1
|
Staudinger T. [Acute respiratory distress syndrome : Pathophysiology, definition and treatment strategies]. Med Klin Intensivmed Notfmed 2025:10.1007/s00063-024-01218-9. [PMID: 39777483 DOI: 10.1007/s00063-024-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 01/11/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is defined as an acute inflammatory syndrome leading to increased pulmonary capillary leakage and subsequent interstitial and alveolar pulmonary edema. Hypoxia is the predominant symptom. The definition of ARDS comprises acute onset, bilateral patchy infiltration on chest X‑ray and a reduction of the ratio of arterial partial pressure of oxygen (PaO2) to the fraction of inspired oxygen (FiO2), which also determines the classification into mild (≤ 300), moderate (≤ 200) and severe (≤ 100) ARDS. Treating the underlying cause is the only causal treatment measure. The aim of adjunctive therapy is the maintenance of life or organ functions by ensuring an adequate gas exchange without further damaging the lungs. Adjunctive therapy consists mainly of individually adapted "protective" ventilation treatment and the prone position. In severest ARDS, the use of venovenous extracorporeal membrane oxygenation (VV-ECMO) can improve survival if strict criteria for indications and contraindications are followed.
Collapse
Affiliation(s)
- Thomas Staudinger
- Universitätsklinik für Innere Medizin I, Medizinische Universität Wien, Allgemeines Krankenhaus der Stadt Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
2
|
Spinelli E, Perez J, Chiavieri V, Leali M, Mansour N, Madotto F, Rosso L, Panigada M, Grasselli G, Vaira V, Mauri T. Pathophysiological Markers of Acute Respiratory Distress Syndrome Severity Are Correlated With Ventilation-Perfusion Mismatch Measured by Electrical Impedance Tomography. Crit Care Med 2025; 53:e42-e53. [PMID: 39445936 DOI: 10.1097/ccm.0000000000006458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Pulmonary ventilation/perfusion (V/Q) mismatch measured by electrical impedance tomography (EIT) is associated with the outcome of patients with the acute respiratory distress syndrome (ARDS), but the underlying pathophysiological mechanisms have not been fully elucidated. The present study aimed to verify the correlation between relevant pathophysiological markers of ARDS severity and V/Q mismatch. DESIGN Prospective observational study. SETTING General ICU of a university-affiliated hospital. PATIENTS Deeply sedated intubated adult patients with ARDS under controlled mechanical ventilation. INTERVENTIONS Measures of V/Q mismatch by EIT, respiratory mechanics, gas exchange, lung imaging, and plasma biomarkers. MEASUREMENTS AND MAIN RESULTS Unmatched V/Q units were assessed by EIT as the fraction of ventilated nonperfused plus perfused nonventilated lung units. At the same time, plasma biomarkers with proven prognostic and mechanistic significance for ARDS (carbonic anhydrase 9 [CA9], hypoxia-inducible factor 1 [HIF1], receptor for advanced glycation endproducts [RAGE], angiopoietin 2 [ANG2], gas exchange, respiratory mechanics, and quantitative chest CT scans were measured. Twenty-five intubated ARDS patients were included with median unmatched V/Q units of 37.1% (29.2-49.2%). Unmatched V/Q units were correlated with plasma levels of CA9 (rho = 0.47; p = 0.01), HIF1 (rho = 0.40; p = 0.05), RAGE (rho = 0.46; p = 0.02), and ANG2 (rho = 0.42; p = 0.03). Additionally, unmatched V/Q units correlated with plateau pressure ( r = 0.38; p = 0.05) and with the number of quadrants involved on chest radiograph ( r = 0.73; p < 0.01). Regional unmatched V/Q units were correlated with the corresponding fraction of poorly aerated lung tissue ( r = 0.62; p = 0.01) and of lung tissue weight (rho: 0.51; p = 0.04) measured by CT scan. CONCLUSIONS In ARDS patients, unmatched V/Q units are correlated with pathophysiological markers of lung epithelial and endothelial dysfunction, increased lung stress, and lung edema. Unmatched V/Q units could represent a comprehensive marker of ARDS severity, reflecting the complex organ pathophysiology and reinforcing their prognostic significance.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Joaquin Perez
