1
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
2
|
Rudyak SG, Usakin LA, Tverye EA, Robertson ED, Panteleyev AA. Aryl hydrocarbon receptor is regulated via multiple mechanisms in human keratinocytes. Toxicol Lett 2023:S0378-4274(23)00185-6. [PMID: 37217010 DOI: 10.1016/j.toxlet.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix transcription factor activated by polycyclic aromatic hydrocarbons of synthetic and natural origin. While a number of novel AhR ligands have been recently identified, little is known about their possible influence on AhR levels and stability. We used western blot, qRT-PCR and immunocytochemistry to determine the effects of AhR ligands on AhR expression in N-TERT (N-TERT1) immortalized human keratinocytes, and immunohistochemistry to assess patterns of AhR expression in human and mouse skin and skin appendages. While AhR was highly expressed in cultured keratinocytes and in the skin, it was found primarily in the cytoplasm, but not in the nucleus, suggesting its inactivity. At the same time, treatment of N-TERT cells with proteasomal inhibitor MG132 and eventual inhibition of AhR degradation resulted in nuclear AhR accumulation. Treatment of keratinocytes with AhR ligands such as TCDD, FICZ, caused near-complete disappearance of AhR, and treatment with I3C resulted in substantially diminished level of AhR possibly due to ligand-induced AhR degradation. The AhR decay was blocked by proteasome inhibition, indicating degradation-based mechanism of regulation. Additionally, AhR decay was blocked by ligand-selective AhR antagonist CH223191, implying substrate-induced mechanism of degradation. Furthermore, degradation of AhR was blocked in N-TERT cells with knockdown of AhR dimerization partner ARNT (HIF1β), suggesting that ARNT is required for AhR proteolysis. However, addition of hypoxia mimetics (HIF1 pathway activators) CoCl2 and DMOG had only minor effects on degradation of AhR. Additionally, inhibition of HDACs with Trichostatin A resulted in enhanced expression of AhR in both untreated and ligand-treated cells. These results demonstrate that in immortalized epidermal keratinocytes AhR is primarily regulated post-translationally via proteasome-mediated degradation, and suggest potential means to manipulate AhR levels and signaling in the skin. Overall, the AhR is regulated via multiple mechanisms, including proteasomal ligand- and ARNT-dependent degradation, and transcriptional regulation by HDACs, implying complex system of balancing its expression and protein stability.
Collapse
Affiliation(s)
- S G Rudyak
- Pirogov Russian National Research Medical University, Moscow, Russia.
| | - L A Usakin
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - E A Tverye
- National Research Center "Kurchatov Institute", Moscow, Russia
| | | | - A A Panteleyev
- National Research Center "Kurchatov Institute", Moscow, Russia; A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia.
| |
Collapse
|
3
|
Salminen A. Mutual antagonism between aryl hydrocarbon receptor and hypoxia-inducible factor-1α (AhR/HIF-1α) signaling: Impact on the aging process. Cell Signal 2022; 99:110445. [PMID: 35988806 DOI: 10.1016/j.cellsig.2022.110445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The ambient oxygen level, many environmental toxins, and the rays of ultraviolet light (UV) provide a significant risk for the maintenance of organismal homeostasis. The aryl hydrocarbon receptors (AhR) represent a complex sensor system not only for environmental toxins and UV radiation but also for many endogenous ligands, e.g., L-tryptophan metabolites. The AhR signaling system is evolutionarily conserved and AhR homologs existed as many as 600 million years ago. The ancient atmosphere demanded the evolution of an oxygen-sensing system, i.e., hypoxia-inducible transcription factors (HIF) and their prolyl hydroxylase regulators (PHD). Given that both signaling systems have important roles in embryogenesis, it seems that they have been involved in the evolution of multicellular organisms. The evolutionary origin of the aging process is unknown although it is most likely associated with the evolution of multicellularity. Intriguingly, there is compelling evidence that while HIF-1α signaling extends the lifespan, that of AhR promotes many age-related degenerative processes, e.g., it increases oxidative stress, inhibits autophagy, promotes cellular senescence, and aggravates extracellular matrix degeneration. In contrast, HIF-1α signaling stimulates autophagy, inhibits cellular senescence, and enhances cell proliferation. Interestingly, there is a clear antagonism between the AhR and HIF-1α signaling pathways. For instance, (i) AhR and HIF-1α factors heterodimerize with the same factor, ARNT/HIF-1β, leading to their competition for DNA-binding, (ii) AhR and HIF-1α signaling exert antagonistic effects on autophagy, and (iii) co-chaperone p23 exhibits specific functions in the signaling of AhR and HIF-1α factors. One might speculate that it is the competition between the AhR and HIF-1α signaling pathways that is a driving force in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
4
|
Amine ZE, Mauger JF, Imbeault P. CYP1A1, VEGFA and Adipokine Responses of Human Adipocytes Co-exposed to PCB126 and Hypoxia. Cells 2022; 11:cells11152282. [PMID: 35892579 PMCID: PMC9331964 DOI: 10.3390/cells11152282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly recognized that hypoxia may develop in adipose tissue as its mass expands. Adipose tissue is also the main reservoir of lipophilic pollutants, including polychlorinated biphenyls (PCBs). Both hypoxia and PCBs have been shown to alter adipose tissue functions. The signaling pathways induced by hypoxia and pollutants may crosstalk, as they share a common transcription factor: aryl hydrocarbon receptor nuclear translocator (ARNT). Whether hypoxia and PCBs crosstalk and affect adipokine secretion in human adipocytes remains to be explored. Using primary human adipocytes acutely co-exposed to different levels of hypoxia (24 h) and PCB126 (48 h), we observed that hypoxia significantly inhibits the PCB126 induction of cytochrome P450 (CYP1A1) transcription in a dose-response manner, and that Acriflavine (ACF)—an HIF1α inhibitor—partially restores the PCB126 induction of CYP1A1 under hypoxia. On the other hand, exposure to PCB126 did not affect the transcription of the vascular endothelial growth factor-A (VEGFA) under hypoxia. Exposure to hypoxia increased leptin and interleukin-6 (IL-6), and decreased adiponectin levels dose-dependently, while PCB126 increased IL-6 and IL-8 secretion in a dose-dependent manner. Co-exposure to PCB126 and hypoxia did not alter the adipokine secretion pattern observed under hypoxia and PCB126 exposure alone. In conclusion, our results indicate that (1) hypoxia inhibits PCB126-induced CYP1A1 expression at least partly through ARNT-dependent means, suggesting that hypoxia could affect PCB metabolism and toxicity in adipose tissue, and (2) hypoxia and PCB126 affect leptin, adiponectin, IL-6 and IL-8 secretion differently, with no apparent crosstalk between the two factors.
Collapse
Affiliation(s)
- Zeinab El Amine
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
| | - Jean-François Mauger
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
| | - Pascal Imbeault
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, ON K1K 0T2, Canada
- Correspondence: ; Tel.: +1-(613)-562-5800-(7290)
| |
Collapse
|
5
|
Zhang M, Hu Y, Yang F, Zhang J, Zhang J, Yu W, Wang M, Lv X, Li J, Bai T, Chang F. Interaction between AhR and HIF-1 signaling pathways mediated by ARNT/HIF-1β. BMC Pharmacol Toxicol 2022; 23:26. [PMID: 35473600 PMCID: PMC9044668 DOI: 10.1186/s40360-022-00564-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/29/2022] [Indexed: 04/12/2024] Open
Abstract
Background The main causes of lung cancer are smoking, environmental pollution and genetic susceptibility. It is an indisputable fact that PAHs are related to lung cancer, and benzo(a) pyrene is a representative of PAHs. The purpose of the current investigation was to investigate the interaction between AhR and HIF-1 signaling pathways in A549 cells, which provide some experimental basis for scientists to find drugs that block AhR and HIF-1 signaling pathway to prevent and treat cancer. Methods This project adopts the CYP1A1 signaling pathways and the expression of CYP1B1 is expressed as a measure of AhR strength index. The expression of VEGF and CAIX volume as a measure of the strength of the signal path HIF-1 indicators. Through the construction of plasmid vector, fluorescence resonance energy transfer, real-time quantitative PCR, western blotting and immunoprecipitation, the interaction between AhR signaling pathway and HIF-1 signaling pathway was observed. Results BaP can enhance the binding ability of HIF-1α protein to HIF-1β/ARNT in a dose-dependent manner without CoCl2. However, the binding ability of AhR protein to HIF-1β/ARNT is inhibited by HIF-1α signaling pathway in a dose-dependent manner with CoCl2. Conclusion It is shown that activation of the AhR signaling pathway does not inhibit the HIF-1α signaling pathway, but activation of the HIF-1α signaling pathway inhibits the AhR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00564-8.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Pharmacy Experimental Teaching Center of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, China
| | - Yuxia Hu
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, Hohhot, China
| | - Jingwen Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jianxin Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Wanjia Yu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Minjie Wang
- Department of Pharmacology of Basic medical College, Inner Mongolia Medical university, Hohhot, China
| | - Xiaoli Lv
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| | - Fuhou Chang
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
6
|
Bonatesta F, Emadi C, Price ER, Wang Y, Greer JB, Xu EG, Schlenk D, Grosell M, Mager EM. The developing zebrafish kidney is impaired by Deepwater Horizon crude oil early-life stage exposure: A molecular to whole-organism perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151988. [PMID: 34838918 DOI: 10.1016/j.scitotenv.2021.151988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Crude oil is known to induce developmental defects in teleost fish exposed during early life stages (ELSs). While most studies in recent years have focused on cardiac endpoints, evidence from whole-animal transcriptomic analyses and studies with individual polycyclic aromatic hydrocarbons (PAHs) indicate that the developing kidney (i.e., pronephros) is also at risk. Considering the role of the pronephros in osmoregulation, and the common observance of edema in oil-exposed ELS fish, surprisingly little is known regarding the effects of oil exposure on pronephros development and function. Using zebrafish (Danio rerio) ELSs, we assessed the transcriptional and morphological responses to two dilutions of high-energy water accommodated fractions (HEWAF) of oil from the Deepwater Horizon oil spill using a combination of qPCR and whole-mount in situ hybridization (WM-ISH) of candidate genes involved in pronephros development and function, and immunohistochemistry (WM-IHC). To assess potential functional impacts on the pronephros, three 24 h osmotic challenges (2 hypo-osmotic, 1 near iso-osmotic) were implemented at two developmental time points (48 and 96 h post fertilization; hpf) following exposure to HEWAF. Changes in transcript expression level and location specific to different regions of the pronephros were observed by qPCR and WM-ISH. Further, pronephros morphology was altered in crude oil exposed larvae, characterized by failed glomerulus and neck segment formation, and straightening of the pronephric tubules. The osmotic challenges at 96 hpf greatly exacerbated edema in both HEWAF-exposed groups regardless of osmolarity. By contrast, larvae at 48 hpf exhibited no edema prior to the osmotic challenge, but previous HEWAF exposure elicited a concentration-response increase in edema at hypo-osmotic conditions that appeared to have been largely alleviated under near iso-osmotic conditions. In summary, ELS HEWAF exposure impaired proper pronephros development in zebrafish, which coupled with cardiotoxic effects, most likely reduced or inhibited pronephros fluid clearance capacity and increased edema formation.
