1
|
Benatar M, Macklin EA, Malaspina A, Rogers ML, Hornstein E, Lombardi V, Renfrey D, Shepheard S, Magen I, Cohen Y, Granit V, Statland JM, Heckmann JM, Rademakers R, McHutchison CA, Petrucelli L, McMillan CT, Wuu J. Prognostic clinical and biological markers for amyotrophic lateral sclerosis disease progression: validation and implications for clinical trial design and analysis. EBioMedicine 2024; 108:105323. [PMID: 39270623 PMCID: PMC11415817 DOI: 10.1016/j.ebiom.2024.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND With increasing recognition of the value of incorporating prognostic markers into amyotrophic lateral sclerosis (ALS) trial design and analysis plans, there is a pressing need to understand which among the prevailing clinical and biochemical markers have real value, and how they can be optimally used. METHODS A subset of patients with ALS recruited through the multi-center Phenotype-Genotype-Biomarker study (clinicaltrials.gov: NCT02327845) was identified as "trial-like" based on meeting common trial eligibility criteria. Clinical phenotyping was performed by evaluators trained in relevant assessments. Serum neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH), urinary p75ECD, plasma microRNA-181, and an array of biochemical and clinical measures were evaluated for their prognostic value. Associations with functional progression were estimated by random-slopes mixed models of ALS functional rating scale-revised (ALSFRS-R) score. Associations with survival were estimated by log-rank test and Cox proportional hazards regression. Potential sample size savings from adjusting for given biomarkers in a hypothetical trial were estimated. FINDINGS Baseline serum NfL is a powerful prognostic biomarker, predicting survival and ALSFRS-R rate of decline. Serum NfL <40 pg/mL and >100 pg/mL correspond to future ALSFRS-R slopes of ∼0.5 and ∼1.5 points/month, respectively. Serum NfL also adds value to the best available clinical predictors, encapsulated by the European Network to Cure ALS (ENCALS) predictor score. In models of functional decline, the addition of NfL yields ∼25% sample size saving above those achieved by inclusion of either clinical predictors or ENCALS score alone. The prognostic value of serum pNfH, urinary p75ECD, and plasma miR-181ab is more limited. INTERPRETATION Among the multitude of biomarkers considered, only blood NfL adds value to the ENCALS prediction model and should be incorporated into analysis plans for all ongoing and future ALS trials. Defined thresholds of NfL might also be used in trial design, for enrichment or stratified randomisation, to improve trial efficiency. FUNDING NIH (U01-NS107027, U54-NS092091). ALSA (16-TACL-242).
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Eric A Macklin
- Departments of Neurology and Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Center, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Mary-Louise Rogers
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Eran Hornstein
- Department of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Israel
| | - Vittoria Lombardi
- UCL Queen Square Motor Neuron Disease Center, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Danielle Renfrey
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Stephanie Shepheard
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Iddo Magen
- Department of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Israel
| | - Yahel Cohen
- Department of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Israel
| | - Volkan Granit
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeannine M Heckmann
- Division of Neurology, Department of Medicine, University of Cape Town, South Africa
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Caroline A McHutchison
- School of Philosophy, Psychology, and Language Sciences, The University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
| | | | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
3
|
Benatar M, Macklin EA, Malaspina A, Rogers ML, Hornstein E, Lombardi V, Renfrey D, Shepheard S, Magen I, Cohen Y, Granit V, Statland JM, Heckmann JM, Rademakers R, McHutchison CA, Petrucelli L, McMillan CT, Wuu J. Prognostic Clinical and Biological Markers for Amyotrophic Lateral Sclerosis Disease Progression: Validation and Implications for Clinical Trial Design and Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311876. [PMID: 39185513 PMCID: PMC11343261 DOI: 10.1101/2024.08.12.24311876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background With increasing recognition of the value of incorporating prognostic markers into amyotrophic lateral sclerosis (ALS) trial design and analysis plans, there is a pressing need to understand which among the prevailing clinical and biochemical markers have real value, and how they can be optimally used. Methods A subset of patients with ALS recruited through the multi-center Phenotype-Genotype-Biomarker study (clinicaltrials.gov: NCT02327845) was identified as "trial-like" based on meeting common trial eligibility criteria. Clinical phenotyping was performed by evaluators trained in relevant assessments. Serum neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH), urinary p75ECD, plasma microRNA-181, and an array of biochemical and clinical measures were evaluated for their prognostic value. Associations with functional progression were estimated by random-slopes mixed models of ALS functional rating scale-revised (ALSFRS-R) score. Associations with survival were estimated by log-rank test and Cox proportional hazards regression. Potential sample size savings from adjusting for given biomarkers in a hypothetical trial were estimated. Findings Baseline serum NfL is a powerful prognostic biomarker, predicting survival and ALSFRS-R rate of decline. Serum NfL <40pg/ml and >100pg/ml correspond to future ALSFRS-R slopes of ~0.5 and 1.5 points/month, respectively. Serum NfL also adds value to the best available clinical predictors, encapsulated by the European Network to Cure ALS (ENCALS) predictor score. In models of functional decline, the addition of NfL yields ~25% sample size saving above those achieved by inclusion of either clinical predictors or ENCALS score alone. The prognostic value of serum pNfH, urinary p75ECD, and plasma miR-181ab is more limited. Interpretation Among the multitude of biomarkers considered, only blood NfL adds value to the ENCALS prediction model and should be incorporated into analysis plans for all ongoing and future ALS trials. Defined thresholds of NfL might also be used in trial design, for enrichment or stratified randomisation, to improve trial efficiency. Funding NIH (U01-NS107027, U54-NS092091). ALSA (16-TACL-242).
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric A Macklin
- Departments of Neurology and Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Center, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Mary-Louise Rogers
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Eran Hornstein
- Department of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Israel
| | - Vittoria Lombardi
- UCL Queen Square Motor Neuron Disease Center, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Danielle Renfrey
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Stephanie Shepheard
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Iddo Magen
- Department of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Israel
| | - Yahel Cohen
- Department of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Israel
| | - Volkan Granit
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS USA
| | - Jeannine M Heckmann
- Division of Neurology, Department of Medicine, University of Cape Town, South Africa
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Caroline A McHutchison
- School of Philosophy, Psychology, and Language Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
| | | | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Luo R, Hu X, Li X, Lei F, Liao P, Yi L, Zhang X, Zhou B, Jiang R. Dysfunctional astrocyte glutamate uptake in the hypothalamic paraventricular nucleus contributes to visceral pain and anxiety-like behavior in mice with chronic pancreatitis. Glia 2024. [PMID: 39046219 DOI: 10.1002/glia.24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Abdominal visceral pain is a predominant symptom in patients with chronic pancreatitis (CP); however, the underlying mechanism of pain in CP remains elusive. We hypothesized that astrocytes in the hypothalamic paraventricular nucleus (PVH) contribute to CP pain pathogenesis. A mouse model of CP was established by repeated intraperitoneal administration of caerulein to induce abdominal visceral pain. Abdominal mechanical stimulation, open field and elevated plus maze tests were performed to assess visceral pain and anxiety-like behavior. Fiber photometry, brain slice Ca2+ imaging, electrophysiology, and immunohistochemistry were used to investigate the underlying mechanisms. Mice with CP displayed long-term abdominal mechanical allodynia and comorbid anxiety, which was accompanied by astrocyte glial fibrillary acidic protein reactivity, elevated Ca2+ signaling, and astroglial glutamate transporter-1 (GLT-1) deficits in the PVH. Specifically, reducing astrocyte Ca2+ signaling in the PVH via chemogenetics significantly rescued GLT-1 deficits and alleviated mechanical allodynia and anxiety in mice with CP. Furthermore, we found that GLT-1 deficits directly contributed to the hyperexcitability of VGLUT2PVH neurons in mice with CP, and that pharmacological activation of GLT-1 alleviated the hyperexcitability of VGLUT2PVH neurons, abdominal visceral pain, and anxiety in these mice. Taken together, our data suggest that dysfunctional astrocyte glutamate uptake in the PVH contributes to visceral pain and anxiety in mice with CP, highlighting GLT-1 as a potential therapeutic target for chronic pain in patients experiencing CP.
