1
|
Juhász A, Makaula P, Cunningham LJ, Jones S, Archer J, Lally D, Namacha G, Kapira D, Chammudzi P, LaCourse EJ, Seto E, Kayuni SA, Musaya J, Stothard JR. Revealing bovine schistosomiasis in Malawi: Connecting human and hybrid schistosomes within cattle. One Health 2024; 19:100761. [PMID: 39021560 PMCID: PMC11253675 DOI: 10.1016/j.onehlt.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Malawi, the putative origin of a newly described Schistosoma haematobium-mattheei hybrid human schistosome was assessed upon a seminal molecular parasitological survey of cattle. Using miracidia hatch test (MHT) and carcass inspection at slaughter, mean prevalence of bovine schistosomiasis was 49.1% (95% CI: 43.7-54.6%) and 10.3% (95% CI: 6.0-16.2%) respectively, though significant spatial heterogeneity was noted. Approximately 2.0% of infected cattle, and only those from Mangochi District, shed S. haematobium-mattheei and/or S. haematobium in faeces. To quantify schistosome (re)infection dynamics, where a S. haematobium-mattheei hybrid was present, we undertook a novel pilot GPS-datalogging sub-study within a specific herd of cattle (n = 8) on the Lake Malawi shoreline, alongside a praziquantel (40 mg/kg) treatment efficacy spot check. At sub-study baseline, all GPS-tagged cattle had proven daily water contact with the lake. Each animal was patently infected upon MHT, with older animals shedding less miracidia. At one month review, whilst parasitological cure was 100.0%, from six weeks onwards, (re)infection was first noted in the youngest animal. By three-month review, all animals were patently (re)infected though only miracidia of S. mattheei were recovered, albeit in much lower numbers. To conclude, infection with S. mattheei is particularly common in cattle and demonstrates a previously cryptic burden of bovine schistosomiasis. Within Mangochi District, bovine transmission of both S. haematobium-mattheei hybrids and S. haematobium are now incriminated, with unequivocal evidence of contemporary zoonotic spill-over. Future control of urogenital schistosomiasis here in the southern region needs to develop, then successfully integrate, a One Health approach with appropriate mitigating strategies to reduce and/or contain bovine schistosomiasis transmission.
Collapse
Affiliation(s)
- Alexandra Juhász
- Liverpool School of Tropical Medicine, Liverpool, UK
- Semmelweis University, Budapest, Hungary
| | - Peter Makaula
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Sam Jones
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - John Archer
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Lally
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Gladys Namacha
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Donales Kapira
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | | | | | - Sekeleghe A. Kayuni
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | |
Collapse
|
2
|
Saint F, Boissier J, Arnaud P, Totet A, Dinh A, Vallee M, Le Govic Y. Urinary schistosomiasis: The Corsican file. THE FRENCH JOURNAL OF UROLOGY 2024; 35:102799. [PMID: 39490902 DOI: 10.1016/j.fjurol.2024.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis, known as bilharzia, is a parasitic disease caused by trematodes of the genus Schistosoma, found primarily in Africa and pockets of the Middle East. Southern Europe seems to be a breeding ground for urogenital schistosomiasis emergence. Ten and five years have passed since the first and the last cases of urogenital schistosomiasis were identified in Corsica (patients who have bathed in the Cavu and/or Solenzara rivers between 2013 and 2019). Through a literature review, the authors aimed to clarify the epidemiological, clinical and diagnostic particularities of urinary schistosomiasis acquired in Corsica. LEVEL OF EVIDENCE: 4.
Collapse
Affiliation(s)
- Fabien Saint
- Department of Urology and Transplantation, CHUAP, Amiens, France; PROAD, EA 4669, Picardie Jules-Verne University, Amiens, France; Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France.
| | - Jérôme Boissier
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, Perpignan University, Via Domitia, Perpignan, France
| | - Pierre Arnaud
- Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France; Department of Urology, Hôpital Privé du Sud de la Corse, Ajaccio, France
| | - Anne Totet
- Department of Parasitology and Mycology, CBH, CHUAP, Amiens, France; Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Picardie Jules-Verne University, Amiens, France
| | - Aurélien Dinh
- Infectious Disease Department, R.-Poincaré University Hospital, Versailles Saint-Quentin University, Garches, France; Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France
| | - Maxime Vallee
- Department of Urology and Kidney Transplantation, CHU, 2, rue de la Milétrie, Poitiers, France; Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France
| | - Yohann Le Govic
- Department of Parasitology and Mycology, CBH, CHUAP, Amiens, France; Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Picardie Jules-Verne University, Amiens, France
| |
Collapse
|
3
|
Rodríguez-Molino P, González Martínez S, Bustamante Amador J, Mellado-Sola I, Montes Martín L, Falces-Romero I, García López-Hortelano M, Hurtado-Gallego J, Mellado MJ, Grasa C, Sainz T. Schistosomiasis in migrant children and adolescents in a paediatric tropical referral unit in Spain: diagnosis and long-term management challenges. Eur J Pediatr 2024; 183:4457-4465. [PMID: 39143347 DOI: 10.1007/s00431-024-05623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 05/19/2024] [Indexed: 08/16/2024]
Abstract
Globalisation and population movement have led to an increasing number of migrant children residing in areas non-endemic for schistosomiasis. However, diagnosing and managing schistosomiasis in children remain controversial. This study aims to investigate the prevalence of schistosomiasis in migrant children and to describe the diagnostic approach and management strategies, including long-term follow-up, to explore the potential role of serological tests in evaluating treatment response. We conducted a retrospective descriptive study spanning from January 2014-July 2021 at a referral unit for Paediatric Tropical Diseases in Madrid (Spain). The study included patients under 18 years diagnosed with schistosomiasis. Of 679 children screened for schistosomiasis, 73 (10.8%) tested positive. The median age was 16.3 years [IQR 9-17.6], 74% male. The majority originated from Sub-Saharan Africa (47%) and Asia (47%). Only 40% presented with symptoms, with gastrointestinal (18%) and cutaneous (17%) manifestations being the most common. Eosinophilia was observed in 43% (median [IQR]: 1103/mm3 [671-1536]), and ova were visualised in the urine of 2/50 (4.0%). Praziquantel treatment was administered to 92%, and 5 patients required retreatment. Follow-up data were available for 58 (80%) over a median period of 9 months [IQR 6-19.8], revealing a progressive decline in eosinophil count, IgE titres, and ELISA optical density. Conclusion: In this series, the prevalence of schistosomiasis among migrant children was significant (10%), highlighting the importance of including serological tests in migrant health screening. The disease is largely asymptomatic, eosinophilia is often absent, and visualisation of ova in urine is exceedingly rare. Eosinophil count, IgE titres, and ELISA optical density could prove valuable as an initial approach for monitoring inflammation during follow-up assessments. What is Known: • The burden of disease related to schistosomiasis is significant, particulary in children, and it is advisable to screen this vulnerable population. What is New: • Eosinophilia may not be present in parasitic infections, so serological tests are crucial for screening migrant children. • Serological monitoring facilitates long-term management of migrant children with schistosomiasis.
Collapse
Affiliation(s)
- Paula Rodríguez-Molino
- General Paediatrics, Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Autonomous University of Madrid (UAM), Madrid, Spain
- Centro de Investigacion en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | | | - Jorge Bustamante Amador
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Hospital Paediatrics Department, Childhood Infections, El Escorial Hospital, Madrid, Spain
- Health Centre Guzmán el Bueno, SERMAS, Madrid, Spain
| | - Isabel Mellado-Sola
- General Paediatrics, Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Autonomous University of Madrid (UAM), Madrid, Spain
| | | | - Iker Falces-Romero
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Centro de Investigacion en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Microbiology and Parasitology, La Paz University Hospital, Madrid, Spain
| | - Milagros García López-Hortelano
- General Paediatrics, Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Centro de Investigacion en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Jara Hurtado-Gallego
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Centro de Investigacion en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María José Mellado
- General Paediatrics, Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Autonomous University of Madrid (UAM), Madrid, Spain
- Centro de Investigacion en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Carlos Grasa
- General Paediatrics, Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
- Autonomous University of Madrid (UAM), Madrid, Spain
- Centro de Investigacion en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Talía Sainz
- General Paediatrics, Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain.
- La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain.
- Autonomous University of Madrid (UAM), Madrid, Spain.
- Centro de Investigacion en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain.
| |
Collapse
|
4
|
Dannenhaus TA, Winkelmann F, Reinholdt C, Bischofsberger M, Dvořák J, Grevelding CG, Löbermann M, Reisinger EC, Sombetzki M. Intra-specific variations in Schistosoma mansoni and their possible contribution to inconsistent virulence and diverse clinical outcomes. PLoS Negl Trop Dis 2024; 18:e0012615. [PMID: 39466851 PMCID: PMC11542895 DOI: 10.1371/journal.pntd.0012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosoma mansoni was introduced from Africa to the Americas during the transatlantic slave trade and remains a major public health problem in parts of South America and the Caribbean. This study presents a comprehensive comparative analysis of three S. mansoni strains with different geographical origins-from Liberia, Belo Horizonte and Puerto Rico. We demonstrated significant variation in virulence and host-parasite interactions. METHODS We investigated the phenotypic characteristics of the parasite and its eggs, as well as the immunopathologic effects on laboratory mouse organ systems. RESULTS Our results show significant differences in worm morphology, worm burden, egg size, and pathologic organ changes between these strains. The Puerto Rican strain showed the highest virulence, as evidenced by marked liver and spleen changes and advanced liver fibrosis indicated by increased collagen content. In contrast, the strains from Liberia and Belo Horizonte had a less pathogenic profile with less liver fibrosis. We found further variations in granuloma formation, cytokine expression and T-cell dynamics, indicating different immune responses. CONCLUSION Our study emphasizes the importance of considering intra-specific variations of S. mansoni for the development of targeted therapies and public health strategies. The different virulence patterns, host immune responses and organ pathologies observed in these strains provide important insights for future research and could inform region-specific interventions for schistosomiasis control.
Collapse
Affiliation(s)
- Tim A. Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Franziska Winkelmann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Jan Dvořák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Czechia Institute of Parasitology, Prague, Czechia
| | - Christoph G. Grevelding
- Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| |
Collapse
|
5
|
Salas-Coronas J, Bargues MD, Fernández-Soto P, Soriano-Pérez MJ, Artigas P, Vázquez-Villegas J, Villarejo-Ordoñez A, Sánchez-Sánchez JC, Cabeza-Barrera MI, Febrer-Sendra B, De Elías-Escribano A, Crego-Vicente B, Fantozzi MC, Diego JGB, Castillo-Fernández N, Borrego-Jiménez J, Muro A, Luzón-García MP. Impact of species hybridization on the clinical management of schistosomiasis: A prospective study. Travel Med Infect Dis 2024; 61:102744. [PMID: 39053674 DOI: 10.1016/j.tmaid.2024.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Species hybridization represents a real concern in terms of parasite transmission, epidemiology and morbidity of schistosomiasis. It is greatly important to better understand the impact of species hybridization for the clinical management. METHODS A prospective observational study was carried out in sub-Saharan migrants who were diagnosed with confirmed genitourinary schistosomiasis. A tailored protocol was applied, including Schistosoma serology, a specific urine LAMP tests for schistosomiasis and an ultrasound examination before treatment with praziquantel. A scheduled follow-up was performed at 3, 6 and 12 months to monitor treatment response, comparing patients carriers of Schistosoma hybrids with carriers of only genetically pure forms. RESULTS A total of 31 male patients from West Africa were included in the study with a mean age of 26.5 years. Twelve (38.7 %) of the patients were carriers of Schistosoma hybrids. As compared with patients infected with S. haematobium alone, hybrid carriers had lower haemoglobin levels (13.8 g/dL [SD 1.8] vs 14.8 g/dL [SD 1.4], p = 0.04), a greater frequency of hematuria (100 % vs 52.6 %, p = 0.005), a higher ultrasound score (2.64, SD 2.20 vs 0.89, SD 0.99; p = 0.02). However, the presence of hybrids did not result in differences in clinical and analytical responses after treatment. CONCLUSIONS The presence of Schistosoma hybrids seems to cause increased morbidity in infected individuals. However, it does not appear to result in differences in diagnostic tests or in clinical and analytical responses after treatment.