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Chiavieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nadia Mansour
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Smit MR, Reddy K, Munshi L, Bos LDJ. Toward Precision Medicine in Respiratory Failure. Crit Care Med 2024:00003246-990000000-00437. [PMID: 39728511 DOI: 10.1097/ccm.0000000000006559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Marry R Smit
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kiran Reddy
- Intensive Care, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Jesus ACD, Figueiredo AMD, Cordeiro ALL. Recruitment maneuvers in patients with acute respiratory distress syndrome: a systematic review and metanalysis. EINSTEIN-SAO PAULO 2024; 22:eRW0372. [PMID: 39699411 DOI: 10.31744/einstein_journal/2024rw0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/08/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE To systematically review the effects of recruitment maneuvers on patients with acute respiratory distress syndrome. METHODS This systematic review and meta-analysis using the PICO methodology with keywords (respiratory distress syndrome, recruitment maneuvers, lung recruitment, acute respiratory distress syndrome, alveolar recruitment, and adult acute respiratory distress syndrome). Studies involving patients >18 years, regardless of sex, with acute respiratory distress syndrome, mechanically ventilated for at least 24 h, published in English, Portuguese, and Spanish, with no year restrictions, were included. Studies that combined recruitment maneuvers with other techniques and those conducted in animals were excluded. Boolean operators "AND" and "OR" were used. RESULTS Fifteen studies were included. The recruitment maneuver proved to be effective in oxygenating patients (mean difference=45.05 mmHg (95% confidence interval (95%CI): 31.37-58.74)), but there was no statistically significant difference in the rate of mortality OR=0.89 (95%CI=0.74-1.08) and barotrauma RR=0.93 (95%CI=0.56-1.54). CONCLUSION Recruitment maneuvers should not be used routinely in the care of patients with acute respiratory distress syndrome, but it is a good rescue strategy when other methods fail to improve oxygenation. PROSPERO DATABASE REGISTRATION (www.crd.york.ac.uk/prospero) under ID CRD42021227231.
Collapse
|
5
|
Giosa L, Collins PD, Shetty S, Lubian M, Del Signore R, Chioccola M, Pugliese F, Camporota L. Bedside Assessment of the Respiratory System During Invasive Mechanical Ventilation. J Clin Med 2024; 13:7456. [PMID: 39685913 DOI: 10.3390/jcm13237456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Assessing the respiratory system of a patient receiving mechanical ventilation is complex. We provide an overview of an approach at the bedside underpinned by physiology. We discuss the importance of distinguishing between extensive and intensive ventilatory variables. We outline methods to evaluate both passive patients and those making spontaneous respiratory efforts during assisted ventilation. We believe a comprehensive assessment can influence setting mechanical ventilatory support to achieve lung and diaphragm protective ventilation.