Collapse
Affiliation(s)
- Fabrizio Bonatesta
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA.
| | - Cameron Emadi
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Edwin R Price
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Yadong Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Justin B Greer
- Western Fisheries Research Center, United States Geological Survey, Seattle, WA, USA
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Edward M Mager
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
7
|
Correia MJ, Pimpão AB, Lopes-Coelho F, Sequeira CO, Coelho NR, Gonçalves-Dias C, Barouki R, Coumoul X, Serpa J, Morello J, Monteiro EC, Pereira SA. Aryl Hydrocarbon Receptor and Cysteine Redox Dynamics Underlie (Mal)adaptive Mechanisms to Chronic Intermittent Hypoxia in Kidney Cortex. Antioxidants (Basel) 2021; 10:antiox10091484. [PMID: 34573115 PMCID: PMC8469308 DOI: 10.3390/antiox10091484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that an interplay between aryl hydrocarbon receptor (AhR) and cysteine-related thiolome at the kidney cortex underlies the mechanisms of (mal)adaptation to chronic intermittent hypoxia (CIH), promoting arterial hypertension (HTN). Using a rat model of CIH-HTN, we investigated the impact of short-term (1 and 7 days), mid-term (14 and 21 days, pre-HTN), and long-term intermittent hypoxia (IH) (up to 60 days, established HTN) on CYP1A1 protein level (a sensitive hallmark of AhR activation) and cysteine-related thiol pools. We found that acute and chronic IH had opposite effects on CYP1A1 and the thiolome. While short-term IH decreased CYP1A1 and increased protein-S-thiolation, long-term IH increased CYP1A1 and free oxidized cysteine. In addition, an in vitro administration of cystine, but not cysteine, to human endothelial cells increased Cyp1a1 expression, supporting cystine as a putative AhR activator. This study supports CYP1A1 as a biomarker of obstructive sleep apnea (OSA) severity and oxidized pools of cysteine as risk indicator of OSA-HTN. This work contributes to a better understanding of the mechanisms underlying the phenotype of OSA-HTN, mimicked by this model, which is in line with precision medicine challenges in OSA.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Filipa Lopes-Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Nuno R. Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Clara Gonçalves-Dias
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Robert Barouki
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Correspondence:
| |
Collapse
|
8
|
Shirai Y, Chow CCT, Kambe G, Suwa T, Kobayashi M, Takahashi I, Harada H, Nam JM. An Overview of the Recent Development of Anticancer Agents Targeting the HIF-1 Transcription Factor. Cancers (Basel) 2021; 13:cancers13112813. [PMID: 34200019 PMCID: PMC8200185 DOI: 10.3390/cancers13112813] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, a characteristic feature of solid tumors, is associated with the malignant phenotype and therapy resistance of cancers. Hypoxia-inducible factor 1 (HIF-1), which is responsible for the metazoan adaptive response to hypoxia, has been recognized as a rational target for cancer therapy due to its critical functions in hypoxic regions. In order to efficiently inhibit its activity, extensive efforts have been made to elucidate the molecular mechanism underlying the activation of HIF-1. Here, we provide an overview of relevant research, particularly on a series of HIF-1 activators identified so far and the development of anticancer drugs targeting them.
Collapse
Affiliation(s)
- Yukari Shirai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Christalle C. T. Chow
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
- Correspondence: (H.H.); (J.-M.N.); Tel.: +81-75-753-7560 (H.H.); +81-75-753-7567 (J.-M.N.)
| | - Jin-Min Nam
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
- Correspondence: (H.H.); (J.-M.N.); Tel.: +81-75-753-7560 (H.H.); +81-75-753-7567 (J.-M.N.)
| |
Collapse
|
9
|
Lien YC, Won KJ, Simmons RA. Transcriptomic and Quantitative Proteomic Profiling Reveals Signaling Pathways Critical for Pancreatic Islet Maturation. Endocrinology 2020; 161:5923720. [PMID: 33053583 PMCID: PMC7668240 DOI: 10.1210/endocr/bqaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic β-cell dysfunction and reduced insulin secretion play a key role in the pathogenesis of diabetes. Fetal and neonatal islets are functionally immature and have blunted glucose responsiveness and decreased insulin secretion in response to stimuli and are far more proliferative. However, the mechanisms underlying functional immaturity are not well understood. Pancreatic islets are composed of a mixture of different cell types, and the microenvironment of islets and interactions between these cell types are critical for β-cell development and maturation. RNA sequencing and quantitative proteomic data from intact islets isolated from fetal (embryonic day 19) and 2-week-old Sprague-Dawley rats were integrated to compare their gene and protein expression profiles. Ingenuity Pathway Analysis (IPA) was also applied to elucidate pathways and upstream regulators modulating functional maturation of islets. By integrating transcriptome and proteomic data, 917 differentially expressed genes/proteins were identified with a false discovery rate of less than 0.05. A total of 411 and 506 of them were upregulated and downregulated in the 2-week-old islets, respectively. IPA revealed novel critical pathways associated with functional maturation of islets, such as AMPK (adenosine monophosphate-activated protein kinase) and aryl hydrocarbon receptor signaling, as well as the importance of lipid homeostasis/signaling and neuronal function. Furthermore, we also identified many proteins enriched either in fetal or 2-week-old islets related to extracellular matrix and cell communication, suggesting that these pathways play critical roles in islet maturation. Our present study identified novel pathways for mature islet function in addition to confirming previously reported mechanisms, and provided new mechanistic insights for future research on diabetes prevention and treatment.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Correspondence: Rebecca A. Simmons, MD, Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, BRB II/III, 13th Fl, Rm 1308, 421 Curie Blvd, Philadelphia, PA 19104, USA. E-mail:
| |
Collapse
|
10
|
Rodgers ML, Serafin J, Sepúlveda MS, Griffitt RJ. The impact of salinity and dissolved oxygen regimes on transcriptomic immune responses to oil in early life stage Fundulus grandis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100753. [PMID: 33249265 DOI: 10.1016/j.cbd.2020.100753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Understanding the effects of oil exposure on early life stage fish species is critical to fully assessing the environmental impacts of oil spills. Oil released from the 2010 Deepwater Horizon spill reached habitats where estuarine fish routinely spawn. In addition, estuaries are highly dynamic environments, therefore, fish in these areas are routinely exposed to varying salinity and dissolved oxygen (DO) levels, each of which are known to modulate transcriptional responses. Fish exposed to oil often display altered immune competence, and several studies have shown that Deepwater Horizon oil in particular causes modulation of various immune functions. However, few studies have directly examined how environmental parameters may affect oil-induced immunomodulation, particularly in early life stage fishes when the immune system is still developing. To this end, we examined transcriptional patterns of immune genes and pathways in Fundulus grandis larvae to various oil (0, 15 μg/L), salinity (3, 30 ppt), and DO (2.5, 6 mg/L) regimes in a fully factorial design. Our results suggest that immune pathways are generally activated in all treatment groups with the exception of the Low Salinity/No Oil/Hypoxia treatment where immune pathways are largely suppressed, and the High Salinity/No Oil/Hypoxia treatment where pathways are unchanged. The High Salinity/Oil/Hypoxia treatment had the largest number of enriched immune pathways (44 as defined by IPA and 43 as defined by ConsensusPathDB), indicating that oil under certain environmental conditions has the potential to further modulate immune-related genes, pathways, and responses in fish.
Collapse
Affiliation(s)
- Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA.
| | - Jennifer Serafin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
11
|
Che X, Dai W. Aryl Hydrocarbon Receptor: Its Regulation and Roles in Transformation and Tumorigenesis. Curr Drug Targets 2020; 20:625-634. [PMID: 30411679 DOI: 10.2174/1389450120666181109092225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Abstract
AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.
Collapse
Affiliation(s)
- Xun Che
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| |
Collapse
|
12
|
Roztocil E, Hammond CL, Gonzalez MO, Feldon SE, Woeller CF. The aryl hydrocarbon receptor pathway controls matrix metalloproteinase-1 and collagen levels in human orbital fibroblasts. Sci Rep 2020; 10:8477. [PMID: 32439897 PMCID: PMC7242326 DOI: 10.1038/s41598-020-65414-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid eye disease (TED) affects 25–50% of patients with Graves’ Disease. In TED, collagen accumulation leads to an expansion of the extracellular matrix (ECM) which causes destructive tissue remodeling. The purpose of this study was to investigate the therapeutic potential of activating the aryl hydrocarbon receptor (AHR) to limit ECM accumulation in vitro. The ability of AHR to control expression of matrix metalloproteinase-1 (MMP1) was analyzed. MMP1 degrades collagen to prevent excessive ECM. Human orbital fibroblasts (OFs) were treated with the pro-scarring cytokine, transforming growth factor beta (TGFβ) to induce collagen production. The AHR ligand, 6-formylindolo[3,2b]carbazole (FICZ) was used to activate the AHR pathway in OFs. MMP1 protein and mRNA levels were analyzed by immunosorbent assay, Western blotting and quantitative PCR. MMP1 activity was detected using collagen zymography. AHR and its transcriptional binding partner, ARNT were depleted using siRNA to determine their role in activating expression of MMP1. FICZ induced MMP1 mRNA, protein expression and activity. MMP1 expression led to a reduction in collagen 1A1 levels. Furthermore, FICZ-induced MMP1 expression required both AHR and ARNT, demonstrating that the AHR-ARNT transcriptional complex is necessary for expression of MMP1 in OFs. These data show that activation of the AHR by FICZ increases MMP1 expression while leading to a decrease in collagen levels. Taken together, these studies suggest that AHR activation could be a promising target to block excessive collagen accumulation and destructive tissue remodeling that occurs in fibrotic diseases such as TED.