Collapse
Affiliation(s)
- Joaquín Salas-Coronas
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain; Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Carretera Sacramento, S/n 04120 La Cañada de San Urbano, Almería, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - M Dolores Bargues
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Manuel J Soriano-Pérez
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - Patricio Artigas
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | | | | | - José C Sánchez-Sánchez
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - María I Cabeza-Barrera
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Alejandra De Elías-Escribano
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - María C Fantozzi
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés S/n, 46100, Burjassot, Valencia, Spain
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | | | - Jaime Borrego-Jiménez
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - María P Luzón-García
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700, El Ejido, Almería, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| |
Collapse
|
6
|
Kayuni S, Cunningham L, Mainga B, Kumwenda D, Jnr DL, Chammudzi P, Kapira D, Namacha G, Chisale A, Nchembe T, Kinley L, Chibwana E, Ntaba B, Chapweteka G, Khumalo W, Chibowa H, Kumfunda V, Juhasz A, Jones S, Archer J, O'Ferrall AM, Rollason S, Chiphwanya J, Makaula P, LaCourse EJ, Musaya J, Stothard JR. Detection of male genital schistosomiasis (MGS) associated with human, zoonotic and hybrid schistosomes in Southern Malawi. BMC Infect Dis 2024; 24:839. [PMID: 39160482 PMCID: PMC11331596 DOI: 10.1186/s12879-024-09732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Male Genital Schistosomiasis (MGS) remains an often-overlooked chronic sequela of urogenital schistosomiasis in endemic areas of sub-Saharan Africa. As part of a 2-year longitudinal study on Hybridization of UroGenital Schistosomiasis (HUGS) in Malawi, a MGS sub-study was conducted to assess whether hybrid schistosomes were incriminated. METHODS During recruitment, demographic, health and socio-economic data were collected through individual questionnaire interviews in Mthawira community from Nsanje District along Shire River and Samama community from Mangochi District along Lake Malawi shoreline. Urine and semen samples were collected and analysed to determine the identity of schistosome infection. Urine filtration and microscopy, direct microscopy of semen and its sediments (after centrifugation) were performed. Thereafter, the sediments were examined by molecular DNA analysis with a novel two-tube real-time PCR assay. The participants were also screened for Human papilloma virus (HPV) and other sexually transmitted infections (STIs). RESULTS Twenty-two men were recruited for the sub-study, 8 in Nsanje District and 14 in Mangochi District, with a median age of 22.0 years. By microscopy, ten (45.7%) participants had Schistosoma ova in their urine, 11 (50.0%) in semen while 16 (72.7%) were positive by real-time PCR. One participant had both S. haematobium and S. mattheei ova in his semen, three showed symptoms, and one had a mixed infection of S. mansoni and possible S. haematobium-S. mattheei hybrid. Twelve men had detectable high-risk HPV serotypes 16, 18 and others while six had Trichomonas vaginalis and other STIs. CONCLUSION Zoonotic and hybrid schistosomes can cause MGS similar to human schistosomes, which can be co-infected with HPV and STIs, thereby posing a new challenge in diagnosis, management and control measures in resource poor settings. Increased awareness of these infections among local communities and primary healthcare workers and improvement of disease management are needed and advocated.
Collapse
Affiliation(s)
- Sekeleghe Kayuni
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi.
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK.
- Pathology Department, School of Medicine and Oral Health, Mahatma Gandhi campus, Private Bag 360, Blantyre 3, Chichiri, Malawi.
| | - Lucas Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| | - Bright Mainga
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
- Laboratory Department, Mangochi District Hospital, P.O. Box 52, Mangochi, Malawi
| | - Dingase Kumwenda
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
- Obstetrics and Gynaecology Department, Queen Elizabeth Central Hospital, 1 Chipatala Avenue, P.O. Box 95, Blantyre, Malawi
| | - David Lally Jnr
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - Priscilla Chammudzi
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - Donales Kapira
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - Gladys Namacha
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - Alice Chisale
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - Tereza Nchembe
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - Louis Kinley
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
- Radiology Department, Queen Elizabeth Central Hospital, 1 Chipatala Avenue, P.O. Box 95, Blantyre, Malawi
| | - Ephraim Chibwana
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
- Radiology Department, Queen Elizabeth Central Hospital, 1 Chipatala Avenue, P.O. Box 95, Blantyre, Malawi
| | - Bessie Ntaba
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | | | - Waleke Khumalo
- Nsanje District Hospital, Ministry of Health, Nsanje, Malawi
| | - Henry Chibowa
- Mangochi District Hospital, Ministry of Health, Mangochi, Malawi
| | - Victor Kumfunda
- Mangochi District Hospital, Ministry of Health, Mangochi, Malawi
| | - Alexandra Juhasz
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
- Institute of Medical Microbiology, Semmelweis University, Budapest, H-1089, Hungary
| | - Sam Jones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| | - John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| | - Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| | - Sarah Rollason
- School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, CF10 3AX, UK
| | - John Chiphwanya
- Community Health Sciences Unit (CHSU), National Schistosomiasis and Soil-Transmitted Helminths Control Programme, Ministry of Health, Area 3, Off Mtunthama Drive, Private Bag 65, Lilongwe, Malawi
| | - Peter Makaula
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - E James LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Queen Elizabeth Central Hospital, campus, 1 Chipatala Avenue, Private Bag 360, Blantyre 3, Chichiri, Malawi
- Pathology Department, School of Medicine and Oral Health, Mahatma Gandhi campus, Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, CTID Building, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| |
Collapse
|
7
|
Mathieu-Bégné E, Kincaid-Smith J, Chaparro C, Allienne JF, Rey O, Boissier J, Toulza E. Schistosoma haematobium and Schistosoma bovis first generation hybrids undergo gene expressions changes consistent with species compatibility and heterosis. PLoS Negl Trop Dis 2024; 18:e0012267. [PMID: 38954732 PMCID: PMC11249247 DOI: 10.1371/journal.pntd.0012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
When two species hybridize, the two parental genomes are brought together and some alleles might interact for the first time. To date, the extent of the transcriptomic changes in first hybrid generations, along with their functional outcome constitute an important knowledge gap, especially in parasite species. Here we explored the molecular and functional outcomes of hybridization in first-generation hybrids between the blood fluke parasites Schistosoma haematobium and S. bovis. Through a transcriptomic approach, we measured gene expression in both parental species and hybrids. We described and quantified expression profiles encountered in hybrids along with the main biological processes impacted. Up to 7,100 genes fell into a particular hybrid expression profile (intermediate between the parental expression levels, over-expressed, under-expressed, or expressed like one of the parental lines). Most of these genes were different depending on the direction of the parental cross (S. bovis mother and S. haematobium father or the reverse) and depending on the sex. For a given sex and cross direction, the vast majority of genes were hence unassigned to a hybrid expression profile: either they were differentially expressed genes but not typical of any hybrid expression profiles or they were not differentially expressed neither between hybrids and parental lines nor between parental lines. The most prevalent profile of gene expression in hybrids was the intermediate one (24% of investigated genes). These results suggest that transcriptomic compatibility between S. haematobium and S. bovis remains quite high. We also found support for an over-dominance model (over- and under-expressed genes in hybrids compared to parental lines) potentially associated with heterosis. In females in particular, processes such as reproductive processes, metabolism and cell interactions as well as signaling pathways were indeed affected. Our study hence provides new insight on the biology of Schistosoma hybrids with evidences supporting compatibility and heterosis.
Collapse
Affiliation(s)
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Olivier Rey
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
8
|
Hu Y, Zhan RJ, Lu SL, Zhang YY, Zhou MY, Huang H, Wang DD, Zhang T, Huang ZX, Zhou YF, Lv ZY. Global distribution of zoonotic digenetic trematodes: a scoping review. Infect Dis Poverty 2024; 13:46. [PMID: 38877531 PMCID: PMC11177464 DOI: 10.1186/s40249-024-01208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Digenetic trematodes, including blood flukes, intestinal flukes, liver flukes, lung flukes, and pancreatic flukes, are highly diverse and distributed widely. They affect at least 200 million people worldwide, so better understanding of their global distribution and prevalence are crucial for controlling and preventing human trematodiosis. Hence, this scoping review aims to conduct a comprehensive investigation on the spatio-temporal distribution and epidemiology of some important zoonotic digenetic trematodes. METHODS We conducted a scoping review by searching PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wanfang databases for articles, reviews, and case reports of zoonotic digenetic trematodes, without any restrictions on the year of publication. We followed the inclusion and exclusion criteria to identify relevant studies. And relevant information of the identified studies were collected and summarized. RESULTS We identified a total of 470 articles that met the inclusion criteria and were included in the review finally. Our analysis revealed the prevalence and global distribution of species in Schistosoma, Echinostoma, Isthmiophora, Echinochasmus, Paragonimus, Opisthorchiidae, Fasciolidae, Heterophyidae, and Eurytrema. Although some flukes are distributed worldwide, developing countries in Asia and Africa are still the most prevalent areas. Furthermore, there were some overlaps between the distribution of zoonotic digenetic trematodes from the same genus, and the prevalence of some zoonotic digenetic trematodes was not entirely consistent with their global distribution. The temporal disparities in zoonotic digenetic trematodes may attribute to the environmental changes. The gaps in our knowledge of the epidemiology and control of zoonotic digenetic trematodes indicate the need for large cohort studies in most countries. CONCLUSIONS This review provides important insights into the prevalence and global distribution of some zoonotic digenetic trematodes, firstly reveals spatio-temporal disparities in these digenetic trematodes. Countries with higher prevalence rate could be potential sources of transmitting diseases to other areas and are threat for possible outbreaks in the future. Therefore, continued global efforts to control and prevent human trematodiosis, and more international collaborations are necessary in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Rong-Jian Zhan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Lin Lu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yi-Yang Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Min-Yu Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Hui Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Ding-Ding Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Tao Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zi-Xin Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yun-Fei Zhou
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan, China
| | - Zhi-Yue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
9
|
Polack B, Mathieu-Bégné E, Vallée I, Rognon A, Fontaine JJ, Toulza E, Thomas M, Boissier J. Experimental Infections Reveal Acquired Zoonotic Capacity of Human Schistosomiasis Trough Hybridization. J Infect Dis 2024; 229:1904-1908. [PMID: 38669235 DOI: 10.1093/infdis/jiae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 04/28/2024] Open
Abstract
We are currently witnessing the endemization of urogenital schistosomiasis in southern Europe. The incriminated parasite is a hybrid between a human parasite and a livestock parasite. Using an experimental evolutionary protocol, we created hybrid lines from pure strains of both parasite species. We showed that the host spectrum of the human parasite is enlarged to the livestock parasite after genomic introgression. We also evidenced that the tropism of the parasites within the host changes and that some hybrid lines are more virulent than the parental strains. These results engage a paradigm shift from human to zoonotic transmission of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Bruno Polack
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Isabelle Vallée
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Anne Rognon
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | - Jean-Jacques Fontaine
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | - Myriam Thomas
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
10
|
Percheron L, Leblanc C, Ulinski T, Fila M, Malvy D, Bacchetta J, Guigonis V, Debuisson C, Launay E, Martinez E, Morand A, Decramer S, Schanstra JP, Berry A. Pediatric urogenital schistosomiasis diagnosed in France. Pediatr Nephrol 2024; 39:1893-1900. [PMID: 38212419 DOI: 10.1007/s00467-023-06260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Schistosomiasis affects approximately 230 million people worldwide. There is an increased incidence of schistosomiasis cases in France acquired from outside the country. This increases the risk of schistosomiasis outbreaks as observed in Corsica. Clinicians from non-endemic regions are not accustomed to diagnosing and managing this pathology. The objective of this study is to provide a better description of the clinical and paraclinical characteristics and disease evolution of affected children. METHODS Through the French Pediatric Nephrology Society and the Pediatric Infectious Pathology Group, we contacted all French pediatric centers that may have treated children with urinary schistosomiasis between 2013 and 2019. Age, sex, comorbidities, and clinical, biological, and radiological data (at discovery and follow-up) were collected retrospectively. RESULTS A total of 122 patients from 10 different centers were included. The median age was 14 years and the sex ratio M/F was 4:1. Hematuria was present in 82% of the patients while urinary tract abnormality was found in 36% of them. Fourteen patients (11%) displayed complicated forms of urinary schistosomiasis including 10 patients with chronic kidney disease. A total of 110 patients received treatment with praziquantel, which was well-tolerated and led to clinical resolution of symptoms in 98% of cases. CONCLUSION Patients with schistosomiasis present frequent kidney, urinary, or genital involvement. Systematic screening of patients returning from endemic areas is therefore recommended, especially since treatment with antiparasitic drugs is effective and well-tolerated. Enhancing medical knowledge of this pathology among all practitioners is essential to improve care and outcomes.
Collapse
Affiliation(s)
- Lucas Percheron
- Service de néphrologie, médecine interne pédiatrique, Hôpital des enfants, CHU de Toulouse, Avenue de grande Bretagne, 31000, Toulouse, France.
- Service de pédiatrie, centre hospitalier du Val d'Ariège, Foix, France.
| | - Claire Leblanc
- Service de pédiatrie générale, maladies infectieuses et médecine interne Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Tim Ulinski
- Service de néphrologie et de transplantation pédiatrique, Université pierre marie curie, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Marc Fila
- Service de néphrologie endocrinologie pédiatrique, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Denis Malvy
- Service des maladies infectieuses et tropicales, Centre hospitalier universitaire, Bordeaux, France
| | - Justine Bacchetta
- Service de néphrologie rhumatologie pédiatrique, Centre hospitalier universitaire, Lyon, France
| | - Vincent Guigonis
- Service de pédiatrie générale, centre hospitalier universitaire, Limoges, France
| | - Cecile Debuisson
- Service de pédiatrie générale et de maladie infectieuse pédiatrique, Hôpital Purpan, Toulouse, France
| | - Elise Launay
- Service de pédiatrie générale et infectiologie pédiatrique, Centre hospitalier universitaire, Nantes, France
| | - Edouard Martinez
- Service de pédiatrie, Centre hospitalier universitaire, Rouen, France
| | - Aurelie Morand
- Pédiatrie spécialisée et médecine infantile, Hôpital de la Timone, AP-HM, Marseille, France
| | - Stéphane Decramer
- Service de néphrologie, médecine interne pédiatrique, Hôpital des enfants, CHU de Toulouse, Avenue de grande Bretagne, 31000, Toulouse, France
| | - Joost-Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Antoine Berry
- Service de parasitologie-mycologie, Centre hospitalier universitaire de Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France
| |
Collapse
|
11
|
Martinez SG, Mbabazi PS, Sebitloane MH, Vwalika B, Mocumbi S, Galaphaththi-Arachchige HN, Holmen SD, Randrianasolo B, Roald B, Olowookorun F, Hyera F, Mabote S, Nemungadi TG, Ngcobo TV, Furumele T, Ndhlovu PD, Gerdes MW, Gundersen SG, Mkhize-Kwitshana ZL, Taylor M, Mhlanga REE, Kjetland EF. The WHO atlas for female-genital schistosomiasis: Co-design of a practicable diagnostic guide, digital support and training. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002249. [PMID: 38498490 PMCID: PMC10947668 DOI: 10.1371/journal.pgph.0002249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Up to 56 million young and adult women of African origin suffer from Female Genital Schistosomiasis (FGS). The transmission of schistosomiasis happens through contact with schistosomiasis infested fresh water in rivers and lakes. The transmission vector is the snail that releases immature worms capable of penetrating the human skin. The worm then matures and mates in the blood vessels and deposits its eggs in tissues, causing urogenital disease. There is currently no gold standard for FGS diagnosis. Reliable diagnostics are challenging due to the lack of appropriate instruments and clinical skills. The World Health Organisation (WHO) recommends "screen-and-treat" cervical cancer management, by means of visual inspection of characteristic lesions on the cervix and point-of-care treatment as per the findings. FGS may be mistaken for cervical cancer or sexually transmitted diseases. Misdiagnosis may lead to the wrong treatment, increased risk of exposure to other infectious diseases (human immunodeficiency virus and human papilloma virus), infertility and stigmatisation. The necessary clinical knowledge is only available to a few experts in the world. For an appropriate diagnosis, this knowledge needs to be transferred to health professionals who have minimal or non-existing laboratory support. Co-design workshops were held with stakeholders (WHO representative, national health authority, FGS experts and researchers, gynaecologists, nurses, medical doctors, public health experts, technical experts, and members of the public) to make prototypes for the WHO Pocket Atlas for FGS, a mobile diagnostic support tool and an e-learning tool for health professionals. The dissemination targeted health facilities, including remote areas across the 51 anglophone, francophone and lusophone African countries. Outcomes were endorsed by the WHO and comprise a practical diagnostic guide for FGS in low-resource environments.
