1
|
Ullah N, Fusco L, Ametrano L, Bartalucci C, Giacobbe DR, Vena A, Mikulska M, Bassetti M. Diagnostic Approach to Pneumonia in Immunocompromised Hosts. J Clin Med 2025; 14:389. [PMID: 39860395 PMCID: PMC11765643 DOI: 10.3390/jcm14020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
In immunocompromised patients, pneumonia presents a diagnostic challenge due to diverse etiologies, nonspecific symptoms, overlapping radiological presentation, frequent co-infections, and the potential for rapid progression to severe disease. Thus, timely and accurate diagnosis of all pathogens is crucial. This narrative review explores the latest advancements in microbiological diagnostic techniques for pneumonia in immunocompromised patients. It covers major available microbiological tools for diagnosing both community-acquired and hospital-acquired pneumonia, encompassing a wide spectrum of pathogens including bacterial, viral, fungal, and parasitic. While traditional culture methods remain pivotal in identifying many pneumonia-causing etiologies, their limitations in sensitivity and time to results have led to the rise of non-invasive antigen tests and molecular diagnostics. These are increasingly employed alongside cultures and microscopy for more efficient diagnosis, mainly in viral and fungal infections. Lastly, we report the future of pneumonia diagnostics, exploring the potential of metagenomics and CRISPR/Cas13a for more precise and rapid pathogen detection in immunocompromised populations.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
| | - Ludovica Fusco
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Luigi Ametrano
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Claudia Bartalucci
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| |
Collapse
|
2
|
Schwarz MCR, Moskaluk AE, Daniels JB, VandeWoude S, Reynolds MM. Current Analytical Methods and Challenges for the Clinical Diagnosis of Invasive Pulmonary Aspergillosis Infection. J Fungi (Basel) 2024; 10:829. [PMID: 39728325 DOI: 10.3390/jof10120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
In the last decade, pulmonary fungal infections such as invasive pulmonary aspergillosis (IPA) have increased in incidence due to the increased number of immunocompromised individuals. This increase is especially problematic when considering mortality rates associated with IPA are upwards of 70%. This high mortality rate is due to, in part, the length of time it takes to diagnose a patient with IPA. When diagnosed early, mortality rates of IPA decrease by as much as 30%. In this review, we discuss current technologies employed in both medical and research laboratories to diagnose IPA, including culture, imaging, polymerase chain reaction, peptide nucleic acid-fluorescence in situ hybridization, enzyme-linked immunosorbent assay, lateral flow assay, and liquid chromatography mass spectrometry. For each technique, we discuss both promising results and potential areas for improvement that would lead to decreased diagnosis time for patients suspected of contracting IPA. Further study into methods that offer increased speed and both analytical and clinical sensitivity to decrease diagnosis time for IPA is warranted.
Collapse
Affiliation(s)
- Madeline C R Schwarz
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
| | - Alex E Moskaluk
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Joshua B Daniels
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Solaimalai D, Varghese R, Karumathil S, Kulkarni U, George B, Michael JS. Diagnosis of invasive aspergillosis in haemato-oncology patients in a routine diagnostic setting. Med Mycol 2024; 62:myae100. [PMID: 39394658 DOI: 10.1093/mmy/myae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024] Open
Abstract
Invasive Aspergillosis (IA) is a potentially lethal infection in high-risk haemato-oncology patients. Since traditional diagnostic methods have many inherent challenges, Polymerase Chain Reaction (PCR) has been used to diagnose IA. This prospective study evaluated a commercial AsperGenius multiplex real-time PCR for its clinical utility in diagnosing IA compared with galactomannan (GM) testing serum samples from haemato-oncology patients with clinically suspected IA. A total of 107 patients were recruited between April 2022 and March 2023. Serum samples (n = 113) collected from those patients for the routine diagnosis by GM Enzyme Linked Immuno-Sorbent Assay (ELISA) were subjected to PCR. The patients were categorised into probable, possible, and no IA based on revised (2020) and previous (2008) European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC-MSG) criteria. The performance characteristics of PCR and GM were calculated against the EORTC criteria by combining probable and possible cases as diseased groups. Among the 107 recruited patients, 93 were categorised into probable/possible IA (diseased group) and 14 into no IA group. The PCR was positive in 53 samples from 49 patients. The sensitivity and specificity of single positive PCR and GM were 51.61% [95% confidence interval, 41-62], 92.86% (66.1-99.8) and 26.88% (18.2-37.1), 92.86% (66.1-99.8), respectively. The combination-based strategy (GM and/or PCR positive) exhibited a moderate sensitivity of 62.37% (51-72.2) and a specificity of 85.71% (57.2-98.2). To conclude, the combined strategy of serum GM and/or PCR positivity, along with radiological findings that fulfilled the EORTC/MSG criteria, has improved the diagnosis of probable IA among high-risk haematological patients with clinically suspected IA.
Collapse
Affiliation(s)
| | - Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College, Vellore 632002, India
| | - Sujith Karumathil
- Department of Haematology, Christian Medical College, Vellore 632002, India
| | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Vellore 632002, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore 632002, India
| | - Joy Sarojini Michael
- Department of Clinical Microbiology, Christian Medical College, Vellore 632002, India
| |
Collapse
|
4
|
Bhattacharya PK, Chakrabarti A, Sinha S, Pande R, Gupta S, Kumar AKA, Mishra VK, Kumar S, Bhosale S, Reddy PK. ISCCM Position Statement on the Management of Invasive Fungal Infections in the Intensive Care Unit. Indian J Crit Care Med 2024; 28:S20-S41. [PMID: 39234228 PMCID: PMC11369924 DOI: 10.5005/jp-journals-10071-24747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 09/06/2024] Open
Abstract
Rationale Invasive fungal infections (IFI) in the intensive care unit (ICU) are an emerging problem owing to the use of broad-spectrum antibiotics, immunosuppressive agents, and frequency of indwelling catheters. Timely diagnosis which is imperative to improve outcomes can be challenging. This position statement is aimed at understanding risk factors, providing a rational diagnostic approach, and guiding clinicians to optimize antifungal therapy. Objectives To update evidence on epidemiology, risk factors, diagnostic approach, antifungal initiation strategy, therapeutic interventions including site-specific infections and role of therapeutic drug monitoring in IFI in ICU and focus on some practice points relevant to these domains. Methodology A committee comprising critical care specialists across the country was formed and specific aspects of fungal infections and antifungal treatment were assigned to each member. They extensively reviewed the literature including the electronic databases and the international guidelines and cross-references. The information was shared and discussed over several meetings and position statements were framed to ensure their reliability and relevance in critical practice. The draft document was prepared after obtaining inputs and consensus from all the members and was reviewed by an expert in this field. Results The existing evidence on the management of IFI was updated and practice points were prepared under each subheading to enable critical care practitioners to streamline diagnosis and treatment strategies for patients in the ICU with additional detail on site-specific infections therapeutic drug monitoring. Conclusion This position statement attempts to address the management of IFI in immunocompetent and non-neutropenic ICU patients. The practice points should guide in optimization of the management of critically ill patients with suspected or proven fungal infections. How to cite this article Bhattacharya PK, Chakrabarti A, Sinha S, Pande R, Gupta S, Kumar AAK, et al. ISCCM Position Statement on the Management of Invasive Fungal Infections in the Intensive Care Unit. Indian J Crit Care Med 2024;28(S2):S20-S41.
Collapse
Affiliation(s)
- Pradip Kumar Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Doodhadhari Burfani Hospital, Haridwar, Uttarakhand, India
| | - Saswati Sinha
- Department of Critical Care, Manipal Hospitals, Kolkata, West Bengal, India
| | - Rajesh Pande
- Department of Critical Care, BLK MAX Superspeciality Hospital, Delhi, India
| | - Sachin Gupta
- Department of Critical Care, Narayana Superspeciality Hospital, Gurugram, Haryana, India
| | - AK Ajith Kumar
- Department of Critical Care Medicine, Aster Whitefield Hospital, Bengaluru, Karnataka, India
| | - Vijay Kumar Mishra
- Department of Critical Care, Bhagwan Mahavir Medica Superspecialty Hospital, Ranchi, Jharkhand, India
| | - Sanjeev Kumar
- Department of Anaesthesiology and Critical Care Medicine, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Shilpushp Bhosale
- Department of Critical Care Medicine, ACTREC, Tata Memorial Centre, HBNI, Mumbai, Maharashtra, India
| | - Pavan Kumar Reddy
- Department of Critical Care Medicine, ARETE Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Gerard R, Gabriel F, Accoceberry I, Imbert S, Ducassou S, Angoso M, Jubert C. Is there still a place for serum galactomannan in the diagnosis of invasive aspergillosis in children at high risk and under antifungal prophylaxis? Mycoses 2024; 67:e13764. [PMID: 38970226 DOI: 10.1111/myc.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The performance of serum galactomannan (GM) for the diagnosis of invasive aspergillosis (IA) has been studied mainly in adults. Paediatric data are scarce and based on small and heterogeneous cohorts. OBJECTIVE To evaluate the performance of serum GM for the diagnosis of IA in a paediatric oncologic population at high risk of IA and to clarify the impact of antifungal prophylaxis on this test. METHODS We performed a retrospective study from January 2014 to December 2020 in the paediatric oncologic haematologic department of the University Hospital of Bordeaux. The diagnosis of IA was made using the recommendations of the EORTC and the MSGERC. RESULTS Among the 329 periods at high risk of IA in 222 patients, the prevalence of IA was 1.8% (3 proven and 3 probable IA). In the total population, the sensitivity, and the positive predictive value (PPV) were respectively 50% and 17.6%. Under antifungal prophylaxis, the sensitivity and PPV dropped, respectively, to 33.3% and 14.3%. In this group, the post-test probability of IA was 2% for a negative serum GM and only 14%. CONCLUSION In this large cohort of children at high risk of IA, the incidence of IA is low and the diagnostic performance of GM is poor, especially in the case of mould-active prophylaxis. Screening should be targeted rather than systematic and should be reserved for patients at highest risk for IA without mould-active prophylaxis. Combination with other tests such as Aspergillus PCR would increase the accuracy of GM in screening setting.
Collapse
Affiliation(s)
- Rémy Gerard
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Frédéric Gabriel
- Laboratory of Parasitology-Mycology, Pellegrin Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Isabelle Accoceberry
- Laboratory of Parasitology-Mycology, Pellegrin Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Sébastien Imbert
- Laboratory of Parasitology-Mycology, Pellegrin Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Stéphane Ducassou
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Marie Angoso
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Charlotte Jubert
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
6
|
Zhang M, Pan J, Sheng J. Systematic review and meta-analysis of the diagnostic performance of lacrimal gland ultrasound elastography in primary Sjögren's syndrome. Int Ophthalmol 2024; 44:271. [PMID: 38914728 DOI: 10.1007/s10792-024-03185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVE This research conducted a comprehensive evaluation of the effectiveness of ultrasonic elastography (USE) in detecting lacrimal gland involvement in individuals suffering from primary Sjögren's syndrome (pSS). METHODS A comprehensive search was undertaken across multiple databases including PubMed, the Cochrane Library, EMBASE, Wanfang, Web of Science, and the Chinese National Knowledge Infrastructure, to gather relevant literature pertaining to the application of USE in diagnosing pSS from January 1, 2000, to October 1, 2023. Pooled data were used to calculate sensitivity, specificity, and diagnostic odds ratios. Several summary metrics were used to evaluate SWE's performance in detecting pSS, including the area under the receiver operating characteristic curve, diagnostic odds ratios, sensitivities, and specificities. RESULTS Five pertinent studies included a total of 273 patients. Shear wave elastography (SWE) demonstrated a pooled sensitivity of 0.88 (95% CI 0.77-0.94) and specificity of 0.94 (95% CI 0.88-0.98), with an area under the receiver operating characteristic curve of 0.97 (95% CI 0.95-0.98). SWE exhibited a positive likelihood ratio of 15.86 (95% CI 6.99-36.00) and a negative likelihood ratio of 0.13 (95% CI 0.07-0.25). No evidence of publication bias was observed (p = 0.70). CONCLUSION SWE demonstrates a remarkable degree of precision in detecting lacrimal gland involvement in individuals suffering from pSS.