Collapse
Affiliation(s)
- Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Christine L Hammond
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA. .,Department of Environmental Medicine School of Medicine and Dentistry, University of Rochester, Rochester, New York, 14642, USA.
| |
Collapse
|
13
|
Doering JA, Beitel SC, Patterson S, Eisner BK, Giesy JP, Hecker M, Wiseman S. Aryl hydrocarbon receptor nuclear translocators (ARNT1, ARNT2, and ARNT3) of white sturgeon (Acipenser transmontanus): Sequences, tissue-specific expressions, and response to β-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108726. [PMID: 32081761 DOI: 10.1016/j.cbpc.2020.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/01/2022]
Abstract
Sturgeons (Acipenseridae) are ancient fishes that have tissue-specific profiles of transcriptional responses to dioxin-like compounds (DLCs) that are unique from those generally measured in teleost fishes. Because DLCs exert their critical toxicities through activation of the aryl hydrocarbon receptor (AHR), this transcription factor has been the subject of intensive study. However, less attention has focused on the aryl hydrocarbon receptor nuclear translocator (ARNT), which is the dimerization partner of the AHR and required for AHR-mediated transcription. The present study sequenced ARNT1, ARNT2, and ARNT3 in a representative species of sturgeon, the white sturgeon (Acipenser transmontanus), and quantified tissue-specific basal transcript abundance for each ARNT and the response following exposure to the model agonist of the AHR, β-naphthoflavone. In common with other proteins in sturgeons, the amino acid sequences of ARNTs are more similar to those of tetrapods than are ARNTs of other fishes. Transcripts of ARNT1, ARNT2, and ARNT3 were detected in all tissues investigated. Expression of ARNTs are tightly regulated in vertebrates, but β-naphthoflavone caused down-regulation in liver and up-regulation in gill, while an upward trend was measured in intestine. ARNTs are dimeric partners for multiple proteins, including the hypoxia inducible factor 1α (HIF1α), which mediates response to hypoxia. A downward trend in abundance of HIF1α transcript was measured in liver of white sturgeon exposed to β-naphthoflavone. Altered expression of ARNTs and HIF1α caused by activation of the AHR might affect the ability of certain tissues in sturgeons to respond to hypoxia when co-exposed to DLCs or other agonists.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - Shawn C Beitel
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Sarah Patterson
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bryanna K Eisner
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
14
|
Burton L, Scaife P, Paine SW, Mellor HR, Abernethy L, Littlewood P, Rauch C. Hydrostatic pressure regulates CYP1A2 expression in human hepatocytes via a mechanosensitive aryl hydrocarbon receptor-dependent pathway. Am J Physiol Cell Physiol 2020; 318:C889-C902. [PMID: 32159360 PMCID: PMC7294326 DOI: 10.1152/ajpcell.00472.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Approximately 75% of xenobiotics are primarily eliminated through metabolism; thus the accurate scaling of metabolic clearance is vital to successful drug development. Yet, when data is scaled from in vitro to in vivo, hepatic metabolic clearance, the primary source of metabolism, is still commonly underpredicted. Over the past decades, with biophysics used as a key component to restore aspects of the in vivo environment, several new cell culture settings have been investigated to improve hepatocyte functionalities. Most of these studies have focused on shear stress, i.e., flow mediated by a pressure gradient. One potential conclusion of these studies is that hepatocytes are naturally "mechanosensitive," i.e., they respond to a change in their biophysical environment. We demonstrate that hepatocytes also respond to an increase in hydrostatic pressure that, we suggest, is directly linked to the lobule geometry and vessel density. Furthermore, we demonstrate that hydrostatic pressure improves albumin production and increases cytochrome P-450 (CYP) 1A2 expression levels in an aryl hydrocarbon-dependent manner in human hepatocytes. Increased albumin production and CYP function are commonly attributed to the impacts of shear stress in microfluidic experiments. Therefore, our results highlight evidence of a novel link between hydrostatic pressure and CYP metabolism and demonstrate that the spectrum of hepatocyte mechanosensitivity might be larger than previously thought.
Collapse
Affiliation(s)
- Lewis Burton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paula Scaife
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Stuart W Paine
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Howard R Mellor
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Lynn Abernethy
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Peter Littlewood
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
15
|
Che X, Dai W. Negative regulation of aryl hydrocarbon receptor by its lysine mutations and exposure to nickel. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0050-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Bautista NM, Burggren WW. Parental stressor exposure simultaneously conveys both adaptive and maladaptive larval phenotypes through epigenetic inheritance in the zebrafish ( Danio rerio). ACTA ACUST UNITED AC 2019; 222:jeb.208918. [PMID: 31416900 DOI: 10.1242/jeb.208918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
Genomic modifications occur slowly across generations, whereas short-term epigenetic inheritance of adaptive phenotypes may be immediately beneficial to large numbers of individuals, acting as a bridge for survival when adverse environments occur. In the present study, crude oil was used as an example of an environmental stressor. Adult zebrafish (P0) were dietarily exposed for 3 weeks to no, low, medium or high concentrations of crude oil. The F1 offspring obtained from the P0 groups were then assessed for transgenerational epigenetic transfer of oil-induced phenotypes. The exposure did not alter body length, body and organ mass or condition factor in the P0 groups. However, the P0 fecundity of both sexes decreased in proportion to the amount of oil fed. The F1 larvae from each P0 were then exposed from 3 hpf to 5 dpf to oil in their ambient water. Remarkably, F1 larvae derived from oil-exposed parents, when reared in oiled water, showed a 30% enhanced survival compared with controls (P<0.001). Unexpectedly, from day 3 to 5 of exposure, F1 larvae from oil-exposed parents showed poorer survival in clean water (up to 55% decreased survival). Additionally, parental oil exposure induced bradycardia (presumably maladaptive) in F1 larvae in both clean and oiled water. We conclude that epigenetic transgenerational inheritance can lead to an immediate and simultaneous inheritance of both beneficial and maladaptive traits in a large proportion of the F1 larvae. The adaptive responses may help fish populations survive when facing transient environmental stressors.
Collapse
Affiliation(s)
- Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|
17
|
Cui Q, Chen FY, Chen HY, Peng H, Wang KJ. Benzo[a]pyrene (BaP) exposure generates persistent reactive oxygen species (ROS) to inhibit the NF-κB pathway in medaka (Oryzias melastigma). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:502-509. [PMID: 31103010 DOI: 10.1016/j.envpol.2019.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Benzo[a]pyrene (BaP), a common environmental pollutant, can modulate the immune-associated signal pathway NF-κB, which is one of the critical signal pathways involved in various immune responses. BaP exposure usually generates reactive oxygen species (ROS), but whether ROS are predominantly involved in the modulation mechanism of the NF-κB pathway has not been clearly understood. In this study, an in vivo examination of Oryzias melastigma demonstrated that BaP exposure led to a down-regulation of the NF-κB pathway and increased levels of ROS. Conversely, in vitro results using the medaka liver cell line DIT-29 and a widely applied H2O2 method showed the opposite: up-regulation of the NF-κB pathway. However, the down-regulation of NF-κB upon BaP exposure in vitro was inhibited by the addition of a ROS inhibitor, indicating ROS are involved in the modulation of NF-κB. The discrepancy between in vivo and in vitro results of ROS impacts on NF-κB activation might be related to the concentration and persistence of ROS. Using a modified luminol detection system, BaP was found to generate sustained physiological concentrations of ROS for 24 h, while an H2O2 bolus generated ROS for less than 30 min. Furthermore, a steady-state sub-micromolar H2O2 system (H2O2ss) was developed in parallel as a positive control of ROS, by which H2O2 could be maintained for 24 h. Comparative evaluation using H2O2, H2O2ss and BaP exposures on the medaka cell line with pGL4.32 demonstrated that the persistent physiological concentrations of ROS generated upon BaP exposure or treatment with H2O2ss inhibited the NF-κB pathway, but direct H2O2 exposure had the opposite effect. Moreover, a western-blot assay and EMSA detection further confirmed the modulation of the NF-κB pathway in DIT-29. Taken together, this study shows that BaP exposure inhibits the NF-κB pathway by generating sustained physiological concentrations of ROS.
Collapse
Affiliation(s)
- Qian Cui
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
18
|
Espinosa Ruiz C, Manuguerra S, Cuesta A, Esteban MA, Santulli A, Messina CM. Sub-lethal doses of polybrominated diphenyl ethers affect some biomarkers involved in energy balance and cell cycle, via oxidative stress in the marine fish cell line SAF-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:1-10. [PMID: 30797971 DOI: 10.1016/j.aquatox.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent contaminants which are found all over the world in the marine environment. Sparus aurata fibroblast cell line (SAF-1) was exposed to increasing concentrations of PBDEs 47 and 99, until 72 h to evaluate the cytotoxicity, reactive oxygen species (ROS) production and the expression of some selected molecular markers related to cell cycle, cell signaling, energetic balance and oxidative stress (p53, erk-1, hif-1α and nrf-2), by real-time PCR. Furthermore, SAF-1 cells were exposed for 7 and 15 days to sub-lethal concentrations, in order to evaluate the response of some biomarkers by immunoblotting (p53, ERK-1, AMPK, HIF-1α and NRF-2). After 48 and 72 h, the cells showed a significant decrease of cell vitality as well as an increase of intracellular ROS production. Gene expression analysis showed that sub-lethal concentrations of BDE-99 and 47, after 72 h, up-regulated cell cycle and oxidative stress biomarkers, although exposure to 100 μmol L-1 down-regulated the selected markers related to cell cycle, cell signaling, energetic balance. After 7 and 15 days of sub-lethal doses exposure, all the analyzed markers resulted affected by the contaminants. Our results suggest that PBDEs influence the cells homeostasis first of all via oxidative stress, reducing the cell response and defense capacity and affecting its energetic levels. This situation of stress and energy imbalance could represents a condition that, modifying some of the analyzed biochemical pathways, would predispose to cellular transformation.