Collapse
Affiliation(s)
| | - Pamela S. Mbabazi
- National Planning Authority of the Government of the Republic of Uganda, Kampala, Uganda
| | - Motshedisi H. Sebitloane
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Bellington Vwalika
- Department of Obstetrics and Gynaecology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Sibone Mocumbi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Sigve D. Holmen
- Department of Infectious Diseases Ullevaal, Norwegian Centre for Imported and Tropical Diseases, Oslo University Hospital, Oslo, Norway
| | | | - Borghild Roald
- Center for Paediatric and Pregnancy Related Pathology, Department of Pathology, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Francis Hyera
- Department of Public Health Medicine, Faculty of Health Sciences, Walter Sisulu University (WSU), Mthatha, South Africa
| | - Sheila Mabote
- Instituto Nacional de Saúde–INS (National Health Institute), Marracuene, Mozambique
| | - Takalani G. Nemungadi
- National Department of Health, Pretoria, Communicable Diseases Control Directorate, Pretoria, South Africa
| | - Thembinkosi V. Ngcobo
- National Department of Health, Pretoria, Communicable Diseases Control Directorate, Pretoria, South Africa
| | - Tsakani Furumele
- National Department of Health, Pretoria, Communicable Diseases Control Directorate, Pretoria, South Africa
| | - Patricia D. Ndhlovu
- BRIGHT Academy, Centre for Bilharzia and Tropical Health Research, Ugu District, KwaZulu-Natal, South Africa
| | - Martin W. Gerdes
- Department of Information and Communication Technologies, University of Agder, Kristiansand, Norway
| | - Svein G. Gundersen
- Institute for Global Development and Planning, University of Agder, Kristiansand, Norway
| | - Zilungile L. Mkhize-Kwitshana
- School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Research Capacity Division, South African Medical Research Council, Tygerberg, South Africa
| | - Myra Taylor
- School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Roland E. E. Mhlanga
- Discipline of Public Health Medicine, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Eyrun F. Kjetland
- Department of Infectious Diseases Ullevaal, Norwegian Centre for Imported and Tropical Diseases, Oslo University Hospital, Oslo, Norway
- School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
13
|
Giovanoli Evack J, Kouadio JN, Achi LY, Bonfoh B, N'Goran EK, Zinsstag J, Utzinger J, Balmer O. Genetic characterization of schistosome species from cattle in Côte d'Ivoire. Parasit Vectors 2024; 17:122. [PMID: 38475876 DOI: 10.1186/s13071-024-06221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Schistosomiasis is a water-based parasitic disease that affects humans, livestock and wild animals. While considerable resources are dedicated to the surveillance, disease mapping, control and elimination of human schistosomiasis, this is not the case for livestock schistosomiasis. Indeed, there are important data and knowledge gaps concerning the species present, population genetic diversity, infection prevalence, morbidity and economic impact. This study aimed to identify circulating schistosome species in cattle across Côte d'Ivoire and to investigate their population diversity and structuring. METHODS Overall, 400 adult schistosomes were collected from slaughtered cattle at six sites across Côte d'Ivoire. Additionally, 114 miracidia were collected from live cattle at one site: Ferkessédougou, in the northern part of Côte d'Ivoire. DNA from all specimens was extracted and the cox1 and ITS1/2 regions amplified and analysed to confirm species. The genetic diversity and structuring of the schistosome populations were investigated using 12 microsatellite markers. RESULTS All adult schistosomes and miracidia presented Schistosoma bovis mitochondrial cox1 profile. Nuclear ITS1/2 data were obtained from 101 adult schistosomes and four miracidia, all of which presented an S. bovis profile. Genetic diversity indices revealed a deficiency of heterozygotes and signals of inbreeding across all sites, while structure analyses displayed little geographic structuring and differentiation. Cattle in Côte d'Ivoire thus appear to be mono-species infected with S. bovis. Hybrids of Schistosoma haematobium × S. bovis have not been identified in this study. Cattle schistosomes appear to be panmictic across the country. CONCLUSIONS Our results contribute to a deeper understanding of schistosome populations in Ivorian cattle and emphasize a One Health approach of joint human and animal surveillance and prevention and control programmes for schistosomiasis.
Collapse
Affiliation(s)
- Jennifer Giovanoli Evack
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
| | - Jules N Kouadio
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Louise Y Achi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- École de Spécialisation en Elevage et Métiers de la Viande de Bingerville, Abidjan, Côte d'Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Villamizar-Monsalve MA, López-Abán J, Vicente B, Peláez R, Muro A. Current drug strategies for the treatment and control of schistosomiasis. Expert Opin Pharmacother 2024; 25:409-420. [PMID: 38511392 DOI: 10.1080/14656566.2024.2333372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Schistosomiasis, one of the current Neglected Tropical Diseases (NTDs) affects over 230 million people globally, with nearly 700 million at risk in more than 74 countries. Praziquantel (PZQ) has served as the primary treatment for the past four decades; however, its effectiveness is limited as it solely eliminates adult worms. In regions where infections are frequent, PZQ exhibits only temporary efficacy and has restricted potential to disrupt the prolonged transmission of the disease. AREAS COVERED A comprehensive exploration using the PubMed database was conducted to review current pharmacotherapy approaches for schistosomiasis. This review also encompasses recent research findings related to potential novel therapeutics and the repurposing of existing drugs. EXPERT OPINION Current schistosoma treatment strategies, primarily relying on PZQ, face challenges like temporary effectiveness and limited impact on disease transmission. Drug repurposing, due to economic constraints, is decisive for NTDs. Despite PZQ's efficacy, its failure to prevent reinfection highlights the need for complementary strategies, especially in regions with persistent environmental foci. Integrating therapies against diverse schistosome stages boosts efficacy and impedes resistance. Uncovering novel agents is essential to address resistance concerns in tackling this neglected tropical disease. Integrated strategies present a comprehensive approach to navigate the complex challenges.
Collapse
Affiliation(s)
- María Alejandra Villamizar-Monsalve
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Rafael Peláez
- Organic and Pharmaceutical Chemistry Department, Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| |
Collapse
|
15
|
Dumidae A, Subkrasae C, Ardpairin J, Pansri S, Polseela R, Thanwisai A, Vitta A. Population genetic structure of Indoplanorbis exustus (Gastropoda: Planorbidae) in Thailand and its infection with trematode cercariae. PLoS One 2024; 19:e0297761. [PMID: 38277375 PMCID: PMC10817173 DOI: 10.1371/journal.pone.0297761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Indoplanorbis exustus is a freshwater gastropod belonging to the family Planorbidae. This snail is widely distributed across the tropics and plays an important role as the intermediate host for trematodes. However, relatively little is understood regarding the genetic relationship between I. exustus and trematodes. The goals of this study were to investigate the current transmission status of trematode cercariae in I. exustus in Thailand and to examine the genetic diversity, genetic structure, and demographic history of I. exustus. We collected 575 I. exustus from 21 provinces across six regions of Thailand and investigated cercarial infections by using the shedding method. I. exustus from two provinces were infected with cercarial trematodes, and two types of cercarial stages were molecularly identified as furcocercous cercaria and xiphidiocercariae. Phylogenetic tree analysis based on 28S rDNA and ITS2 sequences demonstrated that furcocercous cercaria and xiphidiocercariae were closely clustered with a clade of Euclinostomum sp. and Xiphidiocercariae sp., respectively. Phylogenetic and network analyses of I. exustus haplotypes based on the COI, 16S rDNA, and ITS1 genes demonstrated four main clades. Only snails in clade A were distributed in all regions of Thailand and harbored trematode cercariae. The level of genetic diversity of I. exustus was relatively high, but most populations were not genetically different, thus suggesting the appearance of gene flow within the I. exustus populations. Overall, the haplotype network was star-shaped, thus suggesting the recent demographic expansion of populations. This result was also supported by the unimodal mode of the mismatch distribution graph and the large negative values of the neutrality tests. Therefore, the I. exustus snail was likely another freshwater snail of the invasive species in Thailand. This information will aid in monitoring the spread of the parasitic trematodes carried by I. exustus from different populations.
Collapse
Affiliation(s)
- Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Supawan Pansri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Raxsina Polseela
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
16
|
Horák P, Bulantová J, Mikeš L. Other Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:107-155. [PMID: 39008265 DOI: 10.1007/978-3-031-60121-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Rivera J, Mu Y, Gordon CA, Jones MK, Cheng G, Cai P. Current and upcoming point-of-care diagnostics for schistosomiasis. Trends Parasitol 2024; 40:60-74. [PMID: 38000956 DOI: 10.1016/j.pt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Point-of-care (POC) diagnostics are simple and effective portable tools that can be used for fast mapping of helminthic diseases and monitoring control programs. Most POC tests (POCTs) available for schistosomiasis diagnosis are lateral flow immunoassays (LFIAs). The emergence of simple and rapid DNA isolation methods, along with isothermal nucleic acid amplification strategies - for example, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) - and recent clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic methods facilitate the development of molecular-based POC diagnostics for schistosomiasis. Furthermore, smartphone-based techniques increase real-time connectivity and readout accuracy of POCTs. This review discusses the recent advances in immunological-, molecular-based POCTs and mobile phone microscopes for the diagnosis/screening of schistosomiasis.
Collapse
Affiliation(s)
- Jonas Rivera
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Malcolm K Jones
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
18
|
Salas-Coronas J, Luzón-García MP, Crego-Vicente B, Soriano-Pérez MJ, Febrer-Sendra B, Vázquez-Villegas J, Diego JGB, Cabeza-Barrera IM, Castillo-Fernández N, Muro A, Bargues MD, Fernández-Soto P. Evaluation of Loop-Mediated Isothermal Amplification (LAMP) in Urine Samples for the Diagnosis of Imported Schistosomiasis. Trop Med Infect Dis 2023; 8:518. [PMID: 38133450 PMCID: PMC10747415 DOI: 10.3390/tropicalmed8120518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Migratory flows and international travel are triggering an increase in imported cases of schistosomiasis in non-endemic countries. The present study aims to evaluate the effectiveness of the LAMP technique on patients' urine samples for the diagnosis of imported schistosomiasis in a non-endemic area in comparison to a commercial immunochromatographic test and microscopic examination of feces and urine. A prospective observational study was conducted in sub-Saharan migrants attending the Tropical Medicine Unit, Almería, Spain. For schistosomiasis diagnosis, serum samples were tested using an immunochromatographic test (Schistosoma ICT IgG-IgM). Stool and urine samples were examined by microcopy. Urine samples were evaluated by combining three LAMP assays for the specific detection of Schistosoma mansoni, S. haematobium, and for the genus Schistosoma. To evaluate the diagnostic accuracy, a latent class analysis (LCA) was performed. In total, 115 patients were included (92.2% male; median age: 28.3 years). Of these, 21 patients (18.3%) were diagnosed with schistosomiasis confirmed by microscopy, with S. haematobium being the most frequent species identified (18/115; 15.7%). The Schistosoma ICT IgG-IgM test result was 100% positive and Schistosoma-LAMP was 61.9% positive, reaching as high as 72.2% for S. haematobium. The sensitivity and specificity estimated by LCA, respectively, were: 92% and 76% for Schistosoma ICT IgG-IgM, 68% and 44% for Schistosoma-LAMP, and 46% and 97% for microscopy. In conclusion, the Schistosoma-LAMP technique presented a higher sensitivity than microscopy for the diagnosis of imported urinary schistosomiasis, which could improve the diagnosis of active infection, both in referral centers and in centers with limited experience or scarce resources and infrastructure.
Collapse
Affiliation(s)
- Joaquín Salas-Coronas
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700 El Ejido, Almería, Spain; (M.P.L.-G.); (M.J.S.-P.); (I.M.C.-B.); (N.C.-F.)
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 La Cañada, Almería, Spain
| | - María Pilar Luzón-García
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700 El Ejido, Almería, Spain; (M.P.L.-G.); (M.J.S.-P.); (I.M.C.-B.); (N.C.-F.)
