1
|
Nose K, Taniguchi K, Fujita M, Moyama C, Mori M, Ishita M, Yoshida T, Ii H, Sakai T, Nakata S. γ-Glutamylcyclotransferase is transcriptionally regulated by c-Jun and controls proliferation of glioblastoma stem cells through Notch1 levels. Cancer Gene Ther 2024:10.1038/s41417-024-00835-y. [PMID: 39394529 DOI: 10.1038/s41417-024-00835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Glioblastoma stem cells (GSCs) have been reported to cause poor prognosis of glioblastoma by contributing to therapy resistance. γ-Glutamylcyclotransferase (GGCT) is highly expressed in various cancer types, including glioblastoma, and its inhibition suppresses cancer cell growth. However, the mechanism of GGCT overexpression and its function in GSCs are unknown. In this study, we show that GGCT is highly expressed in GSCs established from a mouse glioblastoma model and its knockdown suppresses their proliferation. Effects of NRas and its downstream transcription factor c-Jun on GGCT expression were analyzed; NRas knockdown reduced c-Jun and GGCT expression. Knockdown of c-Jun also reduced expression levels of GGCT and inhibited cell proliferation. Consistent with this, pharmacological inhibition of c-Jun with SP600125 reduced GGCT and inhibited GSC proliferation. Furthermore, the GGCT promoter-reporter assay with mutagenesis demonstrated that c-Jun regulates the activity of the GGCT promoter via AP-1 consensus sequence. Gene expression analysis revealed that GGCT knockdown showed a repressive effect on the Delta-Notch pathway and decreased Notch1 expression. Notch1 knockdown alone inhibited the GSC proliferation, confirming that Notch1 is functional in this model. Forced expression of the Notch1 intracellular domain restored the growth inhibitory effect of GGCT knockdown. Moreover, GGCT knockdown inhibited GSC tumorigenic potential in vivo. These results indicate that GGCT, whose expression is promoted by c-Jun, plays an important role in the proliferation and tumorigenic potential of GSCs, and that the phenotype caused by its knockdown is contributed by a decrease in Notch1. Thus, GGCT may represent a novel therapeutic target for attacking GSCs.
Collapse
Affiliation(s)
- Kozue Nose
- Laboratory of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Keiko Taniguchi
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsugu Fujita
- Center for Medical Education and Clinical Training, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Chiami Moyama
- Laboratory of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Pharmacy, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Masaya Mori
- Laboratory of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mizuki Ishita
- Laboratory of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Ii
- Laboratory of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Susumu Nakata
- Laboratory of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
2
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
4
|
Dao L, You Z, Lu L, Xu T, Sarkar AK, Zhu H, Liu M, Calandrelli R, Yoshida G, Lin P, Miao Y, Mierke S, Kalva S, Zhu H, Gu M, Vadivelu S, Zhong S, Huang LF, Guo Z. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024; 31:818-833.e11. [PMID: 38754427 PMCID: PMC11162335 DOI: 10.1016/j.stem.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
Collapse
Affiliation(s)
- Lan Dao
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhen You
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lu Lu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tianyang Xu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avijite Kumer Sarkar
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hui Zhu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Miao Liu
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Riccardo Calandrelli
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Yoshida
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pei Lin
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yifei Miao
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Mierke
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Srijan Kalva
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sudhakar Vadivelu
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - L Frank Huang
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
5
|
Hinchie AM, Sanford SL, Loughridge KE, Sutton RM, Parikh AH, Gil Silva AA, Sullivan DI, Chun-On P, Morrell MR, McDyer JF, Opresko PL, Alder JK. A persistent variant telomere sequence in a human pedigree. Nat Commun 2024; 15:4681. [PMID: 38824190 PMCID: PMC11144197 DOI: 10.1038/s41467-024-49072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.
Collapse
Affiliation(s)
- Angela M Hinchie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha L Sanford
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kelly E Loughridge
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel M Sutton
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anishka H Parikh
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Agustin A Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pattra Chun-On
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew R Morrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Pharmacology and Chemical Biology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan K Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
7
|
Minskaia E, Galieva A, Egorov AD, Ivanov R, Karabelsky A. Viral Vectors in Gene Replacement Therapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2157-2178. [PMID: 38462459 DOI: 10.1134/s0006297923120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels. Hematological, ophthalmological, neurodegenerative, and metabolic therapeutic areas have witnessed successful treatment of hemophilia and muscular dystrophy, restoration of immune system in children with immunodeficiencies, and restoration of vision. This review focuses on three leading vector platforms of the past two decades: adeno-associated viruses (AAVs), adenoviruses (AdVs), and lentiviruses (LVs). Special attention is given to successful preclinical and clinical studies that have led to the approval of gene therapies: six AAV-based (Glybera® for lipoprotein lipase deficiency, Luxturna® for retinal dystrophy, Zolgensma® for spinal muscular atrophy, Upstaza® for AADC, Roctavian® for hemophilia A, and Hemgenix® for hemophilia B) and three LV-based (Libmeldy® for infantile metachromatic leukodystrophy, Zynteglo® for β-thalassemia, and Skysona® for ALD). The review also discusses the problems that arise in the development of gene therapy treatments, which, nevertheless, do not overshadow the successes of already developed gene therapies and the hope these treatments give to long-suffering patients and their families.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia.
| | - Alima Galieva
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander D Egorov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Roman Ivanov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander Karabelsky
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| |
Collapse
|
8
|
Liu CM, Chen YC, Hu YF. Harnessing cell reprogramming for cardiac biological pacing. J Biomed Sci 2023; 30:74. [PMID: 37633890 PMCID: PMC10463311 DOI: 10.1186/s12929-023-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Electrical impulses from cardiac pacemaker cardiomyocytes initiate cardiac contraction and blood pumping and maintain life. Abnormal electrical impulses bring patients with low heart rates to cardiac arrest. The current therapy is to implant electronic devices to generate backup electricity. However, complications inherent to electronic devices remain unbearable suffering. Therefore, cardiac biological pacing has been developed as a hardware-free alternative. The approaches to generating biological pacing have evolved recently using cell reprogramming technology to generate pacemaker cardiomyocytes in-vivo or in-vitro. Different from conventional methods by electrical re-engineering, reprogramming-based biological pacing recapitulates various phenotypes of de novo pacemaker cardiomyocytes and is more physiological, efficient, and easy for clinical implementation. This article reviews the present state of the art in reprogramming-based biological pacing. We begin with the rationale for this new approach and review its advances in creating a biological pacemaker to treat bradyarrhythmia.
Collapse
Affiliation(s)
- Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
9
|
Martin S, Allan KC, Pinkard O, Sweet T, Tesar PJ, Coller J. Oligodendrocyte differentiation alters tRNA modifications and codon optimality-mediated mRNA decay. Nat Commun 2022; 13:5003. [PMID: 36008413 PMCID: PMC9411196 DOI: 10.1038/s41467-022-32766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
Oligodendrocytes are specialized cells that confer neuronal myelination in the central nervous system. Leukodystrophies associated with oligodendrocyte deficits and hypomyelination are known to result when a number of tRNA metabolism genes are mutated. Thus, for unknown reasons, oligodendrocytes may be hypersensitive to perturbations in tRNA biology. In this study, we survey the tRNA transcriptome in the murine oligodendrocyte cell lineage and find that specific tRNAs are hypomodified in oligodendrocytes within or near the anticodon compared to oligodendrocyte progenitor cells (OPCs). This hypomodified state may be the result of differential expression of key modification enzymes during oligodendrocyte differentiation. Moreover, we observe a concomitant relationship between tRNA hypomodification and tRNA decoding potential; observing oligodendrocyte specific alterations in codon optimality-mediated mRNA decay and ribosome transit. Our results reveal that oligodendrocytes naturally maintain a delicate, hypersensitized tRNA/mRNA axis. We suggest this axis is a potential mediator of pathology in leukodystrophies and white matter disease when further insult to tRNA metabolism is introduced.