Collapse
Affiliation(s)
- Cristobal Espinosa Ruiz
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Andrea Santulli
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| | - Concetta M Messina
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy.
| |
Collapse
|
19
|
Oxidative Stress, Induced by Sub-Lethal Doses of BDE 209, Promotes Energy Management and Cell Cycle Modulation in the Marine Fish Cell Line SAF-1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030474. [PMID: 30736298 PMCID: PMC6388118 DOI: 10.3390/ijerph16030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022]
Abstract
The effects of sub-lethal doses of polybrominated diphenyl ether (PBDE)-209 in terms of toxicity, oxidative stress, and biomarkers were evaluated in the Sparus aurata fibroblast cell line (SAF-1). Vitality and oxidative stress status were studied after incubation with PBDE for 72 h. Concomitantly, the quantification of proteins related to cell cycle and DNA repair (p53), cell proliferation (extracellular signal–regulated kinase 1 (ERK1)), energetic restriction (hypoxia-inducible factor 1 (HIF1)), and redox status (Nuclear factor erythroid 2–related factor 2 (NRF2)) was also determined after prolonged exposure (7–15 days) by immunoblotting. Our results demonstrated that rising concentrations of PBDEs exposure-induced oxidative stress, and that this event modulates different cell pathways related to cell cycle, cell signaling, and energetic balance in the long term, indicating the negative impact of sub-lethal dose exposure to cell homeostasis.
Collapse
|
20
|
Rahman MS, Thomas P. Molecular cloning and characterization of two ARNT (ARNT-1 and ARNT-2) genes in Atlantic croaker and their expression during coexposure to hypoxia and PCB77. ENVIRONMENTAL TOXICOLOGY 2019; 34:160-171. [PMID: 30334616 DOI: 10.1002/tox.22670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) is an important transcriptions factor that binds/coactivates drug-metabolizing genes in vertebrates. In this study, we report the cloning and characterization of two ARNT (ARNT-1 and ARNT-2) genes and their mRNA and protein expression in liver tissues of Atlantic croaker after co-exposure to hypoxia and 3,3',4,4'-tetrachlorobiphenyl (PCB77). The full-length croaker ARNT-1 and ARNT-2 genes encode proteins of 537 and 530 amino acids, respectively, and are highly homologous to ARNT-1 and ARNT-2 genes of other vertebrates. ARNT mRNAs are ubiquitously expressed in all tissues. Hypoxia (dissolved oxygen: 1.7 mg/L) exposure (1-4 weeks) did not affect hepatic ARNTs mRNA levels. Dietary PCB77 treatment (2 and 8 μg/g body weight/day for 4 weeks) caused marked increases in ARNTs mRNA and protein levels in normoxic fish. However, coexposure to hypoxia and PCB77 for 4 weeks significantly blunted the increase in ARNTs mRNA and protein levels in response to PCB77 exposure. These results suggest that ARNT activity and functions induced by exposure to PCB aryl hydrocarbon receptor (AhR) agonists could be compromised in croaker inhabiting hypoxic coastal regions.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas 78520
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373
| |
Collapse
|
21
|
Prokkola JM, Nikinmaa M. Circadian rhythms and environmental disturbances – underexplored interactions. J Exp Biol 2018; 221:221/16/jeb179267. [DOI: 10.1242/jeb.179267] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT
Biological rhythms control the life of virtually all organisms, impacting numerous aspects ranging from subcellular processes to behaviour. Many studies have shown that changes in abiotic environmental conditions can disturb or entrain circadian (∼24 h) rhythms. These expected changes are so large that they could impose risks to the long-term viability of populations. Climate change is a major global stressor affecting the fitness of animals, partially because it challenges the adaptive associations between endogenous clocks and temperature – consequently, one can posit that a large-scale natural experiment on the plasticity of rhythm–temperature interactions is underway. Further risks are posed by chemical pollution and the depletion of oxygen levels in aquatic environments. Here, we focused our attention on fish, which are at heightened risk of being affected by human influence and are adapted to diverse environments showing predictable changes in light conditions, oxygen saturation and temperature. The examined literature to date suggests an abundance of mechanisms that can lead to interactions between responses to hypoxia, pollutants or pathogens and regulation of endogenous rhythms, but also reveals gaps in our understanding of the plasticity of endogenous rhythms in fish and in how these interactions may be disturbed by human influence and affect natural populations. Here, we summarize research on the molecular mechanisms behind environment–clock interactions as they relate to oxygen variability, temperature and responses to pollutants, and propose ways to address these interactions more conclusively in future studies.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
22
|
Martín-Del-Campo R, Bárcenas-Ibarra A, Sifuentes-Romero I, Llera-Herrera R, García-Gasca A. Methylation status of the putative Pax6 promoter in olive ridley sea turtle embryos with eye defects: An initial approach. Mech Dev 2018; 154:287-295. [PMID: 30110613 DOI: 10.1016/j.mod.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022]
Abstract
Normal development involves the interplay of genetic and epigenetic regulatory mechanisms. Pax6 is an eye-selector factor responsible for initiating the regulatory cascade for the development of the eyes. For the olive ridley sea turtle (Lepidochelys olivacea), a threatened species, eye malformations have been reported. In order to study the DNA methylation status of the putative promoter of the Pax6 gene in embryos with ocular malformations, an exploratory study was carried out in which DNA was isolated from embryos with anophthalmia, microphthalmia, and cyclopia, as well as from their normal counterparts. The 5'-flanking region from the Pax6 gene was isolated, showing two CpG islands (CGIs). The methylation status of CGIs in malformed embryos was compared with that of normal embryos by bisulfite sequencing. Putative transcription factor binding sites and regulatory features were identified. Methylation patterns were observed in both CpG and non-CpG contexts, and were unique for each malformed embryo; in the CpG context, an embryo with cyclopia showed a methylated cytosine upstream the CGI-1 not present in other embryos, an embryo with left anophthalmia presented two methylated cytosines in the CGI-1, whereas an embryo with left anophthalmia and right microphthalmia showed two methylated cytosines in the CGI-2. Normal embryos did not show methylated cytosines in the CGI-1, but one of them showed one methylcytosine in the CGI-2. Methylated transcription factor-binding sites may affect Pax6 expression associated to the cellular response to environmental compounds and hypoxia, signal transduction, cell cycle, lens physiology and development, as well as the transcription rate. Although preliminary, these results suggest that embryos with ocular malformations present unique DNA methylation patterns in the putative promoter of the Pax6 gene in L. olivacea, and probably those subtle, random changes in the methylation status can cause (at least in part) the aberrant phenotypes observed in these embryos.
Collapse
Affiliation(s)
- Rodolfo Martín-Del-Campo
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| | - Annelisse Bárcenas-Ibarra
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico
| | - Itzel Sifuentes-Romero
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Raúl Llera-Herrera
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico; Instituto de Ciencias del Mar y Limnología (Unidad Académica Mazatlán), Universidad Nacional Autónoma de México, Avenida Joel Montes Camarena s/n, PO Box 811, Mazatlán, Sinaloa 82040, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| |
Collapse
|
23
|
Henke N, Ferreirós N, Geisslinger G, Ding MG, Essler S, Fuhrmann DC, Geis T, Namgaladze D, Dehne N, Brüne B. Loss of HIF-1α in macrophages attenuates AhR/ARNT-mediated tumorigenesis in a PAH-driven tumor model. Oncotarget 2017; 7:25915-29. [PMID: 27015123 PMCID: PMC5041954 DOI: 10.18632/oncotarget.8297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/11/2016] [Indexed: 01/04/2023] Open
Abstract
Activation of hypoxia-inducible factor (HIF) and macrophage infiltration of solid tumors independently promote tumor progression. As little is known how myeloid HIF affects tumor development, we injected the polycyclic aromatic hydrocarbon (PAH) and procarcinogen 3-methylcholanthrene (MCA; 100 μg/100 μl) subcutaneously into myeloid-specific Hif-1α and Hif-2α knockout mice (C57BL/6J) to induce fibrosarcomas (n = 16). Deletion of Hif-1α but not Hif-2α in macrophages diminished tumor outgrowth in the MCA-model. While analysis of the tumor initiation phase showed comparable inflammation after MCA-injection, metabolism of MCA was impaired in the absence of Hif-1α. An ex vivo macrophage/fibroblast coculture recapitulated reduced DNA damage after MCA-stimulation in fibroblasts of cocultures with Hif-1αLysM−/− macrophages compared to wild type macrophages. A loss of myeloid Hif-1α decreased RNA levels of arylhydrocarbon receptor (AhR)/arylhydrocarbon receptor nuclear translocator (ARNT) targets such as Cyp1a1 because of reduced Arnt but unchanged Ahr expression. Cocultures using Hif-1αLysM−/− macrophages stimulated with the carcinogen 7,12-dimethylbenz[a]anthracene (DMBA; 2 μg/ml) also attenuated a DNA damage response in fibroblasts, while the DNA damage-inducing metabolite DMBA-trans-3,4-dihydrodiol remained effective in the absence of Hif-1α. In chemical-induced carcinogenesis, HIF-1α in macrophages maintains ARNT expression to facilitate PAH-biotransformation. This implies a metabolic activation of PAHs in stromal cells, i.e. myeloid-derived cells, to be crucial for tumor initiation.