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.); (A.M.)
| | - Manuel Jesús Soriano-Pérez
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700 El Ejido, Almería, Spain; (M.P.L.-G.); (M.J.S.-P.); (I.M.C.-B.); (N.C.-F.)
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.); (A.M.)
| | - José Vázquez-Villegas
- Tropical Medicine Unit, Distrito Poniente de Almería, 04700 El Ejido, Almería, Spain;
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.); (A.M.)
| | - Isabel María Cabeza-Barrera
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700 El Ejido, Almería, Spain; (M.P.L.-G.); (M.J.S.-P.); (I.M.C.-B.); (N.C.-F.)
| | - Nerea Castillo-Fernández
- Tropical Medicine Unit, Hospital Universitario Poniente, 04700 El Ejido, Almería, Spain; (M.P.L.-G.); (M.J.S.-P.); (I.M.C.-B.); (N.C.-F.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.); (A.M.)
| | - María Dolores Bargues
- Department of Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain;
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.); (A.M.)
| |
Collapse
|
19
|
Zhao S, Zhang Q, Wang X, Li W, Juma S, Berquist R, Zhang J, Yang K. Development and performance of recombinase-aided amplification (RAA) assay for detecting Schistosoma haematobium DNA in urine samples. Heliyon 2023; 9:e23031. [PMID: 38144328 PMCID: PMC10746445 DOI: 10.1016/j.heliyon.2023.e23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Rapid diagnosis of urogenital schistosomiasis caused by Schistosoma haematobium requires an accurate and timely assay, especially for low-intensity S. haematobium infection cases and in non-endemic areas. The mitochondrial cytochrome c oxidase 1 (cox1) gene fragment of S. haematobium was selected as detection target as this short fragment, which can be rapidly sequenced and yet possess good diagnostic resolution. A pair of primers and a fluorescent probe were designed according to the principle of recombinase-aided amplification (RAA), which was subsequently optimized and applied as an S. haematobium-specific RAA assay. Its diagnostic performance was validated for sensitivity and specificity in comparison to microscopy-based egg counting after urine filtration. The RAA assay could detect as little as 10 copies/μL of S. haematobium recombinant plasmid, and no cross-reactions were observed with S. mansoni, S. japonicum, Ancylostoma duodenale, Clonorchis sinensis, Echinococcus granulosus, or Ascaris lumbricoides. This test can be conducted at 39 °C and the whole RAA reaction can be completed within 20 min. The validation of the RAA assay showed that it had 100 % consistency with urine-egg microscopy, as it does not require an elaborate reading tool, is simple to use, and should be useful for field diagnostics and point-of-care applications.
Collapse
Affiliation(s)
- Song Zhao
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
- Jiangnan University, Wuxi, Jiangsu, China
| | - Qiaoqiao Zhang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
- Department of Clinical Laboratory, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu, 214044, China
| | - Xinyao Wang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
| | - Wei Li
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
| | - Saleh Juma
- Ministry of Health of Zanzibar, P.O. Box 236, Zanzibar, United Republic of Tanzania
| | - Robert Berquist
- Ingerod, Brastad, Sweden (formerly with the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Jianfeng Zhang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
| | - Kun Yang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Härle L, von Bülow V, Knedla L, Stettler F, Müller H, Zahner D, Haeberlein S, Windhorst A, Tschuschner A, Burg-Roderfeld M, Köhler K, Grevelding CG, Roeb E, Roderfeld M. Hepatocyte integrity depends on c-Jun-controlled proliferation in Schistosoma mansoni infected mice. Sci Rep 2023; 13:20390. [PMID: 37990129 PMCID: PMC10663609 DOI: 10.1038/s41598-023-47646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. The transcription factor c-Jun, which is induced in S. mansoni infection-associated liver disease, can promote hepatocyte survival but can also trigger hepatocellular carcinogenesis. We aimed to analyze the hepatic role of c-Jun following S. mansoni infection. We adopted a hepatocyte-specific c-Jun knockout mouse model (Alb-Cre/c-Jun loxP) and analyzed liver tissue and serum samples by quantitative real-time PCR array, western blotting, immunohistochemistry, hydroxyproline quantification, and functional analyses. Hepatocyte-specific c-Jun knockout (c-JunΔli) was confirmed by immunohistochemistry and western blotting. Infection with S. mansoni induced elevated aminotransferase-serum levels in c-JunΔli mice. Of note, hepatic Cyclin D1 expression was induced in infected c-Junf/f control mice but to a lower extent in c-JunΔli mice. S. mansoni soluble egg antigen-induced proliferation in a human hepatoma cell line was diminished by inhibition of c-Jun signaling. Markers for apoptosis, oxidative stress, ER stress, inflammation, autophagy, DNA-damage, and fibrosis were not altered in S. mansoni infected c-JunΔli mice compared to infected c-Junf/f controls. Enhanced liver damage in c-JunΔli mice suggested a protective role of c-Jun. A reduced Cyclin D1 expression and reduced hepatic regeneration could be the reason. In addition, it seems likely that the trends in pathological changes in c-JunΔli mice cumulatively led to a loss of the protective potential being responsible for the increased hepatocyte damage and loss of regenerative ability.
Collapse
Affiliation(s)
- Lukas Härle
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Lukas Knedla
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Frederik Stettler
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Heike Müller
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Daniel Zahner
- Central Laboratory Animal Facility, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, BFS, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Anita Windhorst
- Institute of Medical Informatics, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Annette Tschuschner
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | | | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, BFS, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany.
| |
Collapse
|
21
|
Parn S, Lewis G, Knight M. Inhibition of carbonic anhydrase using aspirin is a novel method to block schistosomiasis infection of the parasitic trematode, Schistosoma mansoni, in the intermediate snail host, Biomphalaria glabrata. Exp Parasitol 2023; 254:108618. [PMID: 37696327 DOI: 10.1016/j.exppara.2023.108618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Schistosomiasis is a major public health concern worldwide. Although praziquantel is currently available as the only treatment option for schistosomiasis, the absence of reliable diagnostic and prognostic tools highlights the need for the identification and characterization of new drug targets. Recently, we identified the B. glabrata homolog (accession number XP_013075832.1) of human CAXIV, showing 37% amino acid sequence identity, from a BLAST search in NCBI (National Center for Biotechnology Information). Carbonic Anhydrases (CAs) are metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. These enzymes are associated with many physiological processes, and their role in tumorigenesis has been widely implicated. CAs create an acidic extracellular environment that facilitates the survival, metastasis, and growth of cancer cells. In this study, we investigated the role of CA inhibition in B. glabrata snails exposed to S. mansoni miracidia. We analyzed the expression of the B. glabrata CA encoding transcript in juvenile susceptible and resistant snails, with and without exposure to S. mansoni. Our results showed that the expression of the CA mRNA encoding transcript was upregulated during early and prolonged infection in susceptible snails (BBO2), but not in the resistant BS-90 stock. Notably, sodium salicylate, a form of aspirin, inhibited the expression of CA, post-exposure, to the parasite. Increasing research between parasites and cancer has shown that schistosomes and cancer cells share similarities in their capacity to proliferate, survive, and evade host immune mechanisms. Here, we show that this model system is a potential new avenue for understanding the role of CA in the metastasis and proliferation of cancer cells. Further studies are needed to explore the potential of CA as a biomarker for infection in other schistosomiasis-causing parasites, including S. japonicum and S. haematobium.
Collapse
Affiliation(s)
- Simone Parn
- Division of Science & Mathematics, University of the District of Columbia, 4200 Connecticut Ave, NW Washington, D.C., 20008, USA
| | - Gabriela Lewis
- Division of Science & Mathematics, University of the District of Columbia, 4200 Connecticut Ave, NW Washington, D.C., 20008, USA
| | - Matty Knight
- Division of Science & Mathematics, University of the District of Columbia, 4200 Connecticut Ave, NW Washington, D.C., 20008, USA; Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University Ross Hall, 2300 I Street, NW Washington DC, 20037, USA.
| |
Collapse
|
22
|
Rausche P, Rakotoarivelo RA, Rakotozandrindrainy R, Rakotomalala RS, Ratefiarisoa S, Rasamoelina T, Kutz JM, Jaeger A, Hoeppner Y, Lorenz E, May J, Puradiredja DI, Fusco D. Awareness and knowledge of female genital schistosomiasis in a population with high endemicity: a cross-sectional study in Madagascar. Front Microbiol 2023; 14:1278974. [PMID: 37886060 PMCID: PMC10598593 DOI: 10.3389/fmicb.2023.1278974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Female genital schistosomiasis (FGS) is a neglected disease with long-term physical and psychosocial consequences, affecting approximately 50 million women worldwide and generally representing an unmet medical need on a global scale. FGS is the chronic manifestation of a persistent infection with Schistosoma haematobium. FGS services are not routinely offered in endemic settings with a small percentage of women at risk receiving adequate care. Madagascar has over 60% prevalence of FGS and no guidelines for the management of the disease. This study aimed to determine FGS knowledge among women and health care workers (HCWs) in a highly endemic area of Madagascar. Methods A convenience sampling strategy was used for this cross-sectional study. Descriptive statistics including proportions and 95% confidence intervals (CI) were calculated, reporting socio-demographic characteristics of the population. Knowledge sources were evaluated descriptively. Binary Poisson regression with robust standard errors was performed; crude (CPR) and adjusted prevalence ratio (APR) with 95% CIs were calculated. Results A total of 783 participants were included in the study. Among women, 11.3% (n = 78) were aware of FGS while among the HCWs 53.8% (n = 50) were aware of FGS. The highest level of knowledge was observed among women in an urban setting [24%, (n = 31)] and among those with a university education/vocational training [23% (n = 13)]. A lower APR of FGS knowledge was observed in peri-urban [APR 0.25 (95% CI: 0.15; 0.45)] and rural [APR 0.37 (95% CI 0.22; 0.63)] settings in comparison to the urban setting. Most HCWs reported other HCWs [40% (n = 20)] while women mainly reported their family [32% (n = 25)] as being their main source of information in the 6 months prior to the survey. Discussion and conclusions Our study shows limited awareness and knowledge of FGS among population groups in the highly endemic Boeny region of Madagascar. With this study we contribute to identifying an important health gap in Madagascar, which relates to a disease that can silently affect millions of women worldwide. In alignment with the targets of the NTD roadmap, addressing schistosomiasis requires a paradigm shift for its control and management including a greater focus on chronic forms of the disease.
Collapse
Affiliation(s)
- Pia Rausche
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | | | | | | | | | | | - Jean-Marc Kutz
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Anna Jaeger
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yannick Hoeppner
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Eva Lorenz
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
- Department of Tropical Medicine I, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dewi Ismajani Puradiredja
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Daniela Fusco
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| |
Collapse
|
23
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
24
|
Comelli A, Genovese C, Gobbi F, Brindicci G, Capone S, Corpolongo A, Crosato V, Mangano VD, Marrone R, Merelli M, Prato M, Santoro CR, Scarso S, Vanino E, Marchese V, Antinori S, Mastroianni C, Raglio A, Bruschi F, Minervini A, Donà D, Garazzino S, Galli L, Lo Vecchio A, Galli A, Dragoni G, Cricelli C, Colacurci N, Ferrazzi E, Pieralli A, Montresor A, Richter J, Calleri G, Bartoloni A, Zammarchi L. Schistosomiasis in non-endemic areas: Italian consensus recommendations for screening, diagnosis and management by the Italian Society of Tropical Medicine and Global Health (SIMET), endorsed by the Committee for the Study of Parasitology of the Italian Association of Clinical Microbiologists (CoSP-AMCLI), the Italian Society of Parasitology (SoIPa), the Italian Society of Gastroenterology and Digestive Endoscopy (SIGE), the Italian Society of Gynaecology and Obstetrics (SIGO), the Italian Society of Colposcopy and Cervico-Vaginal Pathology (SICPCV), the Italian Society of General Medicine and Primary Care (SIMG), the Italian Society of Infectious and Tropical Diseases (SIMIT), the Italian Society of Pediatrics (SIP), the Italian Society of Paediatric Infectious Diseases (SITIP), the Italian Society of Urology (SIU). Infection 2023; 51:1249-1271. [PMID: 37420083 PMCID: PMC10545632 DOI: 10.1007/s15010-023-02050-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/08/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Agnese Comelli
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Genovese
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- II Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
- University of Brescia, Brescia, Italy
| | - Gaetano Brindicci
- AOU Consorziale Policlinico di Bari, Infectious Diseases Unit, Bari, Italy
| | - Susanna Capone
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Angela Corpolongo
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' (IRCCS), Rome, Italy
| | - Verena Crosato
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Valentina Dianora Mangano
- Department of Translational Research, N.T.M.S, Università di Pisa, Pisa, Italy
- Programma Di Monitoraggio Delle Parassitosi e f.a.d, AOU Pisana, Pisa, Italy
| | - Rosalia Marrone
- National Institute for Health, Migration and Poverty, Rome, Italy
| | - Maria Merelli
- Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Marco Prato
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | | | - Salvatore Scarso
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisa Vanino
- Unit of Infectious Diseases, Ospedale "Santa Maria delle Croci", AUSL Romagna, Ravenna, Italy
| | - Valentina Marchese
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annibale Raglio
- Committee for the Study of Parasitology of the Italian Association of Clinical Microbiologists (CoSP-AMCLI), Milan, Italy
| | - Fabrizio Bruschi
- Department of Translational Research, N.T.M.S, Università di Pisa, Pisa, Italy
- Programma Di Monitoraggio Delle Parassitosi e f.a.d, AOU Pisana, Pisa, Italy
| | - Andrea Minervini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Urology, University of Florence, Florence, Italy
| | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padua, Padua, Italy
| | - Silvia Garazzino
- Paediatric Infectious Disease Unit, Regina Margherita Children's Hospital, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Galli
- Infectious Diseases Unit, Meyer Children's Hospital, IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, Paediatric Infectious Disease Unit, University of Naples Federico II, Naples, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claudio Cricelli
- Health Search-Istituto di Ricerca della SIMG (Italian Society of General Medicine and Primary Care), Florence, Italy
| | - Nicola Colacurci
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Enrico Ferrazzi
- Department of Woman, New-Born and Child, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Pieralli
- Ginecologia Chirurgica Oncologica, Careggi University and Hospital, Florence, Italy
| | - Antonio Montresor
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Joachim Richter
- Institute of International Health, Charité Universitätsmedizin, Corporate Member of Freie und Humboldt Universität Berlin and Berlin Institute of Health, Berlin, Germany
| | - Guido Calleri
- Amedeo Di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
25
|
Deniaud F, Vignier N, Raynal G, Boo N, Collignon A, Hennequin C. Schistosoma haematobium urinary tract complications in African migrants attending primary care facilities in Paris, France: A retrospective cohort study (2004-2018). Infect Dis Now 2023; 53:104715. [PMID: 37142230 DOI: 10.1016/j.idnow.2023.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Little is known about the burden of urogenital schistosomiasis (UGS) outside endemic areas. This study was aimed at describing urinary complications of UGS detected among African migrants in French primary care facilities. PATIENTS AND METHODS A retrospective cohort study included patients with UGS diagnosed from 2004 to 2018 in 5 primary health centers in Paris. Cases were defined by the presence of typical Schistosoma haematobium eggs at urine microscopy. Demographic, clinical, biological and imaging data were collected. Ultrasonography (U-S) findings were classified in accordance with the WHO guidelines. RESULTS U-S was prescribed for all patients and performed in 100/118. Sex ratio (F/M) was 2/98, and mean age 24.4 years. Patients were from West Africa (73% from Mali) and consulted 8 months (median) after their arrival. Among the 95 patients with interpretable findings, 32 (33.7%) had abnormalities related to UGS, considered as major in 6 cases (6.3%), and mostly localized at the bladder (31/32) without detection of cancer. No sociodemographic, clinical, or biological factors were found to be associated with U-S abnormalities. All 100 patients were treated by praziquantel (PZQ). Among those with abnormalities, 20/32 received two to four doses at various time intervals. Post-cure imaging control performed in 19/32 showed persistent abnormalities in 6 patients, on average 5 months after the last PZQ uptake. CONCLUSION Urinary tract abnormalities associated with UGS were common and predominated at the bladder. U-S should be prescribed to any patient with positive urine microscopy. Schedules for PZQ uptake and U-S monitoring for patients with complications remain to be determined.