Collapse
Affiliation(s)
- Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Otis Pinkard
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Thomas Sweet
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Saoin S, Arunyanak N, Muangchan P, Boonkrai C, Pisitkun T, Kloypan C, Nangola S. Bicistronic vector-based procedure to measure correlative expression and bacteriostatic activity of recombinant neutrophil gelatinase-associated lipocalin. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Somphot Saoin
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Naphatswan Arunyanak
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Pornuma Muangchan
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chiraphat Kloypan
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
11
|
Grabowska A, Sas-Nowosielska H, Wojtas B, Holm-Kaczmarek D, Januszewicz E, Yushkevich Y, Czaban I, Trzaskoma P, Krawczyk K, Gielniewski B, Martin-Gonzalez A, Filipkowski RK, Olszynski KH, Bernas T, Szczepankiewicz AA, Sliwinska MA, Kanhema T, Bramham CR, Bokota G, Plewczynski D, Wilczynski GM, Magalska A. Activation-induced chromatin reorganization in neurons depends on HDAC1 activity. Cell Rep 2022; 38:110352. [PMID: 35172152 DOI: 10.1016/j.celrep.2022.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.
Collapse
Affiliation(s)
- Agnieszka Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Elzbieta Januszewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yana Yushkevich
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Pawel Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Martin-Gonzalez
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, 03550 Alicante, Spain
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Hubert Olszynski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Tytus Bernas
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Department of Anatomy and Neurology, VCU School of Medicine, Richmond, VA 23284, USA
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Malgorzata Alicja Sliwinska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Grzegorz Bokota
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
12
|
Gatina DZ, Garanina EE, Zhuravleva MN, Synbulatova GE, Mullakhmetova AF, Solovyeva VV, Kiyasov AP, Rutland CS, Rizvanov AA, Salafutdinov II. Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors. Int J Mol Sci 2021; 22:ijms22115922. [PMID: 34072943 PMCID: PMC8198600 DOI: 10.3390/ijms22115922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses' furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases.
Collapse
Affiliation(s)
- Dilara Z. Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Margarita N. Zhuravleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Gulnaz E. Synbulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Adelya F. Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Andrey P. Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| | - Ilnur I. Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| |
Collapse
|
13
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Page A, Fusil F, Cosset FL. Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction. Viruses 2020; 12:v12121427. [PMID: 33322556 PMCID: PMC7764518 DOI: 10.3390/v12121427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitutive or regulated promoters in order to regulate transgene expression. This allows to temporally and/or quantitatively control transgene expression, which is required for many applications such as for clinical applications, when transgene expression is required in specific tissues and at a specific timing. Here we review the main systems that have been developed for transgene regulated expression following lentiviral gene transfer. First, the induction of gene expression can be triggered either by external or by internal cues. Indeed, these regulated vector systems may harbor promoters inducible by exogenous stimuli, such as small molecules (e.g., antibiotics) or temperature variations, offering the possibility to tune rapidly transgene expression in case of adverse events. Second, expression can be indirectly adjusted by playing on inserted sequence copies, for instance by gene excision. Finally, synthetic networks can be developed to sense specific endogenous signals and trigger defined responses after information processing. Regulatable lentiviral vectors (LV)-mediated transgene expression systems have been widely used in basic research to uncover gene functions or to temporally reprogram cells. Clinical applications are also under development to induce therapeutic molecule secretion or to implement safety switches. Such regulatable approaches are currently focusing much attention and will benefit from the development of other technologies in order to launch autonomously controlled systems.
Collapse
|
15
|
Chapeau EA, Mandon E, Gill J, Romanet V, Ebel N, Powajbo V, Andraos-Rey R, Qian Z, Kininis M, Zumstein-Mecker S, Ito M, Hynes NE, Tiedt R, Hofmann F, Eshkind L, Bockamp E, Kinzel B, Mueller M, Murakami M, Baffert F, Radimerski T. A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression. PLoS One 2019; 14:e0221635. [PMID: 31600213 PMCID: PMC6786561 DOI: 10.1371/journal.pone.0221635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.
Collapse
Affiliation(s)
- Emilie A. Chapeau
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
- * E-mail:
| | - Emeline Mandon
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jason Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vincent Romanet
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolas Ebel
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Violetta Powajbo
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Rita Andraos-Rey
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zhiyan Qian
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Miltos Kininis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Moriko Ito
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph Tiedt
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Leonid Eshkind
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kinzel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matthias Mueller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabienne Baffert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
16
|
Chavoshinezhad S, Mohseni Kouchesfahani H, Salehi MS, Pandamooz S, Ahmadiani A, Dargahi L. Intranasal interferon beta improves memory and modulates inflammatory responses in a mutant APP-overexpressing rat model of Alzheimer’s disease. Brain Res Bull 2019; 150:297-306. [DOI: 10.1016/j.brainresbull.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/01/2019] [Accepted: 06/19/2019] [Indexed: 02/09/2023]
|
17
|
Yao Y, Chu H, Wang J, Wang B. Decreased human antigen R expression confers resistance to tyrosine kinase inhibitors in epidermal growth factor receptor-mutant lung cancer by inhibiting Bim expression. Int J Mol Med 2018; 42:2930-2942. [PMID: 30226552 DOI: 10.3892/ijmm.2018.3835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 08/14/2018] [Indexed: 11/06/2022] Open
Abstract
Primary resistance to epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) is an obstacle for the treatment of non‑small cell lung cancer (NSCLC); however, the associated mechanisms are not well understood. Studies have reported that Bim expression levels may be associated with the efficacy of EGFR‑TKI treatment in NSCLC patients harboring EGFR mutations. Human antigen R (HuR) regulates the mRNA and protein expression of target genes, including certain B‑cell lymphoma 2 family members. The present study investigated whether HuR mediates resistance to EGFR‑TKIs via the regulation of Bim. The results demonstrated that decreased levels of HuR and Bim protein expression are associated with primary resistance to EGFR‑TKIs and reduced median progression‑free survival in NSCLC patients. In vitro assays also revealed that knockdown of HuR resulted in primary EGFR‑TKI resistance and reduced gefitinib‑induced apoptosis in HCC827 cells by decreasing Bim expression. Furthermore, elevated HuR expression restored gefitinib sensitivity and enhanced gefitinib‑induced apoptosis in H1650 cells by increasing Bim expression. In vivo, it was further demonstrated that overexpression of HuR was able to restore the gefitinib sensitivity of H1650 cells. Therefore, altered HuR/Bim expression is proposed to be a novel mechanism of EGFR‑TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Yunfeng Yao
- Institute of Post‑Graduate, The Second Military Medical University, People's Liberation Army, Shanghai 200433, P.R. China
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Baocheng Wang
- Institute of Post‑Graduate, The Second Military Medical University, People's Liberation Army, Shanghai 200433, P.R. China
| |
Collapse
|
18
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|
19
|