Collapse
Affiliation(s)
- Mingyan Zhang
- Obstetrics, Jinjiang Municipal Hospital, Quanzhou, 362201, Fujian, China
| | - Jianpeng Pan
- Gastrointestinal Surgery, Jinjiang Municipal Hospital, Quanzhou, 362201, Fujian, China
| | - Junfa Sheng
- Ultrasound Department, Jinjiang Municipal Hospital, No. 16 Luoshan Section, Jinguang Road, Jinjiang City, Quanzhou City, 362201, Fujian Province, China.
| |
Collapse
|
7
|
Pandey M, Xess I, Sachdev J, Sharad N, Gupta S, Singh G, Yadav RK, Rana B, Raj S, Ahmad MN, Nityadarshini N, Baitha U, Soneja M, Shalimar, Prakash B, Sikka K, Mathur P, Jyotsna VP, Kumar R, Wig N, Gourav S, Biswas A, Thakar A. Utility of an in-house real-time PCR in whole blood samples as a minimally invasive method for early and accurate diagnosis of invasive mould infections. J Infect 2024; 88:106147. [PMID: 38555035 DOI: 10.1016/j.jinf.2024.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Invasive mould infections (IMIs) are a leading cause of death in patients with compromised immune systems. Proven invasive mould infection requires detection of a fungus by histopathological analysis of a biopsied specimen, sterile culture, or fungal DNA amplification by PCR in tissue. However, the clinical performance of a PCR assay on blood samples taken from patients suspected of invasive mould disease has not been fully evaluated, particularly for the differential diagnosis of invasive aspergillosis (IA) and invasive Mucormycosis (IM). OBJECTIVES To assess the diagnostic utility of our previously validated in-house real-time PCR in blood samples for diagnosis of invasive aspergillosis and mucormycosis in patients with suspected invasive mould infection. METHODS All patients with suspected invasive mould infection were prospectively enrolled from May 2021 to July 2021. Conventional fungal diagnosis was performed using tissue and respiratory samples. In-house PCR was performed on blood samples and its diagnostic performance evaluated. RESULTS A total of 158 cases of suspected invasive mould infection were enrolled in the study. The sensitivity and specificity of in-house PCR performed on blood samples was found to be 92.5% and 81.4% respectively for diagnosis of probable IA, and 65% and 84.62% respectively for diagnosis of proven and probable IM. It was also able to detect 3 out of 5 cases of possible IM where no other microbiological evidence of IM was obtained. CONCLUSIONS This assay could be helpful in minimally invasive diagnosis of IMIs for patients in whom invasive sampling is not feasible, especially as a preliminary or screening test. It can help in early diagnosis, anticipating conventional laboratory confirmation by days or weeks. Possible correlation between fungal load and mortality can help in initiating aggressive treatment for patients with high initial fungal load.
Collapse
Affiliation(s)
- Mragnayani Pandey
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Immaculata Xess
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Janya Sachdev
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neha Sharad
- Department of Lab medicine JPNATC, All India Institute of Medical Sciences, New Delhi, India
| | - Sonakshi Gupta
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gagandeep Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Renu Kumari Yadav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhaskar Rana
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Stephen Raj
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - M Nizam Ahmad
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neha Nityadarshini
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Upendra Baitha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Bindu Prakash
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kapil Sikka
- Department of ENT, All India Institute of Medical Sciences, New Delhi, India
| | - Purva Mathur
- Department of Lab medicine JPNATC, All India Institute of Medical Sciences, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of ENT, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sudesh Gourav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashutosh Biswas
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Thakar
- Department of ENT, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Jiang Z, Gai W, Zhang X, Zheng Y, Jin X, Han Z, Ao G, He J, Shu D, Liu X, Zhou Y, Hua Z. Clinical performance of metagenomic next-generation sequencing for diagnosis of pulmonary Aspergillus infection and colonization. Front Cell Infect Microbiol 2024; 14:1345706. [PMID: 38606292 PMCID: PMC11007027 DOI: 10.3389/fcimb.2024.1345706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background Investigations assessing the value of metagenomic next-generation sequencing (mNGS) for distinguish Aspergillus infection from colonization are currently insufficient. Methods The performance of mNGS in distinguishing Aspergillus infection from colonization, along with the differences in patients' characteristics, antibiotic adjustment, and lung microbiota, were analyzed. Results The abundance of Aspergillus significantly differed between patients with Aspergillus infection (n=36) and colonization (n=32) (P < 0.0001). Receiver operating characteristic (ROC) curve result for bronchoalveolar lavage fluid (BALF) mNGS indicated an area under the curve of 0.894 (95%CI: 0.811-0.976), with an optimal threshold value of 23 for discriminating between Aspergillus infection and colonization. The infection group exhibited a higher proportion of antibiotic adjustments in comparison to the colonization group (50% vs. 12.5%, P = 0.001), with antibiotic escalation being more dominant. Age, length of hospital stay, hemoglobin, cough and chest distress were significantly positively correlated with Aspergillus infection. The abundance of A. fumigatus and Epstein-Barr virus (EBV) significantly increased in the infection group, whereas the colonization group exhibited higher abundance of A. niger. Conclusion BALF mNGS is a valuable tool for differentiating between colonization and infection of Aspergillus. Variations in patients' age, length of hospital stay, hemoglobin, cough and chest distress are observable between patients with Aspergillus infection and colonization.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Wei Gai
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Xiaojing Zhang
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Yafeng Zheng
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zhiqiang Han
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Geriletu Ao
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Jiahuan He
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Danni Shu
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xianbing Liu
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Yingying Zhou
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zhidan Hua
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
9
|
Mah J, Nicholas V, Tayyar R, Moreno A, Murugesan K, Budvytiene I, Banaei N. Superior Accuracy of Aspergillus Plasma Cell-Free DNA Polymerase Chain Reaction Over Serum Galactomannan for the Diagnosis of Invasive Aspergillosis. Clin Infect Dis 2023; 77:1282-1290. [PMID: 37450614 DOI: 10.1093/cid/ciad420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) in immunocompromised hosts carries high morbidity and mortality. Diagnosis is often delayed because definitive diagnosis requires invasive specimen collection, while noninvasive testing with galactomannan is moderately accurate. Plasma cell-free DNA polymerase chain reaction (cfDNA PCR) represents a novel testing modality for the noninvasive diagnosis of invasive fungal disease (IFD). We directly compared the performance of Aspergillus plasma cfDNA PCR with serum galactomannan for the diagnosis of IA during routine clinical practice. METHODS We conducted a retrospective study of all patients with suspected IFD who had Aspergillus plasma cfDNA PCR testing at Stanford Health Care from 1 September 2020 to 30 October 2022. Patients were categorized into proven, probable, possible, and no IA based on the EORTC/MSG definitions. Primary outcomes included the clinical sensitivity and specificity for Aspergillus plasma cfDNA PCR and galactomannan. RESULTS Overall, 238 unique patients with Aspergillus plasma cfDNA PCR test results, including 63 positives and 175 nonconsecutive negatives, were included in this study. The majority were immunosuppressed (89.9%) with 22.3% 30-day all-cause mortality. The overall sensitivity and specificity of Aspergillus plasma cfDNA PCR were 86.0% (37 of 43; 95% confidence interval [CI], 72.7-95.7) and 93.1% (121 of 130; 95% CI, 87.4-96.3), respectively. The sensitivity and specificity of serum galactomannan in hematologic malignancies/stem cell transplants were 67.9% (19 of 28; 95% CI, 49.3-82.1) and 89.8% (53 of 59; 95% CI, 79.5-95.3), respectively. The sensitivity of cfDNA PCR was 93.0% (40 of 43; 95% CI, 80.9-98.5) in patients with a new diagnosis of IA. CONCLUSIONS Aspergillus plasma cfDNA PCR represents a more sensitive alternative to serum galactomannan for noninvasive diagnosis of IA.
Collapse
Affiliation(s)
- Jordan Mah
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Veronica Nicholas
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ralph Tayyar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Angel Moreno
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kanagavel Murugesan
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Niaz Banaei
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Yoo IY, Park YJ. Culture-independent diagnostic approaches for invasive aspergillosis in solid organ transplant recipients. KOREAN JOURNAL OF TRANSPLANTATION 2023; 37:155-164. [PMID: 37751964 PMCID: PMC10583980 DOI: 10.4285/kjt.23.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Prompt and accurate diagnosis of invasive aspergillosis (IA) is crucial for immunocompromised patients, including those who have received a solid organ transplant (SOT). Despite their low sensitivity, microscopic detection and conventional culture are considered the 'gold standard' methods. In conjunction with conventional culture, culture-independent assays such as serum galactomannan testing and Aspergillus polymerase chain reaction (PCR) have been incorporated into the diagnostic process for IA. The recently revised consensus definitions from the European Organization for Research and Treatment of Cancer and the Mycosis Study Group have adjusted the threshold for positive galactomannan testing based on the sample type, and have excluded 1,3-β-D-glucan testing as a mycological criterion. Following extensive standardization efforts, positive Aspergillus PCR tests using serum, plasma, or bronchoalveolar lavage fluid have been added. However, there are limited studies evaluating the clinical utility of these culture-independent assays for the early diagnosis of IA in SOT recipients. Therefore, further research is required to determine whether these assays could aid in the early diagnosis of IA in SOT recipients, particularly in relation to the organ transplanted. In this review, we examine the culture-independent diagnostic methods for IA in SOT recipients, as well as the clinical utility of these assays.
Collapse
Affiliation(s)
- In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Cruciani M, White PL, Barnes RA, Loeffler J, Donnelly JP, Rogers TR, Heinz WJ, Warris A, Morton CO, Lengerova M, Klingspor L, Sendid B, Lockhart DEA. An Overview of Systematic Reviews of Polymerase Chain Reaction (PCR) for the Diagnosis of Invasive Aspergillosis in Immunocompromised People: A Report of the Fungal PCR Initiative (FPCRI)-An ISHAM Working Group. J Fungi (Basel) 2023; 9:967. [PMID: 37888223 PMCID: PMC10607919 DOI: 10.3390/jof9100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
This overview of reviews (i.e., an umbrella review) is designed to reappraise the validity of systematic reviews (SRs) and meta-analyses related to the performance of Aspergillus PCR tests for the diagnosis of invasive aspergillosis in immunocompromised patients. The methodological quality of the SRs was assessed using the AMSTAR-2 checklist; the quality of the evidence (QOE) within each SR was appraised following the GRADE approach. Eight out of 12 SRs were evaluated for qualitative and quantitative assessment. Five SRs evaluated Aspergillus PCR on bronchoalveolar lavage fluid (BAL) and three on blood specimens. The eight SRs included 167 overlapping reports (59 evaluating PCR in blood specimens, and 108 in BAL), based on 107 individual primary studies (98 trials with a cohort design, and 19 with a case-control design). In BAL specimens, the mean sensitivity and specificity ranged from 0.57 to 0.91, and from 0.92 to 0.97, respectively (QOE: very low to low). In blood specimens (whole blood or serum), the mean sensitivity ranged from 0.57 to 0.84, and the mean specificity from 0.58 to 0.95 (QOE: low to moderate). Across studies, only a low proportion of AMSTAR-2 critical domains were unmet (1.8%), demonstrating a high quality of methodological assessment. Conclusions. Based on the overall methodological assessment of the reviews included, on average we can have high confidence in the quality of results generated by the SRs.
Collapse
Affiliation(s)
| | - P. Lewis White
- Public Health Wales, Microbiology Cardiff, UK and Centre for Trials Research, Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XW, UK;
| | | | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97070 Würzburg, Germany
| | | | - Thomas R. Rogers
- Discipline of Clinical Microbiology, Trinity College Dublin, St. James’s Hospital Campus, LS9 7TF Dublin, Ireland;
| | - Werner J. Heinz
- Medicine Clinic II, Caritas Hospital Bad Mergentheim, 97980 Bad Mergentheim, Germany
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QJ, UK;
| | - Charles Oliver Morton
- School of Science, Western Sydney University, Campbelltown Campus, Campbelltown, NSW 2751, Australia;
| | - Martina Lengerova
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Lena Klingspor
- Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Boualem Sendid
- Inserm U1285, CNRS UMR 8576, UGSF, CHU Lille, Laboratoire de Parasitologie-Mycologie, University of Lille, 59000 Lille, France;
| | - Deborah E. A. Lockhart
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| |
Collapse
|
12
|
Lamoth F, Nucci M, Fernandez-Cruz A, Azoulay E, Lanternier F, Bremerich J, Einsele H, Johnson E, Lehrnbecher T, Mercier T, Porto L, Verweij PE, White L, Maertens J, Alanio A. Performance of the beta-glucan test for the diagnosis of invasive fusariosis and scedosporiosis: a meta-analysis. Med Mycol 2023; 61:myad061. [PMID: 37381179 PMCID: PMC10405209 DOI: 10.1093/mmy/myad061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023] Open
Abstract
The (1→3)-β-D-glucan (BDG) is a component of the fungal cell wall that can be detected in serum and used as an adjunctive tool for the diagnosis of invasive mold infections (IMI) in patients with hematologic cancer or other immunosuppressive conditions. However, its use is limited by modest sensitivity/specificity, inability to differentiate between fungal pathogens, and lack of detection of mucormycosis. Data about BDG performance for other relevant IMI, such as invasive fusariosis (IF) and invasive scedosporiosis/lomentosporiosis (IS) are scarce. The objective of this study was to assess the sensitivity of BDG for the diagnosis of IF and IS through systematic literature review and meta-analysis. Immunosuppressed patients diagnosed with proven or probable IF and IS, with interpretable BDG data were eligible. A total of 73 IF and 27 IS cases were included. The sensitivity of BDG for IF and IS diagnosis was 76.7% and 81.5%, respectively. In comparison, the sensitivity of serum galactomannan for IF was 27%. Importantly, BDG positivity preceded the diagnosis by conventional methods (culture or histopathology) in 73% and 94% of IF and IS cases, respectively. Specificity was not assessed because of lacking data. In conclusion, BDG testing may be useful in patients with suspected IF or IS. Combining BDG and galactomannan testing may also help differentiating between the different types of IMI.