Collapse
Affiliation(s)
- François Deniaud
- Centre médico-social, Direction de la Santé Publique, Ville de Paris, F-75012 Paris, France.
| | - Nicolas Vignier
- Centre d'investigation clinique Antilles Guyane, CIC Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, Guyana; IAME, INSERM UMR 1137, DeScID, Université Sorbonne Paris Nord, UFR SMBH, Hôpitaux universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, AP-HP, F- 93000 Bobigny, France; Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), Inserm UMRS 1136, Department of Social Epidemiology, F-75012 Paris, France
| | | | - Nicolas Boo
- Centre de vaccination, Centre de santé sexuelle, Hôpital Hôtel-Dieu, F-75004 Paris, France
| | - Anne Collignon
- Laboratoire d'Hygiène de la Ville de Paris (DSP). F-75012 Paris, France
| | - Christophe Hennequin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, F-75012 Paris, France
| |
Collapse
|
26
|
Meena P, Jha V. Environmental Change, Changing Biodiversity, and Infections-Lessons for Kidney Health Community. Kidney Int Rep 2023; 8:1714-1729. [PMID: 37705916 PMCID: PMC10496083 DOI: 10.1016/j.ekir.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
There is a direct and accelerating connection between ongoing environmental change, the unprecedented decline in biodiversity, and the increase in infectious disease epidemiology worldwide. Rising global temperatures are threatening the biodiversity that underpins the richness and diversity of flora and fauna species in our ecosystem. Anthropogenic activities such as burning fossil fuels, deforestation, rapid urbanization, and expanding population are the primary drivers of environmental change resulting in biodiversity collapse. Climate change is influencing the emergence, prevalence, and transmission of infectious diseases both directly and through its impact on biodiversity. The environment is gradually becoming more suitable for infectious diseases by affecting a variety of pathogens, hosts, and vectors and by favoring transmission rates in many parts of the world that were until recently free of these infections. The acute effects of these zoonotic, vector and waterborne diseases are well known; however, evidence is emerging about their role in the development of chronic kidney disease. The pathways linking environmental change and biodiversity loss to infections impacting kidney health are diverse and complex. Climate change and biodiversity loss disproportionately affect the vulnerable and limit their ability to access healthcare. The kidney health community needs to contribute to the issue of environmental change and biodiversity loss through multisectoral action alongside government, policymakers, advocates, businesses, and the general population. We describe various aspects of the environmental change effects on the transmission and emergence of infectious diseases particularly focusing on its potential impact on kidney health. We also discuss the adaptive and mitigation measures and the gaps in research and policy action.
Collapse
Affiliation(s)
- Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
- School of Public Health, Imperial College, London, UK
| |
Collapse
|
27
|
Abaasa A, Egesa M, Driciru E, Koopman JPR, Kiyemba R, Sanya RE, Nassuuna J, Ssali A, Kimbugwe G, Wajja A, van Dam GJ, Corstjens PLAM, Cose S, Seeley J, Kamuya D, Webb EL, Yazdanbakhsh M, Kaleebu P, Siddiqui AA, Kabatereine N, Tukahebwa E, Roestenberg M, Elliott AM. Establishing a single-sex controlled human Schistosoma mansoni infection model for Uganda: protocol for safety and dose-finding trial. IMMUNOTHERAPY ADVANCES 2023; 3:ltad010. [PMID: 37538934 PMCID: PMC10396375 DOI: 10.1093/immadv/ltad010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Control of schistosomiasis depends on a single drug, praziquantel, with variable cure rates, high reinfection rates, and risk of drug resistance. A vaccine could transform schistosomiasis control. Preclinical data show that vaccine development is possible, but conventional vaccine efficacy trials require high incidence, long-term follow-up, and large sample size. Controlled human infection studies (CHI) can provide early efficacy data, allowing the selection of optimal candidates for further trials. A Schistosoma CHI has been established in the Netherlands but responses to infection and vaccines differ in target populations in endemic countries. We aim to develop a CHI for Schistosoma mansoni in Uganda to test candidate vaccines in an endemic setting. This is an open-label, dose-escalation trial in two populations: minimal, or intense, prior Schistosoma exposure. In each population, participants will be enrolled in sequential dose-escalating groups. Initially, three volunteers will be exposed to 10 cercariae. If all show infection, seven more will be exposed to the same dose. If not, three volunteers in subsequent groups will be exposed to higher doses (20 or 30 cercariae) following the same algorithm, until all 10 volunteers receiving a particular dose become infected, at which point the study will be stopped for that population. Volunteers will be followed weekly after infection until CAA positivity or to 12 weeks. Once positive, they will be treated with praziquantel and followed for one year. The trial registry number is ISRCTN14033813 and all approvals have been obtained. The trial will be subjected to monitoring, inspection, and/or audits.
Collapse
Affiliation(s)
- Andrew Abaasa
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | - Moses Egesa
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | - Richard E Sanya
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- African Population and Health Research Center, Nairobi, Kenya
| | | | - Agnes Ssali
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Anne Wajja
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | | | - Stephen Cose
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | - Janet Seeley
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | - Dorcas Kamuya
- Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
| | - Emily L Webb
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Pontiano Kaleebu
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | | | - Alison M Elliott
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
28
|
Trippler L, Knopp S, Welsche S, Webster BL, Stothard JR, Blair L, Allan F, Ame SM, Juma S, Kabole F, Ali SM, Rollinson D, Pennance T. The long road to schistosomiasis elimination in Zanzibar: A systematic review covering 100 years of research, interventions and control milestones. ADVANCES IN PARASITOLOGY 2023; 122:71-191. [PMID: 37657854 DOI: 10.1016/bs.apar.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Zanzibar is among the few places in sub-Saharan Africa where interruption of Schistosoma transmission seems an achievable goal. Our systematic review identifies and discusses milestones in schistosomiasis research, control and elimination efforts in Zanzibar over the past 100 years. The search in online databases, libraries, and the World Health Organization Archives revealed 153 records published between May 1928 and August 2022. The content of records was summarised to highlight the pivotal work leading towards urogenital schistosomiasis elimination and remaining research gaps. The greatest achievement following 100 years of schistosomiasis interventions and research is undoubtedly the improved health of Zanzibaris, exemplified by the reduction in Schistosoma haematobium prevalence from>50% historically down to<5% in 2020, and the absence of severe morbidities. Experiences from Zanzibar have contributed to global schistosomiasis guidelines, whilst also revealing challenges that impede progression towards elimination. Challenges include: transmission heterogeneity requiring micro-targeting of interventions, post-treatment recrudescence of infections in transmission hotspots, biological complexity of intermediate host snails, emergence of livestock Schistosoma species complicating surveillance whilst creating the risk for interspecies hybridisation, insufficient diagnostics performance for light intensity infections and female genital schistosomiasis, and a lack of acceptable sanitary alternatives to freshwater bodies. Our analysis of the past revealed that much can be achieved in the future with practical implementation of integrated interventions, alongside operational research. With continuing national and international commitments, interruption of S. haematobium transmission across both islands is within reach by 2030, signposting the future demise of urogenital schistosomiasis across other parts of sub-Saharan Africa.
Collapse
Affiliation(s)
- Lydia Trippler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | | | - Bonnie L Webster
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | | | | | - Fiona Allan
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; University of St Andrews, St Andrews, United Kingdom
| | - Shaali Makame Ame
- Neglected Diseases Programme, Zanzibar Ministry of Health, Lumumba, Unguja, United Republic of Tanzania
| | - Saleh Juma
- Neglected Diseases Programme, Zanzibar Ministry of Health, Mkoroshoni, Pemba, United Republic of Tanzania
| | - Fatma Kabole
- Neglected Diseases Programme, Zanzibar Ministry of Health, Lumumba, Unguja, United Republic of Tanzania
| | - Said Mohammed Ali
- Public Health Laboratory - Ivo de Carneri, Wawi, Chake Chake, Pemba, United Republic of Tanzania
| | - David Rollinson
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; Global Schistosomiasis Alliance, London, United Kingdom
| | - Tom Pennance
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; Western University of Health Sciences, Lebanon, OR, United States.
| |
Collapse
|
29
|
Calvo-Urbano B, Léger E, Gabain I, De Dood CJ, Diouf ND, Borlase A, Rudge JW, Corstjens PLAM, Sène M, Van Dam GJ, Walker M, Webster JP. Sensitivity and specificity of human point-of-care circulating cathodic antigen (POC-CCA) test in African livestock for rapid diagnosis of schistosomiasis: A Bayesian latent class analysis. PLoS Negl Trop Dis 2023; 17:e0010739. [PMID: 37216407 DOI: 10.1371/journal.pntd.0010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease (NTD) affecting both humans and animals. The morbidity and mortality inflicted upon livestock in the Afrotropical region has been largely overlooked, in part due to a lack of validated sensitive and specific tests, which do not require specialist training or equipment to deliver and interpret. As stressed within the recent WHO NTD 2021-2030 Roadmap and Revised Guideline for schistosomiasis, inexpensive, non-invasive, and sensitive diagnostic tests for livestock-use would also facilitate both prevalence mapping and appropriate intervention programmes. The aim of this study was to assess the sensitivity and specificity of the currently available point-of-care circulating cathodic antigen test (POC-CCA), designed for Schistosoma mansoni detection in humans, for the detection of intestinal livestock schistosomiasis caused by Schistosoma bovis and Schistosoma curassoni. POC-CCA, together with the circulating anodic antigen (CAA) test, miracidial hatching technique (MHT) and organ and mesentery inspection (for animals from abattoirs only), were applied to samples collected from 195 animals (56 cattle and 139 small ruminants (goats and sheep) from abattoirs and living populations) from Senegal. POC-CCA sensitivity was greater in the S. curassoni-dominated Barkedji livestock, both for cattle (median 81%; 95% credible interval (CrI): 55%-98%) and small ruminants (49%; CrI: 29%-87%), than in S. bovis-dominated Richard Toll ruminants (cattle: 62%; CrI: 41%-84%; small ruminants: 12%, CrI: 1%-37%). Overall, sensitivity was greater in cattle than in small ruminants. Small ruminants POC-CCA specificity was similar in both locations (91%; CrI: 77%-99%), whilst cattle POC-CCA specificity could not be assessed owing to the low number of uninfected cattle surveyed. Our results indicate that, whilst the current POC-CCA does represent a potential diagnostic tool for cattle and possibly for predominantly S. curassoni-infected livestock, future work is needed to develop parasite- and/or livestock-specific affordable and field-applicable diagnostic tests to enable determination of the true extent of livestock schistosomiasis.
