soil remediation can be improved by developing organisms with high GSH production capacity.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Yan Yang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenjun Wang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenjie Guan
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yutong Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Yu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Ahmad B, Mukarram M, Choudhary S, Petrík P, Dar TA, Khan MMA. Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108504. [PMID: 38507841 DOI: 10.1016/j.plaphy.2024.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/23/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Nitric oxide (NO) is a gaseous free radical that acts as a messenger for various plant phenomena corresponding to photomorphogenesis, fertilisation, flowering, germination, growth, and productivity. Recent developments have suggested the critical role of NO in inducing adaptive responses in plants during salinity. NO minimises salinity-induced photosynthetic damage and improves plant-water relation, nutrient uptake, stomatal conductance, electron transport, and ROS and antioxidant metabolism. NO contributes active participation in ABA-mediated stomatal regulation. Similar crosstalk of NO with other phytohormones such as auxins (IAAs), gibberellins (GAs), cytokinins (CKs), ethylene (ET), salicylic acid (SA), strigolactones (SLs), and brassinosteroids (BRs) were also observed. Additionally, we discuss NO interaction with other gaseous signalling molecules such as reactive oxygen species (ROS) and reactive sulphur species (RSS). Conclusively, the present review traces critical events in NO-induced morpho-physiological adjustments under salt stress and discusses how such modulations upgrade plant resilience.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Botany, Govt Degree College for Women, Pulwama, University of Kashmir, 192301, India
| | - Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia; Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la República, Montevideo, Uruguay.
| | - Sadaf Choudhary
- Department of Botany, Govt Degree College for Women, Pulwama, University of Kashmir, 192301, India
| | - Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467, Garmisch-Partenkirchen, Germany
| | - Tariq Ahmad Dar
- Sri Pratap College, Cluster University Srinagar, 190001, India
| | - M Masroor A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
4
|
Cheng S, Jessica, Yoshikawa K, Cross JS. Influence of synthetic and natural microfibers on the growth, substance exchange, energy accumulation, and oxidative stress of field-collected microalgae compared with microplastic fragment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167936. [PMID: 37875192 DOI: 10.1016/j.scitotenv.2023.167936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Synthetic microfibers (MFs), which are Microplastics (MPs), have not received attention commensurate with their abundance in the environment. Currently, limited studies on MFs have focused on their effects on marine organisms. It is therefore necessary to conduct exposure experiments of MFs on freshwater organisms to provide reference data for the ecological risk assessment of MFs. As a primary producer in freshwater ecosystems, microalgae have an ecological niche that is highly overlapping with that of MFs. In this study, we examined the effects of MFs on the growth of Chlorella and indicators of oxidative stress to examine their potential risk on the microalgae population. The results showed that inhibition rate of microalgae increased with MF concentration in the range of 0.01-100 mg/L. Compared with natural fibers such as cotton and wool, PET and PP fibers showed significant growth inhibition, but less so when in fragment form with the same material and concentration. PP and PET particles, whether fibers or fragments, increased the total antioxidant capacity of microalgal cells and caused oxidative damage. To determine the influence of MFs on the interaction of cells in the environment, the exchanged substances and accumulated energy of microalgae cells were also detected. The results indicated that PP and PET fibers, as well as fragments, increased the diameter and membrane permeability of microalgae cell, thus interfering with the cell division and substance exchange processes. PET fibers and fragments showed different interactions at the level of individual cells and populations. This suggests that the evaluation of MPs should consider examinations from cells to population and even community levels in the future.
Collapse
Affiliation(s)
- Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Jessica
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Kunio Yoshikawa
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Jeffrey S Cross
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
5
|
Khan S, Galstyan H, Abbas M, Wenjing X. Advanced biotechnology strategies for detoxification of persistent organic pollutants and toxic elements in soil. CHEMOSPHERE 2023; 345:140519. [PMID: 37871876 DOI: 10.1016/j.chemosphere.2023.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
This paper aims to comprehensively examine and present the current state of persistent organic pollutants (POPs) and toxic elements (TEs) in soil. Additionally, it seeks to assess the viability of employing advanced biotechnology, specifically phytoremediation with potent microbial formulations, as a means of detoxifying POPs and TEs. In the context of the "global treaty," which is known as the Stockholm Convention, we analyzed the 3D chemical structures of POPs and its prospects for living organisms which have not been reviewed up to date. The obstacles associated with the phytoremediation strategy in biotechnology, including issues like slow plant growth and limited efficiency in contaminant uptake, have also been discussed and demonstrated. While biotechnology is recognized as a promising method for detoxifying persistent organic pollutants (POPs) and facilitating the restoration of contaminated and degraded lands, its full potential in the field is constrained by various factors. Recent advances in biotechnology, such as microbial enzymes, designer plants, composting, and nanobiotechnology techniques, have opened up new avenues for mitigating persistent organic pollutants (POPs) and toxic elements (TEs). The insights gained from this review can contribute to the development of innovative, practical, and economically viable approaches for remediating and restoring soils contaminated with persistent organic pollutants (POPs) and toxic elements (TEs). The ultimate aim is to reduce the risks to both human and environmental health.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Hrachuhi Galstyan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China
| | - Mohsin Abbas
- College of Engineering, University of Technology Bahrain, Salmabad, Kingdom of Bahrain
| | - Xiang Wenjing
- Department of International Exchange and Cooperation, Neijiang Normal University, Neijiang, 641100, China
| |
Collapse
|
6
|
Bai Y, Wan X, Lei M, Wang L, Chen T. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132463. [PMID: 37690196 DOI: 10.1016/j.jhazmat.2023.132463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Feng K, Li J, Yang Y, Li Z, Wu W. Cadmium Absorption in Various Genotypes of Rice under Cadmium Stress. Int J Mol Sci 2023; 24:ijms24098019. [PMID: 37175721 PMCID: PMC10178317 DOI: 10.3390/ijms24098019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Cadmium (Cd) is a kind of heavy metal. Cadmium pollution in paddy fields will accumulate a large amount of cadmium in rice, which will affect the growth and development of rice. In addition, long-term consumption of rice contaminated with Cd can harm human health. In this study, four rice varieties with high Cd accumulation (S4699, TLY619, JHY1586, QLY155) and four varieties with low Cd accumulation (YY4949, CYJ-7, G8YXSM, MXZ-2) were screened through field experiments for two consecutive years (2021 and 2022) and differences in antioxidant enzyme systems and expression of genes in their organs were analyzed. The total Cd content showed as follows: indica rice > japonica rice, high-Cd-accumulation variety > low-Cd-accumulation variety, and the total Cd content of each organ of rice showed root > stem > leaf > grain. The results of the antioxidant enzyme system showed that the contents of malondialdehyde (MAD), reduced glutathione (GSH), oxidized glutathione (GSSH), and peroxidase (POD) were positively correlated with the total Cd content in rice, and superoxide dismutase (SOD) showed the opposite performance in the leaves. There was no correlation between catalase (CAT) and Cd content, but CAT content decreased in leaves and grains and increased in roots and stems with increasing fertility. Based on this study, RT-qPCR was used to further validate the expression of Cd-uptake-related genes in different rice varieties. It was found that high expression of OsHMA3, OsCCX2, OsNRAMP5, and OsHMA9 genes promoted Cd uptake and translocation in rice, especially in rice varieties with high Cd accumulation. The high expression of OslRT1, OsPCR1, and OsMTP1 genes hindered Cd uptake by rice plants, which was especially evident in low-accumulating Cd rice varieties. These results provide an important theoretical reference and scientific basis for our in-depth study and understanding of the mechanism of cadmium stress tolerance in rice.