Collapse
Affiliation(s)
- Frederic Lamoth
- To whom correspondence should be addressed. Frederic Lamoth, Infectious Diseases Service and Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland. Tel: +41 21 314 11 11; E-mail:
| | - Marcio Nucci
- University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Grupo Oncoclinicas, Brazil
| | - Ana Fernandez-Cruz
- Infectious Disease Unit, Internal Medicine Department, Puerta de Hierro-Majadahonda University Hospital, Fundación de Investigación Puerta de Hierro-Segovia de Arana, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elie Azoulay
- Médecine Intensive et Réanimation, APHP, Hôpital Saint-Louis, Paris Cité University, Paris, France
| | - Fanny Lanternier
- Institut Pasteur, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Université Paris Cité, Paris, France
- Infectious Diseases Unit, Hopital Necker Enfants malades, APHP, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Paris, France
| | - Jens Bremerich
- Cardiothoracic Imaging Section, Department of Radiology, Basel University Hospital, 4031 Basel, Switzerland
| | - Hermann Einsele
- University Hospital Würzburg, Internal Medicine II, Würzburg, Germany
| | - Elizabeth Johnson
- UK Health Security Agency (UKHSA) Mycology Reference Laboratory, Southmead Hospital, Bristol, UK and MRC Centre for Medical Mycology, Exeter University, Exeter, UK
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Toine Mercier
- Department of Oncology-Hematology, AZ Sint-Maarten, Mechelen, Belgium
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Luciana Porto
- Division of Neuroradiology, Pediatric Neuroradiology Department, University Hospital, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Center, Nijmegen, The Netherlands
| | - Lewis White
- Public Health Wales Mycology Reference Laboratory and Cardiff University Centre for Trials Research/Division of Infection and Immunity, UHW, Cardiff, UK
| | - Johan Maertens
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Alexandre Alanio
- To whom correspondence should be addressed. Alexandre Alanio, Laboratoire de parasitologie mycologie, Hôpital Saint Louis, Université Paris Cité Centre National de Référence Mycoses invasives et Antifongiques, Institut Pasteur, Paris France. Tel: +33142499501; E-mail:
| | | |
Collapse
|
13
|
Ghozy S, Azzam AY, Kallmes KM, Matsoukas S, Fifi JT, Luijten SPR, van der Lugt A, Adusumilli G, Heit JJ, Kadirvel R, Kallmes DF. The diagnostic performance of artificial intelligence algorithms for identifying M2 segment middle cerebral artery occlusions: A systematic review and meta-analysis. J Neuroradiol 2023; 50:449-454. [PMID: 36773845 DOI: 10.1016/j.neurad.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Artificial intelligence (AI)-based algorithms have been developed to facilitate rapid and accurate computed tomography angiography (CTA) assessment in proximal large vessel occlusion (LVO) acute ischemic stroke, including internal carotid artery and M1 occlusions. In clinical practice, however, the detection of medium vessel occlusion (MeVO) represents an ongoing diagnostic challenge in which the added value of AI remains unclear. PURPOSE To assess the diagnostic performance of AI platforms for detecting M2 occlusions. METHODS Studies that report the diagnostic performance of AI-based detection of M2 occlusions were screened, and sensitivity and specificity data were extracted using the semi-automated AutoLit software (Nested Knowledge, MN) platform. STATA (version 16 IC; Stata Corporation, College Station, Texas, USA) was used to conduct all analyses. RESULTS Eight studies with a low risk of bias and significant heterogeneity were included in the quantitative and qualitative synthesis. The pooled estimates of sensitivity and specificity of AI platforms for M2 occlusion detection were 64% (95% CI, 53 to 74%) and 97% (95% CI, 84 to 100%), respectively. The area under the curve (AUC) in the SROC curve was 0.79 (95% CI, 0.74 to 0.83). CONCLUSION The current performance of the AI-based algorithm makes it more suitable as an adjunctive confirmatory tool rather than as an independent one for M2 occlusions. With the rapid development of such algorithms, it is anticipated that newer generations will likely perform much better.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC program), Oxford University, Oxford, UK.
| | | | - Kevin M Kallmes
- Nested Knowledge, St. Paul MN, USA; Superior Medical Experts, St. Paul MN, USA
| | - Stavros Matsoukas
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johanna T Fifi
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sven P R Luijten
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Jeremy J Heit
- Departments of Neuroradiology and Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Ramanathan Kadirvel
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
14
|
Tsotsolis S, Kotoulas SC, Lavrentieva A. Invasive Pulmonary Aspergillosis in Coronavirus Disease 2019 Patients Lights and Shadows in the Current Landscape. Adv Respir Med 2023; 91:185-202. [PMID: 37218799 DOI: 10.3390/arm91030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) presents a known risk to critically ill patients with SARS-CoV-2; quantifying the global burden of IPA in SARS-CoV-2 is extremely challenging. The true incidence of COVID-19-associated pulmonary aspergillosis (CAPA) and the impact on mortality is difficult to define because of indiscriminate clinical signs, low culture sensitivity and specificity and variability in clinical practice between centers. While positive cultures of upper airway samples are considered indicative for the diagnosis of probable CAPA, conventional microscopic examination and qualitative culture of respiratory tract samples have quite low sensitivity and specificity. Thus, the diagnosis should be confirmed with serum and BAL GM test or positive BAL culture to mitigate the risk of overdiagnosis and over-treatment. Bronchoscopy has a limited role in these patients and should only be considered when diagnosis confirmation would significantly change clinical management. Varying diagnostic performance, availability, and time-to-results turnaround time are important limitations of currently approved biomarkers and molecular assays for the diagnosis of IA. The use of CT scans for diagnostic purposes is controversial due to practical concerns and the complex character of lesions presented in SARS-CoV-2 patients. The key objective of management is to improve survival by avoiding misdiagnosis and by initiating early, targeted antifungal treatment. The main factors that should be considered upon selection of treatment options include the severity of the infection, concomitant renal or hepatic injury, possible drug interactions, requirement for therapeutic drug monitoring, and cost of therapy. The optimal duration of antifungal therapy for CAPA is still under debate.
Collapse
Affiliation(s)
- Stavros Tsotsolis
- Medical School, Aristotle University of Thessaloniki, Leoforos Agiou Dimitriou, 54124 Thessaloniki, Greece
| | | | - Athina Lavrentieva
- 1st ICU, General Hospital of Thessaloniki "Georgios Papanikolaou", Leoforos Papanikolaou, 57010 Thessaloniki, Greece
| |
Collapse
|
15
|
Current and Future Pathways in Aspergillus Diagnosis. Antibiotics (Basel) 2023; 12:antibiotics12020385. [PMID: 36830296 PMCID: PMC9952630 DOI: 10.3390/antibiotics12020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
Collapse
|
16
|
Han Y, Wu X, Jiang G, Guo A, Jin Z, Ying Y, Lai J, Li W, Yan F. Bronchoalveolar lavage fluid polymerase chain reaction for invasive pulmonary aspergillosis among high-risk patients: a diagnostic meta-analysis. BMC Pulm Med 2023; 23:58. [PMID: 36750828 PMCID: PMC9906844 DOI: 10.1186/s12890-023-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Polymerase chain reaction (PCR) assays are perceived to facilitate the diagnosis of fungal infections. However, due to lack of standardization, the value of bronchoalveolar lavage (BAL) fluid PCR in diagnosis of invasive pulmonary aspergillosis (IPA) remains unclear. METHODS We conducted a systematic meta-analysis to evaluate the accuracy of BAL fluid PCR in IPA diagnosis among high-risk patients. All studies involving patients at risk for IPA were included. The sensitivity, specificity, positive and negative likelihood ratios of BAL fluid PCR were summarized for diagnosis of proven/probable IPA, or proven IPA only. Potential heterogeneity was assessed by subgroup analyses and meta-regression. RESULTS Forty-one studies involving 5668 patients were analyzed. The summary sensitivity, specificity, positive and negative likelihood ratios of BAL fluid PCR for proven/probable IPA were 0.75 (95% CI = 0.67-0.81), 0.94 (95% CI = 0.90-0.96), 11.8 (95% CI = 7.7-18.1) and 0.27 (95% CI = 0.20-0.36), respectively. Whereas for proven IPA only, sensitivity and specificity were 0.91 (95% CI = 0.68-0.98) and 0.80 (95% CI = 0.74-0.85) in fourteen studies involving 2061 patients. Significant heterogeneity was present due to the underlying disease, antifungal treatment and differences in DNA extraction techniques and choice of PCR assay. Compared to patients with hematological malignancies (HM) and hematopoietic stem cell/solid organ transplantation (HSCT/SOT), sensitivity was higher in the population with disease such as chronic obstructive pulmonary disease, solid tumor, autoimmune disease with prolonged use of corticosteroids, etc. (0.88 vs. 0.68, P < 0.001), which was related to the concurrent use of antifungal prophylaxis among patients with HM and HSCT/SOT. CONCLUSION BAL fluid PCR is a useful diagnostic tool for IPA in immunocompromised patients and is also effective for diagnosing IPA in patients without HM and HSCT/SOT. Furthermore, standard protocols for DNA extraction and PCR assays should be focused on to improve the diagnostic accuracy. Trial registration PROSPERO, registration number CRD42021239028.
Collapse
Affiliation(s)
- Yinling Han
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Xiang Wu
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China ,Department of Pulmonary and Critical Care Medicine, Huangshan Hua Ze Hospital of Integrated Traditional Chinese and Western Medicine, Huangshan, 245000 Anhui China
| | - Guangwei Jiang
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China ,Department of Intensive Care Unit, War Trauma Rescue Center, The 903Rd Hospital of PLA Joint Logistics Support Force, Hangzhou, 310007 Zhejiang China
| | - Anyi Guo
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Zhangchu Jin
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Yinghua Ying
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Jianxing Lai
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
17
|
Lamoth F, Calandra T. Pulmonary aspergillosis: diagnosis and treatment. Eur Respir Rev 2022; 31:31/166/220114. [DOI: 10.1183/16000617.0114-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/18/2022] [Indexed: 12/05/2022] Open
Abstract
Aspergillusspecies are the most frequent cause of fungal infections of the lungs with a broad spectrum of clinical presentations including invasive pulmonary aspergillosis (IPA) and chronic pulmonary aspergillosis (CPA). IPA affects immunocompromised populations, which are increasing in number and diversity with the advent of novel anti-cancer therapies. Moreover, IPA has emerged as a complication of severe influenza and coronavirus disease 2019 in apparently immunocompetent hosts. CPA mainly affects patients with pre-existing lung lesions and is recognised increasingly frequently among patients with long-term survival following cure of tuberculosis or lung cancer. The diagnosis of pulmonary aspergillosis is complex as it relies on the presence of clinical, radiological and microbiological criteria, which differ according to the type of pulmonary aspergillosis (IPA or CPA) and the type of patient population. The management of pulmonary aspergillosis is complicated by the limited number of treatment options, drug interactions, adverse events and the emergence of antifungal resistance.
Collapse
|
18
|
Griffiths JS, Orr SJ, Morton CO, Loeffler J, White PL. The Use of Host Biomarkers for the Management of Invasive Fungal Disease. J Fungi (Basel) 2022; 8:jof8121307. [PMID: 36547640 PMCID: PMC9784708 DOI: 10.3390/jof8121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) causes severe morbidity and mortality, and the number of IFD cases is increasing. Exposure to opportunistic fungal pathogens is inevitable, but not all patients with underlying diseases increasing susceptibility to IFD, develop it. IFD diagnosis currently uses fungal biomarkers and clinical risk/presentation to stratify high-risk patients and classifies them into possible, probable, and proven IFD. However, the fungal species responsible for IFD are highly diverse and present numerous diagnostic challenges, which culminates in the empirical anti-fungal treatment of patients at risk of IFD. Recent studies have focussed on host-derived biomarkers that may mediate IFD risk and can be used to predict, and even identify IFD. The identification of novel host genetic variants, host gene expression changes, and host protein expression (cytokines and chemokines) associated with increased risk of IFD has enhanced our understanding of why only some patients at risk of IFD actually develop disease. Furthermore, these host biomarkers when incorporated into predictive models alongside conventional diagnostic techniques enhance predictive and diagnostic results. Once validated in larger studies, host biomarkers associated with IFD may optimize the clinical management of populations at risk of IFD. This review will summarise the latest developments in the identification of host biomarkers for IFD, their use in predictive modelling and their potential application/usefulness for informing clinical decisions.