Collapse
Affiliation(s)
- Rong Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Lei
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Yi
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Vu TD, Luong DT, Ho TT, Nguyen Thi TM, Singh V, Chu DT. Drug repurposing for regenerative medicine and cosmetics: Scientific, technological and economic issues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:337-353. [PMID: 38942543 DOI: 10.1016/bs.pmbts.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Regenerative medicine and cosmetics are currently two outstanding fields for drug discovery. Although many pharmaceutical products for regenerative medicine and cosmetics have received approval by official agencies, several challenges are still needed to overcome, especially financial and time issues. As a result, drug repositioning, which is the usage of previously approved drugs for new treatment, stands out as a promising approach to tackle these problems. Recently, increasing scientific evidence is collected to demonstrate the applicability of this novel method in the field of regenerative medicine and cosmetics. Experts in drug development have also taken advantage of novel technologies to discover new candidates for repositioning purposes following computational approach, one of two main approaches of drug repositioning. Therefore, numerous repurposed candidates have obtained approval to enter the market and have witnessed financial success such as minoxidil and fingolimod. The benefits of drug repositioning are undeniable for regenerative medicine and cosmetics. However, some aspects still need to be carefully considered regarding this method including actual effectiveness during clinical trials, patent regulations, data integration and analysis, publicly unavailable databases as well as environmental concerns and more effort are required to overcome these obstacles.
Collapse
Affiliation(s)
- Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Duc Tri Luong
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Tien Ho
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-My Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
7
|
Salzinger A, Ramesh V, Das Sharma S, Chandran S, Thangaraj Selvaraj B. Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2024; 13:792. [PMID: 38786016 PMCID: PMC11120636 DOI: 10.3390/cells13100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.
Collapse
Affiliation(s)
- Andrea Salzinger
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Vidya Ramesh
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Shreya Das Sharma
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bhuvaneish Thangaraj Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
8
|
Odierna GL, Vucic S, Dyer M, Dickson T, Woodhouse A, Blizzard C. How do we get from hyperexcitability to excitotoxicity in amyotrophic lateral sclerosis? Brain 2024; 147:1610-1621. [PMID: 38408864 PMCID: PMC11068114 DOI: 10.1093/brain/awae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease that, at present, has no effective cure. Evidence of increased circulating glutamate and hyperexcitability of the motor cortex in patients with amyotrophic lateral sclerosis have provided an empirical support base for the 'dying forward' excitotoxicity hypothesis. The hypothesis postulates that increased activation of upper motor neurons spreads pathology to lower motor neurons in the spinal cord in the form of excessive glutamate release, which triggers excitotoxic processes. Many clinical trials have focused on therapies that target excitotoxicity via dampening neuronal activation, but not all are effective. As such, there is a growing tension between the rising tide of evidence for the 'dying forward' excitotoxicity hypothesis and the failure of therapies that target neuronal activation. One possible solution to these contradictory outcomes is that our interpretation of the current evidence requires revision in the context of appreciating the complexity of the nervous system and the limitations of the neurobiological assays we use to study it. In this review we provide an evaluation of evidence relevant to the 'dying forward' excitotoxicity hypothesis and by doing so, identify key gaps in our knowledge that need to be addressed. We hope to provide a road map from hyperexcitability to excitotoxicity so that we can better develop therapies for patients suffering from amyotrophic lateral sclerosis. We conclude that studies of upper motor neuron activity and their synaptic output will play a decisive role in the future of amyotrophic lateral sclerosis therapy.
Collapse
Affiliation(s)
- G Lorenzo Odierna
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2050, Australia
| | - Marcus Dyer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Adele Woodhouse
- The Wicking Dementia Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Catherine Blizzard
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
9
|
Genge A, Wainwright S, Vande Velde C. Amyotrophic lateral sclerosis: exploring pathophysiology in the context of treatment. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:225-236. [PMID: 38001557 DOI: 10.1080/21678421.2023.2278503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex, neurodegenerative disorder in which alterations in structural, physiological, and metabolic parameters act synergistically. Over the last decade there has been a considerable focus on developing drugs to slow the progression of the disease. Despite this, only four disease-modifying therapies are approved in North America. Although additional research is required for a thorough understanding of ALS, we have accumulated a large amount of knowledge that could be better integrated into future clinical trials to accelerate drug development and provide patients with improved treatment options. It is likely that future, successful ALS treatments will take a multi-pronged therapeutic approach, targeting different pathways, akin to personalized medicine in oncology. In this review, we discuss the link between ALS pathophysiology and treatments, looking at the therapeutic failures as learning opportunities that can help us refine and optimize drug development.
Collapse
Affiliation(s)
- Angela Genge
- Clinical Research Unit Director, ALS Clinic, Montreal, Quebec, Canada
| | - Steven Wainwright
- Amylyx Pharmaceuticals, Inc, Vancouver, British Columbia, Canada, and
| | - Christine Vande Velde
- CHUM Research Center, Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Edison P. Astroglial activation: Current concepts and future directions. Alzheimers Dement 2024; 20:3034-3053. [PMID: 38305570 PMCID: PMC11032537 DOI: 10.1002/alz.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
Astrocytes are abundantly and ubiquitously expressed cell types with diverse functions throughout the central nervous system. Astrocytes show remarkable plasticity and exhibit morphological, molecular, and functional remodeling in response to injury, disease, or infection of the central nervous system, as evident in neurodegenerative diseases. Astroglial mediated inflammation plays a prominent role in the pathogenesis of neurodegenerative diseases. This review focus on the role of astrocytes as essential players in neuroinflammation and discuss their morphological and functional heterogeneity in the normal central nervous system and explore the spatial and temporal variations in astroglial phenotypes observed under different disease conditions. This review discusses the intimate relationship of astrocytes to pathological hallmarks of neurodegenerative diseases. Finally, this review considers the putative therapeutic strategies that can be deployed to modulate the astroglial functions in neurodegenerative diseases. HIGHLIGHTS: Astroglia mediated neuroinflammation plays a key role in the pathogenesis of neurodegenerative diseases. Activated astrocytes exhibit diverse phenotypes in a region-specific manner in brain and interact with β-amyloid, tau, and α-synuclein species as well as with microglia and neuronal circuits. Activated astrocytes are likely to influence the trajectory of disease progression of neurodegenerative diseases, as determined by the stage of disease, individual susceptibility, and state of astroglial priming. Modulation of astroglial activation may be a therapeutic strategy at various stages in the trajectory of neurodegenerative diseases to modify the disease course.
Collapse
Affiliation(s)
- Paul Edison
- Division of NeurologyDepartment of Brain SciencesFaculty of Medicine, Imperial College LondonLondonUK
- Division of Psychological medicine and clinical neurosciencesSchool of Medicine, Cardiff UniversityWalesUK
| |
Collapse
|
11
|
Takahashi K, Sato K. The Conventional and Breakthrough Tool for the Study of L-Glutamate Transporters. MEMBRANES 2024; 14:77. [PMID: 38668105 PMCID: PMC11052088 DOI: 10.3390/membranes14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
In our recent report, we clarified the direct interaction between the excitatory amino acid transporter (EAAT) 1/2 and polyunsaturated fatty acids (PUFAs) by applying electrophysiological and molecular biological techniques to Xenopus oocytes. Xenopus oocytes have a long history of use in the scientific field, but they are still attractive experimental systems for neuropharmacological studies. We will therefore summarize the pharmacological significance, advantages (especially in the study of EAAT2), and experimental techniques that can be applied to Xenopus oocytes; our new findings concerning L-glutamate (L-Glu) transporters and PUFAs; and the significant outcomes of our data. The data obtained from electrophysiological and molecular biological studies of Xenopus oocytes have provided us with further important questions, such as whether or not some PUFAs can modulate EAATs as allosteric modulators and to what extent docosahexaenoic acid (DHA) affects neurotransmission and thereby affects brain functions. Xenopus oocytes have great advantages in the studies about the interactions between molecules and functional proteins, especially in the case when the expression levels of the proteins are small in cell culture systems without transfections. These are also proper to study the mechanisms underlying the interactions. Based on the data collected in Xenopus oocyte experiments, we can proceed to the next step, i.e., the physiological roles of the compounds and their significances. In the case of EAAT2, the effects on the neurotransmission should be examined by electrophysiological approach using acute brain slices. For new drug development, pharmacokinetics pharmacodynamics (PKPD) data and blood brain barrier (BBB) penetration data are also necessary. In order not to miss the promising candidate compounds at the primary stages of drug development, we should reconsider using Xenopus oocytes in the early phase of drug development.