Collapse
Affiliation(s)
- Lorenzo Giosa
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Patrick D Collins
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Sridevi Shetty
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Marta Lubian
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Riccardo Del Signore
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Mara Chioccola
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Pugliese
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Luigi Camporota
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
6
|
Mauri T, Grieco DL, Spinelli E, Leali M, Perez J, Chiavieri V, Rosà T, Ferrara P, Scaramuzzo G, Antonelli M, Spadaro S, Grasselli G. Personalized positive end-expiratory pressure in spontaneously breathing patients with acute respiratory distress syndrome by simultaneous electrical impedance tomography and transpulmonary pressure monitoring: a randomized crossover trial. Intensive Care Med 2024; 50:2125-2137. [PMID: 39527121 PMCID: PMC11588931 DOI: 10.1007/s00134-024-07695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Personalized positive end-expiratory pressure (PEEP) might foster lung and diaphragm protection in patients with acute respiratory distress syndrome (ARDS) who are undergoing pressure support ventilation (PSV). We aimed to compare the physiologic effects of personalized PEEP set according to synchronized electrical impedance tomography (EIT) and driving transpulmonary pressure (∆PL) monitoring against a classical lower PEEP/FiO2 table in intubated ARDS patients undergoing PSV. METHODS A cross-over randomized multicenter study was conducted in 30 ARDS patients with simultaneous recording of the airway, esophageal and transpulmonary pressure, together with EIT during PSV. Following a decremental PEEP trial (18 cmH2O to 4 cmH2O), PEEPEIT-∆PL was identified as the level with the smallest difference between lung overdistension and collapse. A low PEEP/FiO2 table was used to select PEEPTABLE. Each PEEP strategy was applied for 20 min, and physiologic data were collected at the end of each step. RESULTS The PEEP trial was well tolerated. Median PEEPEIT-∆PL was higher than PEEPTABLE (10 [8-12] vs. 8 [5-10] cmH2O; P = 0.021) and, at the individual patient level, PEEPEIT-∆PL level differed from PEEPTABLE in all patients. Overall, PEEPEIT-∆PL was associated with lower dynamic ∆PL (P < 0.001) and pressure-time product (P < 0.001), but there was variability among patients. PEEPEIT-∆PL also decreased respiratory drive and effort (P < 0.001), improved regional lung mechanics (P < 0.05) and reversed lung collapse (P = 0.007) without increasing overdistension (P = 0.695). CONCLUSION Personalized PEEP selected using synchronized EIT and transpulmonary pressure monitoring could be associated with reduced dynamic lung stress and metabolic work of breathing in ARDS patients undergoing PSV.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy.
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Joaquin Perez
- Department of Physical Therapy and Rehabilitation, Anchorena San Martín Clinic, Buenos Aires, Argentina
- Department of Emergency Medicine, Carlos G. Durand Hospital, Buenos Aires, Argentina
| | - Valentina Chiavieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pierluigi Ferrara
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, Sant'Anna University Hospital, Ferrara, Italy
| | - Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, Sant'Anna University Hospital, Ferrara, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
7
|
Leonard J, Sinha P. Precision Medicine in Acute Respiratory Distress Syndrome: Progress, Challenges, and the Road ahead. Clin Chest Med 2024; 45:835-848. [PMID: 39443001 PMCID: PMC11507056 DOI: 10.1016/j.ccm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Several novel high-dimensional biologic measurements are increasingly being applied to biomedical sciences. Acute respiratory distress syndrome (ARDS) is a theoretically fertile ground for such approaches. Not only are these biologic and analytic tools available to better understand ARDS but also arguably, simpler approaches such as respiratory physiology has been vastly underutilized as a means of delivering precision-based care in the field. Here we review the progress made in ARDS toward discovering biologically homogeneous phenotypes, treatment responsive subgroups, the challenges to implement these discoveries at the bedside, and the road ahead that will enable precision medicine in ARDS.
Collapse
Affiliation(s)
- Jennifer Leonard
- Department of Trauma and Acute Care Surgery, Washington University, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA; Division of Critical Care, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| |
Collapse
|
8
|
Zeng S, Li Y, Yao Z, Zheng J, Wang H. Potential reevaluation needed for the meta-analysis of high-pressure recruitment maneuvers in the 2023 ESICM guidelines on acute respiratory distress syndrome. Intensive Care Med 2024; 50:1964-1965. [PMID: 39162824 PMCID: PMC11541350 DOI: 10.1007/s00134-024-07601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Siyao Zeng
- Harbin Medical University Graduate School, Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yue Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Zhipeng Yao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
9
|