Collapse
Affiliation(s)
- James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - P. Lewis White
- Public Health Wales, Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
- Correspondence:
| |
Collapse
|
19
|
Whitney L, Armstrong‐James D, Lyster HS, Reed AK, Dunning J, Nwankwo L, Cheong J. Antifungal stewardship in solid‐organ transplantation: What is needed? Transpl Infect Dis 2022; 24:e13894. [DOI: 10.1111/tid.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Haifa S. Lyster
- Department of Heart and Lung Transplantation The Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital Harefield Middlesex UK
| | - Anna K. Reed
- Department of Lung Transplantation Royal Brompton and Harefield National Health Service (NHS) Foundation Trust London UK
| | - John Dunning
- Department of Lung Transplantation Royal Brompton and Harefield National Health Service (NHS) Foundation Trust London UK
| | - Lisa Nwankwo
- Department of Pharmacy Royal Brompton & Harefield NHS Foundation Trust London UK
| | - Jamie Cheong
- Department of Pharmacy Royal Brompton & Harefield NHS Foundation Trust London UK
| |
Collapse
|
20
|
Xiao W, Du L, Cai L, Miao T, Mao B, Wen F, Gibson PG, Gong D, Zeng Y, Kang M, Du X, Qu J, Wang Y, Liu X, Feng R, Fu J. Existing tests vs. novel non-invasive assays for detection of invasive aspergillosis in patients with respiratory diseases. Chin Med J (Engl) 2022; 135:00029330-990000000-00075. [PMID: 35861304 PMCID: PMC9532040 DOI: 10.1097/cm9.0000000000002050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although existing mycological tests (bronchoalveolar lavage [BAL] galactomannan [GM], serum GM, serum (1,3)-β-D-glucan [BDG], and fungal culture) are widely used for diagnosing invasive pulmonary aspergillosis (IPA) in non-hematological patients with respiratory diseases, their clinical utility in this large population is actually unclear. We aimed to resolve this clinical uncertainty by evaluating the diagnostic accuracy and utility of existing tests and explore the efficacy of novel sputum-based Aspergillus assays. METHODS Existing tests were assessed in a prospective and consecutive cohort of patients with respiratory diseases in West China Hospital between 2016 and 2019 while novel sputum assays (especially sputum GM and Aspergillus-specific lateral-flow device [LFD]) in a case-controlled subcohort. IPA was defined according to the modified European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Sensitivity and specificity were computed for each test and receiver operating characteristic (ROC) curve analysis was performed. RESULTS The entire cohort included 3530 admissions (proven/probable IPA = 66, no IPA = 3464) and the subcohort included 127 admissions (proven/probable IPA = 38, no IPA = 89). Sensitivity of BAL GM (≥1.0 optical density index [ODI]: 86% [24/28]) was substantially higher than that of serum GM (≥0.5 ODI: 38% [39/102]) ( χ2 = 19.83, P < 0.001), serum BDG (≥70 pg/mL: 33% [31/95]) ( χ2 = 24.65, P < 0.001), and fungal culture (33% [84/253]) ( χ2 = 29.38, P < 0.001). Specificity varied between BAL GM (≥1.0 ODI: 94% [377/402]), serum GM (≥0.5 ODI: 95% [2130/2248]), BDG (89% [1878/2106]), and culture (98% [4936/5055]). Sputum GM (≥2.0 ODI) had similar sensitivity (84% [32/38]) (Fisher's exact P = 1.000) to and slightly lower specificity (87% [77/89]) ( χ2 = 5.52, P = 0.019) than BAL GM (≥1.0 ODI). Area under the ROC curve values were comparable between sputum GM (0.883 [0.812-0.953]) and BAL GM (0.901 [0.824-0.977]) ( P = 0.734). Sputum LFD had similar specificity (91% [81/89]) ( χ2 = 0.89, P = 0.345) to and lower sensitivity (63% [24/38]) ( χ2 = 4.14, P = 0.042) than BAL GM (≥1.0 ODI), but significantly higher sensitivity than serum GM (≥0.5 ODI) ( χ2 = 6.95, P = 0.008), BDG ( χ2 = 10.43, P = 0.001), and fungal culture ( χ2 = 12.70, P < 0.001). CONCLUSIONS Serum GM, serum BDG, and fungal culture lack sufficient sensitivity for diagnosing IPA in respiratory patients. Sputum GM and LFD assays hold promise as rapid, sensitive, and non-invasive alternatives to the BAL GM test.
Collapse
Affiliation(s)
- Wei Xiao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Divison of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| | - Longyi Du
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linli Cai
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiwei Miao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Mao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuqiang Wen
- Divison of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Peter Gerard Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW 2305, Australia
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Deying Gong
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| | - Yan Zeng
- Department of Pneumology, Pidu District of Traditional Chinese Medicine, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611730, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinmiao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| | - Xuemei Liu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruizhi Feng
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Juanjuan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Divison of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610093, China
| |
Collapse
|
21
|
Fungal Infections in Lung Transplantation. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
We aim to understand the most common fungal infections associated with the post-lung transplant period, how to diagnose, treat, and prevent them based on the current guidelines published and our center’s experience.
Recent Findings
Different fungi inhabit specific locations. Diagnosis of invasive fungal infections (IFIs) depends on symptoms, radiologic changes, and a positive microbiological or pathology data. There are several molecular tests that have been used for diagnosis. Exposure to fungal prophylaxis can predispose lung transplant recipients to these emerging molds. Understanding and managing medication interactions and drug monitoring are essential in successfully treating IFIs.
Summary
With the increasing rate of lung transplantations being performed, and the challenges posed by the immunosuppressive regimen, understanding the risk and managing the treatment of fungal infections are imperative to the success of a lung transplant recipient. There are many ongoing clinical trials being conducted in hopes of developing novel antifungals.
Collapse
|
22
|
White PL, Alanio A, Brown L, Cruciani M, Hagen F, Gorton R, Lackner M, Millon L, Morton CO, Rautemaa-Richardson R, Barnes RA, Donnelly JP, Loffler J. An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Rev Mol Diagn 2022; 22:169-184. [PMID: 35130460 DOI: 10.1080/14737159.2022.2037423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Fungal PCR has undergone considerable standardization and together with the availability of commercial assays, external quality assessment schemes and extensive performance validation data, is ready for widespread use for the screening and diagnosis of invasive fungal disease (IFD). AREAS COVERED Drawing on the experience and knowledge of the leads of the various working parties of the Fungal PCR initiative, this review will address general considerations concerning the use of molecular tests for the diagnosis of IFD, before focussing specifically on the technical and clinical aspects of molecular testing for the main causes of IFD and recent technological developments. EXPERT OPINION For infections caused by Aspergillus, Candida and Pneumocystis jirovecii, PCR testing is recommended, combination with serological testing will likely enhance the diagnosis of these diseases. For other IFD (e.g. Mucormycosis) molecular diagnostics, represent the only non-classical mycological approach towards diagnoses and continued performance validation and standardization has improved confidence in such testing. The emergence of antifungal resistance can be diagnosed, in part, through molecular testing. Next-generation sequencing has the potential to significantly improve our understanding of fungal phylogeny, epidemiology, pathogenesis, mycobiome/microbiome and interactions with the host, while identifying novel and existing mechanisms of antifungal resistance and novel diagnostic/therapeutic targets.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, UK CF14 4XW
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université de Paris, Paris, France.,Institut Pasteur, CNRS UMR2000, Unité de Mycologie Moléculaire, Centre National de Reference Mycoses invasives et Antifongiques, Paris, France
| | - Lottie Brown
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands & Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rebecca Gorton
- Dept. of Infection Sciences, Health Services Laboratories (HSL) LLP, London, UK
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Medical Microbiology and Publics Health, Medical University Innsbruck, Innsbruck, Austria
| | - Laurence Millon
- Parasitology-Mycology Department, University Hospital of Besançon, 25000 Besançon, France.,UMR 6249 CNRS Chrono-Environnement, University of Bourgogne Franche-Comté, 25000 Besançon, France
| | - C Oliver Morton
- Western Sydney University, School of Science, Campbelltown, NSW 2560, Australia
| | - Riina Rautemaa-Richardson
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | | | - Juergen Loffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
23
|
Duc Nguyen H, Hoang NMH, Ko M, Seo D, Kim S, Jo WH, Bae JW, Kim MS. Association between Serum Prolactin Levels and Neurodegenerative Diseases: Systematic Review and Meta-Analysis. Neuroimmunomodulation 2022; 29:85-96. [PMID: 34670217 DOI: 10.1159/000519552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Prolactin (PRL) exerts inflammatory and anti-inflammatory properties and is also thought to play an important role in the pathogenesis of neurodegenerative diseases (NDs). However, serum PRL levels in patients with NDs were inconsistent in the research literature. OBJECTIVE We aimed to assess the serum PRL levels in patients with NDs. METHODS Electronic databases, including MEDLINE, Embase, Cochrane Library database, clinicaltrials.gov, Web of Science, and Google Scholar, and reference lists of articles were searched up to December 31, 2020. Pooled standard mean difference (SMD) with 95% confidence interval (CI) was calculated by fixed-effect or random-effect model analysis. RESULTS A total of 36 comparisons out of 29 studies (3 RCTs and 26 case controls) focusing on NDs (including Parkinson's disease, Alzheimer's disease, Huntington's disease [HD], multiple sclerosis [MS], and epilepsy) were reported. The meta-analysis showed that there was no statistically significant difference in serum PRL levels between patients with NDs and healthy controls (SMD = 0.40, 95% CI: -0.16 to 0.96, p = 0.16). Subgroup analysis showed that serum PRL levels in patients with HD and MS were higher than those of healthy controls. Furthermore, patients with NDs aged <45 years had higher serum PRL levels (SMD = 0.97, 95% CI: 0.16-1.78, p = 0.018) than healthy controls. High serum PRL levels were found in subgroups such as the microenzymatic method, Asia, and the Americas. CONCLUSIONS Our meta-analysis showed serum PRL levels in patients with HD and MS were significantly higher than those in healthy controls. Serum PRL levels were associated with age, region, and detection method. Other larger sample studies using more uniform detection methods are necessary to confirm our results.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Myeonghee Ko
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Dongjin Seo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Shinhyun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
24
|
Sun MT, Gu MM, Zhang JY, Yu QF, Lamberton PHL, Lu DB. Meta-analysis of variable-temperature PCR technique performance for diagnosising Schistosoma japonicum infections in humans in endemic areas. PLoS Negl Trop Dis 2022; 16:e0010136. [PMID: 35030167 PMCID: PMC8794272 DOI: 10.1371/journal.pntd.0010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/27/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND As China is moving onto schistosomiasis elimination/eradication, diagnostic methods with both high sensitivity and specificity for Schistosoma japonicum infections in humans are urgently needed. Microscopic identification of eggs in stool is proven to have poor sensitivity in low endemic regions, and antibody tests are unable to distinguish between current and previous infections. Polymerase chain reaction (PCR) technologies for the detection of parasite DNA have been theoretically assumed to show high diagnostic sensitivity and specificity. However, the reported performance of PCR for detecting S. japonicum infection varied greatly among studies. Therefore, we performed a meta-analysis to evaluate the overall diagnostic performance of variable-temperature PCR technologies, based on stool or blood, for detecting S. japonicum infections in humans from endemic areas. METHODS We searched literatures in eight electronic databases, published up to 20 January 2021. The heterogeneity and publication bias of included studies were assessed statistically. The risk of bias and applicability of each eligible study were assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool (QUADAS-2). The bivariate mixed-effects model was applied to obtain the summary estimates of diagnostic performance. The hierarchical summary receiver operating characteristic (HSROC) curve was applied to visually display the results. Subgroup analyses and multivariate regression were performed to explore the source of heterogeneity. This research was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and was registered prospectively in PROSPERO (CRD42021233165). RESULTS A total of 2791 papers were retrieved. After assessing for duplications and eligilibity a total of thirteen publications were retained for inclusion. These included eligible data from 4268 participants across sixteen studies. High heterogeneity existed among studies, but no publication bias was found. The pooled analyses of PCR data from all included studies resulted in a sensitivity of 0.91 (95% CI: 0.83 to 0.96), specificity of 0.85 (95% CI: 0.65 to 0.94), positive likelihood ratio of 5.90 (95% CI: 2.40 to 14.60), negative likelihood ratio of 0.10 (95% CI: 0.05 to 0.20) and a diagnostics odds ratio of 58 (95% CI: 19 to 179). Case-control studies showed significantly better performances for PCR diagnostics than cross-sectional studies. This was further evidenced by multivariate analyses. The four types of PCR approaches identified (conventional PCR, qPCR, Droplet digital PCR and nested PCR) differed significantly, with nested PCRs showing the best performance. CONCLUSIONS Variable-temperature PCR has a satisfactory performance for diagnosing S. japonicum infections in humans in endemic areas. More high quality studies on S. japonicum diagnostic techniques, especially in low endemic areas and for the detection of dual-sex and single-sex infections are required. These will likely need to optimise a nested PCR alongside a highly sensitive gene target. They will contribute to successfully monitoring endemic areas as they move towards the WHO 2030 targets, as well as ultimately helping areas to achieve these goals.