Collapse
Grants
- a Research Grant on Regulatory Harmonization and Evaluation of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics from AMED, Japan Japan Agency for Medical Research and Development
- KAKENHI 18700373, 21700422, 17K08330 Ministry of Education, Culture, Sports, Science and Technology
- a Grant for the Program for Promotion of Fundamental Studies in Health Sciences of NIBIO National Institute of Biomedical Innovation, Health and Nutrition
- a grant for Research on Risks of Chemicals, a Labor Science Research Grant for Research on New Drug Development MHLW
- a Grant-in-Aid from Hoansha Foundation Hoansha Foundation
Collapse
Affiliation(s)
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan;
| |
Collapse
|
12
|
Shefner JM, Bunte T, Kittle G, Genge A, van den Berg LH. Harmonized standard operating procedures for administering the ALS functional rating scale-revised. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:26-33. [PMID: 37728307 DOI: 10.1080/21678421.2023.2260832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The ALS Functional Rating Scale-Revised is the most commonly used primary outcome measure in current ALS clinical trials. While rigorous training and certification is generally recognized as critical to reliable performance, differences have existed between training in the two groups responsible for most training in ALS outcome measures. We present a harmonized standard operating procedure which is intended to further reduce response variability by the use of identical training in North America and Europe.
Collapse
Affiliation(s)
- Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Tommy Bunte
- Department of Neurology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands, and
| | - Gale Kittle
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Angela Genge
- Department of Neurology, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Leonard H van den Berg
- Department of Neurology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands, and
| |
Collapse
|
13
|
Alasmari MS, Almohammed OA, Hammad AM, Altulayhi KA, Alkadi BK, Alasmari AF, Alqahtani F, Sari Y, Alasmari F. Effects of Beta Lactams on Behavioral Outcomes of Substance Use Disorders: A Meta-Analysis of Preclinical Studies. Neuroscience 2024; 537:58-83. [PMID: 38036059 DOI: 10.1016/j.neuroscience.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Preclinical studies demonstrated that beta-lactams have neuroprotective effects in conditions involving glutamate neuroexcitotoxicity, including substance use disorders (SUDs). This meta-analysis aims to analyze the existing evidences on the effects of beta-lactams as glutamate transporter 1 (GLT-1) upregulators in animal models of SUDs, identification of gaps in the literature, and setting the stage for potential translation into clinical phases. METHODS Meta-analysis was conducted on preclinical studies retrieved systematically from MEDLINE and ScienceDirect databases. Abused substances were identified by refereeing to the National Institute on Drug Abuse (NIDA). The results were quantitatively described with a focus on the behavioral outcomes. Treatment effect sizes were described using standardized mean difference, and they were pooled using random effect model. I2-statistic was used to assess heterogeneity, and Funnel plot and Egger's test were used for assessment of publication bias. RESULTS Literature search yielded a total of 71 studies that were eligible to be included in the analysis. Through these studies, the effects of beta-lactams were evaluated in animal models of nicotine, cannabis, amphetamines, synthetic cathinone, opioids, ethanol, and cocaine use disorders as well as steroids-related aggressive behaviors. Meta-analysis showed that treatments with beta-lactams consistently reduced the pooled undesired effects of the abused substances in several paradigms, including drug-self administration, conditioned place preference, drug seeking behaviors, hyperlocomotion, withdrawal syndromes, tolerance to analgesic effects, hyperalgesia, and hyperthermia. CONCLUSION This meta-analysis revealed that enhancing GLT-1 expression in the brain through beta-lactams seemed to be a promising treatment approach in the context of substance use disorders, as indicated by results in animal models.
Collapse
Affiliation(s)
- Mohammed S Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Omar A Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Saudi Arabia
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Khalid A Altulayhi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Bader K Alkadi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, the University of Toledo, OH, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia.
| |
Collapse
|
14
|
Arabi TZ, Alabdulqader AA, Sabbah BN, Ouban A. Brain-inhabiting bacteria and neurodegenerative diseases: the "brain microbiome" theory. Front Aging Neurosci 2023; 15:1240945. [PMID: 37927338 PMCID: PMC10620799 DOI: 10.3389/fnagi.2023.1240945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Controversies surrounding the validity of the toxic proteinopathy theory of Alzheimer's disease have led the scientific community to seek alternative theories in the pathogenesis of neurodegenerative disorders (ND). Recent studies have provided evidence of a microbiome in the central nervous system. Some have hypothesized that brain-inhabiting organisms induce chronic neuroinflammation, leading to the development of a spectrum of NDs. Bacteria such as Chlamydia pneumoniae, Helicobacter pylori, and Cutibacterium acnes have been found to inhabit the brains of ND patients. Furthermore, several fungi, including Candida and Malassezia species, have been identified in the central nervous system of these patients. However, there remains several limitations to the brain microbiome hypothesis. Varying results across the literature, concerns regarding sample contamination, and the presence of exogenous deoxyribonucleic acids have led to doubts about the hypothesis. These results provide valuable insight into the pathogenesis of NDs. Herein, we provide a review of the evidence for and against the brain microbiome theory and describe the difficulties facing the hypothesis. Additionally, we define possible mechanisms of bacterial invasion of the brain and organism-related neurodegeneration in NDs and the potential therapeutic premises of this theory.
Collapse
Affiliation(s)
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328:121814. [PMID: 37236602 DOI: 10.1016/j.lfs.2023.121814] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Excitotoxicity is classically defined as the neuronal damage caused by the excessive release of glutamate, and subsequent activation of excitatory plasma membrane receptors. In the mammalian brain, this phenomenon is mainly driven by excessive activation of glutamate receptors (GRs). Excitotoxicity is common to several chronic disorders of the Central Nervous System (CNS) and is considered the primary mechanism of neuronal loss of function and cell death in acute CNS diseases (e.g. ischemic stroke). Multiple mechanisms and pathways lead to excitotoxic cell damage including pro-death signaling cascade events downstream of glutamate receptors, calcium (Ca2+) overload, oxidative stress, mitochondrial impairment, excessive glutamate in the synaptic cleft as well as altered energy metabolism. Here, we review the current knowledge on the molecular mechanisms that underlie excitotoxicity, emphasizing the role of Nicotinamide Adenine Dinucleotide (NAD) metabolism. We also discuss novel and promising therapeutic strategies to treat excitotoxicity, highlighting recent clinical trials. Finally, we will shed light on the ongoing search for stroke biomarkers, an exciting and promising field of research, which may improve stroke diagnosis, prognosis and allow better treatment options.
Collapse
Affiliation(s)
- Diogo Neves
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ivan L Salazar
- Multidisciplinary Institute of Ageing, MIA - Portugal, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel M Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal.
| |
Collapse
|
16
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
17
|
Wearable device and smartphone data quantify ALS progression and may provide novel outcome measures. NPJ Digit Med 2023; 6:34. [PMID: 36879025 PMCID: PMC9987377 DOI: 10.1038/s41746-023-00778-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) therapeutic development has largely relied on staff-administered functional rating scales to determine treatment efficacy. We sought to determine if mobile applications (apps) and wearable devices can be used to quantify ALS disease progression through active (surveys) and passive (sensors) data collection. Forty ambulatory adults with ALS were followed for 6-months. The Beiwe app was used to administer the self-entry ALS functional rating scale-revised (ALSFRS-RSE) and the Rasch Overall ALS Disability Scale (ROADS) surveys every 2-4 weeks. Each participant used a wrist-worn activity monitor (ActiGraph Insight Watch) or an ankle-worn activity monitor (Modus StepWatch) continuously. Wearable device wear and app survey compliance were adequate. ALSFRS-R highly correlated with ALSFRS-RSE. Several wearable data daily physical activity measures demonstrated statistically significant change over time and associations with ALSFRS-RSE and ROADS. Active and passive digital data collection hold promise for novel ALS trial outcome measure development.
Collapse
|
18
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
19
|
Fontana IC, Souza DG, Souza DO, Gee A, Zimmer ER, Bongarzone S. A Medicinal Chemistry Perspective on Excitatory Amino Acid Transporter 2 Dysfunction in Neurodegenerative Diseases. J Med Chem 2023; 66:2330-2346. [PMID: 36787643 PMCID: PMC9969404 DOI: 10.1021/acs.jmedchem.2c01572] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).