Edginton S, Kruger N, Stelfox HT, Brochard L, Zuege DJ, Gaudet J, Solverson K, Robertson HL, Fiest KM, Niven DJ, Doig CJ, Bagshaw SM, Parhar KKS. Methods for determining optimal positive end-expiratory pressure in patients undergoing invasive mechanical ventilation: a scoping review. Can J Anaesth 2024; 71:1535-1555. [PMID: 39565498 PMCID: PMC11602853 DOI: 10.1007/s12630-024-02871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 11/21/2024] Open
Abstract
PURPOSE There is significant variability in the application of positive end-expiratory pressure (PEEP) in patients undergoing invasive mechanical ventilation. There are numerous studies assessing methods of determining optimal PEEP, but many methods, patient populations, and study settings lack high-quality evidence. Guidelines make no recommendations about the use of a specific method because of equipoise and lack of high-quality evidence. We conducted a scoping review to determine which methods of determining optimal PEEP have been studied and what gaps exist in the literature. SOURCE We searched five databases for primary research reports studying methods of determining optimal PEEP among adults undergoing invasive mechanical ventilation. Data abstracted consisted of the titration method, setting, study design, population, and outcomes. PRINCIPLE FINDINGS Two hundred and seventy-one studies with 17,205 patients met the inclusion criteria, including 73 randomized controlled trials (RCTs) with 10,733 patients. We identified 22 methods. Eleven were studied with an RCT. Studies enrolled participants within an intensive care unit (ICU) (216/271, 80%) or operating room (55/271, 20%). Most ICU studies enrolled patients with acute respiratory distress syndrome (162/216, 75%). The three most studied methods were compliance (73 studies, 29 RCTs), imaging-based methods (65 studies, 11 RCTs), and use of PEEP-FIO2 tables (52 studies, 20 RCTs). Among ICU RCTs, the most common primary outcomes were mortality or oxygenation. Few RCTs assessed feasibility of different methods (n = 3). The strengths and limitations of each method are discussed. CONCLUSION Numerous methods of determining optimal PEEP have been evaluated; however, notable gaps remain in the evidence supporting their use. These include specific populations (normal lungs, patients weaning from mechanical ventilation) and using alternate outcomes (ventilator-free days and feasibility) and they present significant opportunities for future study. STUDY REGISTRATION Open Science Framework ( https://osf.io/atzqc ); first posted, 19 July 2022.
Collapse
Affiliation(s)
- Stefan Edginton
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Natalia Kruger
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Henry T Stelfox
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Research Methods, Evidence, and Impact (HEI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Danny J Zuege
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Jonathan Gaudet
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Kevin Solverson
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Helen Lee Robertson
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Kirsten M Fiest
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel J Niven
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher J Doig
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ken Kuljit S Parhar
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada.
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.
- Libin Cardiovascular Institute, University of Calgary and Alberta Health Services, Calgary, AB, Canada.
- Department of Critical Care Medicine, University of Calgary, ICU Administration, Ground Floor, McCaig Tower Foothills Medical Center, 3134 Hospital Drive NW, Calgary, AB, T2N 5A1, Canada.
| |
Collapse
|
10
|
Muñoz J, Cedeño JA, Castañeda GF, Visedo LC. Personalized ventilation adjustment in ARDS: A systematic review and meta-analysis of image, driving pressure, transpulmonary pressure, and mechanical power. Heart Lung 2024; 68:305-315. [PMID: 39214040 DOI: 10.1016/j.hrtlng.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) necessitates personalized treatment strategies due to its heterogeneity, aiming to mitigate Ventilator-Induced Lung Injury (VILI). Advanced monitoring techniques, including imaging, driving pressure, transpulmonary pressure, and mechanical power, present potential avenues for tailored interventions. OBJECTIVE To review some of the most important techniques for achieving greater personalization of mechanical ventilation in ARDS patients as evaluated in randomized clinical trials, by analyzing their effect on three clinically relevant aspects: mortality, ventilator-free days, and gas exchange. METHODS Following PRISMA guidelines, we conducted a systematic review and meta-analysis of Randomized Clinical Trials (RCTs) involving adult ARDS patients undergoing personalized ventilation adjustments. Outcomes were mortality (primary end-point), ventilator-free days, and oxygenation improvement. RESULTS Among 493 identified studies, 13 RCTs (n = 1255) met inclusion criteria. No personalized ventilation strategy demonstrated superior outcomes compared to traditional protocols. Meta-analysis revealed no significant reduction in mortality with image-guided (RR 0.88, 95 % CI 0.70-1.11), driving pressure-guided (RR 0.61, 95 % CI 0.29-1.30), or transpulmonary pressure-guided (RR 0.85, 95 % CI 0.58-1.24) strategies. Ventilator-free days and oxygenation outcomes showed no significant differences. CONCLUSION Our study does not support the superiority of personalized ventilation techniques over traditional protocols in ARDS patients. Further research is needed to standardize ventilation strategies and determine their impact on mechanical ventilation outcomes.