Collapse
Affiliation(s)
- Kaixuan Feng
- School of Resources and Environment, Anhui Agricultural University, Hefei 230031, China
| | - Jiangxia Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230031, China
| | - Yachun Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhong Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wenge Wu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230031, China
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- School of Resources and Environment, Anhui University, Hefei 230031, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Otulak-Kozieł K, Kozieł E, Treder K, Király L. Glutathione Contribution in Interactions between Turnip mosaic virus and Arabidopsis thaliana Mutants Lacking Respiratory Burst Oxidase Homologs D and F. Int J Mol Sci 2023; 24:ijms24087128. [PMID: 37108292 PMCID: PMC10138990 DOI: 10.3390/ijms24087128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory burst oxidase homologs (Rbohs) play crucial and diverse roles in plant tissue-mediated production of reactive oxygen species during the development, growth, and response of plants to abiotic and biotic stress. Many studies have demonstrated the contribution of RbohD and RbohF in stress signaling in pathogen response differentially modulating the immune response, but the potential role of the Rbohs-mediated response in plant-virus interactions remains unknown. The present study analyzed, for the first time, the metabolism of glutathione in rbohD-, rbohF-, and rbohD/F-transposon-knockout mutants in response to Turnip mosaic virus (TuMV) infection. rbohD-TuMV and Col-0-TuMV interactions were characterized by susceptible reaction to TuMV, associated with significant activity of GPXLs (glutathione peroxidase-like enzymes) and induction of lipid peroxidation in comparison to mock-inoculated plants, with reduced total cellular and apoplastic glutathione content observed at 7-14 dpi and dynamic induction of apoplast GSSG (oxidized glutathione) at 1-14 dpi. Systemic virus infection resulted in the induction of AtGSTU1 and AtGSTU24, which was highly correlated with significant downregulation of GSTs (glutathione transferases) and cellular and apoplastic GGT (γ-glutamyl transferase) with GR (glutathione reductase) activities. On the contrary, resistant rbohF-TuMV reactions, and especially enhanced rbohD/F-TuMV reactions, were characterized by a highly dynamic increase in total cellular and apoplastic glutathione content, with induction of relative expression of AtGGT1, AtGSTU13, and AtGSTU19 genes. Moreover, virus limitation was highly correlated with the upregulation of GSTs, as well as cellular and apoplastic GGT with GR activities. These findings clearly indicate that glutathione can act as a key signaling factor in not only susceptible rbohD reaction but also the resistance reaction presented by rbohF and rbohD/F mutants during TuMV interaction. Furthermore, by actively reducing the pool of glutathione in the apoplast, GGT and GR enzymes acted as a cell first line in the Arabidopsis-TuMV pathosystem response, protecting the cell from oxidative stress in resistant interactions. These dynamically changed signal transductions involved symplast and apoplast in mediated response to TuMV.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute-National Research Institute, 76-009 Bonin, Poland
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), 15 Herman Ottó Str., H-1022 Budapest, Hungary
| |
Collapse
|
9
|
Gao H, Yu C, Liu R, Li X, Huang H, Wang X, Zhang C, Jiang N, Li X, Cheng S, Zhang H, Li B. The Glutathione S-Transferase PtGSTF1 Improves Biomass Production and Salt Tolerance through Regulating Xylem Cell Proliferation, Ion Homeostasis and Reactive Oxygen Species Scavenging in Poplar. Int J Mol Sci 2022; 23:ijms231911288. [PMID: 36232609 PMCID: PMC9569880 DOI: 10.3390/ijms231911288] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione S-transferases (GSTs) play an essential role in plant cell detoxification and secondary metabolism. However, their accurate functions in the growth and response to abiotic stress in woody plants are still largely unknown. In this work, a Phi class Glutathione S-transferase encoding gene PtGSTF1 was isolated from poplar (P. trichocarpa), and its biological functions in the regulation of biomass production and salt tolerance were investigated in transgenic poplar. PtGSTF1 was ubiquitously expressed in various tissues and organs, with a predominant expression in leaves and inducible expression by salt stress. Transgenic poplar overexpressing PtGSTF1 showed improved shoot growth, wood formation and improved salt tolerance, consistent with the increased xylem cell number and size under normal condition, and the optimized Na+ and K+ homeostasis and strengthened reactive oxygen species scavenging during salt stress. Further transcriptome analyses demonstrated that the expressions of genes related to hydrolase, cell wall modification, ion homeostasis and ROS scavenging were up- or down-regulated in transgenic plants. Our findings imply that PtGSTF1 improves both biomass production and salt tolerance through regulating hydrolase activity, cell wall modification, ion homeostasis and ROS scavenging in transgenic poplar, and that it can be considered as a useful gene candidate for the genetic breeding of new tree varieties with improved growth under salt stress conditions.
Collapse
Affiliation(s)
- Hongsheng Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Ruichao Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Xiaoyan Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Huiqing Huang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Xueting Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Chao Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ning Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuang Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Correspondence: (H.Z.); (B.L.)
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Correspondence: (H.Z.); (B.L.)
| |
Collapse
|
10
|
Zhang L, Chu C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:30. [PMID: 35701545 PMCID: PMC9198118 DOI: 10.1186/s12284-022-00572-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/29/2022] [Indexed: 05/13/2023]
Abstract
Selenium (Se) is an essential trace element for humans and other animals. The human body mainly acquires Se from plant foods, especially cereal grains. Rice is the staple food for more than half of the world's population. Increasing the Se concentration of rice grains can increase the average human dietary Se intake. This review summarizes recent advances in the molecular mechanisms of Se uptake, transport, subcellular distribution, retranslocation, volatilization, and Se-containing protein degradation in plants, especially rice. The strategies for improving Se concentration in rice grains by increasing Se accumulation, reducing Se volatilization, and optimizing Se form were proposed, which provide new insight into Se biofortification in rice by improving the utilization efficiency of Se.
Collapse
Affiliation(s)
- Lianhe Zhang
- Luoyang Key Laboratory of Plant Nutrition and Environmental Ecology, Agricultural College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chengcai Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture and Technology, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Martínez-Lorente SE, Pardo-Hernández M, Martí-Guillén JM, López-Delacalle M, Rivero RM. Interaction between Melatonin and NO: Action Mechanisms, Main Targets, and Putative Roles of the Emerging Molecule NOmela. Int J Mol Sci 2022; 23:ijms23126646. [PMID: 35743084 PMCID: PMC9223470 DOI: 10.3390/ijms23126646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Melatonin (MEL), a ubiquitous indolamine molecule, has gained interest in the last few decades due to its regulatory role in plant metabolism. Likewise, nitric oxide (NO), a gasotransmitter, can also affect plant molecular pathways due to its function as a signaling molecule. Both MEL and NO can interact at multiple levels under abiotic stress, starting with their own biosynthetic pathways and inducing a particular signaling response in plants. Moreover, their interaction can result in the formation of NOmela, a very recently discovered nitrosated form of MEL with promising roles in plant physiology. This review summarizes the role of NO and MEL molecules during plant development and fruit ripening, as well as their interactions. Due to the impact of climate-change-related abiotic stresses on agriculture, this review also focuses on the role of these molecules in mediating abiotic stress tolerance and the main mechanisms by which they operate, from the upregulation of the entire antioxidant defense system to the post-translational modifications (PTMs) of important molecules. Their individual interaction and crosstalk with phytohormones and H2S are also discussed. Finally, we introduce and summarize the little information available about NOmela, an emerging and still very unknown molecule, but that seems to have a stronger potential than MEL and NO separately in mediating plant stress response.
Collapse
Affiliation(s)
- Sara E. Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - José M. Martí-Guillén
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Faculty of Biology, Department of Plant Physiology, University of Murcia, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Rosa M. Rivero
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Correspondence: ; Tel.: +34-968396200 (ext. 445379)
| |
Collapse
|
12
|
Gao Y, Li H, Song Y, Zhang F, Yang Z, Yang Y, Grohmann T. Response of glutathione pools to cadmium stress and the strategy to translocate cadmium from roots to leaves (Daucus carota L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153575. [PMID: 35114244 DOI: 10.1016/j.scitotenv.2022.153575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Carrots are one of the most highly consumed vegetables in the world. Due to the large area of cadmium (Cd) contaminated farmland, to abate the impact of Cd contamination on carrot quality and safety, a novel strategy is required to drive Cd translocation from the soil to the overground leafy tissues of carrots to protect the edible roots and thus ensure food security. To this end, this article presents an experimental study with mathematical models to assess the tolerance and accumulation capacity of Cd in inedible carrot leaves, as well as the regulatory factors affecting Cd distribution in carrots. The glutathione (GSH) pools were examined in carrot leaves in response to the oxidation stress induced by Cd exposures, and it was found that under low Cd stress (1 and 3 mg/L) the changes of GSH pools were dominated by the variation of GSH, showing higher GSH content and low levels of oxidized GSH content (GSSG). In contrast, both of these two indicator variables as well as the GSH/GSSG ratio all decreased under high Cd stress (5 and 9 mg/L). Combining this information with Cd concentrations in leaves, a model was established to predict the Cd accumulation capacity of leaves. The data showed that the potential Cd accumulation in carrot leaves could be as high as 514 μg/kg dry weight. Furthermore, the factors and primary physiological indicators affecting and regulating GSH pools by multiple stepwise regression were analyzed. The results showed that increasing chlorophyll a/b ratio and γ-glutamylcyclotransferase activity while inhibiting phytochelatin synthase activity could expand the tolerance of carrot leaves to Cd. These findings suggest a possible strategy for regulating the distribution of toxic metals in plants through a molecular-based approach and provide some important information that could be conducive to achieving food safety and phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China.
| | - Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China
| | - Fenglin Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China.
| | - Ying Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Teresa Grohmann
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Hao YY, Zhu YJ, Yan RQ, Gu B, Zhou XQ, Wei RR, Wang C, Feng J, Huang Q, Liu YR. Important Roles of Thiols in Methylmercury Uptake and Translocation by Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6765-6773. [PMID: 35483101 DOI: 10.1021/acs.est.2c00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioaccumulation of the neurotoxin methylmercury (MeHg) in rice is a significant concern due to its potential risk to humans. Thiols have been known to affect MeHg bioavailability in microorganisms, but how thiols influence MeHg accumulation in rice plants remains unknown. Here, we investigated effects of common low-molecular-weight thiols, including cysteine (Cys), glutathione (GSH), and penicillamine (PEN), on MeHg uptake and translocation by rice plants. Results show that rice roots can rapidly take up MeHg, and this process is influenced by the types and concentrations of thiols in the system. The presence of Cys facilitated MeHg uptake by roots and translocation to shoots, while GSH could only promote MeHg uptake, but not translocation, by roots. Conversely, PEN significantly inhibited MeHg uptake and translocation to shoots. Using labeled 13Cys assays, we also found that MeHg uptake was coupled with Cys accumulation in rice roots. Moreover, analyses of comparative transcriptomics revealed that key genes associated with metallothionein and SULTR transporter families may be involved in MeHg uptake. These findings provide new insights into the uptake and translocation of MeHg in rice plants and suggest potential roles of thiol attributes in affecting MeHg bioavailability and bioaccumulation in rice.