Liu J, Liu J, Shi L, Zhang F, Yu L, Yang X, Cai J. Preliminary study of microRNA-126 as a novel therapeutic target for primary hypertension. Int J Mol Med 2018; 41:1835-1844. [PMID: 29393351 PMCID: PMC5810200 DOI: 10.3892/ijmm.2018.3420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to explore microRNA-126 (miR-126) as a novel therapeutic target for primary hypertension. The lentiviral vector containing human immunodeficiency virus 1 (HIV-1), the miR-126 gene knockdown viral vector (lenti-miR-126-KD), and control lentiviral vector (lenti-scramble-miR) were constructed. Spontaneously hypertensive rats were randomly divided into 4 groups, which received a high dose of lenti-miR-126-KD (1×108, n=5), low dose of lenti-miR-126-KD (1×107, n=6), scramble-miR (5×107, n=6), and PBS (n=6). Lentiviral vectors were injected into the tail vein. Data on the systolic blood pressure, diastolic pressure, mean arterial pressure, and heart rate were collected weekly. After 8 weeks of virus administration, the distribution of lentiviral vectors in different tissues was observed by fluorescence microscopy. Picric acid Sirius red and H&E staining were used to observe the target organ damage, and the ELISA kit was used to determine the serum nitric oxide (NO) content. The lentiviral vector was found to be constructed successfully. Eight weeks after the lentiviral vector injection, green fluorescent protein was observed in different tissues in each group. The blood pressure and heart rate were not significantly altered after lentiviral vector injection (P>0.05). No significant differences in the heart-to-body weight ratio among the four groups were observed (P=0.23). Picric acid Sirius red and H&E staining revealed that there was no significant difference in morphology among the four groups. No significant difference in the serum NO level among the four groups was noted (P=0.23). The miR-126 gene knockdown lentiviral vector was constructed successfully. No significant antihypertensive effect was observed by the knockdown of miR-126 for the treatment of primary hypertension. The target organs were not protected significantly after the treatment. The increased level of miR-126 expression in hypertensive patients may be due to a compensatory mechanism.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jiamei Liu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Linying Shi
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Fan Zhang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Liping Yu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xinchun Yang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jun Cai
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
20
|
Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, Mikkelsen JG, Corydon TJ. Suppression of Choroidal Neovascularization in Mice by Subretinal Delivery of Multigenic Lentiviral Vectors Encoding Anti-Angiogenic MicroRNAs. Hum Gene Ther Methods 2018; 28:222-233. [PMID: 28817343 DOI: 10.1089/hgtb.2017.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lentivirus-based vectors have been used for the development of potent gene therapies. Here, application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model is presented. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Six days post injection (PI), robust and widespread fluorescent signals of eGFP are already observed in the retina by funduscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | - Tina Storm
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lars Aagaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Toke Bek
- 2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | | | - Thomas Juhl Corydon
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark .,2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
21
|
Norlin S, Parekh V, Edlund H. The ATPase activity of Asna1/TRC40 is required for pancreatic progenitor cell survival. Development 2018; 145:dev.154468. [PMID: 29180572 PMCID: PMC5825870 DOI: 10.1242/dev.154468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Asna1, also known as TRC40, is implicated in the delivery of tail-anchored (TA) proteins into the endoplasmic reticulum (ER), in vesicle-mediated transport, and in chaperoning unfolded proteins during oxidative stress/ATP depletion. Here, we show that Asna1 inactivation in pancreatic progenitor cells leads to redistribution of the Golgi TA SNARE proteins syntaxin 5 and syntaxin 6, Golgi fragmentation, and accumulation of cytosolic p62+ puncta. Asna1−/− multipotent progenitor cells (MPCs) selectively activate integrated stress response signaling and undergo apoptosis, thereby disrupting endocrine and acinar cell differentiation, resulting in pancreatic agenesis. Rescue experiments implicate the Asna1 ATPase activity and a CXXC di-cysteine motif in ensuring Golgi integrity, syntaxin 5 localization and MPC survival. Ex vivo inhibition of retrograde transport reproduces the perturbed Golgi morphology, and syntaxin 5 and syntaxin 6 expression, whereas modulation of p53 activity, using PFT-α and Nutlin-3, prevents or reproduces apoptosis in Asna1-deficient and wild-type MPCs, respectively. These findings support a role for the Asna1 ATPase activity in ensuring the survival of pancreatic MPCs, possibly by counteracting p53-mediated apoptosis. Summary: Conditional inactivation of Asna1/TRC40 in pancreatic progenitor cells results in pancreatic agenesis resulting from pancreatic progenitor cell apoptosis, thus revealing a crucial role for Asna1/TRC40 in pancreatic progenitor cell survival.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Vishal Parekh
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
22
|
Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, Mikkelsen JG, Corydon TJ. Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic microRNAs. Hum Gene Ther Methods 2017. [DOI: 10.1089/hum.2017.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | | | | | - Tina Storm
- Aarhus University, Department of Biomedicine, Aarhus C, Denmark
| | - Lars Aagaard
- Aarhus University, Department of Biomedicine, Aarhus C, Denmark
| | - Toke Bek
- Aarhus University Hospital, Department of Ophthalmology, Aarhus C, Denmark
| | | | - Thomas Juhl Corydon
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Alle, Aarhus C, Denmark, 8000
| |
Collapse
|
23
|
Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P. A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. PLoS One 2016; 11:e0159277. [PMID: 27500400 PMCID: PMC4976983 DOI: 10.1371/journal.pone.0159277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Recombination-based cloning is a quick and efficient way to generate expression vectors. Recent advancements have provided powerful recombinant DNA methods for molecular manipulations. Here, we describe a novel collection of three-fragment MultiSite Gateway cloning system-compatible vectors providing expanded molecular tools for vertebrate research. The components of this toolkit encompass a broad range of uses such as fluorescent imaging, dual gene expression, RNA interference, tandem affinity purification, chemically-inducible dimerization and lentiviral production. We demonstrate examples highlighting the utility of this toolkit for producing multi-component vertebrate expression vectors with diverse primary research applications. The vectors presented here are compatible with other Gateway toolkits and collections, facilitating the rapid generation of a broad range of innovative DNA constructs for biological research.
Collapse
Affiliation(s)
- Daniel K. Fowler
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Scott Stewart
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Steve Seredick
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kryn Stankunas
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
24
|
Production of germline transgenic pigs co-expressing double fluorescent proteins by lentiviral vector. Anim Reprod Sci 2016; 174:11-19. [PMID: 27639503 DOI: 10.1016/j.anireprosci.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 11/23/2022]
Abstract
Genomic integration of transgene by lentiviral vector has been proved an efficient method to produce single-transgenic animals. But it failed to create multi-gene transgenic offspring. Here, we have exploited lentivirus to generate the double-transgenic piglets through the female germline. The recombinant lentivirus containing fluorescent proteins genes (DsRed1 and Venus) were injected into the perivitelline space of 2-cell stage in vitro porcine embryos. Compared to control group, there was no significantly decreased in the proportion of blastocysts, and the two fluorescent protein genes were co-expressed in almost all the injected embryos. Total of 32 injected in vitro embryos were transferred to 2 recipients. One recipient gave birth of three live offspring, and one female piglet was identified as genomic transgene integration by PCR analysis. Subsequently, the female transgenic founder was mated naturally with a wild-type boar and gave birth of two litters of total 23 F(1) generation piglets, among which Venus and DsRed1 genes were detected in 11 piglets and 10 kinds of organs by PCR and RT-PCR respectively. The co-expression of two fluorescent proteins was visible in four different frozen tissue sections from the RT-PCR positive piglets, and 3 to 5 copies of the transgenes were detected to be integrated into the second generation genome by southern blotting analysis. The transgenes were heritable and stably integrated in the F(1) generation. The results indicated for the first time that lentiviral vector combined with natural mating has the potential to become a simple and practical technology to create germline double-transgenic livestock or biomedical animals.