Collapse
Affiliation(s)
- Nina Henke
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Martina G Ding
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Silke Essler
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Theresa Geis
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Nathalie Dehne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
24
|
Inflammation and the chemical carcinogen benzo[a]pyrene: Partners in crime. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:12-24. [DOI: 10.1016/j.mrrev.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/02/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
|
25
|
Cypher AD, Consiglio J, Bagatto B. Hypoxia exacerbates the cardiotoxic effect of the polycyclic aromatic hydrocarbon, phenanthrene in Danio rerio. CHEMOSPHERE 2017; 183:574-581. [PMID: 28570901 DOI: 10.1016/j.chemosphere.2017.05.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The Deepwater Horizon oil spill of 2010 released a mixture of polycyclic aromatic hydrocarbons (PAHs) into the Gulf of Mexico presenting a complex exposure regime for native species. Concurrently, the Gulf has experienced an increase in hypoxic events due to agricultural runoff from the Mississippi River outflow. This combination presents a unique physiological challenge to native species and a challenge for researchers. The purpose of this study was to determine how the cardiotoxic PAH, phenanthrene interacts with hypoxia to affect the cardiovascular system of larval zebrafish (Danio rerio). We exposed zebrafish larvae to 0, 1, 100, and 1000 μg/L of phenanthrene in combination with normoxia and hypoxia. At late hatching, video of hearts and vessels were used to measure heart rate (ƒH), stroke volume (SV), cardiac output (Q), red blood cell velocity, and caudal vessel diameter. We found that the highest concentration of phenanthrene caused a 58, 80, and 84% decrease in ƒH, Q, and arterial red blood cell velocity in normoxia and an 88, 98, and 99% decrease in hypoxia, respectively. Co-exposed larvae also experienced higher rates of edema and lordosis in addition to a 33% increase in mortality rate with co-exposure to hypoxia at the 1000 μg/L concentration of phenanthrene. At 12 dpf, baseline swimming behavior was similar between treatments indicating partial recovery from embryonic exposure. This study shows that phenanthrene decreases cardiac parameters, most significantly heart rate and that this effect is exacerbated by simultaneous exposure to hypoxia.
Collapse
Affiliation(s)
- Alysha D Cypher
- Department of Biology, Integrated Bioscience, The University of Akron, Akron, OH, USA.
| | - Joanna Consiglio
- Department of Biology, Integrated Bioscience, The University of Akron, Akron, OH, USA
| | - Brian Bagatto
- Department of Biology, Integrated Bioscience, The University of Akron, Akron, OH, USA
| |
Collapse
|
26
|
Button EL, Bersten DC, Whitelaw ML. HIF has Biff – Crosstalk between HIF1a and the family of bHLH/PAS proteins. Exp Cell Res 2017; 356:141-145. [DOI: 10.1016/j.yexcr.2017.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
|
27
|
Wang P, Du Z, Gao S, Zhang X, Giesy JP. Impairment of reproduction of adult zebrafish (Danio rerio) by binary mixtures of environmentally relevant concentrations of triclocarban and inorganic mercury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:124-132. [PMID: 27611220 DOI: 10.1016/j.ecoenv.2016.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Effects of chemical mixtures at environmentally relevant concentrations on endocrine systems of aquatic organisms are of concern. Triclocarban (TCC) and inorganic mercury (Hg2+) are ubiquitous in aquatic environments, and are known to interfere with endocrine pathways via different mechanisms of toxic action. However, effects of mixtures of the two pollutants on aquatic organisms and associated molecular mechanisms were unknown. This study examined effects of binary mixtures of TCC and Hg2+ on histopathological and biochemical alteration of reproductive organs in zebrafish (Danio rerio) after 21 d exposure. The results showed that: 1) At concentrations studied, TCC alone caused little effect on hepatic tissues, but it aggravated lesions in liver caused by Hg2+ via indirect mechanisms of disturbing homeostasis and altering concentrations of hormones; 2) Histological lesions were more severe in gonads of individuals, especially males, exposed to the binary mixture. Exposure to TCC alone (2.5 or 5μg/L) (measured concentration 140 or 310ng/L) or Hg2+ alone (5μg/L or 10μg/L (measured concentration 367 or 557ng/L) slightly retarded development of oocytes, whereas co-exposure to nominal concentrations of 5μg/L TCC and 10μg /L Hg2+ promoted maturation of oocytes. In males, maturation of sperm was slightly delayed by exposure to either TCC or Hg2+, while their combinations caused testes to be smaller and sperm to be fewer compared with fish exposed to either of the contaminants individually; 3) Lesions observed in fish exposed to binary mixtures might be due to altered transcription of genes involved in steroidogenesis, such as cyp19a, 3beta-HSD, cyp17, 17beta-HSD and modulated concentrations of testosterone and estradiol in blood plasma. The observed results further support the complexity of toxic responses of fish exposed to lesser concentrations of binary chemical mixtures. Since it is impossible to collect empirical information in controlled studies of all possible combinations of toxicants, the application of omics methods might improve the predictive capabilities of results of single classes of chemicals.
Collapse
Affiliation(s)
- Pingping Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - J P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China; Toxicology Centre and Department of veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Zoology, and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
28
|
Szychowski KA, Wnuk A, Kajta M, Wójtowicz AK. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. ENVIRONMENTAL RESEARCH 2016; 151:106-114. [PMID: 27474938 DOI: 10.1016/j.envres.2016.07.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland.
| |
Collapse
|
29
|
Tsai CH, Li CH, Liao PL, Cheng YW, Lin CH, Huang SH, Kang JJ. NcoA2-Dependent Inhibition of HIF-1α Activation Is Regulated via AhR. Toxicol Sci 2015; 148:517-30. [PMID: 26350169 DOI: 10.1093/toxsci/kfv199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High endogenous levels of aryl hydrocarbon receptor (AhR) contribute to hypoxia signaling pathway inhibition following exposure to the potent AhR ligand benzo[a]pyrene (B[a]P) and could alter cellular homeostasis and disease condition. Increasing evidence indicates that AhR might compete with AhR nuclear translocator (ARNT) for complex formation with hypoxia-inducible factor-1α (HIF-1α) for transactivation, which could alter several physiological variables. Nuclear receptor coactivator 2 (NcoA2) is a transcription coactivator that regulates transcription factor activation and inhibition of basic helix-loop-helix Per (Period)-ARNT-SIM (single-minded) (bHLH-PAS) family proteins, such as HIF-1α, ARNT, and AhR, through protein-protein interactions. In this study, we demonstrated that both hypoxia and hypoxia-mimic conditions decreased NcoA2 protein expression in HEK293T cells. Hypoxia response element (HRE) and xenobiotic-responsive element (XRE) transactivation also were downregulated with NcoA2 knockdown under hypoxic conditions. In addition, B[a]P significantly decreased NcoA2 protein expression be accompanied with AhR degradation. We next evaluated whether the absence of AhR could affect NcoA2 protein function under hypoxia-mimetic conditions. NcoA2 and HIF-1α nuclear localization decreased in both B[a]P-pretreated and AhR-knockdown HepG2 cells under hypoxia-mimic conditions. Interestingly, NcoA2 overexpression downregulated HRE transactivation by competing with HIF-1α and AhR to form protein complexes with ARNT. Both NcoA2 knockdown and overexpression inhibited endothelial cell tube formation in vitro. We also demonstrated using the in vivo plug assay that NcoA2-regulated vascularization decreased in mice. Taken together, these results revealed a biphasic role of NcoA2 between AhR and hypoxic conditions, thus providing a novel mechanism underlying the cross talk between AhR and hypoxia that affects disease development and progression.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine; Graduate Institute of Medical Sciences, College of Medicine, and
| | - Po-Lin Liao
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsuan Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Jou Kang
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan;
| |
Collapse
|
30
|
Mladenova DN, Dahlstrom JE, Tran PN, Benthani F, Bean EG, Ng I, Pangon L, Currey N, Kohonen-Corish MRJ. HIF1α deficiency reduces inflammation in a mouse model of proximal colon cancer. Dis Model Mech 2015; 8:1093-103. [PMID: 26183215 PMCID: PMC4582097 DOI: 10.1242/dmm.019000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/07/2015] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies. However, the role of HIF1α is still poorly understood in chronic inflammation that predisposes the colon to carcinogenesis. We have previously reported that the transcription of HIF1α is upregulated and that the protein is stabilised in inflammatory lesions that are caused by the non-steroidal anti-inflammatory drug (NSAID) sulindac in the mouse proximal colon. Here, we exploited this side effect of long-term sulindac administration to analyse the role of HIF1α in colon inflammation using mice with a Villin-Cre-induced deletion of Hif1α exon 2 in the intestinal epithelium (Hif1αΔIEC). We also analysed the effect of sulindac sulfide on the aryl hydrocarbon receptor (AHR) pathway in vitro in colon cancer cells. Most sulindac-treated mice developed visible lesions, resembling the appearance of flat adenomas in the human colon, surrounded by macroscopically normal mucosa. Hif1αΔIEC mice still developed lesions but they were smaller than in the Hif1α-floxed siblings (Hif1αF/F). Microscopically, Hif1αΔIEC mice had significantly less severe colon inflammation than Hif1αF/F mice. Molecular analysis showed reduced MIF expression and increased E-cadherin mRNA expression in the colon of sulindac-treated Hif1αΔIEC mice. However, immunohistochemistry analysis revealed a defect of E-cadherin protein expression in sulindac-treated Hif1αΔIEC mice. Sulindac sulfide treatment in vitro upregulated Hif1α, c-JUN and IL8 expression through the AHR pathway. Taken together, HIF1α expression augments inflammation in the proximal colon of sulindac-treated mice, and AHR activation by sulindac might lead to the reduction of E-cadherin protein levels through the mitogen-activated protein kinase (MAPK) pathway. Summary: HIF1α deficiency reduces inflammation in the mouse proximal colon but is associated with defective E-cadherin expression in colon epithelial cells when mice lacking intestinal epithelium expression of Hif1α are challenged with sulindac.