Collapse
Affiliation(s)
- Yun-Yun Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Jie Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruo-Qun Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren-Rui Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Insight into the Vacuolar Compartmentalization Process and the Effect Glutathione Regulation to This Process in the Hyperaccumulator Plant Solanum nigrum L. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4359645. [PMID: 35528170 PMCID: PMC9076330 DOI: 10.1155/2022/4359645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Vacuole compartmentalization plays an important role in the storage of heavy metals in hyperaccumulators. Is the vacuolar compartmentation a simple shielding process or a dynamic process that continuously consumes cell sap resources? How does glutathione affect the process of vacuolar compartmentalization? These unknown questions are very important to understand the mechanism of vacuole compartmentalization and can provide a guide for the design of hyperaccumulator plants by genetic engineering. Therefore, this study explored the enzyme activities, total cadmium, Cd2+, glutathione, oxidized glutathione, and reactive oxygen species contents in protoplasts and vacuoles of leaf cells in Solanum nigrum L. through subcellular separation. The results showed that vacuolar compartmentalization was a dynamic process that actively induced the related substances produced by cell sap to enter the vacuole for detoxification. When regulating the decreased glutathione content with buthionine sulfoximine, the total cadmium and combined cadmium in protoplasm decreased significantly, but the vacuole still maintained a high proportion of cadmium content and stable ROS content, which indicated that various external resources were preferentially used to maintain cadmium storage and homeostasis in vacuole rather than outside vacuole. These findings could guide the use of genetic engineering to design hyperaccumulator plants.
Collapse
|
15
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
16
|
Otulak-Kozieł K, Kozieł E, Przewodowski W, Ciacka K, Przewodowska A. Glutathione Modulation in PVY NTN Susceptible and Resistant Potato Plant Interactions. Int J Mol Sci 2022; 23:ijms23073797. [PMID: 35409157 PMCID: PMC8998174 DOI: 10.3390/ijms23073797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Glutathione is a metabolite that plays an important role in plant response to biotic stress through its ability to remove reactive oxygen species, thereby limiting the degree of potential oxidative damage. It can couple changes in the intracellular redox state to the development, especially the defense responses, of plants. Several studies have focused on measuring glutathione levels in virus infected plants, but have not provided complete information. Therefore, we analyzed, for the first time, the content of glutathione as well as its ultrastructural distribution related to susceptible and hypersensitive potato–Potato virus Y NTN (PVYNTN) interaction, with an aim of providing new insight into interactive responses to PVYNTN stress. Our findings reported that the inoculation of PVYNTN caused a dynamic increase in the content of glutathione, not only in resistance but also in susceptible reaction, especially at the first steps of plant–virus interaction. Moreover, the increase in hypersensitive response was much more dynamic, and accompanied by a significant reduction in the content of PVYNTN. By contrast, in susceptible potato Irys, the content of glutathione decreased between 7 and 21 days after virus inoculation, which led to a significant increase in PVYNTN concentration. Additionally, our findings clearly indicated the steady induction of two selected potato glutathione S-transferase StGSTF1 and StGSTF2 genes after PVYNTN inoculation, regardless of the interaction type. However, the relative expression level of StGSTF1 did not significantly differ between resistant and susceptible plants, whereas the relative expression levels of StGSTF2 differed between susceptible and resistant reactions. Therefore, we proposed that StGSTF2 can act as a marker of the type of response to PVYNTN. Our observations indicated that glutathione is an important component of signaling as well as the regulatory network in the PVYNTN–potato pathosystem. In resistance responses to PVYNTN, this metabolite activates plant defenses by reducing potential damage to the host plant cell, causing a reduction in virus concentration, while it can also be involved in the development of PVYNTN elicited symptoms, as well as limiting oxidative stress, leading to systemic infection in susceptible potato plants.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Włodzimierz Przewodowski
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| | - Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Agnieszka Przewodowska
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| |
Collapse
|
17
|
Chenot C, Willemart G, Gros J, Collin S. Ability of Exogenous or Wort Endogenous Enzymes to Release Free Thiols from Hop Cysteinylated and Glutathionylated S-Conjugates. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2021766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Cécile Chenot
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Guillaume Willemart
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Zeng X, Chen W, Liu C, Yin J, Yang GF. Fluorescence Probes for Reactive Sulfur Species in Agricultural Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13700-13712. [PMID: 34752105 DOI: 10.1021/acs.jafc.1c05249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfur is an element that is indispensable throughout the growth of plants. In plant cells, reactive sulfur species (RSS) play a vital role in maintaining cellular redox homeostasis and signal transduction. There is demand accordingly for a simple, highly selective, and sensitive method of RSS detection and imaging for monitoring dynamic changes and clarifying the biological functions of RSS in plant systems. Fluorescent analysis based on organic small-molecule fluorescent probes is an effective and specific approach to tracking plant RSS characteristics. This perspective summarizes the recent progress regarding organic small-molecule fluorescent probes for RSS monitoring, including small-molecule biological thiols, hydrogen sulfide, and sulfane sulfurs, in plants; it also discusses their response mechanism toward RSS and their imaging applications in plants across the agricultural chemistry field.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
19
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
20
|
Teng Y, Yu A, Tang YM, Jiang ZY, Guan WJ, Li ZS, Yu HY, Zou LY. Visualization and quantification of cadmium accumulation, chelation and antioxidation during the process of vacuolar compartmentalization in the hyperaccumulator plant Solanum nigrum L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110961. [PMID: 34315586 DOI: 10.1016/j.plantsci.2021.110961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Hyperaccumulators store metals in the vacuoles of leaf cells. To investigate the role of vacuolar compartmentalization in Cd accumulation, chelation and induced antioxidation, we quantified the amounts of total cadmium (Cd), Cd2+, glutathione (GSH) and reactive oxygen species (ROS) in leaf cells of Solanum nigrum L. The results confirmed that vacuoles were, indeed, the main storage compartments for Cd. We then found that with increased Cd treatment concentration, the proportion of vacuolar Cd in protoplasts showed its ultimate storage capacity (82.24 %-83.40 %), and the Cd concentration stored in the protoplast maintained at a certain level (73.81-77.46 mg L-1). Besides, studies on different forms of Cd showed that the chelation state was dominant in the protoplast. The large level appearance of Cd2+ outside the vacuole revealed the limitations of vacuolar Cd2+ sequestration. The relationships between the combined forms of Cd and GSH outside the vacuole (R2 = 0.9906) showed GSH was mainly distributed to important compartments for chelation, not to vacuoles. We also demonstrated the presence of ROS-induced oxidative stress and detoxification mediated by the antioxidant GSH in vacuoles, suggesting that sequestration into vacuoles is an active process accompanied by chelation and antioxidant-mediated detoxification.
Collapse
Affiliation(s)
- Yue Teng
- College of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - An Yu
- College of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Miao Tang
- Wuxi Environmental Publicity and Education Center, Wuxi Environmental Technology Assessment Center, Wuxi, 214121, China
| | - Zi-Yang Jiang
- College of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wen-Jie Guan
- College of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhi-Shuai Li
- College of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hong-Yan Yu
- College of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lu-Yi Zou
- College of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
21
|
Foliar Nourishment with Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in Phaseolus vulgaris. PLANTS 2021; 10:plants10061189. [PMID: 34207988 PMCID: PMC8230738 DOI: 10.3390/plants10061189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023]
Abstract
Novel strategic green approaches are urgently needed to raise the performance of plants subjected to stress. Two field-level experimental attempts were implemented during two (2019 and 2020) growing seasons to study the possible effects of exogenous nourishment with selenium dioxide nanoparticles (Se-NPs) on growth, physio-biochemical ingredients, antioxidant defenses, and yield of Phaseolus vulgaris (L.) plant growing on a salt-affected soil (EC = 7.55–7.61 dS m−1). At 20, 30, and 40 days from seeding, three foliar sprays were applied to plants with Se-NPs at a rate of 0.5, 1.0, or 1.5 mM. The experimental design was accomplished in randomized complete plots. The data indicate noteworthy elevations in indicators related to growth and yield; pigments related to effective photosynthesis, osmoprotectant (free proline and soluble sugars), nutrient and Se contents, K+/Na+ ratio, cell integrity (water content and stability of membranes), all enzyme activities; and all features related to leaf anatomy induced by Se-NPs foliar spray. Conversely, marked lowering in markers of Na+ content-induced oxidative stress (superoxide radical and hydrogen peroxide) and their outcomes in terms of ionic leakage and malondialdehyde were reported by foliar nourishment with Se-NPS compared to spraying leaves with water as an implemented control. The best results were recorded with Se-NPs applied at 1.0 mM, which mitigated the negative effects of soil salinity (control results). Therefore, the outcomes of this successful study recommend the use of Se-NPs at a rate of 1.0 mM as a foliar spray to grow common beans on saline soils with EC up to 7.55–7.61 dS m−1.