Collapse
Affiliation(s)
- Igor C Fontana
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 - Neo floor seventh, 141 83 Stockholm, Sweden
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Eduardo R Zimmer
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 90035-003 Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry (PPGBioq), and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 305 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil.,McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Salvatore Bongarzone
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
20
|
Pinto S. Determining the need for caregiver support using ALSFRS-R and its limitations. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:155-156. [PMID: 35209791 DOI: 10.1080/21678421.2022.2041669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Susana Pinto
- Rehabiliteringsmedicin, Akademiska sjukhuset and Instituten för Medicinska Vetenskaper, Uppsala Universitet, Uppsala, Sweden.,Translational Clinical Physiology Unit, Instituto de Medicina Molecular - Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Huber RG, Pandey S, Chhangani D, Rincon-Limas DE, Staff NP, Yeo CJJ. Identification of potential pathways and biomarkers linked to progression in ALS. Ann Clin Transl Neurol 2023; 10:150-165. [PMID: 36533811 PMCID: PMC9930436 DOI: 10.1002/acn3.51697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify potential diagnostic and prognostic biomarkers for clinical management and clinical trials in amyotrophic lateral sclerosis. METHODS We analysed proteomics data of ALS patient-induced pluripotent stem cell-derived motor neurons available through the AnswerALS consortium. After stratifying patients using clinical ALSFRS-R and ALS-CBS scales, we identified differentially expressed proteins indicative of ALS disease severity and progression rate as candidate ALS-related and prognostic biomarkers. Pathway analysis for identified proteins was performed using STITCH. Protein sets were correlated with the effects of drugs using the Connectivity Map tool to identify compounds likely to affect similar pathways. RNAi screening was performed in a Drosophila TDP-43 ALS model to validate pathological relevance. A statistical classification machine learning model was constructed using ridge regression that uses proteomics data to differentiate ALS patients from controls. RESULTS We identified 76, 21, 71 and 1 candidate ALS-related biomarkers and 22, 41, 27 and 64 candidate prognostic biomarkers from patients stratified by ALSFRS-R baseline, ALSFRS-R progression slope, ALS-CBS baseline and ALS-CBS progression slope, respectively. Nineteen proteins enhanced or suppressed pathogenic eye phenotypes in the ALS fly model. Nutraceuticals, dopamine pathway modulators, statins, anti-inflammatories and antimicrobials were predicted starting points for drug repurposing using the connectivity map tool. Ten diagnostic biomarker proteins were predicted by machine learning to identify ALS patients with high accuracy and sensitivity. INTERPRETATION This study showcases the powerful approach of iPSC-motor neuron proteomics combined with machine learning and biological confirmation in the prediction of novel mechanisms and diagnostic and predictive biomarkers in ALS.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix #07-01, 30 Biopolis Street, Singapore, 138671, Singapore
| | - Swapnil Pandey
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Crystal Jing Jing Yeo
- Agency for Science, Technology and Research (A*STAR), IMCB, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
- Lee Kong Chian School of Medicine, Imperial College London and NTU Singapore, Singapore, 308232, Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB243FX, Scotland, UK
- National Neuroscience Institute, TTSH Campus, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
22
|
Shefner JM, Bedlack R, Andrews JA, Berry JD, Bowser R, Brown R, Glass JD, Maragakis NJ, Miller TM, Rothstein JD, Cudkowicz ME. Amyotrophic Lateral Sclerosis Clinical Trials and Interpretation of Functional End Points and Fluid Biomarkers: A Review. JAMA Neurol 2022; 79:1312-1318. [PMID: 36251310 DOI: 10.1001/jamaneurol.2022.3282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Importance Clinical trial activity in amyotrophic lateral sclerosis (ALS) is dramatically increasing; as a result, trial modifications have been introduced to improve efficiency, outcome measures have been reassessed, and considerable discussion about the level of data necessary to advance a drug to approval has occurred. This review discusses what recent pivotal studies can teach the community about these topics. Observations By restricting inclusion and exclusion criteria, recent trials have enrolled populations distinct from previous studies. This has led to efficacy signals being observed in studies that are smaller and shorter than was thought feasible previously. However, such trials raise questions about generalizability of results. Small trials with equivocal clinical results also raise questions about the data necessary to lead to regulatory approval. The ALS Functional Rating Scale-Revised remains the most commonly used primary outcome measure; this review discusses innovations in its use. Blood neurofilament levels can predict prognosis in ALS and may be a sensitive indicator of biologic effect; current knowledge does not yet support its use as a primary outcome. Conclusions and Relevance It is now possible to use specific inclusion criteria to recruit a homogeneous patient population progressing at a specific rate; this will likely impact trials in the future. Generalizability of results on limited populations remains a concern. Although clinical outcomes remain the most appropriate primary outcome measures, fluid markers reflecting biologically important processes will assume more importance as more is learned about the association between such markers and clinical end points. The benefit of use of analytic strategies, such as responder analyses, is still uncertain.
Collapse
Affiliation(s)
| | | | - Jinsy A Andrews
- The Neurological Institute, Columbia University, New York, New York
| | - James D Berry
- Healey & AMG Center ALS, Massachusetts General Hospital, Boston
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Asah S, Alganem K, McCullumsmith RE, O'Donovan SM. A bioinformatic inquiry of the EAAT2 interactome in postmortem and neuropsychiatric datasets. Schizophr Res 2022; 249:38-46. [PMID: 32197935 PMCID: PMC7494586 DOI: 10.1016/j.schres.2020.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Altered expression and localization of the glutamate transporter EAAT2 is found in schizophrenia and other neuropsychiatric (major depression, MDD) and neurological disorders (amyotrophic lateral sclerosis, ALS). However, the EAAT2 interactome, the network of proteins that physically or functionally interact with EAAT2 to support its activity, has yet to be characterized in severe mental illness. We compiled a list of "core" EAAT2 interacting proteins. Using Kaleidoscope, an R-shiny application, we data mined publically available postmortem transcriptome datasets to determine whether components of the EAAT2 interactome are differentially expressed in schizophrenia and, using Reactome, identify which interactome-associated biological pathways are altered. Overall, these "look up" studies highlight region-specific, primarily frontal cortex (dorsolateral prefrontal cortex and anterior cingulate cortex), changes in the EAAT2 interactome and implicate altered metabolism pathways in schizophrenia. Pathway analyses also suggest that perturbation of components of the EAAT2 interactome in animal models of antipsychotic administration impact metabolism. Similar changes in metabolism pathways are seen in ALS, in addition to altered expression of many components of the EAAT2 interactome. However, although EAAT2 expression is altered in a postmortem MDD dataset, few other components of the EAAT2 interactome are changed. Thus, "look up" studies suggest region- and disease-relevant biological pathways related to the EAAT2 interactome that implicate glutamate reuptake perturbations in schizophrenia, while providing a useful tool to exploit "omics" datasets.
Collapse
Affiliation(s)
- Sophie Asah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
24
|
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: Threats and issues. Front Pharmacol 2022; 13:1007315. [PMID: 36263141 PMCID: PMC9574100 DOI: 10.3389/fphar.2022.1007315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Drug repositioning or repurposing is the process of discovering leading-edge indications for authorized or declined/abandoned molecules for use in different diseases. This approach revitalizes the traditional drug discovery method by revealing new therapeutic applications for existing drugs. There are numerous studies available that highlight the triumph of several drugs as repurposed therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and so on. Millions of people worldwide are affected by neurodegenerative diseases. According to a 2021 report, the Alzheimer's disease Association estimates that 6.2 million Americans are detected with Alzheimer's disease. By 2030, approximately 1.2 million people in the United States possibly acquire Parkinson's disease. Drugs that act on a single molecular target benefit people suffering from neurodegenerative diseases. Current pharmacological approaches, on the other hand, are constrained in their capacity to unquestionably alter the course of the disease and provide patients with inadequate and momentary benefits. Drug repositioning-based approaches appear to be very pertinent, expense- and time-reducing strategies for the enhancement of medicinal opportunities for such diseases in the current era. Kinase inhibitors, for example, which were developed for various oncology indications, demonstrated significant neuroprotective effects in neurodegenerative diseases. This review expounds on the classical and recent examples of drug repositioning at various stages of drug development, with a special focus on neurodegenerative disorders and the aspects of threats and issues viz. the regulatory, scientific, and economic aspects.
Collapse
Affiliation(s)
- Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | | | | |
Collapse
|
25
|
Ramamoorthy D, Severson K, Ghosh S, Sachs K, Glass JD, Fournier CN, Herrington TM, Berry JD, Ng K, Fraenkel E. Identifying patterns in amyotrophic lateral sclerosis progression from sparse longitudinal data. NATURE COMPUTATIONAL SCIENCE 2022; 2:605-616. [PMID: 38177466 PMCID: PMC10766562 DOI: 10.1038/s43588-022-00299-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/14/2022] [Indexed: 01/06/2024]
Abstract
The clinical presentation of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, varies widely across patients, making it challenging to determine if potential therapeutics slow progression. We sought to determine whether there were common patterns of disease progression that could aid in the design and analysis of clinical trials. We developed an approach based on a mixture of Gaussian processes to identify clusters of patients sharing similar disease progression patterns, modeling their average trajectories and the variability in each cluster. We show that ALS progression is frequently nonlinear, with periods of stable disease preceded or followed by rapid decline. We also show that our approach can be extended to Alzheimer's and Parkinson's diseases. Our results advance the characterization of disease progression of ALS and provide a flexible modeling approach that can be applied to other progressive diseases.
