1
|
Kapetanovic E, Weber CR, Bruand M, Pöschl D, Kucharczyk J, Hirth E, Dietsche C, Khan R, Wagner B, Belli O, Vazquez-Lombardi R, Castellanos-Rueda R, Di Roberto RB, Kalinka K, Raess L, Ly K, Rai S, Dittrich PS, Platt RJ, Oricchio E, Reddy ST. Engineered allogeneic T cells decoupling T-cell-receptor and CD3 signalling enhance the antitumour activity of bispecific antibodies. Nat Biomed Eng 2024:10.1038/s41551-024-01255-x. [PMID: 39322719 DOI: 10.1038/s41551-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2024] [Indexed: 09/27/2024]
Abstract
Bispecific antibodies (biAbs) used in cancer immunotherapies rely on functional autologous T cells, which are often damaged and depleted in patients with haematological malignancies and in other immunocompromised patients. The adoptive transfer of allogeneic T cells from healthy donors can enhance the efficacy of biAbs, but donor T cells binding to host-cell antigens cause an unwanted alloreactive response. Here we show that allogeneic T cells engineered with a T-cell receptor that does not convert antigen binding into cluster of differentiation 3 (CD3) signalling decouples antigen-mediated T-cell activation from T-cell cytotoxicity while preserving the surface expression of the T-cell-receptor-CD3 signalling complex as well as biAb-mediated CD3 signalling and T-cell activation. In mice with CD19+ tumour xenografts, treatment with the engineered human cells in combination with blinatumomab (a clinically approved biAb) led to the recognition and clearance of tumour cells in the absence of detectable alloreactivity. Our findings support the development of immunotherapies combining biAbs and 'off-the-shelf' allogeneic T cells.
Collapse
Affiliation(s)
- Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marine Bruand
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Daniel Pöschl
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisabeth Hirth
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Claudius Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Riyaz Khan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Kalinka
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Luca Raess
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Ly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shivam Rai
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
2
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
4
|
Betjes MGH, De Weerd A. Lowering maintenance immune suppression in elderly kidney transplant recipients; connecting the immunological and clinical dots. Front Med (Lausanne) 2023; 10:1215167. [PMID: 37502354 PMCID: PMC10368955 DOI: 10.3389/fmed.2023.1215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
The management of long-term immune suppressive medication in kidney transplant recipients is a poorly explored field in the area of transplant medicine. In particular, older recipients are at an increased risk for side effects and have an exponentially increased risk of infection-related death. In contrast, an aged immune system decreases the risk of acute T-cell-mediated rejection in older recipients. Recent advances in alloimmunity research have shown a rapid and substantial decline in polyfunctional, high-risk CD4+ T cells post-transplantation. This lowers the direct alloreactivity responsible for T-cell-mediated rejection, also known as donor-specific hyporesponsiveness. Chronic antibody-mediated rejection (c-aABMR) is the most frequent cause of kidney graft loss in the long term. However, in older adults, c-aABMR as a cause of graft loss is outnumbered by death with a functioning graft. In addition, DSA development and a diagnosis of c-aABMR plateau ~10 years after transplantation, resulting in a very low risk for rejection thereafter. The intensity of immune suppression regimes could likely be reduced accordingly, but trials in this area are scarce. Tacrolimus monotherapy for 1 year after transplantation seems feasible in older kidney transplant recipients with standard immunological risk, showing the expected benefits of fewer infections and better vaccination responses.
Collapse
|
5
|
Monos DS, Rajalingam R. The Major Histocompatibility Complex. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Chen H, Chakraborty AK, Kardar M. How nonuniform contact profiles of T cell receptors modulate thymic selection outcomes. Phys Rev E 2018; 97:032413. [PMID: 29776088 DOI: 10.1103/physreve.97.032413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 11/07/2022]
Abstract
T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex (MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial for the adaptive immune system to properly function. This is achieved by selection of T cells in the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with a large number of self-peptide-MHC; if a TCR does not bind strongly enough to any self-peptide-MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work cast thymic selection as an extreme value problem and characterized the statistical enrichment or depletion of amino acids in the postselection TCR repertoire, showing how T cells are selected to be able to specifically recognize peptides derived from diverse pathogens yet have limited self-reactivity. Here, we investigate how the diversity of the postselection TCR repertoire is modified when TCRs make nonuniform contacts with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC ligand. Using a representative TCR contact profile as an illustration, we show via simulations that the statistical enrichment or depletion of amino acids now varies by position according to the contact profile, and, importantly, it depends on the implementation of nonuniform contacts during thymic selection. We explain these nontrivial results analytically. Our study has implications for understanding the selection forces that shape the functionality of the postselection TCR repertoire.
Collapse
Affiliation(s)
- Hanrong Chen
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Arup K Chakraborty
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Conserved Vδ1 Binding Geometry in a Setting of Locus-Disparate pHLA Recognition by δ/αβ T Cell Receptors (TCRs): Insight into Recognition of HIV Peptides by TCRs. J Virol 2017; 91:JVI.00725-17. [PMID: 28615212 DOI: 10.1128/jvi.00725-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
Given the limited set of T cell receptor (TCR) V genes that are used to create TCRs that are reactive to different ligands, such as major histocompatibility complex (MHC) class I, MHC class II, and MHC-like proteins (for example, MIC molecules and CD1 molecules), the Vδ1 segment can be rearranged with Dδ-Jδ-Cδ or Jα-Cα segments to form classical γδTCRs or uncommon αβTCRs using a Vδ1 segment (δ/αβTCR). Here we have determined two complex structures of the δ/αβTCRs (S19-2 and TU55) bound to different locus-disparate MHC class I molecules with HIV peptides (HLA-A*2402-Nef138-10 and HLA-B*3501-Pol448-9). The overall binding modes resemble those of classical αβTCRs but display a strong tilt binding geometry of the Vδ1 domain toward the HLA α1 helix, due to a conserved extensive interaction between the CDR1δ loop and the N-terminal region of the α1 helix (mainly in position 62). The aromatic amino acids of the CDR1δ loop exploit different conformations ("aromatic ladder" or "aromatic hairpin") to accommodate distinct MHC helical scaffolds. This tolerance helps to explain how a particular TCR V region can similarly dock onto multiple MHC molecules and thus may potentially explain the nature of TCR cross-reactivity. In addition, the length of the CDR3δ loop could affect the extent of tilt binding of the Vδ1 domain, and adaptively, the pairing Vβ domains adjust their mass centers to generate differential MHC contacts, hence probably ensuring TCR specificity for a certain peptide-MHC class I (pMHC-I). Our data have provided further structural insights into the TCR recognition of classical pMHC-I molecules, unifying cross-reactivity and specificity.IMPORTANCE The specificity of αβ T cell recognition is determined by the CDR loops of the αβTCR, and the general mode of binding of αβTCRs to pMHC has been established over the last decade. Due to the intrinsic genomic structure of the TCR α/δ chain locus, some Vδ segments can rearrange with the Cα segment, forming a hybrid VδCαVβCβ TCR, the δ/αβTCR. However, the basis for the molecular recognition of such TCRs of their ligands is elusive. Here an αβTCR using the Vδ1 segment, S19-2, was isolated from an HIV-infected patient in an HLA-A*24:02-restricted manner. We then solved the crystal structures of the S19-2 TCR and another δ/αβTCR, TU55, bound to their respective ligands, revealing a conserved Vδ1 binding feature. Further binding kinetics analysis revealed that the S19-2 and TU55 TCRs bind pHLA very tightly and in a long-lasting manner. Our results illustrate the mode of binding of a TCR using the Vδ1 segment to its ligand, virus-derived pHLA.