Collapse
|
22
|
Zhang Y, Zhang X, Guo R, Zhang Q, Cao X, Suranjana M, Liu Y. Effects of florfenicol on growth, photosynthesis and antioxidant system of the non-target organism Isochrysis galbana. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108764. [PMID: 32294556 DOI: 10.1016/j.cbpc.2020.108764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022]
Abstract
Florfenicol (FFC) is one of the most universally used antibiotics in aquaculture, which is substitute for chloramphenicol extensively, while the massive residues in aquatic environment were assumed to threaten the non-target organisms. Present research investigated the effects of florfenicol on growth, chlorophyll content, photosynthesis, and antioxidant ability of Isochrysis galbana. The results showed that FFC at 0.001-1 mg/L stimulated the growth of I. galbana and increased the content of chlorophyll. In addition, photosynthesis of I. galbana was inhibited and the photosynthetic parameters were uplifted with the increased exposure duration and FFC concentration. Furthermore, superoxide dismutase (SOD), catalase (CAT) activity significantly dropped at 0.01-20 mg/L FFC, while the contents of malondialdehyde (MDA), glutathione (GSH) and reactive oxygen species (ROS) increased after 72 h exposure, indicating that FFC at high concentrations caused a serious oxidative stress on algae. The simultaneous increase of ROS disrupted the equilibration between oxidants and antioxidant systems. Under the high concentration of FFC, the excessive of ROS was generated in algae which affected the membrane permeability and further decreased the cell biomass. Present study showed that acute exposure (72 h) at the environmental relevant concentration (0.01 mg/L) cannot induce the physiological dysfunction of the microalgae I. galbana, but the feeding concentration (20 mg/L) can. Additionally, this study hinted the possible negative impacts on ecosystems with the chronic exposure even at low FFC concentration or with the uncontrolled use of FFC.
Collapse
Affiliation(s)
- Yingqi Zhang
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Xianyu Zhang
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Rui Guo
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Qian Zhang
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China.
| | - Xupeng Cao
- Dalian institute of chemical physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Mehjabin Suranjana
- Agroforestry and Environmental Sciences, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ying Liu
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| |
Collapse
|
23
|
Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids. Sci Rep 2020; 10:8243. [PMID: 32427937 PMCID: PMC7237458 DOI: 10.1038/s41598-020-65219-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfadiazine (SD), sulfamerazine (SM1), and sulfamethazine (SM2) are widely used and disorderly discharged into surface water, causing contamination of lakes and rivers. However, microalgae are regard as a potential resource to alleviate and degrade antibiotic pollution. The physiological changes of Chlorella vulgaris in the presence of three sulfonamides (SAs) with varying numbers of –CH3 groups and its SA-removal efficiency were investigated following a 7-day exposure experiment. Our results showed that the growth inhibitory effect of SD (7.9–22.6%), SM1 (7.2–45.9%), and SM2 (10.3–44%) resulted in increased proteins and decreased soluble sugars. Oxidative stress caused an increase in superoxide dismutase and glutathione reductase levels but decreased catalase level. The antioxidant responses were insufficient to cope-up with reactive oxygen species (hydrogen peroxide and superoxide anion) levels and prevent oxidative damage (malondialdehyde level). The ultrastructure and DNA of SA-treated algal cells were affected, as evident from the considerable changes in the cell wall, chloroplast, and mitochondrion, and DNA migration. C. vulgaris-mediated was able to remove up to 29% of SD, 16% of SM1, and 15% of SM2. Our results suggest that certain concentrations of specific antibiotics may induce algal growth, and algal-mediated biodegradation process can accelerate the removal of antibiotic contamination.
Collapse
|
24
|
García-Quirós E, Alché JDD, Karpinska B, Foyer CH. Glutathione redox state plays a key role in flower development and pollen vigour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:730-741. [PMID: 31557297 PMCID: PMC6946011 DOI: 10.1093/jxb/erz376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
The importance of the glutathione pool in the development of reproductive tissues and in pollen tube growth was investigated in wild-type (WT) Arabidopsis thaliana, a reporter line expressing redox-sensitive green fluorescent protein (roGFP2), and a glutathione-deficient cad2-1 mutant (cad2-1/roGFP2). The cad2-1/roGFP2 flowers had significantly less reduced glutathione (GSH) and more glutathione disulfide (GSSG) than WT or roGFP2 flowers. The stigma, style, anther, germinated pollen grains, and pollen tubes of roGFP2 flowers had a low degree of oxidation. However, these tissues were more oxidized in cad2-1/roGFP2 flowers than the roGFP2 controls. The ungerminated pollen grains were significantly more oxidized than the germinated pollen grains, indicating that the pollen cells become reduced upon the transition from the quiescent to the metabolically active state during germination. The germination percentage was lower in cad2-1/roGFP2 pollen and pollen tube growth arrested earlier than in roGFP2 pollen, demonstrating that increased cellular reduction is essential for pollen tube growth. These findings establish that ungerminated pollen grains exist in a relatively oxidized state compared with germinating pollen grains. Moreover, failure to accumulate glutathione and maintain a high GSH/GSSG ratio has a strong negative effect on pollen germination.
Collapse
Affiliation(s)
- Estefanía García-Quirós
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Christine H Foyer
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Correspondence:
| |
Collapse
|
25
|
Nakamura SI, Suzui N, Yin YG, Ishii S, Fujimaki S, Kawachi N, Rai H, Matsumoto T, Sato-Izawa K, Ohkama-Ohtsu N. Effects of enhancing endogenous and exogenous glutathione in roots on cadmium movement in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110304. [PMID: 31779894 DOI: 10.1016/j.plantsci.2019.110304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 05/20/2023]
Abstract
Glutathione (GSH) is a thiol-containing compound involved in many aspects of plant metabolism. In the present study, we investigated how enhancing endogenous and exogenous GSH affects cadmium (Cd) movement and distribution in Arabidopsis plants cultured hydroponically. Transgenic Arabidopsis plants with a strong ability to synthesize GSH in roots were generated by transforming the gene encoding the bifunctional γ-glutamylcysteine synthetase-glutathione synthetase enzyme from Streptococcus thermophiles (StGCS-GS). Enhancing endogenous and exogenous GSH decreased the Cd translocation ratio in different ways. Only exogenous GSH significantly inhibited Cd translocation from roots to shoots in wild-type and transgenic Arabidopsis plants. Our study demonstrated that GSH mainly functions outside root cells to inhibit Cd translocation from roots to shoots.
Collapse
Affiliation(s)
- Shin-Ichi Nakamura
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo, 156-8502, Japan; Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan.
| | - Nobuo Suzui
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-cho, Takasaki-shi, Gunma, 370-1207, Japan
| | - Yong-Gen Yin
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-cho, Takasaki-shi, Gunma, 370-1207, Japan
| | - Satomi Ishii
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-cho, Takasaki-shi, Gunma, 370-1207, Japan
| | - Shu Fujimaki
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-cho, Takasaki-shi, Gunma, 370-1207, Japan; Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-cho, Takasaki-shi, Gunma, 370-1207, Japan
| | - Hiroki Rai
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan
| | - Takashi Matsumoto
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kanna Sato-Izawa
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo, 156-8502, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| |
Collapse
|
26
|
Zhu Y, Gao H, Lu M, Hao C, Pu Z, Guo M, Hou D, Chen LY, Huang X. Melatonin-Nitric Oxide Crosstalk and Their Roles in the Redox Network in Plants. Int J Mol Sci 2019; 20:E6200. [PMID: 31818042 PMCID: PMC6941097 DOI: 10.3390/ijms20246200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/28/2023] Open
Abstract
Melatonin, an amine hormone highly conserved during evolution, has a wide range of physiological functions in animals and plants. It is involved in plant growth, development, maturation, and aging, and also helps ameliorate various types of abiotic and biotic stresses, including salt, drought, heavy metals, and pathogens. Melatonin-related growth and defense responses of plants are complex, and involve many signaling molecules. Among these, the most important one is nitric oxide (NO), a freely diffusing amphiphilic biomolecule that can easily cross the cell membrane, produce rapid signal responses, and participate in a wide variety of physiological reactions. NO-induced S-nitrosylation is also involved in plant defense responses. NO interacts with melatonin as a long-range signaling molecule, and helps regulate plant growth and maintain oxidative homeostasis. Exposure of plants to abiotic stresses causes the increase of endogenous melatonin levels, with the consequent up-regulation of melatonin synthesis genes, and further increase of melatonin content. The application of exogenous melatonin causes an increase in endogenous NO and up-regulation of defense-related transcription factors, resulting in enhanced stress resistance. When plants are infected by pathogenic bacteria, NO acts as a downstream signal to lead to increased melatonin levels, which in turn induces the mitogen-activated protein kinase (MAPK) cascade and associated defense responses. The application of exogenous melatonin can also promote sugar and glycerol production, leading to increased levels of salicylic acid and NO. Melatonin and NO in plants can function cooperatively to promote lateral root growth, delay aging, and ameliorate iron deficiency. Further studies are needed to clarify certain aspects of the melatonin/NO relationship in plant physiology.