Collapse
Affiliation(s)
| | - Kristen Severson
- Center for Computational Health and MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA
| | - Soumya Ghosh
- Center for Computational Health and MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA
| | - Karen Sachs
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Next Generation Analytics, Palo Alto, CA, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - James D Berry
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kenney Ng
- Center for Computational Health and MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
26
|
Song Y, Jia Q, Guan X, Kazuo S, Liu J, Duan W, Feng L, Zhang C, Gao Y. Herbal medicine for amyotrophic lateral sclerosis: A systematic review and meta-analysis. Front Pharmacol 2022; 13:946548. [PMID: 36120351 PMCID: PMC9473725 DOI: 10.3389/fphar.2022.946548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The effect of herbal medicine (HM) on amyotrophic lateral sclerosis (ALS) is controversial. Clinical trials investigating HMs continue; however, the use of HM is still questioned. We aimed to systematically review the literature pertaining to the effects and safety of HM in ALS. Methods: Randomised controlled trials (RCTs) that investigated the efficacy of HMs in ALS patients compared to any types of controls were identified. Nine databases and six registers were searched from their inception dates to 25 March 2022. Per the PRISMA guidelines, trials were identified and extracted. The risk of bias was evaluated using the Cochrane’s tool. Certainty of evidence was assessed as per the GRADE criteria. Forest plots were constructed to assess the effect size and corresponding 95% CIs using fixed-effect models, and random-effect models were employed when required. The primary outcome was the activity limitation measured by validated tools, such as the revised ALS Functional Rating Scale. Results: Twenty studies (N = 1,218) were eligible. Of these, only five studies were double-blinded, and two were placebo-controlled. Fourteen HMs (fifty-one single botanicals) were involved; Astragalus mongholicus Bunge, Atractylodes macrocephala Koidz., and Glycyrrhiza glabra L. were commonly used in nine, eight, and six trials, respectively. For delaying activity limitation, Jiweiling injection (MD, 2.84; 95% CI, 1.21 to 4.46; p = 0.0006) and Shenmai injection (SMD, 1.07; 0.69 to 1.45; p < 0.00001) were significantly more efficacious than Riluzole, but the evidence was low quality. For ameliorating motor neuron loss, Jiweiling injection [right abductor pollicis brevis (APB): MD, 32.42; 7.91 to 56.93; p = 0.01 and left APB: MD, 34.44; 12.85 to 56.03; p = 0.002] was favoured, but the evidence was very low quality. Nine studies reported one hundred and twenty-three adverse events, twenty-six of which occurred in the treatment groups and ninety-seven in the control groups. Conclusion: Very low to low quality of evidence suggests that HMs seem to produce superior treatment responses for ALS without increased risk of adverse events. Additional studies with homogeneous participants, reduced methodological issues, and more efficient outcome measures are required to provide confirmatory evidence. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021277443.
Collapse
Affiliation(s)
- Yuebo Song
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyang Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaorui Guan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Sugimoto Kazuo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Luda Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ying Gao, ; Chi Zhang,
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ying Gao, ; Chi Zhang,
| |
Collapse
|
27
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
28
|
Fournier CN. Considerations for Amyotrophic Lateral Sclerosis (ALS) Clinical Trial Design. Neurotherapeutics 2022; 19:1180-1192. [PMID: 35819713 PMCID: PMC9275386 DOI: 10.1007/s13311-022-01271-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Thoughtful clinical trial design is critical for efficient therapeutic development, particularly in the field of amyotrophic lateral sclerosis (ALS), where trials often aim to detect modest treatment effects among a population with heterogeneous disease progression. Appropriate outcome measure selection is necessary for trials to provide decisive and informative results. Investigators must consider the outcome measure's reliability, responsiveness to detect change when change has actually occurred, clinical relevance, and psychometric performance. ALS clinical trials can also be performed more efficiently by utilizing statistical enrichment techniques. Innovations in ALS prediction models allow for selection of participants with less heterogeneity in disease progression rates without requiring a lead-in period, or participants can be stratified according to predicted progression. Statistical enrichment can reduce the needed sample size and improve study power, but investigators must find a balance between optimizing statistical efficiency and retaining generalizability of study findings to the broader ALS population. Additional progress is still needed for biomarker development and validation to confirm target engagement in ALS treatment trials. Selection of an appropriate biofluid biomarker depends on the treatment mechanism of interest, and biomarker studies should be incorporated into early phase trials. Inclusion of patients with ALS as advisors and advocates can strengthen clinical trial design and study retention, but more engagement efforts are needed to improve diversity and equity in ALS research studies. Another challenge for ALS therapeutic development is identifying ways to respect patient autonomy and improve access to experimental treatment, something that is strongly desired by many patients with ALS and ALS advocacy organizations. Expanded access programs that run concurrently to well-designed and adequately powered randomized controlled trials may provide an opportunity to broaden access to promising therapeutics without compromising scientific integrity or rushing regulatory approval of therapies without adequate proof of efficacy.
Collapse
Affiliation(s)
- Christina N Fournier
- Department of Neurology, Emory University, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| |
Collapse
|
29
|
Analysis of the US Safety Data for Edaravone (Radicava ®) From the Third Year After Launch. Drugs R D 2022; 22:205-211. [PMID: 35723868 PMCID: PMC9433633 DOI: 10.1007/s40268-022-00391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease with no curative therapies. Edaravone (Radicava®) (Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan), approved in the United States (US) for ALS in adults in 2017, was shown in a clinical trial to slow the rate of physical functional decline in ALS and is administered intravenously. The aim of this paper is to summarize the observed safety profile from real-world patient use during the first 3 years of edaravone availability in the US. Methods Edaravone usage data were collected, and adverse events (AEs) were identified from a postmarketing safety database from August 8, 2017 through August 7, 2020 (cutoff date). Results As of October 3, 2020, 5207 ALS patients had been treated with edaravone. As of August 7, 2020, the most commonly reported AEs included death (not specified), drug ineffective, disease progression, therapeutic response unexpected, fall, asthenia, fatigue, muscular weakness, gait disturbance, and dyspnea. The most commonly reported serious AEs (SAEs) included death (not specified), pneumonia, disease progression, ALS, fall, dyspnea, respiratory failure, device-related infection, hospitalization, and injection-site infection. There were 687 deaths, with 494 reported as death without specifying the cause. Deaths were most commonly attributed to ALS, disease progression, respiratory failure, or pneumonia. Review for administration-site reactions revealed 95 AEs, including 34 site infections, with 22 SAEs (all non-fatal). Five non-fatal SAEs of anaphylaxis were reported. Conclusion In the postmarketing reporting to date, no new safety signals were identified beyond those already known from the edaravone clinical trial program.
Collapse
|
30
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
31
|
Sisignano M, Gribbon P, Geisslinger G. Drug Repurposing to Target Neuroinflammation and Sensory Neuron-Dependent Pain. Drugs 2022; 82:357-373. [PMID: 35254645 PMCID: PMC8899787 DOI: 10.1007/s40265-022-01689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Around 20% of the American population have chronic pain and estimates in other Western countries report similar numbers. This represents a major challenge for global health care systems. Additional problems for the treatment of chronic and persistent pain are the comparably low efficacy of existing therapies, the failure to translate effects observed in preclinical pain models to human patients and related setbacks in clinical trials from previous attempts to develop novel analgesics. Drug repurposing offers an alternative approach to identify novel analgesics as it can bypass various steps of classical drug development. In recent years, several approved drugs were attributed analgesic properties. Here, we review available data and discuss recent findings suggesting that the approved drugs minocycline, fingolimod, pioglitazone, nilotinib, telmisartan, and others, which were originally developed for the treatment of different pathologies, can have analgesic, antihyperalgesic, or neuroprotective effects in preclinical and clinical models of inflammatory or neuropathic pain. For our analysis, we subdivide the drugs into substances that can target neuroinflammation or substances that can act on peripheral sensory neurons, and highlight the proposed mechanisms. Finally, we discuss the merits and challenges of drug repurposing for the development of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany. .,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
33
|
Aizawa H, Kato H, Oba K, Kawahara T, Okubo Y, Saito T, Naito M, Urushitani M, Tamaoka A, Nakamagoe K, Ishii K, Kanda T, Katsuno M, Atsuta N, Maeda Y, Nagai M, Nishiyama K, Ishiura H, Toda T, Kawata A, Abe K, Yabe I, Takahashi-Iwata I, Sasaki H, Warita H, Aoki M, Sobue G, Mizusawa H, Matsuyama Y, Haga T, Kwak S. Randomized phase 2 study of perampanel for sporadic amyotrophic lateral sclerosis. J Neurol 2022; 269:885-896. [PMID: 34191081 PMCID: PMC8782807 DOI: 10.1007/s00415-021-10670-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of perampanel in patients with sporadic amyotrophic lateral sclerosis (SALS). METHODS This randomized, double-blind, placebo-controlled, multicenter, phase 2 clinical study was conducted at 12 sites. Patients with probable or definite ALS as defined by revised El Escorial criteria were enrolled. Sixty-six patients were randomly assigned (1:1:1) to receive placebo, 4 mg perampanel, or 8 mg perampanel daily for 48 weeks. Adverse events (AEs) were recorded throughout the trial period. The primary efficacy outcome was the change in Amyotrophic Lateral Sclerosis Rating Scale-Revised (ALSFRS-R) score after 48 weeks of treatment. RESULTS One patient withdrew before starting the treatment. Of 65 patients included, 18 of 22 patients randomized to placebo (82%), 14 of 22 patients randomized to 4 mg perampanel (64%), and 7 of 21 patients randomized to 8 mg perampanel (33%) completed the trial. There was a significant difference in the change of ALSFRS-R scores [- 8.4 (95% CI - 13.9 to - 2.9); p = 0.015] between the placebo and the perampanel 8 mg group, primarily due to worsening of the bulbar subscore in the perampanel 8 mg group. Serious AEs were more frequent in the perampanel 8 mg group than in the placebo group (p = 0.0483). CONCLUSIONS Perampanel was associated with a significant decline in ALSFRS-R score and was linked to worsening of the bulbar subscore in the 8 mg group.