Collapse
|
25
|
Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74. J Virol 2016; 90:5808-5823. [PMID: 27076642 DOI: 10.1128/jvi.03116-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The viral capsid of HIV-1 interacts with a number of host factors to orchestrate uncoating and regulate downstream events, such as reverse transcription, nuclear entry, and integration site targeting. PF-3450074 (PF74), an HIV-1 capsid-targeting low-molecular-weight antiviral compound, directly binds to the capsid (CA) protein at a site also utilized by host cell proteins CPSF6 and NUP153. Here, we found that the dose-response curve of PF74 is triphasic, consisting of a plateau and two inhibitory phases of different slope values, consistent with a bimodal mechanism of drug action. High PF74 concentrations yielded a steep curve with the highest slope value among different classes of known antiretrovirals, suggesting a dose-dependent, cooperative mechanism of action. CA interactions with both CPSF6 and cyclophilin A (CypA) were essential for the unique dose-response curve. A shift of the steep curve at lower drug concentrations upon blocking the CA-CypA interaction suggests a protective role for CypA against high concentrations of PF74. These findings, highlighting the unique characteristics of PF74, provide a model in which its multimodal mechanism of action of both noncooperative and cooperative inhibition by PF74 is regulated by interactions of cellular proteins with incoming viral capsids. IMPORTANCE PF74, a novel capsid-targeting antiviral against HIV-1, shares its binding site in the viral capsid protein (CA) with the host factors CPSF6 and NUP153. This work reveals that the dose-response curve of PF74 consists of two distinct inhibitory phases that are differentially regulated by CA-interacting host proteins. PF74's potency depended on these CA-binding factors at low doses. In contrast, the antiviral activity of high PF74 concentrations was attenuated by cyclophilin A. These observations provide novel insights into both the mechanism of action of PF74 and the roles of host factors during the early steps of HIV-1 infection.
Collapse
|
26
|
Lathuilière A, Schneider BL. Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies. Methods Mol Biol 2016; 1448:139-155. [PMID: 27317179 DOI: 10.1007/978-1-4939-3753-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The implantation of genetically modified cells is considered for the chronic delivery of therapeutic recombinant proteins in vivo. In the context of gene therapy, the genetic engineering of cells faces two main challenges. First, it is critical to generate expandable cell sources, which can maintain stable high productivity of the recombinant protein of interest over time, both in culture and after transplantation. In addition, gene transfer techniques need to be developed to engineer cells synthetizing complex polypeptides, such as recombinant monoclonal antibodies, to broaden the range of potential therapeutic applications. Here, we provide a workflow for the use of lentiviral vectors as a flexible tool to generate antibody-producing cells. In particular, lentiviral vectors can be used to genetically engineer the cell types compatible with encapsulation devices protecting the implanted cells from the host immune system. Detailed methods are provided for the design and production of lentiviral vectors, optimization of cell transduction, as well as for the quantification and quality control of the produced recombinant antibody.
Collapse
Affiliation(s)
- Aurélien Lathuilière
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
27
|
Zheng S, Vuong BQ, Vaidyanathan B, Lin JY, Huang FT, Chaudhuri J. Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA. Cell 2015; 161:762-73. [PMID: 25957684 PMCID: PMC4426339 DOI: 10.1016/j.cell.2015.03.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/31/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022]
Abstract
Transcription through immunoglobulin switch (S) regions is essential for class switch recombination (CSR), but no molecular function of the transcripts has been described. Likewise, recruitment of activation-induced cytidine deaminase (AID) to S regions is critical for CSR; however, the underlying mechanism has not been fully elucidated. Here, we demonstrate that intronic switch RNA acts in trans to target AID to S region DNA. AID binds directly to switch RNA through G-quadruplexes formed by the RNA molecules. Disruption of this interaction by mutation of a key residue in the putative RNA-binding domain of AID impairs recruitment of AID to S region DNA, thereby abolishing CSR. Additionally, inhibition of RNA lariat processing leads to loss of AID localization to S regions and compromises CSR; both defects can be rescued by exogenous expression of switch transcripts in a sequence-specific manner. These studies uncover an RNA-mediated mechanism of targeting AID to DNA.
Collapse
Affiliation(s)
- Simin Zheng
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Bao Q Vuong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biology, City College of New York, New York, NY 10031, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Jia-Yu Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
28
|
Tian Y, Xu Y, Fu Q, Chang M, Wang Y, Shang X, Wan C, Marymont JV, Dong Y. Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1. Mol Cell Endocrinol 2015; 403:30-8. [PMID: 25596548 PMCID: PMC4337804 DOI: 10.1016/j.mce.2015.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 01/11/2015] [Indexed: 12/14/2022]
Abstract
While Notch signaling plays a critical role in the regulation of cartilage formation, its downstream targets are unknown. To address this we performed gain and losses of function experiments and demonstrate that Notch inhibition of chondrogenesis acts via up-regulation of the transcription factor Twist1. Upon Notch activation, murine limb bud mesenchymal progenitor cells in micromass culture displayed an inhibition of chondrogenesis. Twist1 was found to be exclusively expressed in mesenchymal progenitor cells at the onset stage of chondrogenesis during Notch activation. Inhibition of Notch signaling in these cells significantly reduced protein expression of Twist1. Furthermore, the inhibition effect of NICD1 on MPC chondrogenesis was markedly reduced by knocking down of Twist1. Constitutively active Notch signaling significantly enhanced Twist1 promoter activity; whereas mutation studies indicated that a putative NICD/RBPjK binding element in the promoter region is required for the Notch-responsiveness of the Twist1 promoter. Finally, chromatin immunoprecipitation assays further confirmed that the Notch intracellular domain influences Twist1 by directly binding to the Twist1 promoter. These data provide a novel insight into understanding the molecular mechanisms behind Notch inhibition of the onset of chondrogenesis.
Collapse
Affiliation(s)
- Ye Tian
- Department of Orthopaedics, Shengjing Hospital, China Medical University, 36 Sanhao Road, Shenyang 110004, China.
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, 36 Sanhao Road, Shenyang 110004, China
| | - Qin Fu
- Department of Orthopaedics, Shengjing Hospital, China Medical University, 36 Sanhao Road, Shenyang 110004, China
| | - Martin Chang
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - Yongjun Wang
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xifu Shang
- Department of Orthopaedic Surgery, Anhui Provincial Hospital, Hefei 230001, China
| | - Chao Wan
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John V Marymont
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
29
|
Chiarella E, Carrà G, Scicchitano S, Codispoti B, Mega T, Lupia M, Pelaggi D, Marafioti MG, Aloisio A, Giordano M, Nappo G, Spoleti CB, Grillone T, Giovannone ED, Spina R, Bernaudo F, Moore MAS, Bond HM, Mesuraca M, Morrone G. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors. PLoS One 2014; 9:e114795. [PMID: 25502183 PMCID: PMC4264771 DOI: 10.1371/journal.pone.0114795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Giovanna Carrà
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Bruna Codispoti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Tiziana Mega
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Michela Lupia
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Daniela Pelaggi
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Maria G. Marafioti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Marco Giordano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Giovanna Nappo
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Cristina B. Spoleti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Teresa Grillone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Emilia D. Giovannone
- Laboratory of Molecular Oncology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Raffaella Spina
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Francesca Bernaudo
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Malcolm A. S. Moore
- Dept. of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Heather M. Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
- * E-mail: (GM); (MM)
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, 88100, Catanzaro, Italy
- * E-mail: (GM); (MM)
| |
Collapse
|
30
|
Roth JC, Alberti MO, Ismail M, Lingas KT, Reese JS, Gerson SL. MGMT enrichment and second gene co-expression in hematopoietic progenitor cells using separate or dual-gene lentiviral vectors. Virus Res 2014; 196:170-80. [PMID: 25479595 DOI: 10.1016/j.virusres.2014.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
Abstract
The DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT) allows efficient in vivo enrichment of transduced hematopoietic stem cells (HSC). Thus, linking this selection strategy to therapeutic gene expression offers the potential to reconstitute diseased hematopoietic tissue with gene-corrected cells. However, different dual-gene expression vector strategies are limited by poor expression of one or both transgenes. To evaluate different co-expression strategies in the context of MGMT-mediated HSC enrichment, we compared selection and expression efficacies in cells cotransduced with separate single-gene MGMT and GFP lentivectors to those obtained with dual-gene vectors employing either encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) or foot and mouth disease virus (FMDV) 2A elements for co-expression strategies. Each strategy was evaluated in vitro and in vivo using equivalent multiplicities of infection (MOI) to transduce 5-fluorouracil (5-FU) or Lin(-)Sca-1(+)c-kit(+) (LSK)-enriched murine bone marrow cells (BMCs). The highest dual-gene expression (MGMT(+)GFP(+)) percentages were obtained with the FMDV-2A dual-gene vector, but half of the resulting gene products existed as fusion proteins. Following selection, dual-gene expression percentages in single-gene vector cotransduced and dual-gene vector transduced populations were similar. Equivalent MGMT expression levels were obtained with each strategy, but GFP expression levels derived from the IRES dual-gene vector were significantly lower. In mice, vector-insertion averages were similar among cells enriched after dual-gene vectors and those cotransduced with single-gene vectors. These data demonstrate the limitations and advantages of each strategy in the context of MGMT-mediated selection, and may provide insights into vector design with respect to a particular therapeutic gene or hematologic defect.