Collapse
Affiliation(s)
- Meng-Tao Sun
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Man-Man Gu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Jie-Ying Zhang
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Qiu-Fu Yu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Poppy H. L. Lamberton
- Institute of Biodiversity, Animal Health and Comparative Medicine and Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Da-Bing Lu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Douglas AP, Smibert OC, Bajel A, Halliday CL, Lavee O, McMullan B, Yong MK, Hal SJ, Chen SC. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51 Suppl 7:143-176. [DOI: 10.1111/imj.15591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abby P. Douglas
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Olivia. C. Smibert
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Ashish Bajel
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Haematology Peter MacCallum Cancer Centre and The Royal Melbourne Hospital Melbourne Victoria Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
| | - Orly Lavee
- Department of Haematology St Vincent's Hospital Sydney New South Wales Australia
| | - Brendan McMullan
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Sydney New South Wales Australia
- School of Women's and Children's Health University of New South Wales Sydney New South Wales Australia
| | - Michelle K. Yong
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Victorian Infectious Diseases Service Royal Melbourne Hospital Melbourne Victoria Australia
| | - Sebastiaan J. Hal
- Sydney Medical School University of Sydney Sydney New South Wales Australia
- Department of Microbiology and Infectious Diseases Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Sharon C.‐A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
- Sydney Medical School University of Sydney Sydney New South Wales Australia
| | | |
Collapse
|
26
|
Hill JA, Dalai SC, Hong DK, Ahmed AA, Ho C, Hollemon D, Blair L, Maalouf J, Keane-Candib J, Stevens-Ayers T, Boeckh M, Blauwkamp TA, Fisher CE. Liquid Biopsy for Invasive Mold Infections in Hematopoietic Cell Transplant Recipients With Pneumonia Through Next-Generation Sequencing of Microbial Cell-Free DNA in Plasma. Clin Infect Dis 2021; 73:e3876-e3883. [PMID: 33119063 PMCID: PMC8664431 DOI: 10.1093/cid/ciaa1639] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Noninvasive diagnostic options are limited for invasive mold infections (IMIs). We evaluated the performance of a plasma microbial cell-free DNA sequencing (mcfDNA-Seq) test for diagnosing pulmonary IMI after hematopoietic cell transplant (HCT). METHODS We retrospectively assessed the diagnostic performance of plasma mcfDNA-Seq next-generation sequencing in 114 HCT recipients with pneumonia after HCT who had stored plasma obtained within 14 days of diagnosis of proven/probable Aspergillus IMI (n = 51), proven/probable non-Aspergillus IMI (n = 24), possible IMI (n = 20), and non-IMI controls (n = 19). Sequences were aligned to a database including >400 fungi. Organisms above a fixed significance threshold were reported. RESULTS Among 75 patients with proven/probable pulmonary IMI, mcfDNA-Seq detected ≥1 pathogenic mold in 38 patients (sensitivity, 51% [95% confidence interval {CI}, 39%-62%]). When restricted to samples obtained within 3 days of diagnosis, sensitivity increased to 61%. McfDNA-Seq had higher sensitivity for proven/probable non-Aspergillus IMI (sensitivity, 79% [95% CI, 56%-93%]) compared with Aspergillus IMI (sensitivity, 31% [95% CI, 19%-46%]). McfDNA-Seq also identified non-Aspergillus molds in an additional 7 patients in the Aspergillus subgroup and Aspergillus in 1 patient with possible IMI. Among 19 non-IMI pneumonia controls, mcfDNA-Seq was negative in all samples, suggesting a high specificity (95% CI, 82%-100%) and up to 100% positive predictive value (PPV) with estimated negative predictive values (NPVs) of 81%-99%. The mcfDNA-Seq assay was complementary to serum galactomannan index testing; in combination, they were positive in 84% of individuals with proven/probable pulmonary IMI. CONCLUSIONS Noninvasive mcfDNA-Seq had moderate sensitivity and high specificity, NPV, and PPV for pulmonary IMI after HCT, particularly for non-Aspergillus species.
Collapse
Affiliation(s)
- Joshua A Hill
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Sudeb C Dalai
- Karius, Inc, Redwood City, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Carine Ho
- Karius, Inc, Redwood City, California, USA
| | | | - Lily Blair
- Karius, Inc, Redwood City, California, USA
| | - Joyce Maalouf
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Michael Boeckh
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | | | - Cynthia E Fisher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med 2021; 49:e1063-e1143. [PMID: 34605781 DOI: 10.1097/ccm.0000000000005337] [Citation(s) in RCA: 1235] [Impact Index Per Article: 308.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Changing Epidemiology of Invasive Fungal Disease in Allogeneic Hematopoietic Stem Cell Transplantation. J Fungi (Basel) 2021; 7:jof7100848. [PMID: 34682269 PMCID: PMC8539090 DOI: 10.3390/jof7100848] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) is a common cause of morbidity and mortality in patients with hematologic malignancies, especially among those undergoing allogeneic hematopoietic stem cell transplantation (HSCT). The epidemiology of IFD in HSCT patients has been evolving over the last decades, mainly in relation to changes in HSCT therapies such as antifungal prophylaxis. A progressive decrease in Candida albicans infection has been documented, alongside a progressive increase in infections caused by non-albicans Candida species, filamentous fungi, and/or multidrug-resistant fungi. Currently, the most frequent IFD is invasive aspergillosis. In some parts of the world, especially in north Central Europe, a high percentage of Aspergillus fumigatus isolates are azole-resistant. New diagnostic techniques have documented the existence of cryptic Aspergillus species with specific characteristics. An increase in mucormycosis and fusariosis diagnoses, as well as diagnoses of other rare fungi, have also been described. IFD epidemiology is likely to continue changing further due to both an increased use of mold-active antifungals and a lengthened survival of patients with HSCT that may result in hosts with weaker immune systems. Improvements in microbiology laboratories and the widespread use of molecular diagnostic tools will facilitate more precise descriptions of current IFD epidemiology. Additionally, rising resistance to antifungal drugs poses a major threat. In this scenario, knowledge of current epidemiology and accurate IFD diagnoses are mandatory in order to establish correct prophylaxis guidelines and appropriate early treatments.
Collapse
|
29
|
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Møller MH, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 2021; 47:1181-1247. [PMID: 34599691 PMCID: PMC8486643 DOI: 10.1007/s00134-021-06506-y] [Citation(s) in RCA: 2082] [Impact Index Per Article: 520.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Laura Evans
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.
| | - Andrew Rhodes
- Adult Critical Care, St George's University Hospitals NHS Foundation Trust & St George's University of London, London, UK
| | - Waleed Alhazzani
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Flávia R Machado
- Anesthesiology, Pain and Intensive Care Department, Federal University of São Paulo, Hospital of São Paulo, São Paulo, Brazil
| | | | | | - Hallie C Prescott
- University of Michigan and VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | | | - Steven Simpson
- University of Kansas Medical Center, Kansas City, KS, USA
| | - W Joost Wiersinga
- ESCMID Study Group for Bloodstream Infections, Endocarditis and Sepsis, Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fayez Alshamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, Emirates University, Al Ain, United Arab Emirates
| | - Derek C Angus
- University of Pittsburgh Critical Care Medicine CRISMA Laboratory, Pittsburgh, PA, USA
| | - Yaseen Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Luciano Azevedo
- School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | | | | | - Lisa Burry
- Mount Sinai Hospital & University of Toronto (Leslie Dan Faculty of Pharmacy), Toronto, ON, Canada
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University Pieve Emanuele, Milan, Italy.,Department of Anaesthesia and Intensive Care, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - John Centofanti
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Angel Coz Yataco
- Lexington Veterans Affairs Medical Center/University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | - Kent Doi
- The University of Tokyo, Tokyo, Japan
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, Beijing, China
| | - Elisa Estenssoro
- Hospital Interzonal de Agudos San Martin de La Plata, Buenos Aires, Argentina
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | | | - Carol Hodgson
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Morten Hylander Møller
- Department of Intensive Care 4131, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Shevin Jacob
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Michael Klompas
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Population Medicine, Harvard Medical School, and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Younsuck Koh
- ASAN Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Anand Kumar
- University of Manitoba, Winnipeg, MB, Canada
| | - Arthur Kwizera
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Suzana Lobo
- Intensive Care Division, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Henry Masur
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | | | | | - Yatin Mehta
- Medanta the Medicity, Gurugram, Haryana, India
| | - Mervyn Mer
- Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Nunnally
- New York University School of Medicine, New York, NY, USA
| | - Simon Oczkowski
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Tiffany Osborn
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Michael Puskarich
- University of Minnesota/Hennepin County Medical Center, Minneapolis, MN, USA
| | - Jason Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | | | | | | - Charles L Sprung
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tobias Welte
- Medizinische Hochschule Hannover and German Center of Lung Research (DZL), Hannover, Germany
| | - Janice Zimmerman
- World Federation of Intensive and Critical Care, Brussels, Belgium
| | - Mitchell Levy
- Warren Alpert School of Medicine at Brown University, Providence, Rhode Island & Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
30
|
Rahi MS, Jindal V, Pednekar P, Parekh J, Gunasekaran K, Sharma S, Stender M, Jaiyesimi IA. Fungal infections in hematopoietic stem-cell transplant patients: a review of epidemiology, diagnosis, and management. Ther Adv Infect Dis 2021; 8:20499361211039050. [PMID: 34434551 PMCID: PMC8381463 DOI: 10.1177/20499361211039050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022] Open
Abstract
The advent of bone marrow transplant has opened doors to a different approach and
offered a new treatment modality for various hematopoietic stem-cell-related
disorders. Since the first bone marrow transplant in 1957, there has been
significant progress in managing patients who undergo bone marrow transplants.
Plasma-cell disorders, lymphoproliferative disorders, and myelodysplastic
syndrome are the most common indications for hematopoietic stem-cell transplant.
Despite the advances, invasive fungal infections remain a significant cause of
morbidity and mortality in this high-risk population. The overall incidence of
invasive fungal infection in patients with hematopoietic stem-cell transplant is
around 4%, but the mortality in patients with allogeneic stem-cell transplant is
as high as 13% in one study. Type of stem-cell transplant, conditioning regimen,
and development of graft-versus-host disease are some of the
risk factors that impact the risk and outcomes in patients with invasive fungal
infections. Aspergillus and candida remain the two most common organisms causing
invasive fungal infections. Molecular diagnostic methods have replaced some
traditional methods due to their simplicity of use and rapid turnaround time.
Primary prophylaxis has undoubtedly shown to improve outcomes even though
breakthrough infection rates remain high. The directed treatment has seen a
significant shift from amphotericin B to itraconazole, voriconazole, and
echinocandins, which have shown better efficacy and fewer adverse effects. In
this comprehensive review, we aim to detail epidemiology, risk factors,
diagnosis, and management, including prophylaxis, empiric and directed
management of invasive fungal infections in patients with hematopoietic
stem-cell transplant.