Collapse
Affiliation(s)
- Ying Zhu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Hang Gao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Mengxin Lu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Chengying Hao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Zuoqian Pu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Miaojie Guo
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Dairu Hou
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Huang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| |
Collapse
|
27
|
Gao M, Liu Y, Song Z. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). CHEMOSPHERE 2019; 237:124482. [PMID: 31398608 DOI: 10.1016/j.chemosphere.2019.124482] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 05/23/2023]
Abstract
The increase in the proportion of microplastics in the environment has intensified the interest in phthalate and microplastic contamination in recent years. In this study, we investigated the response of photosynthetic parameters and the antioxidant system of lettuce to di-n-butyl phthalate (DBP) stress and exposure to various concentrations of microplastic polyethylene (MP) for different durations (14 d and 28 d). Lettuce growth, photosynthetic parameters, and chlorophyll content were reduced significantly after MP- and DBP-only treatments and after the combined (MP + DBP) treatments with both pollutants (P < 0.05), when compared with the control. Our findings indicated that the exposure to MP can inhibit growth, hinder photosynthesis, and interfere with the antioxidant defense system in lettuce. Specifically, compared with the DBP-only treatment group, in all MP + DBP treatment groups, the lettuce growth parameters (dry and fresh weights of the leaves and roots and the number of leaves) decreased (P < 0.05). Moreover, the photosynthetic rate, stomatal conductance, transient transpiration rate, fluorescence parameters, chlorophyll content of leaves, and activity of Rubisco decreased, but the intercellular CO2 concentration increased in all MP + DBP treatment groups. The reduction in photosynthesis was attributed to the limitation of non-porosity and inhibition of the photoelectron flow, and the increase in exogenous MP content aggravated the effect of DBP on photosynthesis in lettuce. Compared with the DBP-only group, in all MP + DBP treatment groups, the content of superoxide radicals and hydrogen peroxide in lettuce leaves and roots increased. Antioxidant levels increased with the increase in MP content, except in the 1.0 mg mL-1 MP treatment after 14 d. Although the antioxidant system exhibited certain protective effects in the latter treatment, the cell membranes were still damaged. The degree of damage to cells decreased with the growth of lettuce, but the damage to root tissue always remained higher than that of the leaves. In conclusion, exposure to exogenous MP exacerbated the damage to lettuce by DBP.
Collapse
Affiliation(s)
- Minling Gao
- School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China; Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Yu Liu
- School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China; Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China.
| |
Collapse
|
28
|
Pradedova EV, Nimaeva OD, Rakevich AL, Salyaev RK. Comparative analyses of glutathione system of vacuoles and leucoplasts isolated from the storage parenchyma cells of dormant red beetroots (Beta vulgaris L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:52-63. [PMID: 31665667 DOI: 10.1016/j.plaphy.2019.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The role of glutathione in the plant vacuole is still being debated. In the present paper, the redox state of glutathione and the activity of glutathione S-transferase (GST, E 2.5.1.18) in the vacuole compared to those in leucoplast have been studied. Organelles were isolated from dormant red beet (Beta vulgaris L.) taproots. Two generally used approaches have been applied to quantitatively assess the content of glutathione. Initially, levels of glutathione were measured in isolated organelles after labeling with monochlorobimane (MCB) and imaging with the use of confocal laser scanning microscopy. However, there are factors limiting the specificity of this method, because of which the resulting concentrations of vacuolar GSH have been underestimated. Another approach used was HPLC, which allows to simultaneously quantify the reduced glutathione (GSH) and glutathione disulfide (GSSG). The concentration of the total glutathione (GSHt) and GSSG in vacuoles determined with the aid of HPLC-UV was higher in comparison to that in the leucoplasts. The reduction potential (Eh) for the glutathione couple in the vacuoles was more positive (-163 mV), than that in plastids (-282 mV). The relatively rapid increase in fluorescence in the isolated vacuoles and plastids during MCB-labeling has indicated to the contribution of GSTs, since the conjugation of GSH to bimane is catalysed by these enzymes. The GST activity in the vacuoles has been assessed to be quite high compared to that of leucoplasts. The number of isoforms of GSTs also differed markedly in vacuoles and plastids. Collectively, our findings suggest the idea that the glutathione accumulated by central vacuole seems to contribute to the redox processes and to the detoxification, which can take place in this compartment.
Collapse
Affiliation(s)
- Elena V Pradedova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132 Lermontov Str., 664033, Irkutsk, Russia.
| | - Oksana D Nimaeva
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132 Lermontov Str., 664033, Irkutsk, Russia
| | - Alexander L Rakevich
- Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, 130a Lermontov Str., 664033, Irkutsk, Russia
| | - Rurik K Salyaev
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132 Lermontov Str., 664033, Irkutsk, Russia
| |
Collapse
|
29
|
Wang C, Ning Z, Wan F, Huang R, Chao L, Kang Z, Yang F, Zhong G, Li Y, Pan J, Tang Z, Hu L. Characterization of the cellular effects and mechanism of arsenic trioxide-induced hepatotoxicity in broiler chickens. Toxicol In Vitro 2019; 61:104629. [PMID: 31442540 DOI: 10.1016/j.tiv.2019.104629] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022]
Abstract
To characterize the cellular effects and mechanism of arsenic trioxide (ATO)-induced hepatotoxicity in broiler chickens, increasing concentrations of ATO (0, 0.6, 1.2, 2.4, and 4.8 μM) were added to chicken hepatocyte cultures in vitro. The changes in hepatocyte morphology, oxidative stress and apoptosis were evaluated using fluorescence microscopy and flow cytometry. The effects of ATO on mRNA or protein expression of antioxidant enzymes, especially methionine sulfoxide reductase (Msr), were analyzed using qRT-PCR and western blotting assays. Increased apoptosis were concomitant with increased reactive oxygen species (ROS) accumulation and upregulation of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) with increasing ATO concentrations. Moreover, G1 phase arrest and dysregulation of the balance between antiapoptotic versus proapoptotic factors were noted. Furthermore, upregulation of HO-1, SOD-1, and TRX in the ATO groups were consistent with ATO-induced oxidative damage. High Msr, SOD-1, TRX, Bak1, Bax, and p53 protein levels in the ATO groups indicate that these proteins may have accumulated to counter ATO-induced oxidative stress. ROS scavenger N-acetyl-l-cysteine (NAC) could reverse ATO-induced oxidative damage and restore hepatocyte viability, even with compromised Msr function. Our findings suggest that Msr can protect broiler hepatocytes against ATO-induced oxidative stress. Furthermore, NAC-mediated reversal of oxidative damage may represent a strategy to mitigate potential economic losses associated with arsenic poisoning in the poultry industry.
Collapse
Affiliation(s)
- Congcong Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhijun Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Limin Chao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlong Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Hell AF, Gasulla F, Gonzï Lez-Hourcade MA, Del Campo EM, Centeno DC, Casano LM. Tolerance to Cyclic Desiccation in Lichen Microalgae is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System. PLANT & CELL PHYSIOLOGY 2019; 60:1880-1891. [PMID: 31127294 DOI: 10.1093/pcp/pcz103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Oxidative stress is a crucial challenge for lichens exposed to cyclic desiccation and rehydration (D/R). However, strategies to overcome this potential stress are still being unraveled. Therefore, the physiological performance and antioxidant mechanisms of two lichen microalgae, Trebouxia sp. (TR9) and Coccomyxa simplex (Csol), were analyzed. TR9 was isolated from Ramalina farinacea, a Mediterranean fruticose epiphytic lichen adapted to xeric habitats, while Csol is the phycobiont of Solorina saccata, a foliaceous lichen that grows on humid rock crevices. The tolerance to desiccation of both species was tested by subjecting them to different drying conditions and to four consecutive daily cycles of D/R. Our results show that a relative humidity close to that of their habitats was crucial to maintain the photosynthetic rates. Concerning antioxidant enzymes, in general, manganese superoxide dismutases (MnSODs) were induced after desiccation and decreased after rehydration. In TR9, catalase (CAT)-A increased, and its activity was maintained after four cycles of D/R. Ascorbate peroxidase activity was detected only in Csol, while glutathione reductase increased only in TR9. Transcript levels of antioxidant enzymes indicate that most isoforms of MnSOD and FeSOD were induced by desiccation and repressed after rehydration. CAT2 gene expression was also upregulated and maintained at higher levels even after four cycles of D/R in accordance with enzymatic activities. To our knowledge, this is the first study to include the complete set of the main antioxidant enzymes in desiccation-tolerant microalgae. The results highlight the species-specific induction of the antioxidant system during cyclic D/R, suggesting a priming of oxidative defence metabolism.