Collapse
Affiliation(s)
- Justin C Roth
- Molecular Virology Training Program, Case Western Reserve University, Cleveland, OH, USA; Division of Hematology and Oncology, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Michael O Alberti
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mourad Ismail
- Division of Hematology and Oncology, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Karen T Lingas
- Division of Hematology and Oncology, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Jane S Reese
- Division of Hematology and Oncology, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, OH, USA.
| | - Stanton L Gerson
- Division of Hematology and Oncology, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, OH, USA; National Center for Regenerative Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; The Center for Stem Cell and Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
31
|
Li W, Tan J, Wang P, Li N, Li C. Glial fibrillary acidic protein promoters direct adenovirus early 1A gene and human telomerase reverse transcriptase promoters direct sodium iodide symporter expression for malignant glioma radioiodine therapy. Mol Cell Biochem 2014; 399:279-89. [DOI: 10.1007/s11010-014-2254-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/17/2014] [Indexed: 12/12/2022]
|
32
|
Chen S, Shao C, Dong T, Chai H, Xiong X, Sun D, Zhang L, Yu Y, Wang P, Cheng F. Transplantation of ATP7B-transduced bone marrow mesenchymal stem cells decreases copper overload in rats. PLoS One 2014; 9:e111425. [PMID: 25375371 PMCID: PMC4222898 DOI: 10.1371/journal.pone.0111425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/26/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that transplantation of ATP7B-transduced hepatocytes ameliorates disease progression in LEC (Long-Evans Cinnamon) rats, a model of Wilson's disease (WD). However, the inability of transplanted cells to proliferate in a normal liver hampers long-term treatment. In the current study, we investigated whether transplantation of ATP7B-transduced bone marrow mesenchymal stem cells (BM-MSCs) could decrease copper overload in LEC rats. MATERIALS AND METHODS The livers of LEC rats were preconditioned with radiation (RT) and/or ischemia-reperfusion (IRP) before portal vein infusion of ATP7B-transduced MSCs (MSCsATP7B). The volumes of MSCsATP7B or saline injected as controls were identical. The expression of ATP7B was analyzed by real-time quantitative polymerase chain reaction (RT-PCR) at 4, 12 and 24 weeks post-transplantation. MSCATP7B repopulation, liver copper concentrations, serum ceruloplasmin levels, and alanine transaminase (ALT) and aspartate transaminase (AST) levels were also analyzed at each time-point post-transplantation. RESULTS IRP-plus-RT preconditioning was the most effective strategy for enhancing the engraftment and repopulation of transplanted MSCsATP7B. This strategy resulted in higher ATP7B expression and serum ceruloplasmin, and lower copper concentration in this doubly preconditioned group compared with the saline control group, the IRP group, and the RT group at all three time-points post-transplantation (p<0.05 for all). Moreover, 24 weeks post-transplantation, the levels of ALT and AST in the IRP group, the RT group, and the IRP-plus-RT group were all significantly decreased compared to those of the saline group (p<0.05 compared with the IRP group and RT group, p<0.01 compared with IRP-plus-RT group); ALT and AST levels were significantly lower in the IRP-plus-RT group compared to either the IRP group or the RT group (p<0.01 and p<0.05. respectively). CONCLUSIONS These results demonstrate that transplantation of MSCsATP7B into IRP-plus-RT preconditioned LEC rats decreased copper overload and was associated with an increase in MSC engraftment and repopulation.
Collapse
Affiliation(s)
- Shenglin Chen
- Department of Hepatobiliary Surgery Ward of General Surgery, The Affiliated Wuhu No. 2 People's Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Cunhua Shao
- Department of Hepatobiliary Surgery, Dongying People's Hospital, Dongying, Shandong Province, China
| | - Tianfu Dong
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Hao Chai
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Xinkui Xiong
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Daoyi Sun
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Long Zhang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Yue Yu
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Ping Wang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Feng Cheng
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| |
Collapse
|
33
|
Li XD, Liang XL, Ma F, Jing LJ, Lin L, Yang YB, Feng SS, Fu GL, Yue XL, Dai ZF. Chitosan stabilized Prussian blue nanoparticles for photothermally enhanced gene delivery. Colloids Surf B Biointerfaces 2014; 123:629-38. [DOI: 10.1016/j.colsurfb.2014.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/19/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
|
34
|
Construction and quantitative evaluation of a dual specific promoter system for monitoring the expression status of Stra8 and c-kit genes. Mol Biotechnol 2014; 56:1100-9. [PMID: 25260891 DOI: 10.1007/s12033-014-9790-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Applications of genetic constructs with multiple promoters, which are fused with reporter genes and simultaneous monitoring of various events in cells, have gained special attention in recent years. Lentiviral vectors, with their distinctive characteristics, have been considered to monitor the developmental changes of cells in vitro. In this study, we constructed a novel lentiviral vector (FUM-M), containing two germ cell-specific promoters (Stra8 and c-kit), fused with ZsGreen and DsRed2 reporter genes, and evaluated its efficiency in different cells following treatments with retinoic acid and DMSO. Several cell lines (P19, GC-1 spg and HEK293T) were transduced with this vector, and functional capabilities of the promoters were verified by flow cytometry and quantitative RT-PCR. Our results indicate that FUM-M shows dynamic behavior in the presence and absence of extrinsic factors. A correlation was also observed between the function of promoters, present in the lentiviral construct and the endogenous level of the Stra8 and c-kit mRNAs in the cells. In conclusion, we recommend this strategy, which needs further optimization of the constructs, as a beneficial and practical way to screen chemical inducers involved in cellular differentiation toward germ-like cells.
Collapse
|
35
|
Bosch MK, Nerbonne JM, Ornitz DM. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo. PLoS One 2014; 9:e104062. [PMID: 25093726 PMCID: PMC4122438 DOI: 10.1371/journal.pone.0104062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/08/2014] [Indexed: 12/19/2022] Open
Abstract
Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.
Collapse
Affiliation(s)
- Marie K. Bosch
- Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jeanne M. Nerbonne
- Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - David M. Ornitz
- Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
36
|
Shen Z, Fang L, Zhao L, Lei H. β-defensin 2 ameliorates lung injury caused by Pseudomonas infection and regulates proinflammatory and anti-inflammatory cytokines in rat. Int J Mol Sci 2014; 15:13372-87. [PMID: 25079443 PMCID: PMC4159799 DOI: 10.3390/ijms150813372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
An important member of the defensin family, β-defensin 2, is believed to play an important role in defense against foreign pathogens. In the present study, we constructed lentiviral vectors to express and knockdown β-defensin 2 in rat lungs. The results showed that the infection of β-defensin 2 overexpression lentivirus and β-defensin 2 shRNA effectively increased and suppressed the expression of β-defensin 2 in rat lung, respectively. The overexpression of β-defensin 2 mediated by the lentiviral vector protected lung from infection of Pseudomonas aeruginosa, but shRNA targeting β-defensin 2 aggregated the damage of lung. In addition, we also found that β-defensin 2 overexpression increased basal expression of anti-inflammatory cytokine such as IL-4, IL-10 and IL-13 and decreased levels of proinflammatory cytokines which include IL-1α, IL-1β, IL-5, IL-6, IL-8, IL-18, and TNF-α. Moreover, in the process of cytokine regulation, NF-κB pathway may be involved. Taken together, these data suggest that β-defensin 2 has protective effects against infection of Pseudomonas aeruginosa in rat and plays a role in inflammatory regulation by adjusting cytokine levels.