Collapse
|
9
|
Yolcu ES, Shirwan H, Askenasy N. Mechanisms of Tolerance Induction by Hematopoietic Chimerism: The Immune Perspective. Stem Cells Transl Med 2017; 6:700-712. [PMID: 28186688 PMCID: PMC5442770 DOI: 10.1002/sctm.16-0358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/02/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
Hematopoietic chimerism is one of the effective approaches to induce tolerance to donor‐derived tissue and organ grafts without administration of life‐long immunosuppressive therapy. Although experimental efforts to develop such regimens have been ongoing for decades, substantial cumulative toxicity of combined hematopoietic and tissue transplants precludes wide clinical implementation. Tolerance is an active immunological process that includes both peripheral and central mechanisms of mutual education of coresident donor and host immune systems. The major stages include sequential suppression of early alloreactivity, establishment of hematopoietic chimerism and suppressor cells that sustain the state of tolerance, with significant mechanistic and temporal overlap along the tolerization process. Efforts to devise less toxic transplant strategies by reduction of preparatory conditioning focus on modulation rather than deletion of residual host immunity and early reinstitution of regulatory subsets at the central and peripheral levels. Stem Cells Translational Medicine2017;6:700–712
Collapse
Affiliation(s)
- Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Nadir Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
10
|
Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat Genet 2016; 48:995-1002. [PMID: 27479906 PMCID: PMC5010864 DOI: 10.1038/ng.3625] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Within each individual, a highly diverse T cell receptor (TCR) repertoire interacts with peptides presented by major histocompatibility complex (MHC) molecules. Despite extensive research, it remains controversial whether germline-encoded TCR-MHC contacts promote TCR-MHC specificity and if so, whether there exist differences in TCR V-gene compatibilities with different MHC alleles. We applied eQTL mapping to test for associations between genetic variation and TCR V-gene usage in a large human cohort. We report strong trans associations between variation in the MHC locus and TCR V-gene usage. Fine mapping of the association signals reveals specific amino acids in MHC genes that bias V-gene usage, many of which contact or are spatially proximal to the TCR or peptide. Hence, these MHC variants, several of which are linked to autoimmune diseases, can directly affect TCR-MHC interaction. These results provide the first examples of trans-QTLs mediated by protein-protein interactions, and are consistent with intrinsic TCR-MHC specificity.
Collapse
|
11
|
Stadinski BD, Shekhar K, Gómez-Touriño I, Jung J, Sasaki K, Sewell AK, Peakman M, Chakraborty AK, Huseby ES. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol 2016; 17:946-55. [PMID: 27348411 PMCID: PMC4955740 DOI: 10.1038/ni.3491] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β-chain variable region (Vβ) family present in the TCR or the length of the CDR3β. An index based on these findings distinguished Vβ2(+), Vβ6(+) and Vβ8.2(+) regulatory T cells from conventional T cells and also distinguished CD4(+) T cells selected by the major histocompatibility complex (MHC) class II molecule I-A(g7) (associated with the development of type 1 diabetes in NOD mice) from those selected by a non-autoimmunity-promoting MHC class II molecule I-A(b). Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.
Collapse
Affiliation(s)
- Brian D. Stadinski
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Karthik Shekhar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jonathan Jung
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Katsuhiro Sasaki
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London, UK
| | - Arup K. Chakraborty
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139., USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| |
Collapse
|
12
|
Mensali N, Ying F, Sheng VOY, Yang W, Walseng E, Kumari S, Fallang LE, Kolstad A, Uckert W, Malmberg KJ, Wälchli S, Olweus J. Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncoimmunology 2016; 5:e1138199. [PMID: 27467957 DOI: 10.1080/2162402x.2016.1138199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) targeted to CD19 are effective in treatment of B-lymphoid malignancies. However, CARs recognize all CD19 positive (pos) cells, and durable responses are linked to profound depletion of normal B cells. Here, we designed a strategy to specifically target patient B cells by utilizing the fact that T-cell receptors (TCRs), in contrast to CARs, are restricted by HLA. Two TCRs recognizing a peptide from CD20 (SLFLGILSV) in the context of foreign HLA-A*02:01 (CD20p/HLA-A2) were expressed as 2A-bicistronic constructs. T cells re-directed with the A23 and A94 TCR constructs efficiently recognized malignant HLA-A2(pos) B cells endogenously expressing CD20, including patient-derived follicular lymphoma and chronic lymphocytic leukemia (CLL) cells. In contrast, a wide range of HLA-A2(pos)CD20(neg) cells representing different tissue origins, and HLA-A2(neg)CD20(pos) cells, were not recognized. Cytotoxic T cells re-directed with CD20p/HLA-A2-specific TCRs or CD19 CARs responded with similar potencies to cells endogenously expressing comparable levels of CD20 and CD19. The CD20p/HLA-A2-specific TCRs recognized CD20p bound to HLA-A2 with high functional avidity. The results show that T cells expressing CD20p/HLA-A2-specific TCRs efficiently and specifically target B cells. When used in context of an HLA-haploidentical allogeneic stem cell transplantation where the donor is HLA-A2(neg) and the patient HLA-A2(pos), these T cells would selectively kill patient-derived B cells and allow reconstitution of the B-cell compartment with HLA-A2(neg) donor cells. These results should pave the way for clinical testing of T cells genetically engineered to target malignant B cells without permanent depletion of normal B cells.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fan Ying
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Oei Yi Sheng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Even Walseng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Shraddha Kumari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars-Egil Fallang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Arne Kolstad
- K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine and Institute of Biology, Humboldt University , Berlin, Germany
| | - Karl Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sébastien Wälchli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Cell Therapy, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
14
|
Murray JS. An old Twist in HLA-A: CDR3α Hook up at an R65-joint. Front Immunol 2015; 6:268. [PMID: 26074926 PMCID: PMC4445401 DOI: 10.3389/fimmu.2015.00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/14/2015] [Indexed: 11/30/2022] Open
Abstract
T-cell ontogeny optimizes the α/β T-cell receptor (TCR) repertoire for recognition of major histocompatibility complex (MHC) class-I/II genetic polymorphism, and co-evolution of TCR germline V-gene segments and the MHC must entail somatic diversity generated in the third complimentary determining regions (CDR3α/β); however, it is still not clear how. Herein, a conspicuous structural link between the V-Jα used by several different TCR [all in complex with the same MHC molecule (HLA-A2)], and a conserved MHC motif (a.a., R65-X-X-K-A-X-S-Q72) is described. We model this R65-joint in detail, and show that the same TCR’s CDR3α loop maintains its CDR2α loop at a distance of ~4 Å from polymorphic amino acid (a.a.) positions of the α-2 helix in all but one of the analyzed crystal structures. Indeed, the pitch of docked TCRs varies as their twist/tilt/sway maintains the R65-joint and peptide contacts. Thus, the R65-joint appears to have poised the HLA-A lineage toward alloreactivity.