Collapse
Affiliation(s)
- Dessislava N Mladenova
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Jane E Dahlstrom
- ACT Pathology, The Canberra Hospital and Australian National University Medical School, Canberra, Australian Capital Territory, 2605, Australia
| | - Phuong N Tran
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Fahad Benthani
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Elaine G Bean
- ACT Pathology, The Canberra Hospital and Australian National University Medical School, Canberra, Australian Capital Territory, 2605, Australia
| | - Irvin Ng
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Laurent Pangon
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Nicola Currey
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Maija R J Kohonen-Corish
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia St Vincent's Clinical School, UNSW Medicine, UNSW Australia, Sydney, New South Wales, 2052, Australia School of Medicine, University of Western Sydney, Sydney, New South Wales, 2560, Australia
| |
Collapse
|
31
|
Idelman G, Smith DLH, Zucker SD. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biol 2015; 5:398-408. [PMID: 26163808 PMCID: PMC4506991 DOI: 10.1016/j.redox.2015.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022] Open
Abstract
It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide ( [Formula: see text] ) production, respectively. The generation of both nitrate and [Formula: see text] in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD) and bilirubin effectively abolished LPS-mediated [Formula: see text] production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.
Collapse
Affiliation(s)
- Gila Idelman
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA
| | - Darcey L H Smith
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA
| | - Stephen D Zucker
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA.
| |
Collapse
|
32
|
Tait S, Tassinari R, Maranghi F, Mantovani A. Bisphenol A affects placental layers morphology and angiogenesis during early pregnancy phase in mice. J Appl Toxicol 2015; 35:1278-91. [PMID: 26063408 DOI: 10.1002/jat.3176] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is a widespread endocrine disrupter mainly used in food contact plastics. Much evidence supports the adverse effects of BPA, particularly on susceptible groups such as pregnant women. The present study considered placental development - relevant for pregnancy outcomes and fetal nutrition/programming - as a potential target of BPA. Pregnant CD-1 mice were administered per os with vehicle, 0.5 (BPA05) or 50 mg kg(-1) (BPA50) body weight day(-1) of BPA, from gestational day (GD) 1 to GD11. At GD12, BPA50 induced significant degeneration and necrosis of giant cells, increased vacuolization in the junctional zone in the absence of glycogen accumulation and reduction of the spongiotrophoblast layer. In addition, BPA05 induced glycogen depletion as well as significant nuclear accumulation of β-catenin in trophoblasts of labyrinthine and spongiotrophoblast layers, supporting the activation of the Wnt/β-catenin pathway. Transcriptomic analysis indicated that BPA05 promoted and BPA50 inhibited blood vessel development and branching; morphologically, maternal vessels were narrower in BPA05 placentas, whereas embryonic and maternal vessels were irregularly dilated in the labyrinth of BPA50 placentas. Quantitative polymerase chain reaction evidenced an estrogen receptor β induction by BPA50, which did not correspond to downstream genes activation; indeed, the transcription factor binding sites analysis supported the AhR/Arnt complex as regulator of BPA50-modulated genes. Conversely, Creb appeared as the main transcription factor regulating BPA05-modulated genes. Embryonic structures (head, forelimb) showed divergent perturbations upon BPA05 or BPA50 exposure, potentially related to unbalanced embryonic nutrition and/or to modulation of genes involved in embryo development. Our findings support placenta as an important target of BPA, even at environmentally relevant dose levels.
Collapse
Affiliation(s)
- Sabrina Tait
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Tassinari
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Maranghi
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Alberto Mantovani
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
33
|
Prokkola JM, Nikinmaa M, Lubiana P, Kanerva M, McCairns RJS, Götting M. Hypoxia and the pharmaceutical diclofenac influence the circadian responses of three-spined stickleback. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:116-124. [PMID: 25461750 DOI: 10.1016/j.aquatox.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Pollution with low concentrations of pharmaceuticals, especially when combined with low-oxygen conditions (hypoxia), is a threat to aquatic ecosystems worldwide. The non-steroidal anti-inflammatory drug diclofenac is commonly detected in wastewater effluents, and has potential to accumulate in the bile of fish. Diclofenac has been shown to activate aryl hydrocarbon receptor (AHR), which induces transcription in the metabolic enzyme cytochrome P450 1a (cyp1a). Previously, crosstalk has been shown to occur between AHR and hypoxia inducible factor 1 (HIF-1). In addition, both of these transcription factors interact with the proteins regulating circadian (24-h) rhythms in vertebrates. Yet little is known about the significance of these interactions during simultaneous exposure to chemicals and hypoxia in fish in vivo. We exposed wild-caught three-spined sticklebacks (Gasterosteus aculeatus) to diclofenac (1 μg/L, 14 days), hypoxia (2.0 mg/L, up to 24h) and the combination of both. We then analyzed markers of chemical biotransformation (EROD activity, cyp1a and ahr mRNA levels), glycolysis (lactate dehydrogenase (LDH) enzyme activity, ldh and enolase 1a mRNA levels), and the transcription of core circadian clock genes clock and period 1 in liver tissue. Samples were taken at three time points during the light period in order to address disturbances in the circadian variation of metabolic processes. The results show that mRNA levels and LDH activity tended to be lowest before the dark period, but this pattern was disturbed by hypoxia and diclofenac. Diclofenac and hypoxia co-exposure induced EROD activity more strongly than diclofenac exposure alone, while cyp1a mRNA level was increased also by hypoxia and diclofenac alone. LDH activity and mRNA expression showed a clear time-dependent response during hypoxia, which is consistent with the previously suggested decreased accumulation of HIF-1 during the dark period. Furthermore, LDH activity and transcription was disturbed by diclofenac, indicating important effects of environmental pollutants in disturbing natural acclimation. This study demonstrates the need for more studies to understand the potential disturbances in endogenous rhythms caused by environmental pollution in natural populations.
Collapse
Affiliation(s)
- Jenni M Prokkola
- Laboratory of Animal Physiology, Department of Biology, University of Turku, 20014, Finland.
| | - Mikko Nikinmaa
- Laboratory of Animal Physiology, Department of Biology, University of Turku, 20014, Finland.
| | - Pedro Lubiana
- Zoological Institute and Zoological Museum, University of Hamburg, Germany.
| | - Mirella Kanerva
- Laboratory of Animal Physiology, Department of Biology, University of Turku, 20014, Finland.
| | - R J Scott McCairns
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland.
| | - Miriam Götting
- Zoological Institute and Zoological Museum, University of Hamburg, Germany.
| |
Collapse
|
34
|
Liao TL, Chen SC, Tzeng CR, Kao SH. TCDD induces the hypoxia-inducible factor (HIF)-1α regulatory pathway in human trophoblastic JAR cells. Int J Mol Sci 2014; 15:17733-50. [PMID: 25272228 PMCID: PMC4227186 DOI: 10.3390/ijms151017733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023] Open
Abstract
The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α) stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS) and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or N-acetylcysteine (a ROS scavenger). The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development.
Collapse
Affiliation(s)
- Tien-Ling Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Su-Chee Chen
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 110, Taiwan.
| | - Chii-Reuy Tzeng
- Center for Reproductive Medicine & Sciences Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
35
|
Vorrink SU, Domann FE. Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node. Chem Biol Interact 2014; 218:82-8. [PMID: 24824450 DOI: 10.1016/j.cbi.2014.05.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/29/2014] [Accepted: 05/04/2014] [Indexed: 11/17/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the responses to toxic environmental chemicals such as TCDD or dioxin-like PCBs. To regulate gene expression, the AhR requires its binding partner, the aryl hydrocarbon receptor nuclear translocator (ARNT). ARNT is also required by the hypoxia-inducible factor-1α (HIF-1α), a crucial regulator of responses to conditions of reduced oxygen. The important role of ARNT in both the AhR and HIF-1α signaling pathways establishes a meaningful foundation for a possible crosstalk between these two vitally important signaling pathways. This crosstalk might lead to interference between the two signaling pathways and thus might play a role in the variety of cellular responses after exposure to AhR ligands and reduced oxygen availability. This review focuses on studies that have analyzed the effect of low oxygen environments and hypoxia-mimetic agents on AhR signaling and conversely, the effect of AhR ligands, with a special emphasis on PCBs, on HIF-1α signaling. We highlight studies that assess the role of ARNT, elucidate the mechanism of the crosstalk, and discuss the physiological implications for exposure to AhR-inducing compounds in the context of hypoxia.
Collapse
Affiliation(s)
- Sabine U Vorrink
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA
| | - Frederick E Domann
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Radiation Oncology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
36
|
Regoli F, Giuliani ME. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. MARINE ENVIRONMENTAL RESEARCH 2014; 93:106-17. [PMID: 23942183 DOI: 10.1016/j.marenvres.2013.07.006] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 05/04/2023]
Abstract
The antioxidant system of marine organisms consists of low molecular weight scavengers and antioxidant enzymes which interact in a sophisticated network. Environmental pollutants can unbalance this system through closely related mechanisms, indirect relationships and cascade effects acting from pre-transcriptional to catalytic levels. Chemically-mediated pathways have the potential to greatly enhance intracellular formation of reactive oxygen species (ROS); at the same time, excessive levels of oxyradicals down-regulate xenobiotics metabolism, with important environmental implications for organisms exposed to chemical mixtures. Interactions between different classes of chemicals, generation of ROS and onset of oxidative stress conditions are partly modulated by changes in levels and functions of redox-sensitive signaling proteins and transcription factors. The Nrf2-Keap1 pathway still remains largely unexplored in marine organisms, despite the elevated degree of identity and similarity with homolog transcripts and proteins from different species. Recent evidences on transcriptional up-regulation of this system are consistent with the capability to provide a prolonged expression of ARE-regulated cytoprotective genes, and to efficiently switch off this mechanism when oxidative pressure decreases. Although gene expression and catalytic activities of antioxidants are often measured as alternative biomarkers in monitoring biological effects of contaminants, conflicting results between molecular and biochemical responses are quite frequent. The links between effects occurring at various intracellular levels can be masked by non-genomic processes affecting mRNA stability and protein turnover, different timing for transcriptional and translational mechanisms, metabolic capability of tissues, post-transcriptional modifications of proteins, bi-phasic responses of antioxidant enzymes and interactions occurring in chemical mixtures. In this respect, caution should be taken in monitoring studies where mRNA levels of antioxidants could represent a snapshot of cell activity at a given time, not an effective endpoint of environmental pollutants.