Collapse
Affiliation(s)
- Mandeep Singh Rahi
- Division of Pulmonary Diseases and Critical Care Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA
| | - Vishal Jindal
- Division of Hematology and Oncology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Prachi Pednekar
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, Bridgeport, CT, USA
| | - Jay Parekh
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, Bridgeport, CT, USA
| | - Kulothungan Gunasekaran
- Division of Pulmonary Diseases and Critical Care Medicine, Yale-New Haven Health Bridgeport Hospital, Bridgeport, CT, USA
| | - Sorabh Sharma
- Department of Internal Medicine, Banner University Medical Center, Tucson, AZ, USA
| | - Michael Stender
- Division of Hematology and Oncology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Ishmael A Jaiyesimi
- Division of Hematology and Oncology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
31
|
Xiong J, Luo J, Bian J, Wu J. Overall diagnostic accuracy of different MR imaging sequences for detection of dysplastic nodules: a systematic review and meta-analysis. Eur Radiol 2021; 32:1285-1296. [PMID: 34357448 DOI: 10.1007/s00330-021-08022-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To assess the overall diagnostic accuracy of different MR imaging sequences in the detection of the dysplastic nodule (DN). METHODS PubMed, Cochrane Library, and Web of Science were systematically searched. Study selection and data extraction were conducted by two authors independently. Quality assessment of diagnostic accuracy studies (QUADAS) 2 in RevMan software was used to score the included studies and assess their methodological quality. A random-effects model was used for statistical pooling by Meta-Disc. Subgroup analysis and sensitivity analysis were used to explore potential sources of heterogeneity. RESULTS Fourteen studies (335 DN lesions in total) were included in our meta-analysis. The area under the curve (AUC) of summary receiver operating characteristic (SROC) of T2WI was 0.87. Pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) of DWI were 0.81 (95%CI, 0.73-0.87), 0.90 (95%CI, 0.86-0.93), 7.04 (95%CI, 4.49-11.04), and 0.24 (95%CI, 0.17-0.33) respectively. In the arterial phase, pooled sensitivity, specificity, PLR, and NLR were 0.89 (0.84-0.93), 0.75 (0.72-0.79), 3.72 (2.51-5.51), and 0.17 (0.12-0.25), respectively. Pooled sensitivity, specificity, PLR, and NLR of the delayed phase were 0.78 (0.72-0.83), 0.60 (0.55-0.65), 2.19 (1.55-3.10), and 0.36 (0.23-0.55) separately. Pooled sensitivity, specificity, PLR, and NLR of the hepatobiliary phase were 0.77 (0.71-0.82), 0.92 (0.89-0.94), 8.74 (5.91-12.92), and 0.24 (0.14-0.41) respectively. Pooled sensitivity, specificity, and PLR were higher on DWI and hepatobiliary phase in diagnosing LGDN than HGDN. CONCLUSION MR sequences, particularly DWI, arterial phase, and hepatobiliary phase imaging demonstrate high diagnostic accuracy for DN. KEY POINTS • MRI has dramatically improved the detection and accurate diagnosis of DNs and their differentiation from hepatocellular carcinoma. • Overall diagnostic accuracy of different MRI sequences in the detection of DN has not been studied before. • Our meta-analysis demonstrates that MRI achieves a high diagnostic value for DN, especially when using DWI, arterial phase imaging, and hepatobiliary phase imaging.
Collapse
Affiliation(s)
- Jingtong Xiong
- Department of Radiology, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China
| | - Jiawen Luo
- Department of Radiology, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China.
| | - Jie Bian
- Department of Radiology, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Road, Zhongshan District, Dalian, 116001, Liaoning Province, China
| |
Collapse
|
32
|
Foppiano Palacios C, Spichler Moffarah A. Diagnosis of Pneumonia Due to Invasive Molds. Diagnostics (Basel) 2021; 11:diagnostics11071226. [PMID: 34359309 PMCID: PMC8304515 DOI: 10.3390/diagnostics11071226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Pneumonia is the most common presentation of invasive mold infections (IMIs), and is pathogenetically characterized as angioinvasion by hyphae, resulting in tissue infarction and necrosis. Aspergillus species are the typical etiologic cause of mold pneumonia, with A. fumigatus in most cases, followed by the Mucorales species. Typical populations at risk include hematologic cancer patients on chemotherapy, bone marrow and solid organ transplant patients, and patients on immunosuppressive medications. Invasive lung disease due to molds is challenging to definitively diagnose based on clinical features and imaging findings alone, as these methods are nonspecific. Etiologic laboratory testing is limited to insensitive culture techniques, non-specific and not readily available PCR, and tissue biopsies, which are often difficult to obtain and impact on the clinical fragility of patients. Microbiologic/mycologic analysis has limited sensitivity and may not be sufficiently timely to be actionable. Due to the inadequacy of current diagnostics, clinicians should consider a combination of diagnostic modalities to prevent morbidity in patients with mold pneumonia. Diagnosis of IMIs requires improvement, and the availability of noninvasive methods such as fungal biomarkers, microbial cell-free DNA sequencing, and metabolomics-breath testing could represent a new era of timely diagnosis and early treatment of mold pneumonia.
Collapse
|
33
|
Assessment of the safety and efficacy of acupuncture in erectile dysfunction treatment. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Seo H, Kim JY, Son HJ, Jung J, Kim MJ, Chong YP, Lee SO, Choi SH, Kim YS, Kim SH. Diagnostic performance of real-time polymerase chain reaction assay on blood for invasive aspergillosis and mucormycosis. Mycoses 2021; 64:1554-1562. [PMID: 34013523 DOI: 10.1111/myc.13319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This study aimed to evaluate the diagnostic usefulness of real-time (RT) polymerase chain reaction (PCR) on blood samples for diagnosis of invasive aspergillosis and mucormycosis in patients with suspected invasive mould infection. METHODS Adult patients with suspected invasive mould infection were prospectively enrolled at a tertiary referral hospital in Seoul, South Korea between 2017 and 2020. Standard tests for diagnosis of invasive mould infection and RT-PCR for Aspergillus, Mucor and Rhizopus using blood samples were performed. We evaluated the diagnostic performance of RT-PCR tests in patients diagnosed with proven and probable invasive aspergillosis or mucormycosis infection, according to the modified definitions of the EORTC/MSG 2019. RESULTS A total of 102 patients with suspected invasive mould infection were enrolled. Of these patients, 46 (45%) were classified as having proven (n = 13) or probable (n = 33) invasive aspergillosis, 21 (21%) as proven (n = 17) or probable (n = 4) invasive mucormycosis and 18 (18%) as possible invasive mould infection. The remaining 13 (13%) were classified as not having invasive mould infection. Patients with possible invasive mould infection (n = 18) and coinfection of aspergillosis and mucormycosis (n = 4) were excluded from the final analysis. The sensitivity and specificity of the Aspergillus PCR were 54.3% ([25/46], 95% confidence interval [CI]: 40.2-67.9%) and 94.1% ([32/34], 95% CI: 80.9-98.4%), respectively. The sensitivity and specificity of the Mucor or Rhizopus PCR were 57.1% ([12/21], 95% CI: 36.6-75.5%) and 76.3% ([45/59], 95% CI: 64.0-85.3), respectively. CONCLUSIONS Our study suggests that blood PCR can be a useful adjunct test for diagnosing patients with suspected invasive mould infection.
Collapse
Affiliation(s)
- Hyeonji Seo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Ju Son
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Ahmed EA, Almutairi MK, Alkaseb AT. Accuracy of Tissue and Sonication Fluid Sampling for the Diagnosis of Fracture-Related Infection: Diagnostic Meta-Analysis. Cureus 2021; 13:e14925. [PMID: 34123624 PMCID: PMC8187062 DOI: 10.7759/cureus.14925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evidence shows that tissue sample culturing is the gold standard approach for diagnosing fracture-related infection (FRI). Sonication fluid sampling has also been reported to be efficacious and superior to tissue sample culturing with prosthetic joint infection. However, data from the current literature are not enough to validate this hypothesis for FRI. We conducted a meta-analysis to validate the diagnostic accuracy of tissue sample culturing and sonication fluid aspiration and to find which one is superior to the other. An extensive search through the relevant databases was conducted to obtain all the relevant studies. We have included 13 relevant studies, including nine retrospective cohorts and four prospective ones. The overall pooled estimates of sensitivity, specificity, and diagnostic odds ratio (DOR) of tissue sampling culture in diagnosing fracture-related infections were 98% (95% CI, 92% to 99%), 38% (95% CI, 23% to 56%), and 25 (4 to 154), respectively. The overall pooled estimates of sensitivity, specificity, and DOR of sonication fluid sample culture in diagnosing fracture-related infections were 86% (95% CI, 79% to 92%), 98% (95% CI, 93% to 100%), and 353 (78 to 1598), respectively. No significant risk of bias was found regarding the sensitivity and specificity among studies investigating both modalities, however, significant heterogeneity was noticed. Sonication fluid sampling can be used to confirm FRI while tissue sampling can be used to exclude it and both modalities should be combined for obtaining the most accurate outcome.
Collapse
Affiliation(s)
- Elsiddig A Ahmed
- Department of Orthopedics and Traumatology, Prince Mutaibb bin Abdulaziz Hospital, Sakaka, SAU
| | | | | |
Collapse
|
36
|
White PL, Bretagne S, Caliendo AM, Loeffler J, Patterson TF, Slavin M, Wingard JR. Aspergillus Polymerase Chain Reaction-An Update on Technical Recommendations, Clinical Applications, and Justification for Inclusion in the Second Revision of the EORTC/MSGERC Definitions of Invasive Fungal Disease. Clin Infect Dis 2021; 72:S95-S101. [PMID: 33709129 DOI: 10.1093/cid/ciaa1865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aspergillus polymerase chain reaction testing of blood and respiratory samples has recently been included in the second revision of the EORTC/MSGERC definitions for classifying invasive fungal disease. This is a result of considerable efforts to standardize methodology, the availability of commercial assays and external quality control programs, and additional clinical validation. This supporting article provides both clinical and technical justifications for its inclusion while also summarizing recent advances and likely future developments in the molecular diagnosis of invasive aspergillosis.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Mycology Reference Laboratory, Cardiff, United Kingdom
| | - Stephane Bretagne
- Mycology Laboratory, Saint Louis Hospital, Paris and Université de Paris, France
| | - Angela M Caliendo
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Juergen Loeffler
- Department of Molecular Biology and Infection, University Hospital Wuerzburg, Medical Hospital II, Wuerzburg, Germany
| | - Thomas F Patterson
- Department of Medicine, University of Texas Health San Antonio and the South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Monica Slavin
- National Centre for Infections in Cancer, Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Australia
| | - John R Wingard
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
37
|
Gu Y, Ye X, Wang Y, Shen K, Zhong J, Chen B, Su X. Clinical features and prognostic analysis of patients with Aspergillus isolation during acute exacerbation of chronic obstructive pulmonary disease. BMC Pulm Med 2021; 21:69. [PMID: 33637057 PMCID: PMC7908687 DOI: 10.1186/s12890-021-01427-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 11/21/2022] Open
Abstract
Background Lower respiratory tract (LRT) specimen culture is widely performed for the identification of Aspergillus. We investigated the clinical features and prognosis of patients with Aspergillus isolation from LRT specimens during acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods This is a 6-year single-center, real-world study. 75 cases out of 1131 hospitalized AECOPD patients were positive for Aspergillus. These patients were carefully evaluated and finally diagnosed of pulmonary aspergillosis (PA, 60 cases, 80%) or colonization (15 cases, 20%). Comparisons of clinical data were performed between these two groups. A cox regression model was used to confirm prognostic factors of Aspergillus infection. Results The PA group had worse lung function and higher rates of systemic corticosteroid use and broad-spectrum antibiotic use before admission than the colonization group. The PA group had significantly higher in-hospital mortality and 180-day mortality than the colonization group (45% (27/60) vs. 0% (0/15), p = 0.001, and 52.5% (31/59) vs. 6.7% (1/15), p < 0.001, respectively). By multivariable analysis among Aspergillus infection patients, antifungal therapy (HR 0.383, 95% CI 0.163–0.899, p = 0.027) was associated with improved survival, whereas accumulated dose of systemic steroids > 700 mg (HR 2.452, 95% CI 1.134–5.300, p = 0.023) and respiratory failure at admission (HR 5.983, 95% CI 2.487–14.397, p < 0.001) were independently associated with increased mortality. Significant survival differential was observed among PA patients without antifungals and antifungals initiated before and after Aspergillus positive culture (p = 0.001). Conclusions Aspergillus isolation in hospitalized AECOPD patients largely indicated PA. AECOPD patients with PA had worse prognosis than those with Aspergillus colonization. Empirical antifungal therapy is warranted to improve the prognosis for Aspergillus infection.
Collapse
Affiliation(s)
- Yu Gu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210002, China
| | - Xianping Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210002, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Kunlu Shen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 210002, China
| | - Jinjin Zhong
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Bilin Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210002, China. .,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China. .,Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 210002, China.
| |
Collapse
|
38
|
Emerging Microbiology Diagnostics for Transplant Infections: On the Cusp of a Paradigm Shift. Transplantation 2020; 104:1358-1384. [PMID: 31972701 DOI: 10.1097/tp.0000000000003123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In light of the heightened risk for infection associated with solid organ and hematopoietic stem cell transplantation, rapid and accurate microbiology diagnostics are essential to the practice of transplant clinicians, including infectious diseases specialists. In the last decade, diagnostic microbiology has seen a shift toward culture-independent techniques including single-target and multiplexed molecular testing, mass-spectrometry, and magnetic resonance-based methods which have together greatly expanded the array of pathogens identified, increased processing speed and throughput, allowed for detection of resistance determinants, and ultimately improved the outcomes of infected transplant recipients. More recently, a newer generation of diagnostics with immense potential has emerged, including multiplexed molecular panels directly applicable to blood and blood culture specimens, next-generation metagenomics, and gas chromatography mass spectrometry. Though these methods have some recognized drawbacks, many have already demonstrated improved sensitivity and a positive impact on clinical outcomes in transplant and immunocompromised patients.