Collapse
|
15
|
Cole DK, Miles KM, Madura F, Holland CJ, Schauenburg AJA, Godkin AJ, Bulek AM, Fuller A, Akpovwa HJE, Pymm PG, Liddy N, Sami M, Li Y, Rizkallah PJ, Jakobsen BK, Sewell AK. T-cell receptor (TCR)-peptide specificity overrides affinity-enhancing TCR-major histocompatibility complex interactions. J Biol Chem 2014; 289:628-38. [PMID: 24196962 PMCID: PMC3887192 DOI: 10.1074/jbc.m113.522110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/22/2013] [Indexed: 11/17/2022] Open
Abstract
αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short "foreign" peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear. Some studies suggest that the germ line elements of the TCR engage the MHC prior to peptide scanning, but this order of binding is difficult to reconcile with some TCR-pMHC structures. Here, we used TCRs that exhibited enhanced pMHC binding as a result of mutations in either CDR2 and/or CDR3 loops, that bound to the MHC or peptide, respectively, to dissect the roles of these loops in stabilizing TCR-pMHC interactions. Our data show that TCR-peptide interactions play a strongly dominant energetic role providing a binding mode that is both temporally and energetically complementary with a system requiring positive selection by self-pMHC in the thymus and rapid recognition of non-self-pMHC in the periphery.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding, Competitive
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- HLA Antigens/chemistry
- HLA Antigens/genetics
- HLA Antigens/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- Humans
- Kinetics
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Peptides/chemistry
- Peptides/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Cell Antigen Receptor Specificity
Collapse
Affiliation(s)
- David K. Cole
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Kim M. Miles
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Florian Madura
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | | | | | - Andrew J. Godkin
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Anna M. Bulek
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Anna Fuller
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | | | - Phillip G. Pymm
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
- the Medical Research Council Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford 0X3 9DS, and
| | - Nathaniel Liddy
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | - Malkit Sami
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | - Yi Li
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | | | - Bent K. Jakobsen
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | - Andrew K. Sewell
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| |
Collapse
|
16
|
Alloreactive cytotoxic T cells provide means to decipher the immunopeptidome and reveal a plethora of tumor-associated self-epitopes. Proc Natl Acad Sci U S A 2013; 111:403-8. [PMID: 24344295 DOI: 10.1073/pnas.1306549111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HLA molecules presenting peptides derived from tumor-associated self-antigens (self-TAA) are attractive targets for T-cell-based immunotherapy of cancer. However, detection of such epitopes is hampered by self-tolerance and limitations in the sensitivity of mass spectrometry. Here, we used T cells from HLA-A2-negative donors as tools to detect HLA-A2-bound peptides from two leukemia-associated differentiation antigens; CD20 and the previously undescribed cancer target myeloperoxidase. A high-throughput platform for epitope discovery was designed using dendritic cells cotransfected with full-length transcripts of self-TAA and HLA-A2 to allow presentation of all naturally processed peptides from a predefined self-protein on foreign HLA. Antigen-reactive T cells were directly detected using panels of color-coded peptide-HLA multimers containing epitopes predicted by a computer algorithm. Strikingly, cytotoxic T cells were generated against 37 out of 50 peptides predicted to bind HLA-A2. Among these, 36 epitopes were previously undescribed. The allorestricted T cells were exquisitely peptide- and HLA-specific and responded strongly to HLA-A2-positive leukemic cells with endogenous expression of CD20 or myeloperoxidase. These results indicate that the repertoire of self-peptides presented on HLA class I has been underestimated and that a wealth of self-TAA can be targeted by T cells when using nontolerized T-cell repertoires.
Collapse
|
17
|
Bhanusali DG, Sachdev A, Rahmanian A, Gerlach JA, Tong JC, Seiffert-Sinha K, Sinha AA. HLA-E*0103X is associated with susceptibility to Pemphigus vulgaris. Exp Dermatol 2013; 22:108-12. [PMID: 23362868 DOI: 10.1111/exd.12077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 11/29/2022]
Abstract
Non-classical human leucocyte antigen-E (HLA-E) mediates natural killer and CD8+ T-cell activity, suggesting a role in the regulation of autoimmunity. HLA-E*0103X/*0103X has been associated with Behcet's disease and HLA-E *0101/*0103X with childhood onset diabetes. We investigated HLA-E allele status in 52 Caucasian and Ashkenazi Jewish Pemphigus vulgaris (PV) patients and 51 healthy controls by restriction fragment length polymorphism-polymerase chain reaction and amplification refractory mutation system. Associations were determined via chi-square test, Fisher's exact test and logistical regression analysis. HLA-E outcomes included presumed homozygous *0101/*0101 or *0103X/*0103X genotype status or *0101/*0103X heterozygous status. PV did not significantly associate with either *0101/*0101 or *0101/*0103X genotypes. HLA-E*0103X/*0103X (presumed homozygote) is significantly increased in patients with PV versus controls (P = 0.0146, OR = 3.730, 95%CI = 1.241-11.213). Our data provide the first evidence that HLA-E*0103X is a marker for genetic risk in PV.
Collapse
Affiliation(s)
- Dhaval G Bhanusali
- Department of Dermatology, University at Buffalo and Roswell Park Cancer Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Winchester RJ. The major histocompatibility complex. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Garcia KC. Reconciling views on T cell receptor germline bias for MHC. Trends Immunol 2012; 33:429-36. [PMID: 22771140 PMCID: PMC3983780 DOI: 10.1016/j.it.2012.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/13/2012] [Accepted: 05/13/2012] [Indexed: 01/25/2023]
Abstract
Whether MHC restriction by the T cell receptor (TCR) is a product of evolutionary pressures leading to germline-encoded 'rules of engagement' remains avidly debated. Structural results derived from analysis of TCR-peptide-MHC complexes appear to support a model of physical specificity between TCR germline V regions and MHC. Yet, some recent evidence suggests that thymic selection, and co-receptors may have misled us into thinking the TCR is exclusively MHC-specific, when in fact, TCRs can robustly engage non-MHC ligands when given the chance. Here, I propose that seemingly contradictory data and hypotheses for, and against, germline bias are, in fact, compatible and can be reconciled into a unifying model.
Collapse
Affiliation(s)
- K Christopher Garcia
- Howard Hughes Medical Institute, Department of Molecular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Stadinski BD, Trenh P, Smith RL, Bautista B, Huseby PG, Li G, Stern LJ, Huseby ES. A role for differential variable gene pairing in creating T cell receptors specific for unique major histocompatibility ligands. Immunity 2012; 35:694-704. [PMID: 22101158 DOI: 10.1016/j.immuni.2011.10.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 09/14/2011] [Accepted: 10/17/2011] [Indexed: 11/24/2022]
Abstract
A limited set of T cell receptor (TCR) variable (V) gene segments are used to create a repertoire of TCRs that recognize all major histocompatibility complex (MHC) ligands within a species. How individual αβTCRs are constructed to specifically recognize a limited set of MHC ligands is unclear. Here we have identified a role for the differential pairing of particular V gene segments in creating TCRs that recognized MHC class II ligands exclusively, or cross-reacted with classical and nonclassical MHC class I ligands. Biophysical and structural experiments indicated that TCR specificity for MHC ligands is not driven by germline-encoded pairwise interactions.Rather, identical TCRβ chains can have altered peptide-MHC (pMHC) binding modes when paired with different TCRα chains. The ability of TCR chain pairing to modify how V region residues interact with pMHC helps to explain how the same V genes are used to create TCRs specific for unique MHC ligands.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Simpson AA, Mohammed F, Salim M, Tranter A, Rickinson AB, Stauss HJ, Moss PAH, Steven NM, Willcox BE. Structural and energetic evidence for highly peptide-specific tumor antigen targeting via allo-MHC restriction. Proc Natl Acad Sci U S A 2011; 108:21176-81. [PMID: 22160697 PMCID: PMC3248497 DOI: 10.1073/pnas.1108422109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Immunotherapies targeting peptides presented by allogeneic MHC molecules offer the prospect of circumventing tolerance to key tumor-associated self-antigens. However, the degree of antigen specificity mediated by alloreactive T cells, and their ability to discriminate normal tissues from transformed cells presenting elevated antigen levels, is poorly understood. We examined allorecognition of an HLA-A2-restricted Hodgkin's lymphoma-associated antigen and were able to isolate functionally antigen-specific allo-HLA-A2-restricted T cells from multiple donors. Binding and structural studies, focused on a prototypic allo-HLA-A2-restricted T-cell receptor (TCR) termed NB20 derived from an HLA-A3 homozygote, suggested highly peptide-specific allorecognition that was energetically focused on antigen, involving direct recognition of a distinct allopeptide presented within a conserved MHC recognition surface. Although NB20/HLA-A2 affinity was unremarkable, TCR/MHC complexes were very short-lived, consistent with suboptimal TCR triggering and tolerance to low antigen levels. These data provide strong molecular evidence that within the functionally heterogeneous alloreactive repertoire, there is the potential for highly antigen-specific "allo-MHC-restricted" recognition and suggest a kinetic mechanism whereby allo-MHC-restricted T cells may discriminate normal from transformed tissue, thereby outlining a suitable basis for broad-based therapeutic targeting of tolerizing tumor antigens.