Collapse
Affiliation(s)
- Aline F Hell
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
- Centre of Natural Sciences and Humanities, Federal University of ABC, S�o Bernardo do Campo, SP, Brazil
| | - Francisco Gasulla
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
| | | | - Eva M Del Campo
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
| | - Danilo C Centeno
- Centre of Natural Sciences and Humanities, Federal University of ABC, S�o Bernardo do Campo, SP, Brazil
| | - Leonardo M Casano
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
| |
Collapse
|
31
|
Chenot C, Robiette R, Collin S. First Evidence of the Cysteine and Glutathione Conjugates of 3-Sulfanylpentan-1-ol in Hop ( Humulus lupulus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4002-4010. [PMID: 30874436 DOI: 10.1021/acs.jafc.9b00225] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
After evidence of the cysteinylated precursors of 3-sulfanyl-4-methylpentan-1-ol (Cys-26) and 3-sulfanylhexan-1-ol (Cys-23) in hop, S-glutathione precursors (G-23 and G-26) were recently discovered in different dual-purpose hop varieties. Because free 3-sulfanylpentan-1-ol (21) has also been detected in hop, the present work aimed to identify its potential precursors. The compounds S-3-(1-hydroxylpentyl)cysteine (Cys-21) and S-3-(1-hydroxylpentyl)glutathione (G-21) were first synthesized and characterized by nuclear magnetic resonance and high-resolution mass spectrometry. High-performance liquid chromatography-positive electrospray ionization-tandem mass spectrometry evidenced both for the first time in hop. Both S conjugates were further quantitated in six hop samples: the well-known Saaz, Amarillo, Citra, Hallertau Blanc, Nelson Sauvin, and Polaris. Similar to G-23, G-21 appeared ubiquitous to all varieties. Of all of the samples investigated here, Citra (harvest 2017) emerged as the richest in G-21, with 18 mg/kg of dry matter. Cys-21 was found in all samples at a much lower concentration (up to 0.2 mg/kg of dry matter in Polaris, harvest 2017). Model media spiked with Cys-21 or G-21 allowed for the confirmation that brewing yeast is able to release free compound 21 from them.
Collapse
Affiliation(s)
- Cécile Chenot
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute (ELIM), Faculté des Bioingénieurs , Université catholique de Louvain , Croix du Sud 2 , Box L7.05.07, B-1348 Louvain-la-Neuve , Belgium
| | - Raphaël Robiette
- Institute of Condensed Matter and Nanosciences (IMCN) , Université catholique de Louvain , Place Louis Pasteur 1 , Box L4.01.02, B-1348 Louvain-la-Neuve , Belgium
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute (ELIM), Faculté des Bioingénieurs , Université catholique de Louvain , Croix du Sud 2 , Box L7.05.07, B-1348 Louvain-la-Neuve , Belgium
| |
Collapse
|
32
|
Desoky ESM, Elrys AS, Rady MM. Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metals-contaminated saline soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:50-60. [PMID: 30419506 DOI: 10.1016/j.ecoenv.2018.10.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 05/07/2023]
Abstract
Green approaches for improving plant performance using natural supplementations are highly seeking. Following a preliminary study conducted on contaminated saline (EC = 7.75 dS m-1) and normal (EC = 1.4 dS m-1) soils, two main field trials were conducted to study the potential effects of licorice root (LRE; 0.5%) and moringa seed (MSE; 0.5%) extracts, supplemented to soil through irrigation water (SA) and/or as foliar spray (FS), on performance, physio-biochemical components, antioxidant defense system, and contaminants contents of Capsicum annuum plants grown on heavy metals-contaminated saline soil. Both extracts were applied in single treatments such as LRE-SA, MSE-SA, LRE-FS, and MSE-FS or in integrations like LRE-SA+LRE-FS, LRE-SA+MSE-FS, MSE-SA+LRE-FS, and MSE-SA+MSE-FS. The preliminary study results showed significant reductions in plant performance (growth and yield), chlorophylls content and significant increase in Cd content due to heavy metals and salt stress. However, LRE and MSE applied singly or in combinations positively modified these parameters compared to the control (SA and FS were applied with tap water). On the other hand, these parameters were not responded to LRE and/or MSE applications on the normal soil. The main studies results showed that all single or integrative treatments significantly increased plant growth and yield, leaf contents of leaf photosynthetic pigments, free proline, total soluble sugars, N, P, and K+, ratio of K+/Na+, and activities of CAT, POX, APX, SOD, and GR. In contrast, contaminants; Na+, Cd, Cu, Pb and Ni contents in plant leaves and fruits were significantly reduced on heavy metals-contaminated saline soil compared to the control. Additionally, all integrative treatments significantly exceeded all single treatments in this concern. The integrative MSE-SA+LRE-FS was the best treatment that is recommended to be used to maximize pepper plant performances and minimize plant contaminant contents on contaminated saline soils.
Collapse
Affiliation(s)
- El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt.
| |
Collapse
|
33
|
Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res 2018; 65:e12526. [PMID: 30256447 DOI: 10.1111/jpi.12526] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
34
|
Naderi S, Gholami M, Baninasab B, Afyuni M. Physiological responses to cadmium stress in strawberry treated with pomegranate peel-activated carbon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:599-607. [PMID: 29688051 DOI: 10.1080/15226514.2017.1405380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many reports have already been published regarding the removal of heavy metals from aqueous solutions onto activated carbon. However, the biosorbents' effect on the plant response still needs further investigation. In this study, activated carbon derived from the pomegranate peel [pomegranate activated carbons (PAC)] was used to see the effects of the addition of PAC on growing strawberry in Cd-contaminated sand. Cd accumulation and toxicity to strawberry was investigated by measuring the concentration of Cd in plant tissues and various biochemical activities of plant. Our results suggested that PAC had a high sorption capacity for Cd. Strawberry plant tried to deal with the Cd-induced oxidative stress by strengthening its antioxidant competences and decreasing Cd absorption. In comparison with the control, PAC applied to the sand decreased the level of lipid peroxidation and enhanced the carotenoid content. The greater tolerance of strawberry toward the level of Cd due to the application of PAC was associated with improving the physical conditions of the soil, increasing the amounts of some essential elements and decreasing the level of Cd absorption. Gaviota strawberry cultivar exposed to 5 or 10 mg kg-1 Cd was able to adopt a new metabolic equilibrium, allowing the plant to cope with this metal.
Collapse
Affiliation(s)
- Somayeh Naderi
- a Department of Horticulture , College of Agriculture, Isfahan University of Technology , Isfahan , Islamic Republic of Iran
| | - Mahdiyeh Gholami
- a Department of Horticulture , College of Agriculture, Isfahan University of Technology , Isfahan , Islamic Republic of Iran
| | - Bahram Baninasab
- a Department of Horticulture , College of Agriculture, Isfahan University of Technology , Isfahan , Islamic Republic of Iran
| | - Majid Afyuni
- b Department of Soil Sciences , College of Agriculture, Isfahan University of Technology , Isfahan , Islamic Republic of Iran
| |
Collapse
|
35
|
Giraudo M, Cottin G, Esperanza M, Gagnon P, Silva AOD, Houde M. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3333-3342. [PMID: 28708270 DOI: 10.1002/etc.3908] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/16/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gpx ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc., on behalf of SETAC.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
| | - Guillaume Cottin
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
- Université Paris Descartes, Paris, France
| | - Marta Esperanza
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad da Coruña and Campus de A Zapateira, A Coruña, Spain
| | - Pierre Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Abstract
SIGNIFICANCE Glutathione degradation has for long been thought to occur only on noncytosolic pools. This is because there has been only one enzyme known to degrade glutathione (γ-glutamyl transpeptidase) and this localizes to either the plasma membrane (mammals, bacteria) or the vacuolar membrane (yeast, plants) and acts on extracellular or vacuolar pools. The last few years have seen the discovery of several new enzymes of glutathione degradation that function in the cytosol, throwing new light on glutathione degradation. Recent Advances: The new enzymes that have been identified in the last few years that can initiate glutathione degradation include the Dug enzyme found in yeast and fungi, the ChaC1 enzyme found among higher eukaryotes, the ChaC2 enzyme found from bacteria to man, and the RipAY enzyme found in some bacteria. These enzymes play roles ranging from housekeeping functions to stress responses and are involved in processes such as embryonic neural development and pathogenesis. CRITICAL ISSUES In addition to delineating the pathways of glutathione degradation in detail, a critical issue is to find how these new enzymes impact cellular physiology and homeostasis. FUTURE DIRECTIONS Glutathione degradation plays a far greater role in cellular physiology than previously envisaged. The differential regulation and differential specificities of various enzymes, each acting on distinct pools, can lead to different consequences to the cell. It is likely that the coming years will see these downstream effects being unraveled in greater detail and will lead to a better understanding and appreciation of glutathione degradation. Antioxid. Redox Signal. 27, 1200-1216.