Collapse
Affiliation(s)
- Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan.
| | - Haruhisa Kato
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Koji Oba
- Department of Biostatics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Kawahara
- Central Coordinating Unit, Clinical Research Support Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiko Okubo
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Tomoko Saito
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Makiko Naito
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Tamaoka
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kiyotaka Nakamagoe
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Ishii
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Naoki Atsuta
- Department of Neurology, Nagoya University, Nagoya, Japan
| | - Yasushi Maeda
- Department of Neurology, National Hospital Organization Kumamoto Saishun Medical Center, Kumamoto, Japan
| | - Makiko Nagai
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazutoshi Nishiyama
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | - Tatsushi Toda
- Department of Neurology, University of Tokyo, Tokyo, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Koji Abe
- Department of Neurology, University of Okayama, Okayama, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Takahashi-Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Hospital, Sendai, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University, Nagoya, Japan
| | | | - Yutaka Matsuyama
- Department of Biostatics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Haga
- Central Coordinating Unit, Clinical Research Support Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
34
|
How nano-engineered delivery systems can help marketed and repurposed drugs in Alzheimer’s disease treatment? Drug Discov Today 2022; 27:1575-1589. [DOI: 10.1016/j.drudis.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
|
35
|
Wu P, Feng Q, Kerchberger VE, Nelson SD, Chen Q, Li B, Edwards TL, Cox NJ, Phillips EJ, Stein CM, Roden DM, Denny JC, Wei WQ. Integrating gene expression and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension. Nat Commun 2022; 13:46. [PMID: 35013250 PMCID: PMC8748496 DOI: 10.1038/s41467-021-27751-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Discovering novel uses for existing drugs, through drug repurposing, can reduce the time, costs, and risk of failure associated with new drug development. However, prioritizing drug repurposing candidates for downstream studies remains challenging. Here, we present a high-throughput approach to identify and validate drug repurposing candidates. This approach integrates human gene expression, drug perturbation, and clinical data from publicly available resources. We apply this approach to find drug repurposing candidates for two diseases, hyperlipidemia and hypertension. We screen >21,000 compounds and replicate ten approved drugs. We also identify 25 (seven for hyperlipidemia, eighteen for hypertension) drugs approved for other indications with therapeutic effects on clinically relevant biomarkers. For five of these drugs, the therapeutic effects are replicated in the All of Us Research Program database. We anticipate our approach will enable researchers to integrate multiple publicly available datasets to identify high priority drug repurposing opportunities for human diseases.
Collapse
Affiliation(s)
- Patrick Wu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vern Eric Kerchberger
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott D Nelson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qingxia Chen
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Infectious Diseases and Immunology, Murdoch University, Murdoch, Western Australia, Australia
| | - C Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dan M Roden
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua C Denny
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
36
|
Pampalakis G, Angelis G, Zingkou E, Vekrellis K, Sotiropoulou G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clin Transl Med 2022; 12:e657. [PMID: 35064780 PMCID: PMC8783349 DOI: 10.1002/ctm2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
ALS is a fatal untreatable disease involving degeneration of motor neurons. Μultiple causative genes encoding proteins with versatile functions have been identified indicating that diverse biological pathways lead to ALS. Chemical entities still represent a promising choice to delay ALS progression, attenuate symptoms and/or increase life expectancy, but also gene-based and stem cell-based therapies are in the process of development, and some are tested in clinical trials. Various compounds proved effective in transgenic models overexpressing distinct ALS causative genes unfortunately though, they showed no efficacy in clinical trials. Notably, while animal models provide a uniform genetic background for preclinical testing, ALS patients are not stratified, and the distinct genetic forms of ALS are treated as one group, which could explain the observed discrepancies between treating genetically homogeneous mice and quite heterogeneous patient cohorts. We suggest that chemical entity-genotype correlation should be exploited to guide patient stratification for pharmacotherapy, that is administered drugs should be selected based on the ALS genetic background.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Angelis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
37
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
38
|
Wong C, Stavrou M, Elliott E, Gregory JM, Leigh N, Pinto AA, Williams TL, Chataway J, Swingler R, Parmar MKB, Stallard N, Weir CJ, Parker RA, Chaouch A, Hamdalla H, Ealing J, Gorrie G, Morrison I, Duncan C, Connelly P, Carod-Artal FJ, Davenport R, Reitboeck PG, Radunovic A, Srinivasan V, Preston J, Mehta AR, Leighton D, Glasmacher S, Beswick E, Williamson J, Stenson A, Weaver C, Newton J, Lyle D, Dakin R, Macleod M, Pal S, Chandran S. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun 2021; 3:fcab242. [PMID: 34901853 PMCID: PMC8659356 DOI: 10.1093/braincomms/fcab242] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and devastating neurodegenerative disease. Despite decades of clinical trials, effective disease-modifying drugs remain scarce. To understand the challenges of trial design and delivery, we performed a systematic review of Phase II, Phase II/III and Phase III amyotrophic lateral sclerosis clinical drug trials on trial registries and PubMed between 2008 and 2019. We identified 125 trials, investigating 76 drugs and recruiting more than 15 000 people with amyotrophic lateral sclerosis. About 90% of trials used traditional fixed designs. The limitations in understanding of disease biology, outcome measures, resources and barriers to trial participation in a rapidly progressive, disabling and heterogenous disease hindered timely and definitive evaluation of drugs in two-arm trials. Innovative trial designs, especially adaptive platform trials may offer significant efficiency gains to this end. We propose a flexible and scalable multi-arm, multi-stage trial platform where opportunities to participate in a clinical trial can become the default for people with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Charis Wong
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Maria Stavrou
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Elizabeth Elliott
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Ashwin A Pinto
- Neurology Department, Wessex Neurosciences Centre, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Timothy L Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1B 5EH, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Robert Swingler
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Mahesh K B Parmar
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Nigel Stallard
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Amina Chaouch
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - Hisham Hamdalla
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - John Ealing
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - George Gorrie
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, G51 4TF, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, DD2 1UB, UK
| | - Callum Duncan
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZN, UK
| | - Peter Connelly
- NHS Research Scotland Neuroprogressive Disorders and Dementia Network, Ninewells Hospital, Dundee, DD1 9SY, UK
| | | | - Richard Davenport
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, EH16 4SA, UK
| | - Pablo Garcia Reitboeck
- Atkinson Morley Regional Neurosciences Centre, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | | | | | - Jenny Preston
- Department of Neurology, NHS Ayrshire & Arran, KA12 8SS, UK
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Danielle Leighton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Stella Glasmacher
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Emily Beswick
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jill Williamson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Amy Stenson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Christine Weaver
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Judith Newton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Dawn Lyle
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rachel Dakin
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
39
|
Tikhonova MA, Amstislavskaya TG, Ho YJ, Akopyan AA, Tenditnik MV, Ovsyukova MV, Bashirzade AA, Dubrovina NI, Aftanas LI. Neuroprotective Effects of Ceftriaxone Involve the Reduction of Aβ Burden and Neuroinflammatory Response in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:736786. [PMID: 34658774 PMCID: PMC8511453 DOI: 10.3389/fnins.2021.736786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Ceftriaxone (CEF) is a safe and multipotent antimicrobial agent that possesses neuroprotective properties. Earlier, we revealed the restoration of cognitive function in OXYS rats with signs of Alzheimer's disease (AD)-like pathology by CEF along with its modulating the expression of genes related to the system of amyloid beta (Aβ) metabolism in the brain. The aim of this study was to determine the effects of CEF on behavior, Aβ deposition, and associated neuroinflammation using another model of an early AD-like pathology induced by Aβ. Mice were injected bilaterally i.c.v. with Aβ fragment 25-35 to produce the AD model, while the CEF treatment (100 mg/kg/day, i.p., 36 days) started the next day after the surgery. The open field test, T-maze, Barnes test, IntelliCage, and passive avoidance test were used for behavioral phenotyping. Neuronal density, amyloid accumulation, and the expression of neuroinflammatory markers were measured in the frontal cortex and hippocampus. CEF exhibited beneficial effects on some cognitive features impaired by Aβ neurotoxicity including complete restoration of the fear-induced memory and learning in the passive avoidance test and improved place learning in the IntelliCage. CEF significantly attenuated amyloid deposition and neuroinflammatory response. Thus, CEF could be positioned as a potent multipurpose drug as it simultaneously targets proteostasis network and neuroinflammation, as well as glutamate excitotoxicity, oxidative pathways, and neurotrophic function as reported earlier. Together with previous reports on the positive effects of CEF in AD models, the results confirm the potential of CEF as a promising treatment against cognitive decline from the early stages of AD progression.