Collapse
Affiliation(s)
- Amy A. Simpson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Fiyaz Mohammed
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Mahboob Salim
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Amy Tranter
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Alan B. Rickinson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Hans J. Stauss
- Division of Infection and Immunity, Department of Immunology, University College London, Royal Free Hospital, London NW3 2PF, United Kingdom
| | - Paul A. H. Moss
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Neil M. Steven
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Benjamin E. Willcox
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| |
Collapse
|
22
|
Leimgruber A, Ferber M, Irving M, Hussain-Kahn H, Wieckowski S, Derré L, Rufer N, Zoete V, Michielin O. TCRep 3D: an automated in silico approach to study the structural properties of TCR repertoires. PLoS One 2011; 6:e26301. [PMID: 22053188 PMCID: PMC3203878 DOI: 10.1371/journal.pone.0026301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR. First, the location of the complementary determining regions of the target sequences are automatically identified by a sequence alignment strategy against a database of TCR Vα and Vβ chains. A structure-based alignment ensures automated identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of selection of TCR through the presence of a single conserved amino acid in all CDR3β sequences. The important structural modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this amino acid show the good correspondence between the predicted structures and their biological activities. To our knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling.
Collapse
Affiliation(s)
- Antoine Leimgruber
- Multidisciplinary Oncology Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Permissive, nonpermissive HLA-DPB1 epitope disparities and the specificity of T cells infiltrating the skin during acute graft-versus-host disease. Blood 2011; 117:5779-81. [PMID: 21617014 DOI: 10.1182/blood-2011-02-338533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Puech PH, Nevoltris D, Robert P, Limozin L, Boyer C, Bongrand P. Force measurements of TCR/pMHC recognition at T cell surface. PLoS One 2011; 6:e22344. [PMID: 21799834 PMCID: PMC3142151 DOI: 10.1371/journal.pone.0022344] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/25/2011] [Indexed: 01/07/2023] Open
Abstract
The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Laboratoire Adhésion et Inflammation, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
25
|
Liu K, Anthony BA, Yearsly MM, Hamadani M, Gaughan A, Wang JJ, Devine SM, Hadley GA. CD103 deficiency prevents graft-versus-host disease but spares graft-versus-tumor effects mediated by alloreactive CD8 T cells. PLoS One 2011; 6:e21968. [PMID: 21779359 PMCID: PMC3136479 DOI: 10.1371/journal.pone.0021968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/14/2011] [Indexed: 12/05/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) remains the main barrier to broader application of allogeneic hematopoietic stem cell transplantation (alloSCT) as a curative therapy for host malignancy. GVHD is mediated by allogeneic T cells directed against histocompatibility antigens expressed by host tissues. Based on previous studies, we postulated that the integrin CD103 is required for CD8-mediated GVHD, but not for graft-versus-tumor effects (GVT). Methodology/Principal Findings We herein provide evidence in support of this hypothesis. To circumvent the potentially confounding influence of donor CD4 T cells, we developed an alloSCT model in which GVHD mortality is mediated by purified CD8 T cells. In this model, host-reactive CD8 T cells receive CD4 T cell help at the time of initial activation but not in the effector phase in which mature CD8 T effectors migrate into host tissues. We show that donor CD8 T cells from wild-type BALB/c mice primed to host alloantigens induce GVHD pathology and eliminate tumors of host origin in the absence of host CD4 T cells. Importantly, CD103 deficiency dramatically attenuated GVHD mortality, but had no detectable impact on the capacity to eliminate a tumor line of host origin. We provide evidence that CD103 is required for accumulation of donor CD8 T cells in the host intestinal epithelium but not in the tumor or host lymphoid compartments. Consistent with these data, CD103 was preferentially expressed by CD8 T cells infiltrating the host intestinal epithelium but not by those infiltrating the tumor, lamina propria, or lymphoid compartments. We further demonstrate that CD103 expression is not required for classic CD8 effector activities including cytokine production and cytotoxicity. Conclusions/Significance These data indicate that CD103 deficiency inhibits GVHD pathology while sparing anti-tumor effects mediated by CD8 T cells, identifying CD103 blockade as an improved strategy for GVHD prophylaxis.
Collapse
Affiliation(s)
- Kechang Liu
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Bryan A. Anthony
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Martha M. Yearsly
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Mehdi Hamadani
- Department of Hematology and Oncology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Alice Gaughan
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Jiao-Jing Wang
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven M. Devine
- Department of Hematology and Oncology, Arthur G. James Comprehensive Cancer, The Ohio State University, Columbus, Ohio, United States of America
| | - Gregg A. Hadley
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Contrasting responses to selection in class I and class IIα major histocompatibility-linked markers in salmon. Heredity (Edinb) 2011; 107:143-54. [PMID: 21266985 DOI: 10.1038/hdy.2010.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Comparison of levels and patterns of genetic variation in natural populations either across loci or against neutral expectation can yield insight into locus-specific differences in the strength and direction of evolutionary forces. We used both approaches to test the hypotheses on patterns of selection on major histocompatibility (MH)-linked markers. We performed temporal analyses of class I and class IIα MH-linked markers and eight microsatellite loci in two Atlantic salmon populations in Ireland on two temporal scales: over six decades and 9 years in the rivers Burrishoole and Delphi, respectively. We also compared contemporary Burrishoole and Delphi samples with nearby populations for the same loci. On comparing patterns of temporal and spatial differentiation among classes of loci, the class IIα MH-linked marker was consistently identified as an outlier compared with patterns at the other microsatellite loci or neutral expectation. We found higher levels of temporal and spatial heterogeneity in heterozygosity (but not in allelic richness) for the class IIα MH-linked marker compared with microsatellites. Tests on both within- and among-population differentiation are consistent with directional selection acting on the class IIα-linked marker in both temporal and spatial comparisons, but only in temporal comparisons for the class I-linked marker. Our results indicate a complex pattern of selection on MH-linked markers in natural populations of Atlantic salmon. These findings highlight the importance of considering selection on MH-linked markers when using these markers for management and conservation purposes.