Collapse
Affiliation(s)
- Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research , Mohali, Mohali, India
| | - Amandeep Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research , Mohali, Mohali, India
| |
Collapse
|
37
|
Guo H, Chen H, Hong C, Jiang D, Zheng B. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:119-128. [PMID: 28324818 DOI: 10.1016/j.ecoenv.2017.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 05/03/2023]
Abstract
Malic acid (MA) plays an important role in the regulation of plant growth, stomatal aperture, nutrition elements homeostasis and toxic metals tolerance. However, little is known about the effects of exogenous MA on physiological and biochemical responses to toxic metals in plants. To measure the alleviation roles of exogenous MA against cadmium (Cd), we determined the effects of MA on plant growth, net photosynthetic rate (Pn), reactive oxygen species (ROS) accumulation and the activities of anti-oxidant enzymes in the leaves of Miscanthus sacchariflorus (M. sacchariflorus) under Cd stress. The Cd exposure alone significantly inhibited plant growth and Pn, but increased the accumulation of ROS even though the anti-oxidant enzymes were markedly activated in the leaves of M. sacchariflorus. Treatment with MA significantly enhanced plant growth and decreased Cd accumulation accompanied by increasing Pn under Cd stress as compared to Cd stress alone, especially when treatment with high concentration of MA (200μM) was used. In addition, Cd and MA indicated synergistic effects by further increasing the activities and genes expression of partial anti-oxidant enzymes, thus resulting in higher glutathione accumulation and reduction of ROS production. The results showed that application of MA alleviated Cd-induced phytotoxicity and oxidant damage through the regulation of both enzymatic and non-enzymatic anti-oxidants under Cd stress in M. sacchariflorus.
Collapse
Affiliation(s)
- Haipeng Guo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Houming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuntao Hong
- Academy of Agricultural Sciences of Ningbo City, Ningbo 315040, China
| | - Dean Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou 311300, China.
| |
Collapse
|
38
|
Lee MR, Ma JY, Sung CK. Chronic dietary ginseng extract administration ameliorates antioxidant and cholinergic systems in the brains of aged mice. J Ginseng Res 2017; 41:615-619. [PMID: 29021712 PMCID: PMC5628339 DOI: 10.1016/j.jgr.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Background Black ginseng has a more potent biological activity than non-steamed ginseng. We investigated the effects of long-term intake of dietary black ginseng extract (BG) on antioxidant activity in aged mice. We also compared the effects of BG on cognitive deficits with those of white ginseng extract (WG) and red ginseng extract (RG). Methods Ten-month-old mice were fed an AIN-93G-based diet containing 10 g/kg (low dose, L) or 30 g/kg (high dose, H) WG powder, RG powder, or BG powder for 24 wk. We measured serum lipids, the activities of antioxidant enzymes, and malondialdehyde levels. Additionally, the protein expression levels of choline acetyltransferase and vesicular acetylcholine transporter, which are presynaptic cholinergic markers in the cortex and hippocampus of the brain, were measured by western blotting. Results Triglyceride levels were reduced in all the extract-treated mice, except those in the LBG group. High-density lipoprotein cholesterol levels in the HBG group were higher than those in the control group. Total cholesterol levels were reduced in the LBG group. Additionally, glucose levels in the HBG group were significantly reduced by 41.2%. There were lower levels of malondialdehyde in the LBG group than in the control group. Furthermore, glutathione reductase activity increased in the HWG group and the HRG group. The protein expression levels of choline acetyltransferase and vesicular acetylcholine transporter significantly increased in all the ginseng-treated groups. Conclusion The results suggest that supplementation with the tested ginseng extracts may suppress the cognitive decline associated with aging, via regulation of the cholinergic and antioxidant defense systems.
Collapse
Affiliation(s)
- Mi Ra Lee
- Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Jin Yeul Ma
- Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Chang Keun Sung
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Mnich E, Vanholme R, Oyarce P, Liu S, Lu F, Goeminne G, Jørgensen B, Motawie MS, Boerjan W, Ralph J, Ulvskov P, Møller BL, Bjarnholt N, Harholt J. Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing LigD, LigF and LigG from Sphingomonas paucimobilis SYK-6. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:581-593. [PMID: 27775869 PMCID: PMC5399005 DOI: 10.1111/pbi.12655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2016] [Accepted: 10/10/2016] [Indexed: 05/02/2023]
Abstract
Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the β-aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolic metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized β-aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided.
Collapse
Affiliation(s)
- Ewelina Mnich
- Plant Biochemistry LaboratoryDepartment of Plant Biology and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Ruben Vanholme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Department of Plant Systems BiologyVIBGhentBelgium
| | - Paula Oyarce
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Department of Plant Systems BiologyVIBGhentBelgium
| | - Sarah Liu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWIUSA
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWIUSA
| | | | - Bodil Jørgensen
- Section for Plant GlycobiologyDepartment of Plant Biology and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Mohammed S. Motawie
- Plant Biochemistry LaboratoryDepartment of Plant Biology and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Wout Boerjan
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Department of Plant Systems BiologyVIBGhentBelgium
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWIUSA
| | - Peter Ulvskov
- Section for Plant GlycobiologyDepartment of Plant Biology and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Birger L. Møller
- Plant Biochemistry LaboratoryDepartment of Plant Biology and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Carlsberg Research LaboratoryCopenhagenDenmark
| | - Nanna Bjarnholt
- Plant Biochemistry LaboratoryDepartment of Plant Biology and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Jesper Harholt
- Section for Plant GlycobiologyDepartment of Plant Biology and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Carlsberg Research LaboratoryCopenhagenDenmark
| |
Collapse
|
40
|
Podgórska A, Burian M, Szal B. Extra-Cellular But Extra-Ordinarily Important for Cells: Apoplastic Reactive Oxygen Species Metabolism. FRONTIERS IN PLANT SCIENCE 2017; 8:1353. [PMID: 28878783 PMCID: PMC5572287 DOI: 10.3389/fpls.2017.01353] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/20/2017] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS), by their very nature, are highly reactive, and it is no surprise that they can cause damage to organic molecules. In cells, ROS are produced as byproducts of many metabolic reactions, but plants are prepared for this ROS output. Even though extracellular ROS generation constitutes only a minor part of a cell's total ROS level, this fraction is of extraordinary importance. In an active apoplastic ROS burst, it is mainly the respiratory burst oxidases and peroxidases that are engaged, and defects of these enzymes can affect plant development and stress responses. It must be highlighted that there are also other less well-known enzymatic or non-enzymatic ROS sources. There is a need for ROS detoxification in the apoplast, and almost all cellular antioxidants are present in this space, but the activity of antioxidant enzymes and the concentration of low-mass antioxidants is very low. The low antioxidant efficiency in the apoplast allows ROS to accumulate easily, which is a condition for ROS signaling. Therefore, the apoplastic ROS/antioxidant homeostasis is actively engaged in the reception and reaction to many biotic and abiotic stresses.
Collapse
Affiliation(s)
| | | | - Bożena Szal
- *Correspondence: Bożena Szal, Anna Podgórska,
| |
Collapse
|
41
|
Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC. Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids. FRONTIERS IN PLANT SCIENCE 2017; 8:69. [PMID: 28220130 PMCID: PMC5292435 DOI: 10.3389/fpls.2017.00069] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/12/2017] [Indexed: 05/18/2023]
Abstract
Consequences of drought stress in crop production systems are perhaps more deleterious than other abiotic stresses under changing climatic scenarios. Regulations of physio-biochemical responses of plants under drought stress can be used as markers for drought stress tolerance in selection and breeding. The present study was conducted to appraise the performance of three different maize hybrids (Dong Dan 80, Wan Dan 13, and Run Nong 35) under well-watered, low, moderate and SD conditions maintained at 100, 80, 60, and 40% of field capacity, respectively. Compared with well-watered conditions, drought stress caused oxidative stress by excessive production of reactive oxygen species (ROS) which led to reduced growth and yield formation in all maize hybrids; nevertheless, negative effects of drought stress were more prominent in Run Nong 35. Drought-induced osmolyte accumulation and strong enzymatic and non-enzymatic defense systems prevented the severe damage in Dong Dan 80. Overall performance of all maize hybrids under drought stress was recorded as: Dong Dan 80 > Wan Dan 13 > Run Nong 35 with 6.39, 7.35, and 16.55% yield reductions. Consequently, these biochemical traits and differential physiological responses might be helpful to develop drought tolerance genotypes that can withstand water-deficit conditions with minimum yield losses.
Collapse
Affiliation(s)
- Shakeel A. Anjum
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Umair Ashraf
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
- Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of AgricultureGuangzhou, China
| | - Mohsin Tanveer
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| | - Imran Khan
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Babar Shahzad
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Ali Zohaib
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Farhat Abbas
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | | | - Iftikhar Ali
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Long C. Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- *Correspondence: Long C. Wang,
| |
Collapse
|
42
|
Bashri G, Prasad SM. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:329-338. [PMID: 27344401 DOI: 10.1016/j.ecoenv.2016.06.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/20/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
In the present study, effect of exogenous indole-3-acetic acid at their different levels (i.e. low; IAAL, 10µM and high; IAAH, 100µM) were studied on growth, oxidative stress biomarkers and antioxidant enzymes (SOD, POD, CAT and GST), and metabolites (AsA and GSH) as well as enzymes (APX, GR and DHAR) of ascorbate-glutathione cycle in Trigonella foenum-graecum L. seedlings grown under cadmium (Cd1, 3mgCd kg(-1) soil and Cd2, 9mgCd kg(-1) soil) stress. Cadmium (Cd) at both doses caused reduction in growth which was correlated with enhanced lipid peroxidation and damage to membrane as a result of excess accumulation of O2(•-) and H2O2. Cd also enhanced the oxidation of AsA and GSH to DHA and GSSG, respectively which give a clear sign of oxidative stress, despite of accelerated activity of enzymatic antioxidants: SOD, CAT, POD, GST as well as APX, DHAR (except in Cd2 stress) and GR. Exogenous application of IAAL resulted further rise in the activities of these enzymes, and maintained the redox status (> ratios: AsA/DHA and GSH/GSSG) of cells. The maintained redox status of cells under IAAL treatment declined the level of ROS in Cd1 and Cd2 treated seedlings thereby alleviated the Cd toxicity and this effect was more pronounced under Cd1 stress. Contrary to this, exogenous IAAH suppressed the activity of DHAR and GR and disturbed the redox status (< ratios: AsA/DHA and GSH/GSSG) of cells, hence excess accumulation of ROS further aggravated the Cd induced damage. Thus, overall results suggest that IAA at low (IAAL) and high (IAAH) doses affected the Cd toxicity differently by regulating the ascorbate-glutathione cycle as well as activity of other antioxidants in Trigonella seedlings.