Collapse
Affiliation(s)
- Zhenwei Shen
- Department of Emergency Internal Medicine, Shanghai East Hospital, Shanghai 200120, China.
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Shanghai 200120, China.
| | - Liming Zhao
- Department of Respiratory Medicine, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Han Lei
- Department of Respiratory Medicine, Shanghai East Hospital, Shanghai 200120, China.
| |
Collapse
|
37
|
Vander Griend DJ, Litvinov IV, Isaacs JT. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation. Int J Biol Sci 2014; 10:627-42. [PMID: 24948876 PMCID: PMC4062956 DOI: 10.7150/ijbs.8756] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression.
Collapse
Affiliation(s)
- Donald J Vander Griend
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 3. The Brady Urological Institute, Johns Hopkins
| | - Ivan V Litvinov
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 2. Cellular and Molecular Medicine Graduate Program at Johns Hopkins
| | - John T Isaacs
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 2. Cellular and Molecular Medicine Graduate Program at Johns Hopkins. ; 3. The Brady Urological Institute, Johns Hopkins
| |
Collapse
|
38
|
Chen IY, Gheysens O, Li Z, Rasooly JA, Wang Q, Paulmurugan R, Rosenberg J, Rodriguez-Porcel M, Willmann JK, Wang DS, Contag CH, Robbins RC, Wu JC, Gambhir SS. Noninvasive imaging of hypoxia-inducible factor-1α gene therapy for myocardial ischemia. Hum Gene Ther Methods 2014; 24:279-88. [PMID: 23937265 DOI: 10.1089/hgtb.2013.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) gene therapy holds great promise for the treatment of myocardial ischemia. Both preclinical and clinical evaluations of this therapy are underway and can benefit from a vector strategy that allows noninvasive assessment of HIF-1α expression as an objective measure of gene delivery. We have developed a novel bidirectional plasmid vector (pcTnT-HIF-1α-VP2-TSTA-fluc), which employs the cardiac troponin T (cTnT) promoter in conjunction with a two-step transcriptional amplification (TSTA) system to drive the linked expression of a recombinant HIF-1α gene (HIF-1α-VP2) and the firefly luciferase gene (fluc). The firefly luciferase (FLuc) activity serves as a surrogate for HIF-1α-VP2 expression, and can be noninvasively assessed in mice using bioluminescence imaging after vector delivery. Transfection of cultured HL-1 cardiomyocytes with pcTnT-HIF-1α-VP2-TSTA-fluc led to a strong correlation between FLuc and HIF-1α-dependent vascular endothelial growth factor expression (r(2)=0.88). Intramyocardial delivery of pcTnT-HIF-1α-VP2-TSTA-fluc into infarcted mouse myocardium led to persistent HIF-1α-VP2 expression for 4 weeks, even though it improved neither CD31+ microvessel density nor echocardiographically determined left ventricular systolic function. These results lend support to recent findings of suboptimal efficacy associated with plasmid-mediated HIF-1α therapy. The imaging techniques developed herein should be useful for further optimizing HIF-1α-VP2 therapy in preclinical models of myocardial ischemia.
Collapse
Affiliation(s)
- Ian Y Chen
- 1 Departments of Radiology, Bioengineering, and Material Science & Engineering, Molecular Imaging Program at Stanford, Stanford University , Stanford, CA 94305
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ghanbari JA, Salehi M, Zadeh AK, Zadeh SM, Beigi VB, Ahmad HK, Mahaki B, Beiraghdar M. A preliminary step of a novel strategy in suicide gene therapy with lentiviral vector. Adv Biomed Res 2014; 3:7. [PMID: 24592361 PMCID: PMC3928841 DOI: 10.4103/2277-9175.124634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/08/2013] [Indexed: 12/23/2022] Open
Abstract
Background: One of the challenges in lentiviral vector–based suicide gene therapy by toxin or apoptosis-inducing genes is death of packaging cells. Therefore, the process of production of these lentiviral particles would be stopped in this step. We proposed that insertion of a reverse promoter between R and U5 regions of 5′ long terminal repeat (LTR) in transfer plasmid could be considered as a solution for this problem. But it is not known, whether the insertion of RΔU3 sequence between the promoter and target gene in proviral genome during the life-cycle of lentivirus may interfere whit gene expression in target cells. Materials and Methods: These following methods were performed in this study: insertion of RΔU3 sequence in pEGFP-N1 plasmid, evaluation of the expression of eGFP gene after calcium phosphate co-precipitation transfection of pCMV-RΔU3-GFP construction in 293T cells, and quantitative assay of eGFP gene by flow cytometry technique. Results: Our results from flow cytometry technique analysis showed that there was no significant difference between the expression of eGFP gene in transfected cells with pEGFP-N1 and pCMV-RΔU3-GFP plasmids (P > 0.05). Conclusion: In this step of our strategy, we demonstrated that modification of orientation and location of promoter may overcome some issues in lentiviral suicide gene therapy, especially when toxin or apoptosis-inducing genes are used.
Collapse
Affiliation(s)
- Jahan Afrooz Ghanbari
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Karam Zadeh
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Vahid Bahram Beigi
- Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khan Ahmad
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behzad Mahaki
- Department of Biostatistics of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Beiraghdar
- MS in Botanical Biology, Department of Biology, Payamnoor University, Isfahan, Iran
| |
Collapse
|
40
|
Wang N, Rajasekaran N, Hou T, Mellins ED. Transgene expression in various organs post BM-HSC transplantation. Stem Cell Res 2013; 12:209-21. [PMID: 24270160 DOI: 10.1016/j.scr.2013.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/17/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022] Open
Abstract
Gene therapy mediated by bone marrow-derived hematopoietic stem cells (BM-HSC) has been widely used in treating genetic deficiencies in both pre-clinical and clinical settings. Using mitotically inactive cell-targeting lentivirus with separate promoters for our gene of interest (the murine MHC class II (MHCII) chaperone, invariant chain (Ii)) and a GFP reporter, we monitored the expression and function of introduced Ii in various types of professional antigen presenting cells (B cells, macrophages and DC) from different organs (spleen, pancreatic lymph nodes (PLN), BM and blood). Ii and GFP were detected. Ii levels correlated with GFP levels only in macrophages and monocytes from spleen, monocytes from PLN and macrophage precursors from blood. By cell type, Ii levels in PLN cells were more similar to those in spleen cells than to those in blood or BM cells. Functionally, Ii expressed in PLN or spleen had more effect on MHCII abundance than Ii expressed in BM or blood. The results have implications for analysis of the outcomes of gene therapy when both therapeutic and reporter genes are introduced. The findings also have implications for understanding the development of immune molecule function.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Narendiran Rajasekaran
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Tieying Hou
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Wang N, Rajasekaran N, Hou T, Lisowski L, Mellins ED. Comparison of transduction efficiency among various lentiviruses containing GFP reporter in bone marrow hematopoietic stem cell transplantation. Exp Hematol 2013; 41:934-43. [PMID: 23954710 PMCID: PMC3833897 DOI: 10.1016/j.exphem.2013.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
HIV-derived lentiviral vectors have been used widely to transduce non-dividing cells, such as hematopoietic stem cells (HSCs), in the setting of gene therapy. In this study, we screened lentiviral vectors for their ability to drive expression of the murine MHC class II chaperone, invariant chain (Ii) and a GFP reporter. The vectors included T2A vector with T2A-separated Ii and GFP under the same MSCV promoter, dual-promoter vectors with separate promoters for Ii and GFP (called MSCV or EF1a according to the promoter driving Ii expression), and a vector with EF1a driving a fusion of Ii/GFP (called Fusion vector). T2A and MSCV induced the highest levels of Ii and GFP expression, respectively, after direct transfection of 293T cells. All vectors except the Fusion vector drove expression of functional Ii, based on the enhancement of MHC class II level, which is a known consequence of Ii expression. Comparing the vectors after they were packaged into lentiviruses and used to transduce 293T, we found that MSCV and EF1a vectors mediated higher Ii and GFP expression. In ckit(+) bone marrow (BM) cells, MSCV still induced the highest Ii and GFP expression, whereas EF1a induced only robust Ii expression. Regardless of the vector, both Ii and GFP levels were significantly reduced in BM cells compared to 293T cells. When in vivo expression was assessed in cells derived from MSCV-transduced BM-HSCs, up to 80% of myeloid cells were GFP(+), but no Ii expression was observed. In contrast, transplantation of EF1a-transduced BM-HSCs led to much higher in vivo Ii expression. Thus, among those compared, dual-promoter vector-based lentivirus with the EF1a promoter driving the gene of interest is optimal for murine BM-HSC transduction.