Collapse
Affiliation(s)
- Beatriz Calvo-Urbano
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Isobel Gabain
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Nicolas D Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | - Anna Borlase
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | | | - Martin Walker
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P Webster
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
30
|
Gruninger SK, Rasamoelina T, Rakotoarivelo RA, Razafindrakoto AR, Rasolojaona ZT, Rakotozafy RM, Soloniaina PR, Rakotozandrindrainy N, Rausche P, Doumbia CO, Jaeger A, Zerbo A, von Thien H, Klein P, van Dam G, Tannich E, Schwarz NG, Lorenz E, May J, Rakotozandrindrainy R, Fusco D. Prevalence and risk distribution of schistosomiasis among adults in Madagascar: a cross-sectional study. Infect Dis Poverty 2023; 12:44. [PMID: 37098581 PMCID: PMC10127445 DOI: 10.1186/s40249-023-01094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/09/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The goal to eliminate the parasitic disease of poverty schistosomiasis as a public health problem is aligned with the 2030 United Nations agenda for sustainable development goals, including universal health coverage (UHC). Current control strategies focus on school-aged children, systematically neglecting adults. We aimed at providing evidence for the need of shifting the paradigm of schistosomiasis control programs from targeted to generalized approaches as key element for both the elimination of schistosomiasis as a public health problem and the promotion of UHC. METHODS In a cross-sectional study performed between March 2020 and January 2021 at three primary health care centers in Andina, Tsiroanomandidy and Ankazomborona in Madagascar, we determined prevalence and risk factors for schistosomiasis by a semi-quantitative PCR assay from specimens collected from 1482 adult participants. Univariable and multivariable logistic regression were performed to evaluate odd ratios. RESULTS The highest prevalence of S. mansoni, S. haematobium and co-infection of both species was 59.5%, 61.3% and 3.3%, in Andina and Ankazomborona respectively. Higher prevalence was observed among males (52.4%) and main contributors to the family income (68.1%). Not working as a farmer and higher age were found to be protective factors for infection. CONCLUSIONS Our findings provide evidence that adults are a high-risk group for schistosomiasis. Our data suggests that, for ensuring basic health as a human right, current public health strategies for schistosomiasis prevention and control need to be re-addressed towards more context specific, holistic and integrated approaches.
Collapse
Affiliation(s)
- Sarah Katharina Gruninger
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
| | | | - Rivo Andry Rakotoarivelo
- Department of Infectious Diseases, University of Fianarantsoa Andrainjato, 301, Fianarantsoa, Madagascar
| | | | | | - Rodson Morin Rakotozafy
- Department of Microbiology and Parasitology, University of Antananarivo, 101, Antananarivo, Madagascar
| | | | - Njary Rakotozandrindrainy
- Department of Microbiology and Parasitology, University of Antananarivo, 101, Antananarivo, Madagascar
| | - Pia Rausche
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
| | - Cheick Oumar Doumbia
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
- University Clinical Research Centre (UCRC), University of Sciences Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anna Jaeger
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
| | - Alexandre Zerbo
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
| | - Heidrun von Thien
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Philipp Klein
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
| | - Govert van Dam
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Egbert Tannich
- National Reference Centre for Tropical Pathogens (NRC), Hamburg, Germany
| | - Norbert Georg Schwarz
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
| | - Eva Lorenz
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany
- Department of Tropical Medicine I, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Daniela Fusco
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Germany.
| |
Collapse
|
31
|
Blin M, Dametto S, Agniwo P, Webster BL, Angora E, Dabo A, Boissier J. A duplex tetra-primer ARMS-PCR assay to discriminate three species of the Schistosoma haematobium group: Schistosoma curassoni, S. bovis, S. haematobium and their hybrids. Parasit Vectors 2023; 16:121. [PMID: 37029440 PMCID: PMC10082484 DOI: 10.1186/s13071-023-05754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The use of applications involving single nucleotide polymorphisms (SNPs) has greatly increased since the beginning of the 2000s, with the number of associated techniques expanding rapidly in the field of molecular research. Tetra-primer amplification refractory mutation system-PCR (T-ARMS-PCR) is one such technique involving SNP genotyping. It has the advantage of amplifying multiple alleles in a single reaction with the inclusion of an internal molecular control. We report here the development of a rapid, reliable and cost-effective duplex T-ARMS-PCR assay to distinguish between three Schistosoma species, namely Schistosoma haematobium (human parasite), Schistosoma bovis and Schistosoma curassoni (animal parasites), and their hybrids. This technique will facilitate studies of population genetics and the evolution of introgression events. METHODS During the development of the technique we focused on one of the five inter-species internal transcribed spacer (ITS) SNPs and one of the inter-species 18S SNPs which, when combined, discriminate between all three Schistosoma species and their hybrid forms. We designed T-ARMS-PCR primers to amplify amplicons of specific lengths for each species, which in turn can then be visualized on an electrophoresis gel. This was further tested using laboratory and field-collected adult worms and field-collected larval stages (miracidia) from Spain, Egypt, Mali, Senegal and Ivory Coast. The combined duplex T-ARMS-PCR and ITS + 18S primer set was then used to differentiate the three species in a single reaction. RESULTS The T-ARMS-PCR assay was able to detect DNA from both species being analysed at the maximum and minimum levels in the DNA ratios (95/5) tested. The duplex T-ARMS-PCR assay was also able to detect all hybrids tested and was validated by sequencing the ITS and the 18S amplicons of 148 of the field samples included in the study. CONCLUSIONS The duplex tetra-primer ARMS-PCR assay described here can be applied to differentiate between Schistosoma species and their hybrid forms that infect humans and animals, thereby providing a method to investigate the epidemiology of these species in endemic areas. The addition of several markers in a single reaction saves considerable time and is of long-standing interest for investigating genetic populations.
Collapse
Affiliation(s)
- Manon Blin
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- SAS ParaDev®, 66860, Perpignan, France
| | - Sarah Dametto
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
| | - Privat Agniwo
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Science, Natural History Museum, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, W2 1PG, UK
| | - Etienne Angora
- Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jérôme Boissier
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France.
| |
Collapse
|
32
|
Blin M, Senghor B, Boissier J, Mulero S, Rey O, Portela J. Development of environmental loop-mediated isothermal amplification (eLAMP) diagnostic tool for Bulinus truncatus field detection. Parasit Vectors 2023; 16:78. [PMID: 36855192 PMCID: PMC9972309 DOI: 10.1186/s13071-023-05705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Global changes are reshaping the distribution of vector-borne diseases by spreading vectors to previously non-endemic areas. Since 2013, urogenital schistosomiasis has emerged in Corsica and threatens European countries. Gastropod vectors release schistosome larvae that can infect humans who come into contact with freshwater bodies. Monitoring schistosomiasis host vectors is a prerequisite to understand and subsequently to control this pathogen transmission. Because malacological surveys are time consuming and require special expertise, the use of a simple molecular method is desirable. METHODS The aim of this study is to develop a ready-to-use protocol using the LAMP (loop-mediated isothermal amplification) method to detect environmental DNA of Bulinus truncatus, vector of Schistosoma haematobium. Interestingly, LAMP method possesses all the characteristics required for adaptability to field conditions particularly in low-income countries: speed, simplicity, lyophilized reagents, low cost and robustness against DNA amplification inhibitors. We have tested this new method on Corsican water samples previously analysed by qPCR and ddPCR. RESULTS We demonstrate that our diagnostic tool B. truncatus eLAMP (Bt-eLAMP) can detect the eDNA of Bulinus truncatus as effectively as the two other methods. Bt-eLAMP can even detect 1/4 of positive samples not detectable by qPCR. Moreover, the complete Bt-eLAMP protocol (sampling, sample pre-process, amplification and revelation) does not require sophisticated equipment and can be done in 1 ½ h. CONCLUSIONS LAMP detection of environmental DNA provides large-scale sensitive surveillance of urogenital schistosomiasis possible by identifying potentially threatened areas. More generally, eLAMP method has great potential in vector-borne diseases and ecology.
Collapse
Affiliation(s)
- Manon Blin
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860, Perpignan, France. .,SAS ParaDev®, 66860, Perpignan, France.
| | - Bruno Senghor
- VITROME, IRD-UCAD International Campus, 1386 Dakar, Senegal
| | - Jérôme Boissier
- grid.11136.340000 0001 2192 5916Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860 Perpignan, France
| | - Stephen Mulero
- grid.11136.340000 0001 2192 5916Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860 Perpignan, France ,Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS-LECA, 38000 Grenoble, France
| | - Olivier Rey
- grid.11136.340000 0001 2192 5916Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860 Perpignan, France
| | | |
Collapse
|
33
|
Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain. Trop Med Infect Dis 2023; 8:tropicalmed8030144. [PMID: 36977146 PMCID: PMC10054267 DOI: 10.3390/tropicalmed8030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Schistosome eggs play a key role in schistosomiasis diagnosis and research. The aim of this work is to morphogenetically study the eggs of Schistosoma haematobium found in sub-Saharan migrants present in Spain, analyzing their morphometric variation in relation to the geographical origin of the parasite (Mali, Mauritania and Senegal). Only eggs considered “pure” S. haematobium by genetic characterization (rDNA ITS-2 and mtDNA cox1) have been used. A total of 162 eggs obtained from 20 migrants from Mali, Mauritania and Senegal were included in the study. Analyses were made by the Computer Image Analysis System (CIAS). Following a previously standardized methodology, seventeen measurements were carried out on each egg. The morphometric analysis of the three morphotypes detected (round, elongated and spindle) and the biometric variations in relation to the country of origin of the parasite on the egg phenotype were carried out by canonical variate analysis. Mahalanobis distances, when all egg measurements were analyzed, showed differences between: (i) Mali-Mauritania, Mali-Senegal and Mauritania-Senegal in the round morphotype; (ii) Mali-Mauritania and Mauritania-Senegal in the elongated morphotype; and (iii) Mauritania-Senegal in the spindle morphotype. Mahalanobis distances, when spine variables were analyzed, showed differences between Mali-Senegal in the round morphotype. In conclusion, this is the first phenotypic study performed on individually genotyped “pure” S. haematobium eggs, allowing the assessment of the intraspecific morphological variations associated with the geographical origin of the schistosome eggs.
Collapse
|
34
|
Evaluation of Two Different Strategies for Schistosomiasis Screening in High-Risk Groups in a Non-Endemic Setting. Trop Med Infect Dis 2023; 8:tropicalmed8010044. [PMID: 36668951 PMCID: PMC9862038 DOI: 10.3390/tropicalmed8010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
A consensus on the recommended screening algorithms for schistosomiasis in asymptomatic high-risk subjects in non-endemic areas is lacking. The objective of this study was to evaluate the real-life performance of direct microscopy and ELISA serology for schistosomiasis screening in a high-risk population in a non-endemic setting. A retrospective cohort study was conducted in two out-patient Tropical Medicine units in Barcelona (Spain) from 2014 to 2017. Asymptomatic adults arriving from the Sub-Saharan region were included. Schistosomiasis screening was conducted according to clinical practice following a different strategy in each setting: (A) feces and urine direct examination plus S. mansoni serology if non-explained eosinophilia was present and (B) S. mansoni serology plus uroparasitological examination as the second step in case of a positive serology. Demographic, clinical and laboratory features were collected. Schistosomiasis cases, clinical management and a 24 month follow-up were recorded for each group. Four-hundred forty individuals were included. The patients were mainly from West African countries. Fifty schistosomiasis cases were detected (11.5% group A vs. 4 % group B, p = 0.733). When both microscopic and serological techniques were performed, discordant results were recorded in 18.4% (16/88). Schistosomiasis cases were younger (p < 0.001) and presented eosinophilia and elevated IgE (p < 0.001) more frequently. Schistosomiasis is a frequent diagnosis among high-risk populations. Serology achieves a similar performance to direct diagnosis for the screening of schistosomiasis in a high-risk population.
Collapse
|
35
|
Ido F, Ouedraogo A, Savadogo I, Hafing T, Ouattara S. Epididymal bilharzia simulating a testicular tumor: A case report. IDCases 2023; 32:e01770. [PMID: 37131488 PMCID: PMC10149191 DOI: 10.1016/j.idcr.2023.e01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Bilharzia or schistosomiasis is a parasitic disease due to infestation by a hematophagous trematode of the genus Schistosoma. It is the second most frequent parasitic endemic in the world after malaria. The most frequent tissue infections are intestinal and genitourinary. Testicular localizations of schistosoma are very rare. When lesions become chronic, they present as non-specific masses, bilharziomas, posing enormous problems of differential diagnosis with other benign and malignant pathologies, which impacts management. We report a case of epididymal schistosomiasis in a 37 years old patient simulating a malignant tumor. This case allowed us to review the diagnostic difficulties of this rare localization and the challenges of management.