Collapse
|
39
|
Li X, Zheng Y, Wu F, Mo D, Liang G, Yan R, Khader JA, Wu N, Cao C. Evaluation of quantitative real-time PCR and Platelia galactomannan assays for the diagnosis of disseminated Talaromyces marneffei infection. Med Mycol 2020; 58:181-186. [PMID: 31131856 DOI: 10.1093/mmy/myz052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 11/12/2022] Open
Abstract
Talaromyces (Penicillium) marneffei is an emerging pathogen that causes significant morbidity and mortality in immunocompromised patients in endemic regions such as southeast Asia. The diagnosis of disseminated T. marneffei infection remains challenging in clinical practice. In the study, a well-validated real-time quantitative polymerase chain reaction (qPCR) target region of ITS1-5.8S-ITS2 and a Platelia galactomannan (GM) assay were compared for their diagnostic performance using serum samples from patients with or without human immunodeficiency virus (HIV). The results showed that this novel qPCR method is highly sensitive and specific for T. marneffei DNA detection in serum samples, and the limit of detection and species-specificity of qPCR were five copies of DNA and 100%, respectively. For detection in serum samples from 36 talaromycosis patients, the sensitivity of qPCR was 86.11% (31/36), including 20/20 (100%) patients with fungemia and 11/16 (68.75%) patients without fungemia. For the GM assay, the sensitivity was 80.56% (29/36) when the GM optical density cutoff index was ≥0.5, including 19/20 (95%) patients with fungemia and 10/16 (62.5%) patients without fungemia. These results indicate that the novel qPCR and GM assays can be used as a valuable tool in the diagnosis of T. marneffei infection. Serum samples are convenient hematological specimens for T. marneffei DNA quantification. Combining the GM assay and qPCR is more scientific and appropriate for diagnosing T. marneffei infection in endemic areas.
Collapse
Affiliation(s)
- Xinlei Li
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,Department of Mycology, Yulin Hospital of Dermatology, Yulin, P. R. China
| | - Yanqing Zheng
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,HIV/AIDS Clinical Treatment Center of Guangxi, The Fourth People's Hospital of Nanning, Nanning, P. R. China
| | - Fengyao Wu
- HIV/AIDS Clinical Treatment Center of Guangxi, The Fourth People's Hospital of Nanning, Nanning, P. R. China
| | - Dongdong Mo
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gang Liang
- School of Preclinical Medicine of Guangxi Medical University, Nanning, P. R. China
| | - Rufan Yan
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Jazeer Abdul Khader
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Nianning Wu
- HIV/AIDS Clinical Treatment Center of Guangxi, The Fourth People's Hospital of Nanning, Nanning, P. R. China
| | - Cunwei Cao
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
40
|
Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, Clancy CJ, Wingard JR, Lockhart SR, Groll AH, Sorrell TC, Bassetti M, Akan H, Alexander BD, Andes D, Azoulay E, Bialek R, Bradsher RW, Bretagne S, Calandra T, Caliendo AM, Castagnola E, Cruciani M, Cuenca-Estrella M, Decker CF, Desai SR, Fisher B, Harrison T, Heussel CP, Jensen HE, Kibbler CC, Kontoyiannis DP, Kullberg BJ, Lagrou K, Lamoth F, Lehrnbecher T, Loeffler J, Lortholary O, Maertens J, Marchetti O, Marr KA, Masur H, Meis JF, Morrisey CO, Nucci M, Ostrosky-Zeichner L, Pagano L, Patterson TF, Perfect JR, Racil Z, Roilides E, Ruhnke M, Prokop CS, Shoham S, Slavin MA, Stevens DA, Thompson GR, Vazquez JA, Viscoli C, Walsh TJ, Warris A, Wheat LJ, White PL, Zaoutis TE, Pappas PG. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 2020; 71:1367-1376. [PMID: 31802125 PMCID: PMC7486838 DOI: 10.1093/cid/ciz1008] [Citation(s) in RCA: 1690] [Impact Index Per Article: 338.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential. METHODS To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of IFD. A final version of the manuscript was agreed upon after the groups' findings were presented at a scientific symposium and after a 3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved. RESULTS There is no change in the classifications of "proven," "probable," and "possible" IFD, although the definition of "probable" has been expanded and the scope of the category "possible" has been diminished. The category of proven IFD can apply to any patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immunocompromised patients only, except for endemic mycoses. CONCLUSIONS These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of a broader range of patients at high-risk.
Collapse
Affiliation(s)
| | - Sharon C Chen
- Centre for Infectious Diseases and Microbiology, Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Carol A Kauffman
- Division of Infectious Diseases, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - William J Steinbach
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - John W Baddley
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul E Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | - John R Wingard
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology University Children’s Hospital, Münster, Germany
| | - Tania C Sorrell
- University of Sydney, Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney School of Medicine Faculty of Medicine and Health, Westmead Institute for Centre for Infectious Diseases and Microbiology, Western Sydney Local Health District, Sydney, Australia
| | - Matteo Bassetti
- Infectious Disease Clinic, Department of Medicine University of Udine and Department of Health Sciences, DISSAL, University of Genoa, Genoa, Italy
| | - Hamdi Akan
- Ankara University, Faculty of Medicine, Cebeci Campus, Hematology Clinical Research Unit, Ankara, Turkey
| | - Barbara D Alexander
- Department of Medicine and Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - David Andes
- Division of Infectious Diseases, Departments of Medicine, Microbiology and Immunology School of Medicine and Public Health and School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Elie Azoulay
- Médicine Intensive et Réanimation Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Ralf Bialek
- Molecular Diagnostics of Infectious Diseases, Microbiology, LADR Zentrallabor Dr. Kramer & Kollegen, Geesthacht, Germany
| | - Robert W Bradsher
- Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephane Bretagne
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Mycology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Angela M Caliendo
- Department of Medicine, Alpert Warren Medical School of Brown University, Providence, Rhode Island, USA
| | - Elio Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mario Cruciani
- Infectious Diseases Unit, G. Fracastoro Hospital, San Bonifacio, Verona, Italy
| | | | - Catherine F Decker
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sujal R Desai
- National Heart & Lung Institute, Imperial College London, the Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Brian Fisher
- Pediatric Infectious Diseases Division at the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas Harrison
- Centre for Global Health, Institute for Infection and Immunity, St Georges University of London, London, UK
| | - Claus Peter Heussel
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center and Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany
| | - Henrik E Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Bart-Jan Kullberg
- Radboud Center for Infectious Diseases and Department of Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation and Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine and Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thomas Lehrnbecher
- Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University of Frankfurt, Frankfurt, Germany
| | - Jurgen Loeffler
- Molecular Biology and Infection, Medical Hospital II, WÜ4i, University Hospital Würzburg, Würzburg, Germany
| | - Olivier Lortholary
- Paris University, Necker Pasteur Center for Infectious Diseases and Tropical Medicine, IHU Imagine & Institut Pasteur, Molecular Mycology Unit, CNRS UMR 2000, Paris, France
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Oscar Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kieren A Marr
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School
| | - Henry Masur
- Critical Care Medicine Department NIH-Clinical Center, Bethesda, Maryland, USA
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases and Centre of Expertise in Mycology Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Marcio Nucci
- Department of Internal Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Livio Pagano
- Istituto di Ematologia, Università Cattolica S. Cuore, Rome, Italy
| | - Thomas F Patterson
- UT Health San Antonio and South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - John R Perfect
- Department of Medicine and Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Zdenek Racil
- Department of Internal Medicine–Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Marcus Ruhnke
- Department of Hematology & Oncology, Lukas Hospital, Buende, Germany
| | - Cornelia Schaefer Prokop
- Meander Medical Center Amersfoort and Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Center and the National Centre for Infections in Cancer, The University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California
- California Institute for Medical Research, San Jose, California, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, USA
| | - Jose A Vazquez
- Division of Infectious Diseases, Medical College of Georgia/Augusta University, Augusta, Georgia, USA
| | - Claudio Viscoli
- Division of Infectious Disease, University of Genova and San Martino University Hospital, Genova, Italy
| | - Thomas J Walsh
- Weill Cornell Medicine of Cornell University, Departments of Medicine, Pediatrics, Microbiology & Immunology, New York, New York, USA
| | - Adilia Warris
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK
| | | | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Theoklis E Zaoutis
- Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia and Roberts Center for Pediatric Research, Philadelphia, Pennsylvania, USA
| | - Peter G Pappas
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Zinter MS, Dvorak CC, Mayday MY, Iwanaga K, Ly NP, McGarry ME, Church GD, Faricy LE, Rowan CM, Hume JR, Steiner ME, Crawford ED, Langelier C, Kalantar K, Chow ED, Miller S, Shimano K, Melton A, Yanik GA, Sapru A, DeRisi JL. Pulmonary Metagenomic Sequencing Suggests Missed Infections in Immunocompromised Children. Clin Infect Dis 2020; 68:1847-1855. [PMID: 30239621 PMCID: PMC6784263 DOI: 10.1093/cid/ciy802] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Despite improved diagnostics, pulmonary pathogens in immunocompromised children frequently evade detection, leading to significant mortality. Therefore, we aimed to develop a highly sensitive metagenomic next-generation sequencing (mNGS) assay capable of evaluating the pulmonary microbiome and identifying diverse pathogens in the lungs of immunocompromised children. METHODS We collected 41 lower respiratory specimens from 34 immunocompromised children undergoing evaluation for pulmonary disease at 3 children's hospitals from 2014-2016. Samples underwent mechanical homogenization, parallel RNA/DNA extraction, and metagenomic sequencing. Sequencing reads were aligned to the National Center for Biotechnology Information nucleotide reference database to determine taxonomic identities. Statistical outliers were determined based on abundance within each sample and relative to other samples in the cohort. RESULTS We identified a rich cross-domain pulmonary microbiome that contained bacteria, fungi, RNA viruses, and DNA viruses in each patient. Potentially pathogenic bacteria were ubiquitous among samples but could be distinguished as possible causes of disease by parsing for outlier organisms. Samples with bacterial outliers had significantly depressed alpha-diversity (median, 0.61; interquartile range [IQR], 0.33-0.72 vs median, 0.96; IQR, 0.94-0.96; P < .001). Potential pathogens were detected in half of samples previously negative by clinical diagnostics, demonstrating increased sensitivity for missed pulmonary pathogens (P < .001). CONCLUSIONS An optimized mNGS assay for pulmonary microbes demonstrates significant inoculation of the lower airways of immunocompromised children with diverse bacteria, fungi, and viruses. Potential pathogens can be identified based on absolute and relative abundance. Ongoing investigation is needed to determine the pathogenic significance of outlier microbes in the lungs of immunocompromised children with pulmonary disease.