Collapse
Affiliation(s)
| | | | | | - Leszek Lisowski
- Departments of Pediatrics and Genetics, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth D. Mellins
- Corresponding author at: Prof. Elizabeth D. Mellins, M.D., CCSR 2105c, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5164, USA, Tel: 650-498-7350, Fax: 650-498-6540,
| |
Collapse
|
42
|
Lentivirus-mediated ERK2 siRNA reduces joint capsule fibrosis in a rat model of post-traumatic joint contracture. Int J Mol Sci 2013; 14:20833-44. [PMID: 24141184 PMCID: PMC3821646 DOI: 10.3390/ijms141020833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 01/21/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK)-2 is presumed to play an important role in the development of post-traumatic joint contractures. Using a rat injury model, we investigated whether treatment with ERK2 small interfering RNA (siRNA) could reduce the extent of joint capsule fibrosis after an induced injury. Rats were separated into three groups (n = 32 each): non-operated control group, operated contracture group and contracture-treatment group. Stable post-traumatic joint contracture was created through surgical intra-articular joint injury followed by eight weeks of immobilization. In the contracture-treatment group, the rats were treated with lentivirus (LV)-mediated ERK2 siRNA at days 3 and 7 post-surgery. The posterior joint capsule was assessed by western blotting, immunohistochemistry and biochemical analysis for changes in ERK2, phosphorylated (p)-ERK2, myofibroblast, total collagen and relative collagen Type III expression level. Biomechanical testing was used to assess the development of flexion contractures. Statistical analysis was performed using an analysis of variance. In the operated contracture group, rats that developed flexion contractures also showed elevated phosphorylated p-ERK2 expression. In the contracture-treatment group, ERK2 siRNA significantly reduced p-ERK2 expression levels, as well as the severity of flexion contracture development (p < 0.01). Myofibroblast numbers and measurements of total collagen content were also significantly reduced following ERK2 siRNA (p < 0.01). Relative collagen type III expression as a proportion of total of Types I and III collagen, however, was significantly increased in response to ERK2 siRNA (p < 0.01). Our findings demonstrate a role for ERK2 in the induction of joint capsule fibrosis after injury. Furthermore, we show that development of flexion contractures and the resultant increase of joint capsule fibrosis can be reduced by LV-mediated ERK2 siRNA treatment.
Collapse
|
43
|
Uchida N, Hanawa H, Yamamoto M, Shimada T. The chicken hypersensitivity site 4 core insulator blocks promoter interference in lentiviral vectors. Hum Gene Ther Methods 2013; 24:117-24. [PMID: 23448496 DOI: 10.1089/hgtb.2012.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentiviral vectors, including double internal promoters, can be used to express two transgenes in a single vector construct; however, transcriptional activities from double internal promoters are often inhibited by promoter interference. To determine whether the chicken hypersensitivity site 4 insulator (cHS4) could block promoter interference, lentiviral vectors including an MSCV-U3 promoter (Mp) and an EF1α promoter (Ep) were generated, and transgene expression was evaluated among transduced cells. In the Ep-Mp configuration, transcriptional activity from Mp was much lower, while Mp-Ep had similar transcription levels from both promoters. The cHS4 core insulator increased expression levels from Mp in HeLa cells, hematopoietic cell lines, and mouse peripheral blood cells following hematopoietic stem cell transplantation transduced with the Mp-Ep configured vector. This blocking function was mainly mediated by barrier activity regions in the insulator but not by CCCTC-binding factor (CTCF) binding sites. Cytosine-phosphate-guanine (CpG) methylation did not contribute to this barrier activity. In summary, combining the cHS4 insulator in double promoter vectors can improve transgene expression levels in various cell lines and mouse hematopoietic repopulating cells. These findings are useful for developing hematopoietic stem cell gene therapy.
Collapse
Affiliation(s)
- Naoya Uchida
- Molecular Genetics, Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, 113-8602 Japan.
| | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVE The purposes of this article are to summarize the basic concept and the strategies of reporter imaging; introduce reporter genes frequently used in optical imaging, nuclear medicine, and MRI for in vivo application; and show typical examples of reporter gene imaging. CONCLUSION In molecular biology, many reporter genes have been developed for monitoring cellular processes. Development of controlled gene delivery systems promotes construction of various types of reporter genes for monitoring the level of a gene expression, promoter activity, and protein-protein interaction. When an imaging reporter gene is placed under the control of a promoter, the amount of reporter protein can be dynamically visualized in vivo. Instrumental advances in molecular imaging have increased the sensitivity and resolution of in vivo reporter imaging. Though several types of reporters and multimodal imaging instruments are currently available, more efficient multimodal reporter gene systems and detectors compatible with several imaging modalities are needed.
Collapse
|
45
|
Zhang XB. Cellular reprogramming of human peripheral blood cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:264-74. [PMID: 24060839 PMCID: PMC4357833 DOI: 10.1016/j.gpb.2013.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/22/2022]
Abstract
Breakthroughs in cell fate conversion have made it possible to generate large quantities of patient-specific cells for regenerative medicine. Due to multiple advantages of peripheral blood cells over fibroblasts from skin biopsy, the use of blood mononuclear cells (MNCs) instead of skin fibroblasts will expedite reprogramming research and broaden the application of reprogramming technology. This review discusses current progress and challenges of generating induced pluripotent stem cells (iPSCs) from peripheral blood MNCs and of in vitro and in vivo conversion of blood cells into cells of therapeutic value, such as mesenchymal stem cells, neural cells and hepatocytes. An optimized design of lentiviral vectors is necessary to achieve high reprogramming efficiency of peripheral blood cells. More recently, non-integrating vectors such as Sendai virus and episomal vectors have been successfully employed in generating integration-free iPSCs and somatic stem cells.