Collapse
Affiliation(s)
- Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Anna A Akopyan
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Michael V Tenditnik
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Marina V Ovsyukova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Alim A Bashirzade
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Faculty of Life Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nina I Dubrovina
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,Department of Clinical Neuroscience, Behavior and Neurotechnologies, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| |
Collapse
|
40
|
Jiménez-Villegas J, Ferraiuolo L, Mead RJ, Shaw PJ, Cuadrado A, Rojo AI. NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radic Biol Med 2021; 173:125-141. [PMID: 34314817 DOI: 10.1016/j.freeradbiomed.2021.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating heterogeneous disease with still no convincing therapy. To identify the most strategically significant hallmarks for therapeutic intervention, we have performed a comprehensive transcriptomics analysis of dysregulated pathways, comparing datasets from ALS patients and healthy donors. We have identified crucial alterations in RNA metabolism, intracellular transport, vascular system, redox homeostasis, proteostasis and inflammatory responses. Interestingly, the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2) has significant effects in modulating these pathways. NRF2 has been classically considered as the master regulator of the antioxidant cellular response, although it is currently considered as a key component of the transduction machinery to maintain coordinated control of protein quality, inflammation, and redox homeostasis. Herein, we will summarize the data from NRF2 activators in ALS pre-clinical models as well as those that are being studied in clinical trials. As we will discuss, NRF2 is a promising target to build a coordinated transcriptional response to motor neuron injury, highlighting its therapeutic potential to combat ALS.
Collapse
Affiliation(s)
- J Jiménez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - L Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - R J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - A I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
41
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
42
|
Thakore NJ, Drawert BJ, Lapin BR, Pioro EP. Progressive arm muscle weakness in ALS follows the same sequence regardless of onset site: use of TOMS, a novel analytic method to track limb strength. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:380-387. [PMID: 33620270 PMCID: PMC8292176 DOI: 10.1080/21678421.2021.1889000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Objective: Examine sequence of weakness in arm muscles from longitudinal hand-held dynamometry (HHD) data in ALS for congruence with contiguous spread of neurodegeneration along spinal cord segments. Methods: Longitudinal HHD data from the Ceftriaxone clinical trial were examined using nonlinear mixed models, assuming a logistic trajectory from normal to zero strength. Unobserved baseline normal strength of weak muscles was assumed using strength of the best-preserved muscle. A novel metric called "time from onset to midway strength" (TOMS) was estimated for each muscle group, and TOMS ratios were examined to identify sequence of weakness, overall and by onset site. Results: Shoulder flexion (SF), elbow flexion (EF), elbow extension (EE), wrist extension (WE), and first dorsal interosseous (FDI) were measured on each side. Over a median of 36 weeks, 513 subjects provided 2589 sets of HHD measures. TOMS increased sequentially in the following order: FDI, WE, SF, EF, and EE. TOMS ratios estimates with 95% CIs (adjusted for multiple comparisons) were: WE/FDI 1.32 (1.24-1.41), SF/WE 1.06 (1.01-1.10), EF/SF 1.06 (1.02-1.10), and EE/EF 1.18 (1.12-1.23). Elbow and shoulder flexors weakened sooner than did elbow extensors. The sequence of arm muscle weakness progression was similar regardless of onset site. Conclusion: Nonsegmental progression of arm muscle weakness that is similar for different onset sites favors cortical influence/network spread over contiguous spread of neurodegeneration in the spinal cord. Furthermore, this study confirms the "split elbow" pattern. TOMS and other proposed methods may have value as outcome measures in clinical research.
Collapse
Affiliation(s)
- Nimish J. Thakore
- Department of Neurology, Neuromuscular Center, Cleveland Clinic, Cleveland, OH, USA
| | - Brian J. Drawert
- Department of Computer Science, University of North Carolina at Asheville, Asheville, NC, USA
| | - Brittany R. Lapin
- Quantitative Health Sciences/Neurological Institute Center for Outcomes Research and Evaluation (NICORE), Cleveland Clinic, Cleveland, OH, USA
| | - Erik P. Pioro
- Department of Neurology, Neuromuscular Center, Cleveland Clinic, Cleveland, OH, USA
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, OH, USA
| |
Collapse
|
43
|
Fletcher EJR, Kaminski T, Williams G, Duty S. Drug repurposing strategies of relevance for Parkinson's disease. Pharmacol Res Perspect 2021; 9:e00841. [PMID: 34309236 PMCID: PMC8311732 DOI: 10.1002/prp2.841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease is a highly disabling, progressive neurodegenerative disease that manifests as a mix of motor and non-motor signs. Although we are equipped with some symptomatic treatments, especially for the motor signs of the disease, there are still no established disease-modifying drugs so the disease progresses unchecked. Standard drug discovery programs for disease-modifying therapies have provided key insights into the pathogenesis of Parkinson's disease but, of the many positive candidates identified in pre-clinical studies, none has yet translated into a successful clinically efficacious drug. Given the huge cost of drug discovery programs, it is not surprising that much attention has turned toward repurposing strategies. The trialing of an established therapeutic has the advantage of bypassing the need for preclinical safety testing and formulation optimization, thereby cutting both time and costs involved in getting a treatment to the clinic. Additional reduced failure rates for repurposed drugs are also a potential bonus. Many different strategies for drug repurposing are open to researchers in the Parkinson's disease field. Some of these have already proven effective in identifying suitable drugs for clinical trials, lending support to such approaches. In this review, we present a summary of the different strategies for drug repurposing, from large-scale epidemiological correlation analysis through to single-gene transcriptional approaches. We provide examples of past or ongoing studies adopting each strategy, where these exist. For strategies that have yet to be applied to Parkinson's disease, their utility is illustrated using examples taken from other disorders.