Collapse
Affiliation(s)
- F.A.H.A. Ido
- Department of Anatomy and Pathological Cytology CHU, Tengandogo, Ouagadougou, Burkina Faso
- Correspondence to: 11 BP 104 CMS Ouagadougou 01, Burkina Faso.
| | - A.S. Ouedraogo
- Department of Anatomy and Pathological Cytology CHU, Bogododgo, Ouagadougou, Burkina Faso
| | - I. Savadogo
- Department of Anatomy and Pathological Cytology CHU-R of Ouahigouya, Burkina Faso
| | - T. Hafing
- Department of Urology CHU, Tengandogo, Ouagadougou, Burkina Faso
| | - S. Ouattara
- Department of Anatomy and Pathological Cytology CHU, Tengandogo, Ouagadougou, Burkina Faso
| |
Collapse
|
36
|
Wang N, Peng HQ, Gao CZ, Cheng YH, Sun MT, Qu GL, Webster JP, Lu DB. In vivo efficiency of praziquantel treatment of single-sex Schistosoma japonicum aged three months old in mice. Int J Parasitol Drugs Drug Resist 2022; 20:129-134. [PMID: 36403362 PMCID: PMC9771832 DOI: 10.1016/j.ijpddr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Schistosomiasis is a major neglected tropical disease mainly caused by Schistosoma haematobium, S. japonicum and S. mansoni, and results in the greatest disease burden. Mass drug administration (MDA) with praziquantel (PZQ), a single drug only available for the disease, has played a vital role in schistosomiasis control. Therefore, any possibility of selection of the parasites for PZQ resistance or low sensitivity may hamper the 2030's target of global disease elimination. We had experimentally demonstrated the long-term survival and reproductive potential of single-sex (of either sex) S. japonicum infections in definitive hosts mice. What has not yet been adequately addressed is whether the long live single-sex schistosomes remain sensitive to PZQ, and what reproduction potential for those schistosomes surviving treatment may have. We therefore performed experimental mice studies to explore the treatment effectiveness of PZQ (at total doses of 200 or 400 mg/kg, corresponding to the sub-standard or standard treatment doses in humans) for single-sex S. japonicum aged three months old. The results showed that no treatment efficiency was observed on female schistosomes, whereas on male schistosomes only at PZQ 400 mg/kg a significant higher efficiency in reducing worm burdens was observed. Moreover, either schistosome males or females surviving PZQ treatment remained their reproduction potential as normal. The results indicate that long (i.e., three months) live single-sex S. japonicum can easily survive the current treatment strategy, and moreover, any schistosomes, if with PZQ resistance or low sensitivity, could be easily transmitted in nature. Therefore, in order to realize the target for the national and the global schistosomiasis elimination, there is undoubtedly a great need for refining PZQ administration and dosage, looking for alternative therapies, and/or developing vaccines against schistosome.
Collapse
Affiliation(s)
- Ning Wang
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Han-Qi Peng
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Chang-Zhe Gao
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Yu-Heng Cheng
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Meng-Tao Sun
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Guo-Li Qu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom.
| | - Da-Bing Lu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China.
| |
Collapse
|
37
|
von Bülow V, Gindner S, Baier A, Hehr L, Buss N, Russ L, Wrobel S, Wirth V, Tabatabai K, Quack T, Haeberlein S, Kadesch P, Gerbig S, Wiedemann KR, Spengler B, Mehl A, Morlock G, Schramm G, Pons-Kühnemann J, Falcone FH, Wilson RA, Bankov K, Wild P, Grevelding CG, Roeb E, Roderfeld M. Metabolic reprogramming of hepatocytes by Schistosoma mansoni eggs. JHEP Rep 2022; 5:100625. [PMID: 36590323 PMCID: PMC9800334 DOI: 10.1016/j.jhepr.2022.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Background & Aims Schistosomiasis is a parasitic infection which affects more than 200 million people globally. Schistosome eggs, but not the adult worms, are mainly responsible for schistosomiasis-specific morbidity in the liver. It is unclear if S. mansoni eggs consume host metabolites, and how this compromises the host parenchyma. Methods Metabolic reprogramming was analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, liquid chromatography with high-resolution mass spectrometry, metabolite quantification, confocal laser scanning microscopy, live cell imaging, quantitative real-time PCR, western blotting, assessment of DNA damage, and immunohistology in hamster models and functional experiments in human cell lines. Major results were validated in human biopsies. Results The infection with S. mansoni provokes hepatic exhaustion of neutral lipids and glycogen. Furthermore, the distribution of distinct lipid species and the regulation of rate-limiting metabolic enzymes is disrupted in the liver of S. mansoni infected animals. Notably, eggs mobilize, incorporate, and store host lipids, while the associated metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes. Administration of reactive oxygen species scavengers ameliorates these deleterious effects. Conclusions Our findings indicate that S. mansoni eggs completely reprogram lipid and carbohydrate metabolism via soluble factors, which results in oxidative stress-induced cell damage in the host parenchyma. Impact and implications The authors demonstrate that soluble egg products of the parasite S. mansoni induce hepatocellular reprogramming, causing metabolic exhaustion and a strong redox imbalance. Notably, eggs mobilize, incorporate, and store host lipids, while the metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes, independent of the host's immune response. S. mansoni eggs take advantage of the host environment through metabolic reprogramming of hepatocytes and enterocytes. By inducing DNA damage, this neglected tropical disease might promote hepatocellular damage and thus influence international health efforts.
Collapse
Key Words
- DMPE, dimethyl-phosphatidylethanolamine
- DNA damage
- GS, glycogen synthase
- GSH, reduced L-glutathione
- HCC, hepatocellular carcinoma
- Lipid
- MALDI-MSI, matrix assisted laser desorption/ionization mass spectrometry imaging
- MDA, malondialdehyde
- OA, oleic acid
- Oxidative stress
- PAS, periodic acid-Schiff
- PC, phosphatidylcholine
- PDH, pyruvate dehydrogenase
- PE, phosphatidylethanolamine
- PLIN2, perilipin 2
- Parasite
- ROS, reactive oxygen species
- S. japonicum, Schistosoma japonicum
- S. mansoni, Schistosoma mansoni
- SEA, soluble egg antigens
- Schistosomiasis
- TG, triglyceride
- bs, bisex
- flOA, fluorescently labelled OA
- hRF, retention factor ∗ 100
- ms, monosex
- ni, non-infected
Collapse
Affiliation(s)
- Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Sarah Gindner
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Anne Baier
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Laura Hehr
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Nicola Buss
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Lena Russ
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Sarah Wrobel
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Victoria Wirth
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Kuscha Tabatabai
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Thomas Quack
- Institute of Parasitology, BFS, Justus Liebig University, Schubertstr. 81, 35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, BFS, Justus Liebig University, Schubertstr. 81, 35392 Giessen, Germany
| | - Patrik Kadesch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Katja R. Wiedemann
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Annabel Mehl
- Institute of Nutritional Science, Food Science Department, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud Morlock
- Institute of Nutritional Science, Food Science Department, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gabriele Schramm
- Experimental Pneumology, Priority Research Area Asthma & Allergy, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
| | - Jörn Pons-Kühnemann
- Institute of Medical Informatics, Justus Liebig University, Rudolf-Buchheim-Str. 6. 35392 Giessen, Germany
| | - Franco H. Falcone
- Institute of Parasitology, BFS, Justus Liebig University, Schubertstr. 81, 35392 Giessen, Germany
| | - R. Alan Wilson
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Peter Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS, Justus Liebig University, Schubertstr. 81, 35392 Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, Klinikstr. 33, 35392 Giessen, Germany,Corresponding author. Address: Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11, 35392 Giessen, Germany. Tel.: +49 641 99 42527, fax: +49 641 99 42333.
| |
Collapse
|
38
|
Girod V, Houssier R, Sahmer K, Ghoris MJ, Caby S, Melnyk O, Dissous C, Senez V, Vicogne J. A self-purifying microfluidic system for identifying drugs acting against adult schistosomes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220648. [PMID: 36465675 PMCID: PMC9709518 DOI: 10.1098/rsos.220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several Schistosoma flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity. We describe here a self-purifying microfluidic system enabling the selection of healthy adult worms and the identification of molecules acting instantly on the parasite. The worms are assayed in a dynamic environment that eliminates unhealthy worms that cannot attach firmly to the chip walls prior to being exposed to the drug. The detachment of the worms is also used as second step readout for identifying active compounds. We have validated this new fluidic screening approach using the two major antihelmintic drugs, praziquantel and artemisinin. The reported dynamic system is simple to produce and to parallelize. Importantly, it enables a quick and sensitive detection of antischistosomal compounds in no more than one hour.
Collapse
Affiliation(s)
- Vincent Girod
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
- University of Lille, CNRS, UPHF, JUNIA, CLI, UMR 8520 – IEMN – Institut d'Electronique, de Microélectronique et de Nanotechnologie, Villeneuve d'Ascq F-59650, France
| | - Robin Houssier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Karin Sahmer
- University of Lille, IMT Lille Douai, University of Artois, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Marie-José Ghoris
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Caby
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Colette Dissous
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Senez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
39
|
Maes T, De Corte Z, Vangestel C, Virgilio M, Smitz N, Djuikwo-Teukeng FF, Papadaki MI, Huyse T. Large-scale and small-scale population genetic structure of the medically important gastropod species Bulinus truncatus (Gastropoda, Heterobranchia). Parasit Vectors 2022; 15:328. [PMID: 36123605 PMCID: PMC9484234 DOI: 10.1186/s13071-022-05445-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Gastropod snails remain strongly understudied, despite their important role in transmitting parasitic diseases. Knowledge of their distribution and population dynamics increases our understanding of the processes driving disease transmission. We report the first study to use high-throughput sequencing (HTS) to elucidate the population genetic structure of the hermaphroditic snail Bulinus truncatus (Gastropoda, Heterobranchia) on a regional (17-150 km) and inter-regional (1000-5400 km) scale. This snail species acts as an intermediate host of Schistosoma haematobium and Schistosoma bovis, which cause human and animal schistosomiasis respectively. METHODS Bulinus truncatus snails were collected in Senegal, Cameroon, Egypt and France and identified through DNA barcoding. A single-end genotyping-by-sequencing (GBS) library, comprising 87 snail specimens from the respective countries, was built and sequenced on an Illumina HiSeq 2000 platform. Reads were mapped against S. bovis and S. haematobium reference genomes to identify schistosome infections, and single nucleotide polymorphisms (SNPs) were scored using the Stacks pipeline. These SNPs were used to estimate genetic diversity, assess population structure and construct phylogenetic trees of B. truncatus. RESULTS A total of 10,750 SNPs were scored and used in downstream analyses. The phylogenetic analysis identified five clades, each consisting of snails from a single country but with two distinct clades within Senegal. Genetic diversity was low in all populations, reflecting high selfing rates, but varied between locations due to habitat variability. Significant genetic differentiation and isolation by distance patterns were observed at both spatial scales, indicating that gene flow is not strong enough to counteract the effects of population bottlenecks, high selfing rates and genetic drift. Remarkably, the population genetic differentiation on a regional scale (i.e. within Senegal) was as large as that between populations on an inter-regional scale. The blind GBS technique was able to pick up parasite DNA in snail tissue, demonstrating the potential of HTS techniques to further elucidate the role of snail species in parasite transmission. CONCLUSIONS HTS techniques offer a valuable toolbox to further investigate the population genetic patterns of intermediate schistosome host snails and the role of snail species in parasite transmission.
Collapse
Affiliation(s)
- Tim Maes
- Department of Biology, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | - Zoë De Corte
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
- Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | - Nathalie Smitz
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | | | - Maria Ioanna Papadaki
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tine Huyse
- Department of Biology, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| |
Collapse
|
40
|
Díaz AV, Lambert S, Neves MI, Borlase A, Léger E, Diouf ND, Sène M, Webster JP, Walker M. Modelling livestock test-and-treat: A novel One Health strategy to control schistosomiasis and mitigate drug resistance. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.893066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis, a neglected tropical disease, is a widespread chronic helminthiasis reported in 78 countries, predominantly those within sub-Saharan Africa, as well as Latin America, Asia, and most recently, even Europe. Species of the causative blood fluke infect not only humans but also animals, and hybrids between previously assumed human-specific and animal-specific schistosomes are being increasingly reported. Existing control programs across Africa focus on humans and rely heavily on mass drug administration of praziquantel, the sole drug available against schistosomiasis. Praziquantel is safe and highly efficacious but could become ineffective if resistance emerges. To reach the revised World Health Organization goal of elimination of schistosomiasis as a public health problem, and interruption of transmission within selected regions, by 2030, new consideration of the role of animal reservoirs in human transmission in general, and whether to also treat livestock with praziquantel in particular, has been raised. However, whilst there are no dedicated control programs targeting animals outside of Asia, there are emerging reports of the use and misuse of praziquantel in livestock across Africa. Therefore, to effectively treat livestock in Africa and to help mitigate against the potential evolution of praziquantel resistance, structured control strategies are required. Here, using a transmission modelling approach, we evaluate the potential effectiveness of a theoretical test-and-treat (TnT) strategy to control bovine schistosomiasis using a currently available point-of-care diagnostic test (developed for human use) to detect circulating cathodic antigen (POC-CCA). We show that implementing TnT at herd-level from 2022 to 2030 could be highly effective in suppressing infection in cattle and even, in lower prevalence settings, reaching nominal ‘elimination’ targets. We highlight the importance of enhancing the specificity of POC-CCA for use in livestock to avoid unnecessary treatments and discuss the outstanding challenges associated with implementing TnT as part of a holistic One Health approach to tackling human and animal schistosomiasis.