Collapse
|
27
|
Shortening of complementarity determining region 3 of the T cell receptor α chain during thymocyte development. Mol Immunol 2011; 48:623-9. [DOI: 10.1016/j.molimm.2010.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022]
|
28
|
Hassan I, Ahmad F. Structural diversity of class I MHC-like molecules and its implications in binding specificities. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:223-70. [PMID: 21570669 DOI: 10.1016/b978-0-12-381262-9.00006-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The binding groove of class I major histocompatibility complex (MHC) class is essentially important for antigen binding and presentation on T cells. There are several molecules that have analogous conformations to class I MHC. However, they bind specifically to varying types of ligands and cell-surface receptors in order to elicit an immune response. To elucidate how such recognition is achieved in classical MHC-I like molecules, we have extensively analyzed the structure of human leukocyte antigen (HLA-1), neonatal Fc receptor (FcRn), hereditary hemochromatosis protein (HFE), cluster of differentiation 1 (CD1), gamma delta T cell receptor ligand (Τ22), zinc-α2-glycoprotein (ZAG), and MHC class I chain-related (MIC-A) proteins. All these molecules have analogous structural anatomy, divided into three distinct domains, where α1-α2 superdomains form a groove-like structure that potentially bind to certain ligand, while the α3 domain adopts a fold resembling immunoglobulin constant domains, and holds this α1-α2 platform and the light chain. We have observed many remarkable features of α1-α2 platform, which provide specificities to these proteins toward a particular class of ligands. The relative orientation of α1, α2, and α3 domains is primarily responsible for the specificity to the light chain. Interestingly, light chain of all these proteins is β₂-microglobulin (β₂M), except ZAG which has prolactin-induced protein (PIP). However, MIC-A is devoid of any light chain. Residues on β₂M recognize a sequence motif on the α3 domain that is essentially restricted to specific heavy chain of MHC class I molecules. Our analysis suggests that the structural features of class I molecules determine the recognition of different ligands and light chains, which are responsible for their corresponding functions through an inherent mechanism.
Collapse
Affiliation(s)
- Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
29
|
Yanover C, Petersdorf EW, Malkki M, Gooley T, Spellman S, Velardi A, Bardy P, Madrigal A, Bignon JD, Bradley P. HLA mismatches and hematopoietic cell transplantation: structural simulations assess the impact of changes in peptide binding specificity on transplant outcome. Immunome Res 2011; 7:4. [PMID: 24482668 PMCID: PMC3904355 DOI: 10.4172/1745-7580.1000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The success of hematopoietic cell transplantation from an unrelated donor depends in part on the degree of Human Histocompatibility Leukocyte Antigen (HLA) matching between donor and patient. We present a structure-based analysis of HLA mismatching, focusing on individual amino acid mismatches and their effect on peptide binding specificity. Using molecular modeling simulations of HLA-peptide interactions, we find evidence that amino acid mismatches predicted to perturb peptide binding specificity are associated with higher risk of mortality in a large and diverse dataset of patient-donor pairs assembled by the International Histocompatibility Working Group in Hematopoietic Cell Transplantation consortium. This analysis may represent a first step toward sequence-based prediction of relative risk for HLA allele mismatches.
Collapse
Affiliation(s)
- Chen Yanover
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Effie W Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, USA
| | - Andrea Velardi
- European Group for Blood and Marrow Transplantation, Italy
| | - Peter Bardy
- Australian Bone Marrow Donor Registry, Australia
| | | | | | - Philip Bradley
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
30
|
Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif. Leukemia 2010; 24:1901-9. [DOI: 10.1038/leu.2010.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Kumar P, Vahedi-Faridi A, Saenger W, Merino E, López de Castro JA, Uchanska-Ziegler B, Ziegler A. Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens. J Biol Chem 2009; 284:29784-97. [PMID: 19617632 PMCID: PMC2785609 DOI: 10.1074/jbc.m109.038497] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/09/2009] [Indexed: 01/07/2023] Open
Abstract
The existence of cytotoxic T cells (CTL) cross-reacting with the human major histocompatibility antigens HLA-B14 and HLA-B27 suggests that their alloreactivity could be due to presentation of shared peptides in similar binding modes by these molecules. We therefore determined the crystal structures of the subtypes HLA-B*1402, HLA-B*2705, and HLA-B*2709 in complex with a proven self-ligand, pCatA (peptide with the sequence IRAAPPPLF derived from cathepsin A (residues 2-10)), and of HLA-B*1402 in complex with a viral peptide, pLMP2 (RRRWRRLTV, derived from latent membrane protein 2 (residues 236-244) of Epstein-Barr virus). Despite the exchange of 18 residues within the binding grooves of HLA-B*1402 and HLA-B*2705 or HLA-B*2709, the pCatA peptide is presented in nearly identical conformations. However, pLMP2 is displayed by HLA-B*1402 in a conformation distinct from those previously found in the two HLA-B27 subtypes. In addition, the complexes of HLA-B*1402 with the two peptides reveal a nonstandard, tetragonal mode of the peptide N terminus anchoring in the binding groove because of the exchange of the common Tyr-171 by His-171 of the HLA-B*1402 heavy chain. This exchange appears also responsible for reduced stability of HLA-B14-peptide complexes in vivo and slow assembly in vitro. The studies with the pCatA peptide uncover that CTL cross-reactive between HLA-B14 and HLA-B27 might primarily recognize the common structural features of the bound peptide, thus neglecting amino acid replacements within the rim of the binding grooves. In contrast, structural alterations between the three complexes with the pLMP2 peptide indicate how heavy chain polymorphisms can influence peptide display and prevent CTL cross-reactivity between HLA-B14 and HLA-B27 antigens.
Collapse
Affiliation(s)
- Pravin Kumar
- From the Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Ardeschir Vahedi-Faridi
- the Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany, and
| | - Wolfram Saenger
- the Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany, and
| | - Elena Merino
- the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas and Universidad Autónoma de Madrid, Nicolás Cabrera, N.1, Universidad Autónoma, 28049 Madrid, Spain
| | - José A. López de Castro
- the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas and Universidad Autónoma de Madrid, Nicolás Cabrera, N.1, Universidad Autónoma, 28049 Madrid, Spain
| | - Barbara Uchanska-Ziegler
- From the Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Andreas Ziegler
- From the Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| |
Collapse
|
32
|
Morris GP, Allen PM. Cutting edge: Highly alloreactive dual TCR T cells play a dominant role in graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:6639-43. [PMID: 19454656 DOI: 10.4049/jimmunol.0900638] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alloreactivity is the response of T cells to MHC molecules not encountered during thymic development. A small population (1-8%) of peripheral T cells in mice and humans express two TCRs due to incomplete allelic exclusion of TCRalpha, and we hypothesized they are highly alloreactive. FACS analysis of mouse T cell MLR revealed increased dual TCR T cells among alloreactive cells. Quantitative assessment of the alloreactive repertoire demonstrated a nearly 50% reduction in alloreactive T cell frequency among T cells incapable of expressing a secondary TCR. We directly demonstrated expansion of the alloreactive T cell repertoire at the single cell level by identifying a dual TCR T cell with distinct alloreactivities for each TCR. The importance of dual TCR T cells is clearly demonstrated in a parent-into-F(1) model of graft-vs-host disease, where dual TCR T cells comprised up to 60% of peripheral activated T cells, demonstrating a disproportionate contribution to disease.