Collapse
Affiliation(s)
- Edward J. R. Fletcher
- King’s College LondonInstitute of Psychiatry, Psychology & NeuroscienceWolfson Centre for Age‐Related DiseasesLondonUK
| | - Thomas Kaminski
- King’s College LondonInstitute of Psychiatry, Psychology & NeuroscienceWolfson Centre for Age‐Related DiseasesLondonUK
| | - Gareth Williams
- King’s College LondonInstitute of Psychiatry, Psychology & NeuroscienceWolfson Centre for Age‐Related DiseasesLondonUK
| | - Susan Duty
- King’s College LondonInstitute of Psychiatry, Psychology & NeuroscienceWolfson Centre for Age‐Related DiseasesLondonUK
| |
Collapse
|
44
|
Saygin D, Oddis CV, Moghadam-Kia S, Rockette-Wagner B, Neiman N, Koontz D, Aggarwal R. Hand-held dynamometry for assessment of muscle strength in patients with inflammatory myopathies. Rheumatology (Oxford) 2021; 60:2146-2156. [PMID: 33026081 DOI: 10.1093/rheumatology/keaa419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Muscle weakness in idiopathic inflammatory myopathies (IIMs) is conventionally assessed using manual muscle testing (MMT). However, more objective tools must be developed to accurately and reliably quantify muscle strength in myositis patients. Hand-held dynamometry (HHD) is a quantitative, portable device with reported reliability in neuromuscular disorders. Our aim was to assess the reliability, validity and responsiveness of HHD in myositis. METHODS Myositis patients [DM, necrotizing myopathy (NM), PM and anti-synthetase syndrome] evaluated at the University of Pittsburgh myositis centre were prospectively enrolled. Each patient was assessed at 0, 3 and 6 months for validated outcome measures of myositis disease activity and physical function. At each visit, muscle strength was assessed using both MMT and HHD (Micro FET2, Hoggan Health Industries, Draper, UT, USA). The reliability, validity and responsiveness of the HHD was assessed using standard statistical methods. RESULTS Fifty IIM patients (60% female; mean age 51.6 years; 6 PM, 9 NM, 24 DM and 11 anti-synthetase syndrome) were enrolled. HHD showed strong test-retest intrarater reliability (r = 0.96) and interrater reliability (r = 0.98). HHD correlated significantly with the MMT score (r = 0.48, P = 0.0006) and myositis disease activity and functional measures. Longitudinal analysis showed a significant and strong association between the HHD and MMT as well as 2016 ACR/EULAR myositis response criteria (r = 0.8, P < 0.0001) demonstrating responsiveness. The mean effect size and standardized response mean of HHD was large: 0.95 and 1.03, respectively. MMT had a high ceiling effect compared with HHD. CONCLUSION HHD demonstrated strong reliability, construct validity and responsiveness in myositis patients. External validation studies are required to confirm these findings.
Collapse
Affiliation(s)
| | - Chester V Oddis
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| | | | - Bonny Rockette-Wagner
- Department of Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nicole Neiman
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| | - Diane Koontz
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| |
Collapse
|
45
|
Chronic optogenetic stimulation of Bergman glia leads to dysfunction of EAAT1 and Purkinje cell death, mimicking the events caused by expression of pathogenic ataxin-1. Neurobiol Dis 2021; 154:105340. [PMID: 33753288 DOI: 10.1016/j.nbd.2021.105340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bergmann glia (BG) are highly specialized radial astrocytes of the cerebellar cortex, which play a key role in the uptake of synaptic glutamate via the excitatory amino acid transporter EAAT1. Multiple lines of evidence suggest that in cerebellar neurodegenerative diseases reactive BG has a negative impact on neuronal function and survival through compromised EAAT activity. A family of such diseases are those caused by expansion of CAG repeats in genes of the ataxin family, resulting in spinocerebellar ataxias (SCA). We investigated the contribution of BG to the pathogenesis of cerebellar neurodegeneration in a model of SCA1, which was induced by expression of a polyglutamine mutant of ataxin-1 (ATXN1[Q85]) in BG specifically. We compared the outcomes with a novel model where we triggered excitotoxicity by a chronic optogenetic activation of BG with channelrhodopsin-2 (ChR2). In both cases we detected evidence of reduced glutamate uptake manifested by prolongation of excitatory postsynaptic currents in Purkinje cells which is consistent with documented reduction of expression and/or function of EAAT1. In both models we detected astroglyosis and Purkinje cells atrophy. Finally, the same pattern was detected in a knock-in mouse which expresses a polyglutamine mutant ataxin-1 ATXN1[Q154] in a non-cell-selective manner. Our results suggest that ATXN1[Q85] and ChR2-induced insult targeted to BG closely mimics SCA1 pathology, where excessive glutamate signaling appears to be a common feature likely being an important contributor to cerebellar neurodegeneration.
Collapse
|
46
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ. Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:1615. [PMID: 33562713 PMCID: PMC7915613 DOI: 10.3390/ijms22041615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jules A. A. C. Heuberger
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
47
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Orla Hardiman
- Academic Neurology Unit, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University, Phoenix, AZ, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, UK
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Merit Cudkowicz
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Talman
- Neurosciences Department, Barwon Health District, Melbourne, Victoria, Australia
| | - Leonard H Van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Wicks
- Wicks Digital Health, Lichfield, United Kingdom
| | - Claire Reilly
- The Motor Neurone Disease Association of New Zealand, Auckland, New Zealand
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Grabrijan K, Strašek N, Gobec S. Monocyclic beta-lactams for therapeutic uses: a patent overview (2010-2020). Expert Opin Ther Pat 2021; 31:247-266. [PMID: 33327805 DOI: 10.1080/13543776.2021.1865919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Monocyclic beta-lactams are four-membered cyclic amides with various structural modifications of the nucleus that determine their chemical reactivity and target specificity. Their historical use is based on their antibacterial activity, but they have recently appeared in other areas as well. AREAS COVERED This review summarizes the relevant patent development on monocyclic beta-lactams in various therapeutic areas over the last 10 years. The majority of patents describe compounds with antibacterial activity, while there are some recent patents describing the neuroprotective, anti-inflammatory, anti-cancer, anticoagulant and antihyperlipidemic effects of 2-azetidinones. EXPERT OPINION Monocyclic beta-lactams can be considered safe and nontoxic drugs, as they have been used in the clinic for almost half of the century. Recently, monocyclic beta-lactams have been increasingly recognized for their non-antibiotic activity, which has led to some promising new clinical candidates in the field of neurodegenerative diseases and coagulation therapy. With regard to their antibacterial activity, there is still room for improvement of their activity and broadening of their spectrum of action, especially in Gram-positive bacteria and on drug-insensitive penicillin-binding proteins, and in increasing their beta-lactamase stability.
Collapse
Affiliation(s)
| | - Nika Strašek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
49
|
Portable fixed dynamometry: towards remote muscle strength measurements in patients with motor neuron disease. J Neurol 2020; 268:1738-1746. [PMID: 33355879 PMCID: PMC8068646 DOI: 10.1007/s00415-020-10366-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Background We aimed to determine (1) the test–retest reliability of a newly developed portable fixed dynamometer (PFD) as compared to the hand-held dynamometer (HHD) in patients with motor neuron disease (MND) and (2) the PFD’s ability to reduce possible examiner-induced ceiling effects. Methods Test–retest reliability of isometric muscle strength of the quadriceps was measured in patients with MND and non-neurological controls using the HHD and PFD. Reliability was estimated by the intraclass correlation coefficient (ICC) and standard error of measurement (SEM) using linear mixed effects models, and the Bland–Altman method of agreement. Results In total, 45 patients with MND and 43 healthy controls were enrolled in this study. The ICC of the PFD was excellent and similar in both patients and controls (ICC Patients 99.5% vs. ICC Controls 98.6%) with a SEM of 6.2%. A strong examiner-induced ceiling effect in HHD was found when the participant’s strength exceeded that of examiner. Employing the PFD increased the range of muscle strength measurements across individuals nearly twofold from 414 to 783 N. Conclusions Portable fixed dynamometry may significantly reduce examiner-induced ceiling effects, optimize the standardization of muscle strength testing, and maximize reliability. Ultimately, PFD may improve the delivery of care due to its potential for unsupervised, home-based assessments and reduce the burden to the patient of participating in clinical trials for MND or other neuromuscular diseases.
Collapse
|
50
|
Ballard C, Aarsland D, Cummings J, O'Brien J, Mills R, Molinuevo JL, Fladby T, Williams G, Doherty P, Corbett A, Sultana J. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol 2020; 16:661-673. [PMID: 32939050 PMCID: PMC8291993 DOI: 10.1038/s41582-020-0397-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Drug repositioning and repurposing can enhance traditional drug development efforts and could accelerate the identification of new treatments for individuals with Alzheimer disease (AD) dementia and mild cognitive impairment. Transcriptional profiling offers a new and highly efficient approach to the identification of novel candidates for repositioning and repurposing. In the future, novel AD transcriptional signatures from cells isolated at early stages of disease, or from human neurons or microglia that carry mutations that increase the risk of AD, might be used as probes to identify additional candidate drugs. Phase II trials assessing repurposed agents must consider the best target population for a specific candidate therapy as well as the mechanism of action of the treatment. In this Review, we highlight promising compounds to prioritize for clinical trials in individuals with AD, and discuss the value of Delphi consensus methodology and evidence-based reviews to inform this prioritization process. We also describe emerging work, focusing on the potential value of transcript signatures as a cost-effective approach to the identification of novel candidates for repositioning.
Collapse
Affiliation(s)
- Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK.
| | - Dag Aarsland
- Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- SESAM (Regional Center for Elderly Medicine and Interaction), University Hospital Stavanger, Stavanger, Norway
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - John O'Brien
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Roger Mills
- Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Vincere Consulting, LLC, San Diego, CA, USA
| | | | - Tormod Fladby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth Williams
- Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Pat Doherty
- Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Janet Sultana
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|