Collapse
|
41
|
Miranda GS, Rodrigues JGM, Silva JKADO, Camelo GMA, Silva-Souza N, Neves RH, Machado-Silva JR, Negrão-Corrêa DA. New challenges for the control of human schistosomiasis: The possible impact of wild rodents in Schistosoma mansoni transmission. Acta Trop 2022; 236:106677. [PMID: 36063905 DOI: 10.1016/j.actatropica.2022.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a neglected parasitic disease caused by digenean trematodes from the genus Schistosoma that affects millions of people worldwide. Despite efforts to control its transmission, this disease remains active within several endemic regions of Africa, Asia, and the Americas. In addition to the deficits in sanitation and educational structure, another major obstacle hindering the eradication of schistosomiasis is the ability of Schistosoma spp. to naturally infect multiple vertebrate hosts, particularly wild rodents. Due to climate change and other anthropogenic disturbances, contact between humans and wild animals has increased, and this has contributed to more frequent interactions between Schistosoma species that typically infect different hosts. This new transmission dynamic involving Schistosoma spp., humans, wild rodents, and livestock could potentially increase the frequency of Schistosoma hybridization and the establishment of new genotypes and strains. Although it is not currently possible to precisely measure how this biological phenomenon affects the epidemiology and morbidity of schistosomiasis, we speculate that these Schistosoma variants may negatively impact control strategies, treatment regimens, and disease burden in humans. In the present study, we discuss the natural infections of wild rodents with Schistosoma spp., the role of these animals as Schistosoma spp. reservoirs, and how they may select hybrids and strains of Schistosoma mansoni. We also discuss measures required to shed light on the actual role of the wild rodents Nectomys squamipes and Holochilus sciureus in the transmission and morbidity of schistosomiasis in Brazil.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil; Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Jeferson Kelvin Alves de Oliveira Silva
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Nêuton Silva-Souza
- Department of Chemistry and Biology, State University of Maranhão, São Luis, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil.
| |
Collapse
|
42
|
Inceboz T. One Health Concept against Schistosomiasis: An Overview. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Schistosomiasis (bilharziasis) is a parasitic disease caused by Schistosoma spp. that belongs to trematode worms. These worms are known as “blood parasites”. This disease is included in “neglected tropical diseases” and “water-borne diseases”. The main species are Schistosoma (S.) haematobium, S. japonicum, S. mansoni, S. intercalatum, S. mekongi, S. guineensis and S. intercalatum, though there are more than 20 different species. The parasite in the definitive host may affect many organs and systems. The disease may become chronic and lasts 3–8 years and even up to 20–30 years. The definitive host is primarily human; however, in endemic areas animals such as monkeys, cattle, horses, rodents, cats, dogs are reservoirs. According to World Health Organization (WHO), schistosomiasis affects 250 million people, and causes 1.9 million deaths yearly in endemic areas. Moreover, due to global warming, the spread of the disease may increase. The effective way to fight against schistosomiasis is following the “one-health system”. Indeed, to overcome or “eradicate” this disease, we have to strive against different forms at different evolutionary stages of the worm such as, forms in humans, domestic or wild animals, and freshwater snails. If we combine the knowledge of professionals, we may achieve this goal.
Collapse
|
43
|
Rennar GA, Gallinger TL, Mäder P, Lange-Grünweller K, Haeberlein S, Grünweller A, Grevelding CG, Schlitzer M. Disulfiram and dithiocarbamate analogues demonstrate promising antischistosomal effects. Eur J Med Chem 2022; 242:114641. [PMID: 36027862 DOI: 10.1016/j.ejmech.2022.114641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Schistosomiasis is a neglected tropical disease with more than 200 million new infections per year. It is caused by parasites of the genus Schistosoma and can lead to death if left untreated. Currently, only two drugs are available to combat schistosomiasis: praziquantel and, to a limited extent, oxamniquine. However, the intensive use of these two drugs leads to an increased probability of the emergence of resistance. Thus, the search for new active substances and their targeted development are mandatory. In this study the substance class of "dithiocarbamates" and their potential as antischistosomal agents is highlighted. These compounds are derived from the basic structure of the human aldehyde dehydrogenase inhibitor disulfiram (tetraethylthiuram disulfide, DSF) and its metabolites. Our compounds revealed promising activity (in vitro) against adults of Schistosoma mansoni, such as the reduction of egg production, pairing stability, vitality, and motility. Moreover, tegument damage as well as gut dilatations or even the death of the parasite were observed. We performed detailed structure-activity relationship studies on both sides of the dithiocarbamate core leading to a library of approximately 300 derivatives (116 derivatives shown here). Starting with 100 μm we improved antischistosomal activity down to 25 μm by substitution of the single bonded sulfur atom for example with different benzyl moieties and integration of the two residues on the nitrogen atom into a cyclic structure like piperazine. Its derivatization at the 4-nitrogen with a sulfonyl group or an acyl group led to the most active derivatives of this study which were active at 10 μm. In light of this SAR study, we identified 17 derivatives that significantly reduced motility and induced several other phenotypes at 25 μm, and importantly five of them have antischistosomal activity also at 10 μm. These derivatives were found to be non-cytotoxic in two human cell lines at 100 μm. Therefore, dithiocarbamates seem to be interesting new candidates for further antischistosomal drug development.
Collapse
Affiliation(s)
- Georg A Rennar
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Tom L Gallinger
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Patrick Mäder
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Kerstin Lange-Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Arnold Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Christoph G Grevelding
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany.
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany.
| |
Collapse
|
44
|
Berger DJ, Léger E, Sankaranarayanan G, Sène M, Diouf ND, Rabone M, Emery A, Allan F, Cotton JA, Berriman M, Webster JP. Genomic evidence of contemporary hybridization between Schistosoma species. PLoS Pathog 2022; 18:e1010706. [PMID: 35939508 PMCID: PMC9387932 DOI: 10.1371/journal.ppat.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.
Collapse
Affiliation(s)
- Duncan J. Berger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D. Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Aidan Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P. Webster
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
45
|
Castillo-Fernández N, Soriano-Pérez MJ, Lozano-Serrano AB, Luzón-García MP, Cabeza-Barrera MI, Vázquez-Villegas J, Pérez-Moyano R, Moya-Ruíz A, Salas-Coronas J. Misleading eosinophil counts in migration-associated malaria: do not miss hidden helminthic co-infections. Travel Med Infect Dis 2022; 49:102415. [DOI: 10.1016/j.tmaid.2022.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
|
46
|
Webb AJ, Allan F, Kelwick RJR, Beshah FZ, Kinung’hi SM, Templeton MR, Emery AM, Freemont PS. Specific Nucleic AcId Ligation for the detection of Schistosomes: SNAILS. PLoS Negl Trop Dis 2022; 16:e0010632. [PMID: 35881651 PMCID: PMC9355235 DOI: 10.1371/journal.pntd.0010632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/05/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis, also known as bilharzia or snail fever, is a debilitating neglected tropical disease (NTD), caused by parasitic trematode flatworms of the genus Schistosoma, that has an annual mortality rate of 280,000 people in sub-Saharan Africa alone. Schistosomiasis is transmitted via contact with water bodies that are home to the intermediate host snail which shed the infective cercariae into the water. Schistosome lifecycles are complex, and while not all schistosome species cause human disease, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform evidence-based local environmental, food security and health systems policy making. Crucially, schistosomiasis disproportionally affects low- and middle-income (LMIC) countries and for that reason, environmental screening of water bodies for schistosomes may aid with the targeting of water, sanitation, and hygiene (WASH) interventions and preventive chemotherapy to regions at highest risk of schistosomiasis transmission, and to monitor the effectiveness of such interventions at reducing the risk over time. To this end, we developed a DNA-based biosensor termed Specific Nucleic AcId Ligation for the detection of Schistosomes or ‘SNAILS’. Here we show that ‘SNAILS’ enables species-specific detection from genomic DNA (gDNA) samples that were collected from the field in endemic areas. Schistosomiasis is a neglected tropical disease, caused by the parasitic trematodes of the genus Schistosoma. Schistosomiasis is endemic to regions within Africa, Asia and South America with at least 250 million people infected and a further 779 million at risk of infection. The lifecycle of schistosomes are complex and involve specific freshwater intermediate snail hosts which shed infective cercariae into the waterbodies they inhabit. Schistosomiasis is subsequently transmitted to humans or animals that contact cercariae contaminated water. In Africa, human disease is largely caused by Schistosoma mansoni and Schistosoma haematobium. However, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform local environmental, food security and health programmes. To this end, we re-purposed a nucleic acid detection technology to enable the detection of different schistosome species. Our DNA-biosensor, abbreviated as ‘SNAILS’, employs carefully designed probes that recognise species-specific DNA sequences, coupled with enzymatic amplification steps, and a fluorescent signal-dye to indicate a positive detection. ‘SNAILS’ successfully differentiates between S. mansoni and S. haematobium samples and could conceivably be employed within future global health programmes.
Collapse
Affiliation(s)
- Alexander James Webb
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Richard J. R. Kelwick
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Feleke Zewge Beshah
- College of Natural and Computational Sciences, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | | | - Michael R. Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Aidan Mark Emery
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- * E-mail: (AME); (PSF)
| | - Paul S. Freemont
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, London, United Kingdom
- * E-mail: (AME); (PSF)
| |
Collapse
|
47
|
Sánchez-Marqués R, Mas-Coma S, Salas-Coronas J, Boissier J, Bargues MD. Research on Schistosomiasis in the Era of the COVID-19 Pandemic: A Bibliometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138051. [PMID: 35805707 PMCID: PMC9266104 DOI: 10.3390/ijerph19138051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
The objectives of this work are to check whether the COVID-19 pandemic affected the research on schistosomiasis, to provide an insight into the most productive countries and journals and the most cited publications, and to analyse any association between the total publications of countries and a set of socio-economic and demographic factors. Based on PRISMA methodology, we used the Scopus database to search for articles published between 1 January 2020 and 26 March 2022. VOSviewer was used to generate the co-authorship and the co-occurrence networks, and Spearman’s rank correlation was applied to study associations. A total of 1988 articles were included in the study. Although we found that the year-wise distribution of publications suggests no impact on schistosomiasis research, many resources have been devoted to research on COVID-19, and the Global Schistosomiasis Alliance revealed the main activities for eradication of schistosomiasis had been affected. The most productive country was the United States of America. The articles were mainly published in PLoS Neglected Tropical Diseases. The most prolific funding institution was the National Natural Science Foundation of China. The total publications per country were significantly correlated with population, GERD, and researchers per million inhabitants, but not with GDP per capita and MPM.
Collapse
Affiliation(s)
- Raquel Sánchez-Marqués
- Departmento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estellés s/n, Burjassot, 46100 Valencia, Spain; (S.M.-C.); (M.D.B.)
- Correspondence:
| | - Santiago Mas-Coma
- Departmento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estellés s/n, Burjassot, 46100 Valencia, Spain; (S.M.-C.); (M.D.B.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Joaquín Salas-Coronas
- Tropical Medicine Unit, Hospital del Poniente, Ctra. de Almerimar 31, El Ejido, 04700 Almería, Spain;
| | - Jerôme Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France;
| | - María Dolores Bargues
- Departmento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estellés s/n, Burjassot, 46100 Valencia, Spain; (S.M.-C.); (M.D.B.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
48
|
Wellinghausen N, Moné H, Mouahid G, Nebel A, Tappe D, Gabriel M. A family cluster of schistosomiasis acquired in Solenzara River, Corsica (France) - Solenzara River is clearly a transmission site for schistosomiasis in Corsica. Parasitol Res 2022; 121:2449-2452. [PMID: 35715618 PMCID: PMC9279187 DOI: 10.1007/s00436-022-07574-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
We report a patient with urogenital schistosomiasis and three cases of subclinical infection within one family acquired from Solenzara River, Corsica, in 2019. Our cases confirm that transmission of schistosomiasis in Corsica is ongoing and has been extended from the Cavu River to the Solenzara River. Solenzara River is clearly a transmission site for schistosomiasis in Corsica. Public health efforts are recommended to uncover and prevent further cases.
Collapse
Affiliation(s)
| | - Hélène Moné
- UMR 5244 IHPE Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, CNRS, IFREMER, Université de Perpignan, 66860, Perpignan, France
| | - Gabriel Mouahid
- UMR 5244 IHPE Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, CNRS, IFREMER, Université de Perpignan, 66860, Perpignan, France
| | | | - Dennis Tappe
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Martin Gabriel
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
49
|
Angora EK, Vangraefschepe A, Allienne JF, Menan H, Coulibaly JT, Meïté A, Raso G, Winkler MS, Yavo W, Touré AO, N'Goran EK, Zinsstag J, Utzinger J, Balmer O, Boissier J. Population genetic structure of Schistosoma haematobium and Schistosoma haematobium × Schistosoma bovis hybrids among school-aged children in Côte d'Ivoire. Parasite 2022; 29:23. [PMID: 35522066 PMCID: PMC9074780 DOI: 10.1051/parasite/2022023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
While population genetics of Schistosoma haematobium have been investigated in West Africa, only scant data are available from Côte d’Ivoire. The purpose of this study was to analyze both genetic variability and genetic structure among S. haematobium populations and to quantify the frequency of S. haematobium × S. bovis hybrids in school-aged children in different parts of Côte d’Ivoire. Urine samples were subjected to a filtration method and examined microscopically for Schistosoma eggs in four sites in the western and southern parts of Côte d’Ivoire. A total of 2692 miracidia were collected individually and stored on Whatman® FTA cards. Of these, 2561 miracidia were successfully genotyped for species and hybrid identification using rapid diagnostic multiplex mitochondrial cox1 PCR and PCR Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the nuclear ITS2 region. From 2164 miracidia, 1966 (90.9%) were successfully genotyped using at least 10 nuclear microsatellite loci to investigate genetic diversity and population structure. Significant differences were found between sites in all genetic diversity indices and genotypic differentiation was observed between the site in the West and the three sites in the East. Analysis at the infrapopulation level revealed clustering of parasite genotypes within individual children, particularly in Duekoué (West) and Sikensi (East). Of the six possible cox1-ITS2 genetic profiles obtained from miracidia, S. bovis cox1 × S. haematobium ITS2 (42.0%) was the most commonly observed in the populations. We identified only 15 miracidia (0.7%) with an S. bovis cox1 × S. bovis ITS2 genotype. Our study provides new insights into the population genetics of S. haematobium and S. haematobium × S. bovis hybrids in humans in Côte d’Ivoire and we advocate for researching hybrid schistosomes in animals such as rodents and cattle in Côte d’Ivoire.
Collapse
Affiliation(s)
- Etienne K Angora
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Alexane Vangraefschepe
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-François Allienne
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Hervé Menan
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Jean T Coulibaly
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Mirko S Winkler
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - William Yavo
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - André O Touré
- Institut Pasteur de Côte d'Ivoire, BPV 490 Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
50
|
Answer to April 2022 Photo Quiz. J Clin Microbiol 2022; 60:e0124721. [PMID: 35442073 DOI: 10.1128/jcm.01247-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|