Collapse
Affiliation(s)
- Gerald P Morris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Stronen E, Abrahamsen IW, Gaudernack G, Wälchli S, Munthe E, Buus S, Johansen FE, Lund-Johansen F, Olweus J. Dendritic cells engineered to express defined allo-HLA peptide complexes induce antigen-specific cytotoxic T cells efficiently killing tumour cells. Scand J Immunol 2009; 69:319-28. [PMID: 19284496 DOI: 10.1111/j.1365-3083.2008.02223.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most tumour-associated antigens (TAA) are non-mutated self-antigens. The peripheral T cell repertoire is devoid of high-avidity TAA-specific cytotoxic T lymphocytes (CTL) due to self-tolerance. As tolerance is major histocompatibility complex-restricted, T cells may be immunized against TAA presented by a non-self human leucocyte antigen (HLA) molecule and transferred to cancer patients expressing that HLA molecule. Obtaining allo-restricted CTL of high-avidity and low cross-reactivity has, however, proven difficult. Here, we show that dendritic cells transfected with mRNA encoding HLA-A*0201, efficiently present externally loaded peptides from the antigen, Melan-A/MART-1 to T cells from HLA-A*0201-negative donors. CD8(+) T cells binding HLA-A*0201/MART-1 pentamers were detected already after 12 days of co-culture in 11/11 donors. The majority of cells from pentamer(+) cell lines were CTL and efficiently killed HLA-A*0201(+) melanoma cells, whilst sparing HLA-A*0201(+) B-cells. Allo-restricted CTL specific for peptides from the leukaemia-associated antigens CD33 and CD19 were obtained with comparable efficiency. Collectively, the results show that dendritic cells engineered to express defined allo-HLA peptide complexes are highly efficient in generating CTL specifically reacting with tumour-associated antigens.
Collapse
Affiliation(s)
- E Stronen
- Institute of Immunology, Rinkshospitalet Medical Center and The University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Garcia KC, Adams JJ, Feng D, Ely LK. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat Immunol 2009; 10:143-7. [PMID: 19148199 PMCID: PMC3982143 DOI: 10.1038/ni.f.219] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The elusive etiology of germline bias of the T cell receptor (TCR) for major histocompatibility complex (MHC) has been clarified by recent 'proof-of-concept' structural results demonstrating the conservation of specific TCR-MHC interfacial contacts in complexes bearing common variable segments and MHC allotypes. We suggest that each TCR variable-region gene product engages each type of MHC through a 'menu' of structurally coded recognition motifs that have arisen through coevolution. The requirement for MHC-restricted T cell recognition during thymic selection and peripheral surveillance has necessitated the existence of such a coded recognition system. Given these findings, a reconsideration of the TCR-peptide-MHC structural database shows that not only have the answers been there all along but also they were predictable by the first principles of physical chemistry.
Collapse
Affiliation(s)
- K Christopher Garcia
- Department of Molecular & Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
35
|
Mareeva T, Martinez-Hackert E, Sykulev Y. How a T cell receptor-like antibody recognizes major histocompatibility complex-bound peptide. J Biol Chem 2008; 283:29053-9. [PMID: 18703505 PMCID: PMC2570882 DOI: 10.1074/jbc.m804996200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/30/2008] [Indexed: 11/06/2022] Open
Abstract
We determined the crystal structures of the T cell receptor (TCR)-like antibody 25-D1.16 Fab fragment bound to a complex of SIINFEKL peptide from ovalbumin and the H-2K(b) molecule. Remarkably, this antibody directly "reads" the structure of the major histocompatibility complex (MHC)-bound peptide, employing the canonical diagonal binding mode utilized by most TCRs. This is in marked contrast with another TCR-like antibody, Hyb3, bound to melanoma peptide MAGE-A1 in association with HLA-A1 MHC class I. Hyb3 assumes a non-canonical orientation over its cognate peptide-MHC and appears to recognize a conformational epitope in which the MHC contribution is dominant. We conclude that TCR-like antibodies can recognize MHC-bound peptide via two different mechanisms: one is similar to that exploited by the preponderance of TCRs and the other requires a non-canonical antibody orientation over the peptide-MHC complex.
Collapse
Affiliation(s)
- Tatiana Mareeva
- Department of Microbiology and Immunology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
36
|
Armstrong K, Piepenbrink K, Baker B. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem J 2008; 415:183-96. [PMID: 18800968 PMCID: PMC2782316 DOI: 10.1042/bj20080850] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/23/2008] [Accepted: 07/09/2008] [Indexed: 01/07/2023]
Abstract
A necessary feature of the immune system, TCR (T-cell receptor) cross-reactivity has been implicated in numerous autoimmune pathologies and is an underlying cause of transplant rejection. Early studies of the interactions of alphabeta TCRs (T-cell receptors) with their peptide-MHC ligands suggested that conformational plasticity in the TCR CDR (complementarity determining region) loops is a dominant contributor to T-cell cross-reactivity. Since these initial studies, the database of TCRs whose structures have been solved both bound and free is now large enough to permit general conclusions to be drawn about the extent of TCR plasticity and the types and locations of motion that occur. In the present paper, we review the conformational differences between free and bound TCRs, quantifying the structural changes that occur and discussing their possible roles in specificity and cross-reactivity. We show that, rather than undergoing major structural alterations or 'folding' upon binding, the majority of TCR CDR loops shift by relatively small amounts. The structural changes that do occur are dominated by hinge-bending motions, with loop remodelling usually occurring near loop apexes. As predicted from previous studies, the largest changes are in the hypervariable CDR3alpha and CDR3beta loops, although in some cases the germline-encoded CDR1alpha and CDR2alpha loops shift in magnitudes that approximate those of the CDR3 loops. Intriguingly, the smallest shifts are in the germline-encoded loops of the beta-chain, consistent with recent suggestions that the TCR beta domain may drive ligand recognition.
Collapse
Affiliation(s)
- Kathryn M. Armstrong
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Kurt H. Piepenbrink
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Brian M. Baker
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- †Walther Cancer Research Center, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| |
Collapse
|
37
|
Petrich de Marquesini LG, Moustakas AK, Thomas IJ, Wen L, Papadopoulos GK, Wong FS. Functional inhibition related to structure of a highly potent insulin-specific CD8 T cell clone using altered peptide ligands. Eur J Immunol 2008; 38:240-9. [PMID: 18157812 PMCID: PMC2901522 DOI: 10.1002/eji.200737762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-reactive CD8 T cells are amongst the earliest islet-infiltrating CD8 T cells in NOD mice. Cloned insulin B15–23-reactive cells (designated G9C8), restricted by H-2Kd, are highly diabetogenic. We used altered peptide ligands (APL) substituted at TCR contact sites, positions (p)6 and 8, to investigate G9C8 T cell function and correlated this with structure. Cytotoxicity and IFN-γ production assays revealed that p6G and p8R could not be replaced by any naturally occurring amino acid without abrogating recognition and functional response by the G9C8 clone. When tested for antagonist activity with APL differing from the native peptide at either of these positions, the peptide variants, G6H and R8L showed the capacity to reduce the agonist response to the native peptide. The antagonist activity in cytotoxicity and IFN-γ production assays can be correlated with conformational changes induced by different structures of the MHC-peptide complexes, shown by molecular modeling. We conclude that p6 and p8 of the insulin B15–23 peptide are very important for TCR stimulation of this clone and no substitutions are tolerated at these positions in the peptide. This is important in considering the therapeutic use of peptides as APL that encompass both CD4 and CD8 epitopes of insulin.