Collapse
Affiliation(s)
- Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Ranieri Monte d'Ago, Ancona 60100, Italy.
| | - Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Ranieri Monte d'Ago, Ancona 60100, Italy
| |
Collapse
|
37
|
Myre M, Imbeault P. Persistent organic pollutants meet adipose tissue hypoxia: does cross-talk contribute to inflammation during obesity? Obes Rev 2014; 15:19-28. [PMID: 23998203 DOI: 10.1111/obr.12086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/08/2013] [Accepted: 08/04/2013] [Indexed: 01/15/2023]
Abstract
Lipophilic persistent organic pollutants (POPs) accumulate in lipid-rich tissues such as human adipose tissue. This is particularly problematic in individuals with excess adiposity, a physiological state that may be additionally characterized by local adipose tissue hypoxia. Hypoxic patches occur when oxygen diffusion is insufficient to reach all hypertrophic adipocytes. POPs and hypoxia independently contribute to the development of adipose tissue-specific and systemic inflammation often associated with obesity. Inflammation is induced by increased proinflammatory mediators such as tumour necrosis factor-alpha, interleukin-6, and monocyte chemotactic protein-1, as well as reduced adiponectin release, an anti-inflammatory and insulin-sensitizing adipokine. The aryl hydrocarbon receptor (AhR) mediates the cellular response to some pollutants, while hypoxia responses occur through the oxygen-sensitive transcription factor hypoxia-inducible factor (HIF)-1. There is some overlap between the two signalling pathways since both require a common subunit called the AhR nuclear translocator. As such, it is unclear how adipocytes respond to simultaneous POP and hypoxia exposure. This brief review explores the independent contribution of POPs and adipose tissue hypoxia as factors underlying the inflammatory response from adipocytes during obesity. It also highlights that the combined effect of POPs and hypoxia through the AhR and HIF-1 signalling pathways remains to be tested.
Collapse
Affiliation(s)
- M Myre
- Behavioral and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
38
|
Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines. Toxicol Appl Pharmacol 2013; 274:408-16. [PMID: 24355420 DOI: 10.1016/j.taap.2013.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 11/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Exposure to 1% O2 prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity.
Collapse
Key Words
- 2,2′,4,4′,5,5′-hexachlorobiphenyl
- 2,3,7,8-tetrachlorodibenzo-p-dioxin
- 3,3′,4,4′,5-pentachlorobiphenyl
- 6,2′,4′-trimethoxyflavone
- ARNT
- AhR
- CYP1A1
- ChIP
- DMSO
- EMSA
- HIF-1α
- HRE
- Hypoxia
- PCB
- PCB 126
- PCB 153
- RPLP0
- TCDD
- TMF
- XRE
- aryl hydrocarbon receptor
- aryl hydrocarbon receptor nuclear translocator
- bHLH/PAS
- basic helix-loop-helix/PER-ARNT-SIM
- chromatin immunoprecipitation
- cytochrome P450 1A1
- dimethyl sulfoxide
- electrophoretic mobility shift assay
- hypoxia response element
- hypoxia-inducible factor-1α
- polychlorinated biphenyl
- qRT-PCR
- quantitative real-time reverse transcription polymerase chain reaction
- ribosomal protein, large, P0
- xenobiotic response element
Collapse
|
39
|
Bradley JM, Cryar KA, El Hajj MC, El Hajj EC, Gardner JD. Exposure to diesel exhaust particulates induces cardiac dysfunction and remodeling. J Appl Physiol (1985) 2013; 115:1099-106. [PMID: 23887904 DOI: 10.1152/japplphysiol.00343.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic exposure to diesel exhaust particulates (DEP) increases the risk of cardiovascular disease in urban residents, predisposing them to the development of several cardiovascular stresses, including myocardial infarctions, arrhythmias, thrombosis, and heart failure. DEP contain a high level of polycyclic aromatic hydrocarbons, which activate the aryl hydrocarbon receptor (AHR). We hypothesize that exposure to DEP elicits ventricular remodeling through the activation of the AHR pathway, leading to ventricular dilation and dysfunction. Male Sprague-Dawley rats were exposed by nose-only nebulization to DEP (SRM 2975, 0.2 mg/ml) or vehicle for 20 min/day × 5 wk. DEP exposure resulted in eccentric left ventricular dilation (8% increased left ventricular internal diameter at diastole and 23% decreased left ventricular posterior wall thickness at diastole vs. vehicle), as shown by echocardiograph assessment. Histological analysis using Picrosirius red staining revealed that DEP reduced cardiac interstitial collagen (23% decrease vs. vehicle). Further assessment of cardiac function using a pressure-volume catheter indicated impaired diastolic function (85% increased end-diastolic pressure and 19% decreased Tau vs. vehicle) and contractility (57 and 48% decreased end-systolic pressure-volume relationship and maximum change in pressure over time vs. end-diastolic volume compared with vehicle, respectively) in the DEP-exposed animals. Exposure to DEP significantly increased cardiac expression of AHR (19% increase vs. vehicle). In addition, DEP significantly decreased the cardiac expression of hypoxia inducible factor-1α, the competitive pathway to the AHR, and vascular endothelial growth factor, a downstream mediator of hypoxia inducible factor-1α (26 and 47% decrease vs. vehicle, respectively). These findings indicate that exposure to DEP induced left ventricular dilation by loss of collagen through an AHR-dependent mechanism.
Collapse
Affiliation(s)
- Jessica M Bradley
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | | | | | |
Collapse
|
40
|
Experience in South Africa of combining bioanalysis and instrumental analysis of PCDD/Fs. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Cannas M, Atzori F, Rupsard F, Bustamante P, Loizeau V, Lefrançois C. PCBs contamination does not alter aerobic metabolism and tolerance to hypoxia of juvenile sole (Solea solea L. 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 127:54-60. [PMID: 22682372 DOI: 10.1016/j.aquatox.2012.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 06/01/2023]
Abstract
Coastal habitats play a major role as nurseries for many fish species; however, they are also submitted to pollutants and oxygen fluctuations. Fry's concept of metabolic scope for activity was used to evaluate the effect of polychlorinated biphenyls (PCBs) on the aerobic metabolism in juvenile common sole (0-1 year old). Aerobic metabolic scope (AMS) in control and PCB-contaminated fish via food pathway was determined using respirometry techniques. Furthermore, the hypoxia tolerance in control and PCB-contaminated fish was evaluated by assessing their critical oxygen concentration (O(2crit)). Our results showed that while PCB-contaminated fish were able to maintain a constant AMS and O(2crit), PCBs tend to affect their aerobic metabolism by acting on maximal oxygen consumption (MO(2max)) in hypoxia and standard metabolic rate, but only at the highest PCB concentration between 30 and 60 days of exposure. In conclusion, we can hypothetise that the tested PCB-exposures may not impair the tolerance to hypoxia and the survival of common sole in their natural environment.
Collapse
Affiliation(s)
- M Cannas
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | | | | | | | | | | |
Collapse
|
42
|
Li X, Wang X, Shi W, Liu H, Yu H. Analysis of Ah receptor binding affinities of polybrominated diphenyl ethers via in silico molecular docking and 3D-QSAR. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:75-87. [PMID: 23121134 DOI: 10.1080/1062936x.2012.729225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have become ubiquitous contaminations due to their use as flame retardants. The structural similarity of PBDE to some dioxin-like compounds suggested that they may share similar toxicological effects: they might activate the aryl hydrocarbon receptor (AhR) signal transduction pathway and thus might have adverse effects on wildlife and humans. In this study, in silico computational workflow combining molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) was performed to investigate the binding interactions between PBDEs and AhR and the structural features affecting the AhR binding affinity of PBDE. The molecular docking showed that hydrogen-bond and hydrophobic interactions were the major driving forces for the binding of ligands to AhR, and several key amino acid residues were also identified. The CoMSIA model was developed from the conformations obtained from molecular docking and exhibited satisfactory results as q (2) of 0.605 and r (2) of 0.996. Furthermore, the derived model had good robustness and statistical significance in both internal and external validations. The 3D contour maps generated from CoMSIA provided important structural features influence the binding affinity. The obtained results were beneficial to better understand the toxicological mechanism of PBDEs.
Collapse
Affiliation(s)
- X Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, P.R. China
| | | | | | | | | |
Collapse
|
43
|
Li F, Li X, Liu X, Zhang L, You L, Zhao J, Wu H. Docking and 3D-QSAR studies on the Ah receptor binding affinities of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:478-485. [PMID: 22004969 DOI: 10.1016/j.etap.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/16/2011] [Accepted: 09/02/2011] [Indexed: 05/31/2023]
Abstract
Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) binding with the aryl hydrocarbon receptor (AhR) have been correlated with many toxic responses. Hence, it is very necessary to study the interactions between these ligands and AhR for further understanding of the mechanism of toxicity. In this study, an integrated molecular docking and 3D-QSAR approach was employed to investigate the binding interactions between PCBs, PCDDs, PCDFs and AhR. From molecular docking, hydrogen-bonding and hydrophobic interactions were observed to be characteristic interactions between compounds and AhR. Based on the mechanism of interactions, an optimum 3D-QSAR model with good robustness (Q(CUM)(2)=0.907) and predictability (Q(EXT)(2)=0.863) was developed by partial least squares. Additionally, the developed QSAR model indicated that the molecular size, shape profiles, polarizability and electropological states of compounds were related to the binding affinities to AhR.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Coastal Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Nikinmaa M, Rytkönen KT. Functional genomics in aquatic toxicology-do not forget the function. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:16-24. [PMID: 22099341 DOI: 10.1016/j.aquatox.2011.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/28/2011] [Indexed: 05/31/2023]
Abstract
Toxicological responses of an organism are disturbances of function. This as a starting point we review and discuss issues that we consider important in applying functional genomics to aquatic toxicology. Functional genomics includes all the steps in gene expression pathway. Thus, ultimately the goal is to relate genome information to protein activity. In ecotoxicogenomics the toxicological responses must further be combined with responses to natural environmental changes. We focus on fish, but also consider commonly used invertebrates, mainly Daphnia. We first go through the toxicologically important features of genomes of aquatic animals, and then review the reference gene approach to quantify transcript amount. Thereafter we emphasize the need to relate the mRNA and protein levels, and protein activity of individual genes. Finally we discuss how functional genomic investigations may be important in resolving current environmental problems and give our views of valuable future research topics.