Collapse
Affiliation(s)
- Gausiya Bashri
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
43
|
Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 2016; 59:42-53. [DOI: 10.1016/j.niox.2016.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/23/2023]
|
44
|
Wu Q, Su N, Chen Q, Shen W, Shen Z, Xia Y, Cui J. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis. PLoS One 2015; 10:e0139956. [PMID: 26445361 PMCID: PMC4596834 DOI: 10.1371/journal.pone.0139956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.
Collapse
Affiliation(s)
- Qi Wu
- College of Life Sciences, Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Nana Su
- College of Life Sciences, Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qin Chen
- College of Life Sciences, Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Zhenguo Shen
- College of Life Sciences, Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yan Xia
- College of Life Sciences, Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jin Cui
- College of Life Sciences, Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
45
|
High-Throughput Sequencing Identifies Novel and Conserved Cucumber (Cucumis sativus L.) microRNAs in Response to Cucumber Green Mottle Mosaic Virus Infection. PLoS One 2015; 10:e0129002. [PMID: 26076360 PMCID: PMC4468104 DOI: 10.1371/journal.pone.0129002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/03/2015] [Indexed: 01/20/2023] Open
Abstract
Seedlings of Cucumis sativus L. (cv. 'Zhongnong 16') were artificially inoculated with Cucumber green mottle mosaic virus (CGMMV) at the three-true-leaf stage. Leaf and flower samples were collected at different time points post-inoculation (10, 30 and 50 d), and processed by high throughput sequencing analysis to identify candidate miRNA sequences. Bioinformatic analysis using screening criteria, and secondary structure prediction, indicated that 8 novel and 23 known miRNAs (including 15 miRNAs described for the first time in vivo) were produced by cucumber plants in response to CGMMV infection. Moreover, gene expression profiles (p-value <0.01) validated the expression of 3 of the novel miRNAs and 3 of the putative candidate miRNAs and identified a further 82 conserved miRNAs in CGMMV-infected cucumbers. Gene ontology (GO) analysis revealed that the predicted target genes of these 88 miRNAs, which were screened using the psRNATarget and miRanda algorithms, were involved in three functional categories: 2265 in molecular function, 1362 as cellular components and 276 in biological process. The subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the predicted target genes were frequently involved in metabolic processes (166 pathways) and genetic information processes (40 pathways) and to a lesser degree the biosynthesis of secondary metabolites (12 pathways). These results could provide useful clues to help elucidate host-pathogen interactions in CGMMV and cucumber, as well as for the screening of resistance genes.
Collapse
|
46
|
Oztetik E. Biomarkers of ecotoxicological oxidative stress in an urban environment: using evergreen plant in industrial areas. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:903-14. [PMID: 25716306 DOI: 10.1007/s10646-015-1433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 05/08/2023]
Abstract
Plants react to air pollution by increased production of reactive oxygene species and oxidative stress, which triggers multiple defense mechanisms. In this study, some parameters that serve as biomarkers for antioxidative defense, such as glutathione S-transferase (GST) activity, glutathione (GSH), malondialdehyde, chlorophyll and total soluble protein contents, were investigated on the needles of Cedrus libani (A. Rich.) grown around two industrial areas in Eskisehir. The measurements revealed that metabolism in needles of C. libani trees is largely directed towards defence against ROS, due to effects of air pollution in the sampling areas. We observed significant increases in all parameters, except chlorophyll contents, which were strongly decreased. However, these sharp changes were also prominent not only between sampling sites and control site, but also among the areas investigated, suggesting the quantitative influence of the extent of pollution. Together with total soluble protein contents, the correlation between GST activities and GSH contents suggests that damage due to oxidative stress was most probably reduced due to the increased antioxidant capacity. Therefore, we can suggest C. libani as a good model for biomonitoring atmospheric quality with the oxidative stress parameters providing an effective measure for early environmental assessment due to their sensitivities of even low levels of pollution.
Collapse
Affiliation(s)
- Elif Oztetik
- Department of Biology, Science Faculty, Anadolu University, 26470, Eskisehir, Turkey,
| |
Collapse
|
47
|
Villeth GRC, Carmo LST, Silva LP, Fontes W, Grynberg P, Saraiva M, Brasileiro ACM, Carneiro RMD, Oliveira JTA, Grossi-de-Sá MF, Mehta A. Cowpea-Meloidogyne incognita
interaction: Root proteomic analysis during early stages of nematode infection. Proteomics 2015; 15:1746-59. [DOI: 10.1002/pmic.201400561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
| |
Collapse
|
48
|
Wu TM, Lin WR, Kao CH, Hong CY. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. PLANT MOLECULAR BIOLOGY 2015; 87:555-564. [PMID: 25636203 DOI: 10.1007/s11103-015-0290-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Glutathione reductase (GR) is one of important antioxidant enzymes in plants. This enzyme catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) with the accompanying oxidation of NADPH. Previously, we showed that salt-stress-responsive GR3 is a functional protein localized in chloroplasts and mitochondria in rice. To learn more about the role of GR3 in salt-stress tolerance, we investigated the response to 100 mM NaCl treatment in wild-type rice (WT); GR3 knockout mutant of rice (gr3); and the functional gr3-complementation line (C1). Rice GR3 was primarily expressed in roots at the seedling stage and ubiquitously expressed in all tissues except the sheath at heading stage. GR3 promoter-GUS was expressed in the vascular cylinder and cortex of root tissues in rice seedlings, vascular tissue of nodes, embryo and aleurone layer of seeds, and young flowers. Under both normal and salt-stress conditions, total GR activity was decreased by 20 % in gr3. Oxidative stress, indicated by malondialdehyde content, was greater in gr3 than the WT under salt stress. As compared with the WT, gr3 was sensitive to salt and methyl viologen; it showed inhibited growth, decreased maximal efficiency of photosystem II, decreased GSH and GSSG contents, and the ratio of GSH to GSSG. Conversely, the gr3-complementation line C1 rescued the tolerance to methyl viologen and salinity and recovered the growth and physiological damage caused by salinity. These results reveal that GR3 plays an important role in salt stress tolerance by regulating the GSH redox state in rice.
Collapse
Affiliation(s)
- Tsung-Meng Wu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | | | | |
Collapse
|
49
|
Zhang Y, Du N, Wang L, Zhang H, Zhao J, Sun G, Wang P. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3477-3488. [PMID: 25242588 DOI: 10.1007/s11356-014-3524-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Phthalic acid ester (PAE) pollution to soil can lead to phytotoxicity in plants and potential health risks to human being. Dibutyl phthalate (DBP) as a kind of PAE has a large usage amount and large residues in soil. To analyze antioxidant responses of plants to DBP stress, effects of varying DBP concentrations on cucumber seedlings growth had been investigated. Malonaldehyde (MDA), hydrogen peroxide (H2O2), chlorophyll, proline, glutathione (GSH), and oxidized glutathione (GSSH) contents and activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) were studied. The results showed that H2O2 content increased in cucumber seedlings with the increase of DBP concentration. The chlorophyll content in the higher DBP significantly declined compared to the control. In the present study, a disturbance of the GSH redox balance was evidenced by a marked decrease in GSH/GSSG ratio in cucumber seedlings subjected DBP stress. Our results indicated that DBP treatment not only inhibited antioxidant capacity and antioxidant enzyme activity in seedlings' leaves but might also induce chlorophyll degradation or reduce the synthesis of chlorophyll. Moreover, it could also enhance the accumulation of reactive oxygen species (ROS) which induced membrane lipid peroxidation. DBP also altered the ultrastructure of mesophyll cells, damaged membrane structure of chloroplast and mitochondrion, and increased the number and size of starch grains in chloroplasts reducing the photosynthetic capacity.
Collapse
Affiliation(s)
- Ying Zhang
- Northeast Agricultural University, School of Resources & Environment, Harbin, Heilongjiang Province, China,
| | | | | | | | | | | | | |
Collapse
|
50
|
Zechmann B. Compartment-specific importance of glutathione during abiotic and biotic stress. FRONTIERS IN PLANT SCIENCE 2014; 5:566. [PMID: 25368627 PMCID: PMC4202713 DOI: 10.3389/fpls.2014.00566] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 05/19/2023]
Abstract
The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine) is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species (ROS), redox signaling, the modulation of defense gene expression, and the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment-specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment-specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, tobacco mosaic virus). The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol). Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| |
Collapse
|