Collapse
|
38
|
Winchester RJ. The major histocompatibility complex. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
|
40
|
|
41
|
Archbold JK, Ely LK, Kjer-Nielsen L, Burrows SR, Rossjohn J, McCluskey J, Macdonald WA. T cell allorecognition and MHC restriction--A case of Jekyll and Hyde? Mol Immunol 2007; 45:583-98. [PMID: 17869342 DOI: 10.1016/j.molimm.2006.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/19/2006] [Indexed: 01/14/2023]
Abstract
A great paradox in cellular immunology is how T cell allorecognition exists at high frequencies (up to 10%) despite the stringent requirements of discriminating 'self' from 'non-self' imposed by MHC restriction. Thus, in tissue transplantation, a substantial proportion of the recipient's T cells will have the ability to recognize the graft and instigate an immune response against the transplanted tissue, ultimately resulting in graft rejection--a manifestation of T cell alloreactivity. Transplantation of human organs and lymphoid cells as treatment for otherwise life-threatening diseases has become a more routine medical procedure making this problem of great importance. Immunologists have gained important insights into the mechanisms of T cell alloreactivity from cytotoxic T cell assays, affinity-avidity studies, and crystal structures of peptide-MHC (pMHC) molecules and T cell receptors (TCRs) both alone and in complex. Despite the clinical significance of alloreactivity, the crystal structure of an alloreactive human TCR in complex with both cognate pMHC and an allogeneic pMHC complex has yet to be determined. This review highlights some of the important findings from studies characterizing the way in which alloreactive T cell receptors and pMHC molecules interact in an attempt to resolve this great irony of the cellular immune response.
Collapse
Affiliation(s)
- Julia K Archbold
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Feinerman O, Germain RN, Altan-Bonnet G. Quantitative challenges in understanding ligand discrimination by alphabeta T cells. Mol Immunol 2007; 45:619-31. [PMID: 17825415 PMCID: PMC2131735 DOI: 10.1016/j.molimm.2007.03.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 03/02/2007] [Indexed: 11/30/2022]
Affiliation(s)
- Ofer Feinerman
- ImmunoDynamics Group – Program in Computational Biology & Immunology – Memorial Sloan-Kettering Cancer Center – New York NY – USA
| | - Ronald N. Germain
- Lymphocyte Biology Section – Laboratory of Immunology – National Institute of Allergy and Infectious Disease – National Institute of Health – Bethesda MD - USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group – Program in Computational Biology & Immunology – Memorial Sloan-Kettering Cancer Center – New York NY – USA
- Corresponding author:
| |
Collapse
|
43
|
Wong J, Mathis D, Benoist C. TCR-based lineage tracing: no evidence for conversion of conventional into regulatory T cells in response to a natural self-antigen in pancreatic islets. ACTA ACUST UNITED AC 2007; 204:2039-45. [PMID: 17724131 PMCID: PMC2118689 DOI: 10.1084/jem.20070822] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Foxp3-expressing regulatory T (T reg) cells derive primarily from selection in the thymus. Yet conversion of mature conventional CD4+ T (T conv) cell lymphocytes can be achieved in several conditions, such as transforming growth factor β treatment, homeostatic expansion, or chronic exposure to low-dose antigen. Such conversion might provide a means to generate peripheral tolerance by “converting” potentially damaging T cells that react to self-antigens. We tested this hypothesis in mice transgenic for the BDC2.5 T cell receptor (TCR), which is representative of a diabetogenic specificity that is naturally present in NOD mice and reactive against a pancreatic self-antigen. In the thymus, before any exposure to antigen, clonotype-positive T reg and T conv cells express a second TCRα chain derived from endogenous loci. High-throughput single-cell sequencing of secondary TCRs of the Vα2 family showed their joining CDR3α regions to be very different in T reg and T conv cell thymocytes. These specific CDR3α motifs, thus, provided a “tag” with which to test the actual impact of T conv to T reg cell conversion in response to peripheral self-antigen; should the autoreactive clonotypic TCR induce T conv to T reg cell conversion upon encounter of cognate antigen in the pancreas or draining lymph node, one would expect to detect tag CDR3α motifs from T conv cells in the T reg cell populations. Sequencing large numbers of peripheral BDC+Vα2+ cells showed that little to no conversion occurs in response to this pancreatic autoantigen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- Cell Lineage
- Disease
- Gene Expression Regulation
- Gene Rearrangement
- Immunity, Cellular
- Islets of Langerhans/immunology
- Mice
- Mice, Inbred NOD
- Molecular Sequence Data
- Organ Specificity
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Jamie Wong
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
44
|
Varani L, Bankovich AJ, Liu CW, Colf LA, Jones LL, Kranz DM, Puglisi JD, Garcia KC. Solution mapping of T cell receptor docking footprints on peptide-MHC. Proc Natl Acad Sci U S A 2007; 104:13080-5. [PMID: 17670943 PMCID: PMC1941830 DOI: 10.1073/pnas.0703702104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Indexed: 11/18/2022] Open
Abstract
T cell receptor (TCR) recognition of peptide-MHC (pMHC) is central to the cellular immune response. A large database of TCR-pMHC structures is needed to reveal general structural principles, such as whether the repertoire of TCR/MHC docking modes is dictated by a "recognition code" between conserved elements of the TCR and MHC genes. Although approximately 17 cocrystal structures of unique TCR-pMHC complexes have been determined, cocrystallization of soluble TCR and pMHC remains a major technical obstacle in the field. Here we demonstrate a strategy, based on NMR chemical shift mapping, that permits rapid and reliable analysis of the solution footprint made by a TCR when binding onto the pMHC surface. We mapped the 2C TCR binding interaction with its allogeneic ligand H-2Ld-QL9 and identified a group of NMR-shifted residues that delineated a clear surface of the MHC that we defined as the TCR footprint. We subsequently found that the docking footprint described by NMR shifts was highly accurate compared with a recently determined high-resolution crystal structure of the same complex. The same NMR footprint analysis was done on a high-affinity mutant of the TCR. The current work serves as a foundation to explore the molecular dynamics of pMHC complexes and to rapidly determine the footprints of many Ld-specific TCRs.
Collapse
Affiliation(s)
- Luca Varani
- Departments of *Molecular and Cellular Physiology and
- Structural Biology, and
| | | | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Beckman B171B, 279 Campus Drive, Stanford, CA 94305; and
| | - Leremy A. Colf
- Departments of *Molecular and Cellular Physiology and
- Structural Biology, and
| | - Lindsay L. Jones
- the Department of Biochemistry, University of Illinois at Urbana–Champaign, 407 South Goodwin Street, Urbana, IL 61801
| | - David M. Kranz
- the Department of Biochemistry, University of Illinois at Urbana–Champaign, 407 South Goodwin Street, Urbana, IL 61801
| | - Joseph D. Puglisi
- Structural Biology, and
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Beckman B171B, 279 Campus Drive, Stanford, CA 94305; and
| | - K. Christopher Garcia
- Howard Hughes Medical Institute
- Departments of *Molecular and Cellular Physiology and
- Structural Biology, and
| |
Collapse
|
45
|
Abstract
MHC-encoded molecules govern adaptive immune responses by presenting peptides to T cell receptors (TCRs). Based on TCR-MHC crystal structures, we revisit the extent of TCR binding degeneracy, a property with important biological consequences because the diversity of TCR ligands that can be encountered exceeds the number of T cell clones present in a person at any one time. We also discuss whether the approximate diagonal binding of TCR on MHC molecules is due to an intrinsic property of the TCR variable regions, or results from the action of the CD4 and CD8 coreceptors during intrathymic T cell selection. Finally, we discuss how MHC restriction of antigen recognition might have emerged during evolution.