Collapse
|
45
|
Fleming CR, Di Giulio RT. The role of CYP1A inhibition in the embryotoxic interactions between hypoxia and polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures in zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1300-14. [PMID: 21706407 PMCID: PMC4018733 DOI: 10.1007/s10646-011-0686-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2011] [Indexed: 05/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants with elevated concentrations in waters that may also experience hypoxia. Previous research has shown interactions between hypoxia and some PAHs (fluoranthene, α-naphthoflavone) but no interaction with others (benzo[a]pyrene (BaP), β-naphthoflavone). Here we examine how hypoxia (7.4% oxygen, ~35% of normoxia) affects the embryotoxicity of PAHs that act through different mechanisms and the role that CYP1A inhibition may play in these interactions. About 500 μg/l BaP and 1-200 μg/l benzo[k]fluoranthene (BkF) interacted synergistically with hypoxia to induce pericardial edema in developing zebrafish (Danio rerio). Hypoxia protected from the embryotoxicity of pyrene (PY) and had no effect on the toxicity of polychlorinated biphenyl-126. Despite previous reports of other CYP1A inhibitors interacting with hypoxia, up to 2,000 μg/l dibenzothiophene, 2-aminoanthracene (AA), and carbazole (CB) all failed to induce embryotoxicity under normoxic or hypoxic conditions. The toxicity of PAH mixtures--including binary mixtures of BaP/AA and BaP/CB and two environmentally relevant, complex mixtures--were exacerbated severely by hypoxia to induce or worsen pericardial edema and cause mortality. The interactions between hypoxia and BkF and PY were closely mimicked by morpholino knockdown of CYP1A, indicating a potential role for metabolism of these compounds in their toxicity. Our results indicate that various PAHs may exhibit synergistic, antagonistic or additive toxicity with hypoxia. The enhanced toxicity of environmental mixtures of PAHs under hypoxia suggests that risk assessments that do not take into account potential interactions with hypoxia may underestimate the threat of PAHs to fish in contaminated sites.
Collapse
Affiliation(s)
- Carrie R Fleming
- Integrated Toxicology and Environmental Health Program, Nicholas School for the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | | |
Collapse
|
46
|
Terzuoli E, Puppo M, Rapisarda A, Uranchimeg B, Cao L, Burger AM, Ziche M, Melillo G. Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res 2010; 70:6837-48. [PMID: 20736373 DOI: 10.1158/0008-5472.can-10-1075] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1beta/AhR, which is shared with HIF-1alpha, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacologic activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1alpha transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1alpha by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1alpha expression in Ah(R100) cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1alpha in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1alpha mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to downregulate HIF-1alpha mRNA, indicating that active transcription was required for the inhibition of HIF-1alpha expression. Finally, AF inhibited HIF-1alpha protein accumulation and the expression of HIF-1 target genes in MCF-7 xenografts. These results show that AF inhibits HIF-1alpha in an AhR-independent fashion, and they unveil additional activities of AF that may be relevant for its further clinical development.
Collapse
|
47
|
Schults MA, Timmermans L, Godschalk RW, Theys J, Wouters BG, van Schooten FJ, Chiu RK. Diminished carcinogen detoxification is a novel mechanism for hypoxia-inducible factor 1-mediated genetic instability. J Biol Chem 2010; 285:14558-64. [PMID: 20228066 DOI: 10.1074/jbc.m109.076323] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypoxia-inducible factor 1 (HIF-1) pathway is induced in many tumors and associated with poorer outcome. The hypoxia-responsive transcription factor HIF-1alpha dimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), which is also an important binding partner for the aryl hydrocarbon receptor (AhR). AhR is an important mediator in the metabolic activation and detoxification of carcinogens, such as the environmental pollutant benzo[a]pyrene (BaP). We hypothesized that HIF-1alpha activation attenuates BaP-induced AhR-mediated gene expression, which may lead to increased genetic instability and malignant progression. Human lung carcinoma cells (A549) were simultaneously stimulated with CoCl(2), which leads to HIF-1alpha stabilization and varying concentrations of BaP. Both quantitative PCR and immunoblot analysis indicated that induction of the hypoxia response pathway significantly reduced the levels of AhR downstream targets CYP1A1 and CYP1B1 and AhR protein binding to ARNT. We further demonstrate that the BaP-induced hypoxanthine-guanine phosphoribosyltransferase mutation frequency and gamma-H2AX foci were markedly amplified when the HIF-1 pathway was induced. BaP-DNA adducts were only marginally increased, and transient strand breaks were diminished by HIF-1 induction, indicating changes in DNA repair. These data indicate that concurrent exposure of tumor cells to hypoxia and exogenous genotoxins can enhance genetic instability.
Collapse
Affiliation(s)
- Marten A Schults
- Department of Health Risk Analysis and Toxicology, NUTRIM Research Institute, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Fleming CR, Billiard SM, Di Giulio RT. Hypoxia inhibits induction of aryl hydrocarbon receptor activity in topminnow hepatocarcinoma cells in an ARNT-dependent manner. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:383-9. [PMID: 19539049 PMCID: PMC3118667 DOI: 10.1016/j.cbpc.2009.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/06/2009] [Accepted: 06/07/2009] [Indexed: 10/20/2022]
Abstract
Hypoxic events often occur in waters contaminated with toxic chemicals, including agonists of the aryl hydrocarbon receptor (AhR). HIF-1alpha, the mediator of cellular responses to hypoxia, shares a dimerization partner (ARNT) with AhR and reciprocal crosstalk may occur. Studies addressing AhR/hypoxia crosstalk in mammalian cells have produced contradictory results regarding whether reciprocal crosstalk actually occurs between these pathways and the role ARNT plays in this interaction. We assessed hypoxia-AhR crosstalk in fish cells (PLHC-1) treated with hypoxia (1% O(2)) or normoxia (21% O(2)) and AhR agonists (benzo[a]pyrene (BaP), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and benzo[k]fluoranthene (BkF)) with and without overexpression of ARNT. Hypoxia limited the induction of a transiently transfected AhR reporter by all three of the AhR agonists; overexpression of ARNT eliminated this effect. PCB-126 had no effect on induction of a transiently transfected hypoxia reporter. BkF caused a minor increase in basal and induced hypoxia reporter activity. BaP decreased basal and induced hypoxia reporter activity; overexpression of ARNT did not alter this effect indicating that this interference with hypoxia pathway activity occurs through an alternate mechanism. Reduced hypoxia pathway activity with BaP treatment may be the result of a metabolite. This study supports the hypothesis that HIF-1alpha is able to sequester ARNT from AhR and limit the activity of the AhR pathway, but suggests that the converse is not true.
Collapse
Affiliation(s)
- Carrie R Fleming
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
49
|
Role of aryl hydrocarbon receptor in modulation of the expression of the hypoxia marker carbonic anhydrase IX. Biochem J 2009; 419:419-25. [PMID: 19154183 DOI: 10.1042/bj20080952] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tumour-associated expression of CA IX (carbonic anhydrase IX) is to a major extent regulated by HIF-1 (hypoxia-inducible factor-1) which is important for transcriptional activation and consists of the oxygen-regulated subunit HIF-1alpha and the partner factor ARNT [AhR (aryl hydrocarbon receptor) nuclear translocator]. We have previously observed that HIF-1alpha competes with the AhR for interaction with ARNT under conditions when both conditionally regulated factors are activated. We have therefore investigated whether TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-induced activation of the AhR pathway might interfere with CA IX expression. The results from the present study suggest that TCDD treatment reduces hypoxic induction of both CA IX mRNA and protein expression. Moreover, the transcriptional activity of the CA9 promoter was significantly reduced by expression of CAAhR (constitutively active AhR), which activates transcription in a ligand-independent manner. Finally, we found that ARNT is critical for both hypoxic induction and the TCDD-mediated inhibition of CA9 expression.
Collapse
|
50
|
Yu RMK, Ng PKS, Tan T, Chu DLH, Wu RSS, Kong RYC. Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:235-242. [PMID: 18945501 DOI: 10.1016/j.aquatox.2008.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
Fish in polluted coastal habitats commonly suffer simultaneous exposure to both hypoxia and xenobiotics. Although the adaptive molecular responses to each stress have been described, little is known about the interaction between the signaling pathways mediating these responses. Previous studies in mammalian hepatoma cell lines have shown that hypoxia-inducible factor (HIF)- and/or aryl hydrocarbon receptor (AhR)-activated gene expression is suppressed following co-exposure to hypoxia and the hallmark AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, whether similar crosstalk exists in the non-tumor liver tissues of fish and whether other non-TCDD ligands also play the same inhibitory role in this crosstalk remain unknown. Here, the in vivo hepatic mRNA expression profiles of multiple hypoxia- and AhR-responsive genes (later gene expression=mRNA expression of the gene) were examined in the orange-spotted grouper (Epinephelus coioides) upon single and combined exposures to hypoxia and benzo[a]pyrene (BaP). Combined exposure enhanced hypoxia-induced gene expression but did not significantly alter BaP-induced gene expression. Protein carbonyl content was markedly elevated in fish subjected to combined exposure, indicating accumulation of reactive oxygen species (ROS). Application of diethyldithiocarbamate (DDC) to hypoxia-treated grouper liver explants similarly exaggerated hypoxia-induced gene expression as in the combined stress tissues in vivo. These observations suggest that ROS derived from the combined hypoxia and BaP stress have a role in enhancing hypoxia-induced gene expression.
Collapse
Affiliation(s)
- Richard Man Kit Yu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|