Collapse
Affiliation(s)
- Matt S Zinter
- Division of Critical Care, University of California, San Francisco School of Medicine
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood & Marrow Transplantation, University of California, San Francisco School of Medicine
| | - Madeline Y Mayday
- Division of Critical Care, University of California, San Francisco School of Medicine
| | - Kensho Iwanaga
- Division of Pulmonology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco School of Medicine
| | - Ngoc P Ly
- Division of Pulmonology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco School of Medicine
| | - Meghan E McGarry
- Division of Pulmonology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco School of Medicine
| | - Gwynne D Church
- Division of Pulmonology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco School of Medicine
| | - Lauren E Faricy
- Division of Pulmonology, Department of Pediatrics, University of Vermont School of Medicine, Burlington
| | - Courtney M Rowan
- Division of Critical Care, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis
| | - Janet R Hume
- Division of Critical Care, University of Minnesota School of Medicine, Minneapolis
| | - Marie E Steiner
- Division of Critical Care, University of Minnesota School of Medicine, Minneapolis.,Hematology/Oncology, Department of Pediatrics, Masonic Children's Hospital, University of Minnesota School of Medicine, Minneapolis
| | - Emily D Crawford
- Chan Zuckerberg Biohub, University of California-San Francisco School of Medicine.,Department of Biochemistry & Biophysics, University of California-San Francisco School of Medicine
| | - Charles Langelier
- Division of Infectious Diseases, Department of Internal Medicine, University of California-San Francisco School of Medicine
| | - Katrina Kalantar
- Department of Biochemistry & Biophysics, University of California-San Francisco School of Medicine
| | - Eric D Chow
- Department of Biochemistry & Biophysics, University of California-San Francisco School of Medicine
| | - Steve Miller
- Department of Laboratory Medicine, University of California-San Francisco School of Medicine
| | - Kristen Shimano
- Division of Allergy, Immunology, and Blood & Marrow Transplantation, University of California, San Francisco School of Medicine
| | - Alexis Melton
- Division of Allergy, Immunology, and Blood & Marrow Transplantation, University of California, San Francisco School of Medicine
| | - Gregory A Yanik
- Division of Oncology, Department of Pediatrics, Motts Children's Hospital, University of Michigan School of Medicine, Ann Arbor
| | - Anil Sapru
- Division of Critical Care, University of California, San Francisco School of Medicine.,Division of Critical Care, Department of Pediatrics, Mattel Children's Hospital, University of California-Los Angeles, Geffen School of Medicine
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, University of California-San Francisco School of Medicine.,Department of Biochemistry & Biophysics, University of California-San Francisco School of Medicine
| |
Collapse
|
42
|
White SK, Schmidt RL, Walker BS, Hanson KE. (1→3)-β-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst Rev 2020; 7:CD009833. [PMID: 32693433 PMCID: PMC7387835 DOI: 10.1002/14651858.cd009833.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Invasive fungal infections (IFIs) are life-threatening opportunistic infections that occur in immunocompromised or critically ill people. Early detection and treatment of IFIs is essential to reduce morbidity and mortality in these populations. (1→3)-β-D-glucan (BDG) is a component of the fungal cell wall that can be detected in the serum of infected individuals. The serum BDG test is a way to quickly detect these infections and initiate treatment before they become life-threatening. Five different versions of the BDG test are commercially available: Fungitell, Glucatell, Wako, Fungitec-G, and Dynamiker Fungus. OBJECTIVES To compare the diagnostic accuracy of commercially available tests for serum BDG to detect selected invasive fungal infections (IFIs) among immunocompromised or critically ill people. SEARCH METHODS We searched MEDLINE (via Ovid) and Embase (via Ovid) up to 26 June 2019. We used SCOPUS to perform a forward and backward citation search of relevant articles. We placed no restriction on language or study design. SELECTION CRITERIA We included all references published on or after 1995, which is when the first commercial BDG assays became available. We considered published, peer-reviewed studies on the diagnostic test accuracy of BDG for diagnosis of fungal infections in immunocompromised people or people in intensive care that used the European Organization for Research and Treatment of Cancer (EORTC) criteria or equivalent as a reference standard. We considered all study designs (case-control, prospective consecutive cohort, and retrospective cohort studies). We excluded case studies and studies with fewer than ten participants. We also excluded animal and laboratory studies. We excluded meeting abstracts because they provided insufficient information. DATA COLLECTION AND ANALYSIS We followed the standard procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened studies, extracted data, and performed a quality assessment for each study. For each study, we created a 2 × 2 matrix and calculated sensitivity and specificity, as well as a 95% confidence interval (CI). We evaluated the quality of included studies using the Quality Assessment of Studies of Diagnostic Accuracy-Revised (QUADAS-2). We were unable to perform a meta-analysis due to considerable variation between studies, with the exception of Candida, so we have provided descriptive statistics such as receiver operating characteristics (ROCs) and forest plots by test brand to show variation in study results. MAIN RESULTS We included in the review 49 studies with a total of 6244 participants. About half of these studies (24/49; 49%) were conducted with people who had cancer or hematologic malignancies. Most studies (36/49; 73%) focused on the Fungitell BDG test. This was followed by Glucatell (5 studies; 10%), Wako (3 studies; 6%), Fungitec-G (3 studies; 6%), and Dynamiker (2 studies; 4%). About three-quarters of studies (79%) utilized either a prospective or a retrospective consecutive study design; the remainder used a case-control design. Based on the manufacturer's recommended cut-off levels for the Fungitell test, sensitivity ranged from 27% to 100%, and specificity from 0% to 100%. For the Glucatell assay, sensitivity ranged from 50% to 92%, and specificity ranged from 41% to 94%. Limited studies have used the Dynamiker, Wako, and Fungitec-G assays, but individual sensitivities and specificities ranged from 50% to 88%, and from 60% to 100%, respectively. Results show considerable differences between studies, even by manufacturer, which prevented a formal meta-analysis. Most studies (32/49; 65%) had no reported high risk of bias in any of the QUADAS-2 domains. The QUADAS-2 domains that had higher risk of bias included participant selection and flow and timing. AUTHORS' CONCLUSIONS We noted considerable heterogeneity between studies, and these differences precluded a formal meta-analysis. Because of wide variation in the results, it is not possible to estimate the diagnostic accuracy of the BDG test in specific settings. Future studies estimating the accuracy of BDG tests should be linked to the way the test is used in clinical practice and should clearly describe the sampling protocol and the relationship of time of testing to time of diagnosis.
Collapse
Affiliation(s)
- Sandra K White
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | | | - Kimberly E Hanson
- Director, Transplant Infectious Diseases and Immunocompromised Host Service, Section Head, Clinical Microbiology, Director, Medical Microbiology Fellowship Program, University of Utah and ARUP Laboratories, Salt Lake City, Utah, USA
| |
Collapse
|
43
|
Jiang J, Yang J, Shi Y, Jin Y, Tang S, Zhang N, Lu Y, Sun G. Head-to-head comparison of the diagnostic accuracy of Xpert MTB/RIF and Xpert MTB/RIF Ultra for tuberculosis: a meta-analysis. Infect Dis (Lond) 2020; 52:763-775. [PMID: 32619114 DOI: 10.1080/23744235.2020.1788222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) diagnosis has significantly improved since the introduction of the automated molecular test Xpert MTB/RIF (Xpert) and the new version Xpert MTB/RIF Ultra (Ultra) that detect Mycobacterium tuberculosis. Due to the rapidly widespread use of Xpert and Ultra, we conducted a meta-analysis to compare the performances of Xpert and Ultra in diagnosing TB and discuss the advantages and limitations of these two tests. METHODS Web of Science, Medline (via PubMed), Embase (via OvidSP), the Cochrane Central Register of Controlled Trials and Google Scholar (up to April 2020) were searched for relevant studies. The diagnostic performance of Xpert and Ultra for TB was determined using a bivariate random-effects regression model. The sources of heterogeneity were explored via meta-regression and subgroup analyses. RESULTS Of 19 studies that examined a total of 5855 samples, the pooled sensitivity and specificity of Xpert in TB diagnosis were 0.69 (95% CI: 0.57-0.78) and 0.99 (95% CI: 0.98-0.99), respectively. However, the pooled sensitivity and specificity of Ultra in TB diagnosis were 0.84 (95% CI: 0.76-0.90) and 0.97 (95% CI: 0.96-0.98), respectively. Regardless of whether the comparisons were indirect or direct, Ultra was consistently found to be more sensitive, but with slightly lower specificity than Xpert in diagnosing TB. CONCLUSIONS Compared with Xpert, Ultra had higher sensitivity but slightly lower specificity for the diagnosis of TB disease. The excellent upgrade in sensitivity of the Ultra test was particularly relevant in subjects with paucibacillary TB including tuberculous pleurisy, tuberculous meningitis and paediatric TB.
Collapse
Affiliation(s)
- Jianjun Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yining Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongmei Jin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sihui Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Na Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Youjin Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
|
45
|
El-Qushayri AE, Kamel AMA, Faraj HA, Vuong NL, Diab OM, Istanbuly S, Elshafei TA, Makram OM, Sattar Z, Istanbuly O, Mukit SAA, Elfaituri MK, Low SK, Huy NT. Association between pet ownership and cardiovascular risks and mortality. J Cardiovasc Med (Hagerstown) 2020; 21:359-367. [DOI: 10.2459/jcm.0000000000000920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Khoder R, Korri-Youssoufi H. E-DNA biosensors of M. tuberculosis based on nanostructured polypyrrole. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110371. [DOI: 10.1016/j.msec.2019.110371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 01/20/2023]
|
47
|
Leslom AN, Alrawiah ZMS, Al-Asmari AMA, Alqashaneen MDA, Alahmari AOT, Al-Ahmari HOBT. Prevalence of pulmonary thromboembolism in nephrotic syndrome patients: A systematic review and meta-analysis. J Family Med Prim Care 2020; 9:497-501. [PMID: 32318371 PMCID: PMC7113925 DOI: 10.4103/jfmpc.jfmpc_1076_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 11/26/2022] Open
Abstract
This study was aimed to assess the prevalence of pulmonary thromboembolism in patients with nephrotic syndrome. An electronic search was conducted through nine electronic databases for selection of relevant articles reporting the prevalence of pulmonary thromboembolism in patients with nephrotic syndrome. National Institute of Health was used to assess the quality of each study. Meta-analysis was used to pool the results. Of total 2267 reports screened, we finally included 11 studies including five retrospective cohorts, four prospective cohorts, and two case series studies. Out of these, ten articles were eligible for meta-analysis. The overall prevalence was 7.93% with 95% CI of 4.27 to 14.73. However, a significant heterogeneity (P < 0.001) was observed with I2= 96% and τ2= 0.899. Moreover, Egger's regression test showed a significant risk of bias (P = 0.006). Patients with nephrotic syndrome are prone to pulmonary embolism, therefore early management is critical to decreasing mortality burden.
Collapse
|
48
|
Boch T, Spiess B, Heinz W, Cornely OA, Schwerdtfeger R, Hahn J, Krause SW, Duerken M, Bertz H, Reuter S, Kiehl M, Claus B, Deckert PM, Hofmann WK, Buchheidt D, Reinwald M. Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis. Mycoses 2020; 62:1035-1042. [PMID: 31402465 DOI: 10.1111/myc.12983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Invasive aspergillosis (IA) is a severe complication in immunocompromised patients. Early diagnosis is crucial to decrease its high mortality, yet the diagnostic gold standard (histopathology and culture) is time-consuming and cannot offer early confirmation of IA. Detection of IA by polymerase chain reaction (PCR) shows promising potential. Various studies have analysed its diagnostic performance in different clinical settings, especially addressing optimal specimen selection. However, direct comparison of different types of specimens in individual patients though essential, is rarely reported. We systematically assessed the diagnostic performance of an Aspergillus-specific nested PCR by investigating specimens from the site of infection and comparing it with concurrent blood samples in individual patients (pts) with IA. In a retrospective multicenter analysis PCR was performed on clinical specimens (n = 138) of immunocompromised high-risk pts (n = 133) from the site of infection together with concurrent blood samples. 38 pts were classified as proven/probable, 67 as possible and 28 as no IA according to 2008 European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions. A considerably superior performance of PCR from the site of infection was observed particularly in pts during antifungal prophylaxis (AFP)/antifungal therapy (AFT). Besides a specificity of 85%, sensitivity varied markedly in BAL (64%), CSF (100%), tissue samples (67%) as opposed to concurrent blood samples (8%). Our results further emphasise the need for investigating clinical samples from the site of infection in case of suspected IA to further establish or rule out the diagnosis.
Collapse
Affiliation(s)
- Tobias Boch
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Birgit Spiess
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Oliver A Cornely
- First Department of Internal Medicine and ZKS Köln, BMBF 01KN1106, University Hospital Cologne, Deutsches Zentrum für Infektionsforschung, Cologne, Germany
| | | | - Joachim Hahn
- Regensburg University Hospital, Regensburg, Germany
| | | | - Matthias Duerken
- Department of Pediatric Hematology, Mannheim University Hospital, Mannheim, Germany
| | | | | | | | - Bernd Claus
- Ludwigshafen General Hospital, Ludwigshafen, Germany
| | | | | | - Dieter Buchheidt
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Mark Reinwald
- Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| |
Collapse
|
49
|
|
50
|
Evaluation of Commercially Available Real-Time Polymerase Chain Reaction Assays for the Diagnosis of Invasive Aspergillosis in Patients with Haematological Malignancies. Mycopathologia 2020; 185:269-277. [PMID: 31950340 DOI: 10.1007/s11046-020-00424-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Early diagnosis of invasive aspergillosis (IA) is a challenge. Non-specific clinical and radiologic findings, as well as difficulties in conventional diagnostic method application, may delay correct diagnosis. Nowadays, nucleic acid-based assays have reduced the need for conventional antigen detection and culture-based methods and provided new opportunities for patient care. Aspergillus PCR is now included in the latest European Cancer Research and Treatment Organization/Mycosis Study Group definition updates. We evaluated the performance of commercial real-time polymerase chain reaction (PCR) MycAssay Aspergillus PCR and Artus Aspergillus RG PCR assays and compared the results with galactomannan enzyme immunoassay. During 41 febrile neutropenic episodes, 168 serum samples were collected from 32 patients with haematological malignancies. IA diagnosis was established according to the revised guidelines of the European Organization for Research and Treatment of Cancer/Mycoses Study Group. Twenty-one probable episodes were identified. There were no proven IA cases in the study. In 20 episodes, patients did not fulfil the established criteria for the IA diagnosis. Artus Aspergillus RG PCR assay had a sensitivity of 47.6% and specificity of 100%, while those of MycAssay Aspergillus PCR were 61.9% and 100%, respectively. Two different PCR assays were used in this study. Although there are many studies that evaluated MycAssay Aspergillus PCR, data regarding Artus Aspergillus RG PCR assay are scarce. We found moderate sensitivity and high specificity in the diagnosis of IA in patients with haematological malignancy in both PCR methods. Our results demonstrated that commercial PCR assays can be applied for the early diagnosis and pre-emptive treatment of IA.
Collapse
|