Collapse
Affiliation(s)
- Catherine Mazza
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
46
|
Colf LA, Bankovich AJ, Hanick NA, Bowerman NA, Jones LL, Kranz DM, Garcia KC. How a single T cell receptor recognizes both self and foreign MHC. Cell 2007; 129:135-46. [PMID: 17418792 DOI: 10.1016/j.cell.2007.01.048] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/01/2007] [Accepted: 01/19/2007] [Indexed: 11/27/2022]
Abstract
alphabeta T cell receptors (TCRs) can crossreact with both self- and foreign- major histocompatibility complex (MHC) proteins in an enigmatic phenomenon termed alloreactivity. Here we present the 2.35 A structure of the 2C TCR complexed with its foreign ligand H-2L(d)-QL9. Surprisingly, we find that this TCR utilizes a different strategy to engage the foreign pMHC in comparison to the manner in which it recognizes a self ligand H-2K(b)-dEV8. 2C engages both shared and polymorphic residues on L(d) and K(b), as well as the unrelated QL9 and dEV8 peptide antigens, in unique pair-wise contacts, resulting in greater structural complementarity with the L(d)-QL9 complex. In the structure of an engineered, high-affinity 2C TCR variant bound to H-2L(d)-QL9, the "wild-type" TCR-MHC binding orientation persists despite modified TCR-CDR3alpha interactions with peptide. Thus, a single TCR recognizes two globally similar, but distinct ligands by divergent mechanisms, indicating that receptor-ligand crossreactivity can occur in the absence of molecular mimicry.
Collapse
MESH Headings
- Amino Acid Sequence
- Autoantigens/chemistry
- Autoantigens/immunology
- Autoantigens/metabolism
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Isoantigens/chemistry
- Isoantigens/immunology
- Isoantigens/metabolism
- Ketoglutarate Dehydrogenase Complex/chemistry
- Ketoglutarate Dehydrogenase Complex/immunology
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Leremy A Colf
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Santori FR, Popmihajlov Z, Badovinac VP, Smith C, Radoja S, Harty JT, Vukmanović S. TCRβ Chain That Forms Peptide-Independent Alloreactive TCR Transfers Reduced Reactivity with Irrelevant Peptide/MHC Complex. THE JOURNAL OF IMMUNOLOGY 2007; 178:6109-14. [PMID: 17475836 DOI: 10.4049/jimmunol.178.10.6109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A major feature of the TCR repertoire is strong alloreactivity. Peptides presented by allogeneic MHC are irrelevant for recognition by a subset of alloreactive T cells. To characterize peptide-independent TCRs at the molecular level, we forced the expression of a TCRbeta chain isolated from a peptide-independent alloreactive CD8+ T cell line. The alloreactive TCR repertoire in the transgenic mouse was peptide dependent. However, analysis of essential TCR contacts formed during the recognition of self-MHC-restricted Ag showed that fewer contacts with peptide were established by the transgenic TCRbeta chain, and that this was compensated by additional contacts formed by endogenous TCRalpha chains. Thus, reduced interaction with the peptide appears to be a transferable feature of the peptide-independent TCRbeta chain. In addition, these findings demonstrate that reactivity to peptides is preferred over the reactivity to MHC during the formation of the TCR repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/physiology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/administration & dosage
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- beta 2-Microglobulin/deficiency
- beta 2-Microglobulin/genetics
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and New York University Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Belegu V, Oudega M, Gary DS, McDonald JW. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies. Neurosurg Clin N Am 2007; 18:143-68, xi. [PMID: 17244561 DOI: 10.1016/j.nec.2006.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although neural regeneration is an active research field today, no current treatments can aid regeneration after spinal cord injury. This article reviews the feasibility of spinal cord repair and provides an overview of the range of strategies scientists are taking toward regeneration. The major focus of this article is the future role of stem cell transplantation and similar rehabilitative restorative approaches designed to optimize spontaneous regeneration by mobilizing endogenous stem cells and facilitating other cellular mechanisms of regeneration, such as axonal growth and myelination.
Collapse
Affiliation(s)
- Visar Belegu
- The International Center for Spinal Cord Injury, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Room 518, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
49
|
Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer R, Garcia KC, Goldstein B, Greenspan R, Hafler D, Hodgkin P, Huseby ES, Krakauer DC, Nemazee D, Perelson AS, Pinilla C, Strong RK, Sercarz EE. Polyspecificity of T cell and B cell receptor recognition. Semin Immunol 2007; 19:216-24. [PMID: 17398114 PMCID: PMC2034306 DOI: 10.1016/j.smim.2007.02.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 02/06/2023]
Abstract
A recent workshop discussed the recognition of multiple distinct ligands by individual T cell and B cell receptors and the implications of this discovery for lymphocyte biology. The workshop recommends general use of the term polyspecificity because it emphasizes two fundamental aspects, the inherent specificity of receptor recognition and the ability to recognize multiple ligands. Many different examples of polyspecificity and the structural mechanisms were discussed, and the group concluded that polyspecificity is a general, inherent feature of TCR and antibody recognition. This review summarizes the relevance of polyspecificity for lymphocyte development, activation and disease processes.
Collapse
Affiliation(s)
- Kai W Wucherpfennig
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C, Roussel A, Kearney A, van der Merwe PA, Schmitt-Verhulst AM, Malissen B. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? EMBO J 2007; 26:1972-83. [PMID: 17363906 PMCID: PMC1847653 DOI: 10.1038/sj.emboj.7601605] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 01/23/2007] [Indexed: 01/15/2023] Open
Abstract
Binding degeneracy is thought to constitute a fundamental property of the T-cell antigen receptor (TCR), yet its structural basis is poorly understood. We determined the crystal structure of a complex involving the BM3.3 TCR and a peptide (pBM8) bound to the H-2K(bm8) major histocompatibility complex (MHC) molecule, and compared it with the structures of the BM3.3 TCR bound to H-2K(b) molecules loaded with two peptides that had a minimal level of primary sequence identity with pBM8. Our findings provide a refined structural view of the basis of BM3.3 TCR cross-reactivity and a structural explanation for the long-standing paradox that a TCR antigen-binding site can be both specific and degenerate. We also measured the thermodynamic features and biological penalties that incurred during cross-recognition. Our data illustrate the difficulty for a given TCR in adapting to distinct peptide-MHC surfaces while still maintaining affinities that result in functional in vivo responses. Therefore, when induction of protective effector T cells is used as the ultimate criteria for adaptive immunity, TCRs are probably much less degenerate than initially assumed.
Collapse
Affiliation(s)
- Catherine Mazza
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Claude Gregoire
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Annick Guimezanes
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Christine Kellenberger
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Alain Roussel
- AFMB UMR6098 CNRS, Parc Scientifique de Luminy, Marseille, Cedex 09, France
| | - Alice Kearney
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Anne-Marie Schmitt-Verhulst
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
- Centre d'Immunologie de Marseille-Luminy, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. Tel.: +33 491 269 418; Fax: +33 491 269 430; E-mail:
| |
Collapse
|