Collapse
Affiliation(s)
- Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
46
|
Eggenschwiler R, Loya K, Wu G, Sharma AD, Sgodda M, Zychlinski D, Herr C, Steinemann D, Teckman J, Bals R, Ott M, Schambach A, Schöler HR, Cantz T. Sustained knockdown of a disease-causing gene in patient-specific induced pluripotent stem cells using lentiviral vector-based gene therapy. Stem Cells Transl Med 2013; 2:641-54. [PMID: 23926210 DOI: 10.5966/sctm.2013-0017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for studies on disease-related developmental processes and may serve as an autologous cell source for future treatment of many hereditary diseases. New genetic engineering tools such as zinc finger nucleases and transcription activator-like effector nuclease allow targeted correction of monogenetic disorders but are very cumbersome to establish. Aiming at studies on the knockdown of a disease-causing gene, lentiviral vector-mediated expression of short hairpin RNAs (shRNAs) is a valuable option, but it is limited by silencing of the knockdown construct upon epigenetic remodeling during differentiation. Here, we propose an approach for the expression of a therapeutic shRNA in disease-specific iPSCs using third-generation lentiviral vectors. Targeting severe α-1-antitrypsin (A1AT) deficiency, we overexpressed a human microRNA 30 (miR30)-styled shRNA directed against the PiZ variant of A1AT, which is known to cause chronic liver damage in affected patients. This knockdown cassette is traceable from clonal iPSC lines to differentiated hepatic progeny via an enhanced green fluorescence protein reporter expressed from the same RNA-polymerase II promoter. Importantly, the cytomegalovirus i/e enhancer chicken β actin (CAG) promoter-driven expression of this construct is sustained without transgene silencing during hepatic differentiation in vitro and in vivo. At low lentiviral copy numbers per genome we confirmed a functional relevant reduction (-66%) of intracellular PiZ protein in hepatic cells after differentiation of patient-specific iPSCs. In conclusion, we have demonstrated that lentiviral vector-mediated expression of shRNAs can be efficiently used to knock down and functionally evaluate disease-related genes in patient-specific iPSCs.
Collapse
Affiliation(s)
- Reto Eggenschwiler
- Research Group Translational Hepatology and Stem Cell Biology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Semple-Rowland SL, Berry J. Use of lentiviral vectors to deliver and express bicistronic transgenes in developing chicken embryos. Methods 2013; 66:466-73. [PMID: 23816789 DOI: 10.1016/j.ymeth.2013.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/16/2022] Open
Abstract
The abilities of lentiviral vectors to carry large transgenes (∼8kb) and to efficiently infect and integrate these genes into the genomes of both dividing and non-dividing cells make them ideal candidates for transport of genetic material into cells and tissues. Given the properties of these vectors, it is somewhat surprising that they have seen only limited use in studies of developing tissues and in particular of the developing nervous system. Over the past several years, we have taken advantage of the large capacity of these vectors to explore the expression characteristics of several dual promoter and 2A peptide bicistronic transgenes in developing chick neural retina, with the goal of identifying transgene designs that reliably express multiple proteins in infected cells. Here we summarize the activities of several of these transgenes in neural retina and provide detailed methodologies for packaging lentivirus and delivering the virus into the developing neural tubes of chicken embryos in ovo, procedures that have been optimized over the course of several years of use in our laboratory. Conditions to hatch injected embryos are also discussed. The chicken-specific techniques will be of highest interest to investigators using avian embryos, development and packaging of lentiviral vectors that reliably express multiple proteins in infected cells should be of interest to all investigators whose experiments demand manipulation and expression of multiple proteins in developing cells and tissues.
Collapse
Affiliation(s)
- Susan L Semple-Rowland
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| | - Jonathan Berry
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| |
Collapse
|
48
|
Cai Y, Kregel S, Vander Griend DJ. Formation of human prostate epithelium using tissue recombination of rodent urogenital sinus mesenchyme and human stem cells. J Vis Exp 2013. [PMID: 23852031 DOI: 10.3791/50327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Progress in prostate cancer research is severely limited by the availability of human-derived and hormone-naïve model systems, which limit our ability to understand genetic and molecular events underlying prostate disease initiation. Toward developing better model systems for studying human prostate carcinogenesis, we and others have taken advantage of the unique pro-prostatic inductive potential of embryonic rodent prostate stroma, termed urogenital sinus mesenchyme (UGSM). When recombined with certain pluripotent cell populations such as embryonic stem cells, UGSM induces the formation of normal human prostate epithelia in a testosterone-dependent manner. Such a human model system can be used to investigate and experimentally test the ability of candidate prostate cancer susceptibility genes at an accelerated pace compared to typical rodent transgenic studies. Since Human embryonic stem cells (hESCs) can be genetically modified in culture using inducible gene expression or siRNA knock-down vectors prior to tissue recombination, such a model facilitates testing the functional consequences of genes, or combinations of genes, which are thought to promote or prevent carcinogenesis. The technique of isolating pure populations of UGSM cells, however, is challenging and learning often requires someone with previous expertise to personally teach. Moreover, inoculation of cell mixtures under the renal capsule of an immunocompromised host can be technically challenging. Here we outline and illustrate proper isolation of UGSM from rodent embryos and renal capsule implantation of tissue mixtures to form human prostate epithelium. Such an approach, at its current stage, requires in vivo xenografting of embryonic stem cells; future applications could potentially include in vitro gland formation or the use of induced pluripotent stem cell populations (iPSCs).
Collapse
Affiliation(s)
- Yi Cai
- Department of Surgery, Section of Urology, University of Chicago, USA
| | | | | |
Collapse
|
49
|
MiR-590-5P inhibits growth of HepG2 cells via decrease of S100A10 expression and Inhibition of the Wnt pathway. Int J Mol Sci 2013; 14:8556-69. [PMID: 23598417 PMCID: PMC3645761 DOI: 10.3390/ijms14048556] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/08/2013] [Accepted: 04/07/2013] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common and lethal cancers worldwide, especially in developing countries. In the present study, we found that the expression of a microRNA, miR-590-5P, was down-regulated and S100A10 was up-regulated in six hepatocellular carcinoma cell lines. The reporter gene assay showed that overexpression of miR-590-5P effectively reduced the activity of luciferase expressed by a vector bearing the 3′ untranslated region of S100A10 mRNA. Ectopic miR-590-5P overexpression mediated by lentiviral infection decreased expression of S100A10. Infection of Lv-miR-590-5P inhibited cell growth and induced cell cycle G1 arrest in HepG2 cells. In addition, miR-590-5P expression suppressed the expression of Wnt5a, cMyc and cyclin D1, and increased the phosphorylation of β-catenin and expression of Caspase 3, which may contribute to the inhibitory effect of miR-590-5P on cell growth. Taken together, our data suggest that down-regulation of miR-590-5P is involved in hepatocellular carcinoma and the restoration of miR-590-5P can impair the growth of cancer cells, suggesting that miR-590-5P may be a potential target molecule for the therapy of hepatocellular carcinoma.
Collapse
|
50
|
Prevention of Tendon Adhesions by ERK2 Small Interfering RNAs. Int J Mol Sci 2013; 14:4361-71. [PMID: 23429276 PMCID: PMC3588104 DOI: 10.3390/ijms14024361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/06/2013] [Accepted: 01/07/2013] [Indexed: 12/13/2022] Open
Abstract
Tendon adhesions are one of the most concerning complications after surgical repair of flexor tendon injury. Extracellular signal-regulated kinase (ERK) 2 plays crucial roles in fibroblast proliferation and collagen expression which contributes to the formation of tendon adhesions after flexor tendon surgery. Using a chicken model, we have examined the effects of a small interfering RNA (siRNA) targeting ERK2 delivered by a lentiviral system on tendon adhesion formation with an adhesion scoring system, histological assessment, and biomechanical evaluation. It was found that ERK2 siRNA effectively suppressed the increase of fibroblasts and the formation of tendon adhesions (p < 0.05 compared with the control group). Moreover, no statistically significant reduction in breaking force was detected between the ERK2 siRNA group and the control group. These results show that the lentiviral-mediated siRNA system is effective in preventing tendon adhesion formation but not to tendon healing, and may be used for tendon repair after confirmation and improvement by future detailed studies.
Collapse
|