Collapse
Affiliation(s)
- Javier Muñoz
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain.
| | - Jamil Antonio Cedeño
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain
| | | | - Lourdes Carmen Visedo
- C. S. San Juan de la Cruz, Pozuelo de Alarcón, C/ San Juan de la Cruz s/n, 28223 Madrid, Spain
| |
Collapse
|
11
|
Patel BV, Mumby S, Johnson N, Handslip R, Patel S, Lee T, Andersen MS, Falaschetti E, Adcock IM, McAuley DF, Takata M, Staudinger T, Karbing DS, Jabaudon M, Schellongowski P, Rees SE. A randomized control trial evaluating the advice of a physiological-model/digital twin-based decision support system on mechanical ventilation in patients with acute respiratory distress syndrome. Front Med (Lausanne) 2024; 11:1473629. [PMID: 39540041 PMCID: PMC11559429 DOI: 10.3389/fmed.2024.1473629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is highly heterogeneous, both in its clinical presentation and in the patient's physiological responses to changes in mechanical ventilator settings, such as PEEP. This study investigates the clinical efficacy of a physiological model-based ventilatory decision support system (DSS) to personalize ventilator therapy in ARDS patients. Methods This international, multicenter, randomized, open-label study enrolled patients with ARDS during the COVID-19 pandemic. Patients were randomized to either receive active advice from the DSS (intervention) or standard care without DSS advice (control). The primary outcome was to detect a reduction in average driving pressure between groups. Secondary outcomes included several clinically relevant measures of respiratory physiology, ventilator-free days, time from control mode to support mode, number of changes in ventilator settings per day, percentage of time in control and support mode ventilation, ventilation- and device-related adverse events, and the number of times the advice was followed. Results A total of 95 patients were randomized in this study. The DSS showed no significant effect on average driving pressure between groups. However, patients in the intervention arm had a statistically improved oxygenation index when in support mode ventilation (-1.41, 95% CI: -2.76, -0.08; p = 0.0370). Additionally, the ventilatory ratio significantly improved in the intervention arm for patients in control mode ventilation (-0.63, 95% CI: -1.08, -0.17, p = 0.0068). The application of the DSS led to a significantly increased number of ventilator changes for pressure settings and respiratory frequency. Conclusion The use of a physiological model-based decision support system for providing advice on mechanical ventilation in patients with COVID-19 and non-COVID-19 ARDS showed no significant difference in driving pressure as a primary outcome measure. However, the application of approximately 60% of the DSS advice led to improvements in the patient's physiological state. Clinical trial registration clinicaltrials.gov, NCT04115709.
Collapse
Affiliation(s)
- Brijesh V. Patel
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Critical Care, Royal Brompton Hospital, London, United Kingdom
| | - Sharon Mumby
- Airway Disease, National, Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Nicholas Johnson
- Imperial Clinical Trials Unit, Stadium House, London, United Kingdom
| | - Rhodri Handslip
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sunil Patel
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Teresa Lee
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martin S. Andersen
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
| | | | - Ian M. Adcock
- Airway Disease, National, Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Danny F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Masao Takata
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Staudinger
- Department of Medicine I, ICU 13.i2, Medical University of Vienna, Vienna, Austria
| | - Dan S. Karbing
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, University Hospital of Clermont-Ferrand, GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Peter Schellongowski
- Department of Medicine I, ICU 13.i2, Medical University of Vienna, Vienna, Austria
| | - Stephen E. Rees
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
| | | |
Collapse
|
12
|
Chen ZL, Yan YZ, Yu HY, Wang QB, Wang W, Zhong M. Influence of compliance and resistance of the test lung on the accuracy of the tidal volume delivered by the ventilator. BMC Pulm Med 2024; 24:498. [PMID: 39385191 PMCID: PMC11465742 DOI: 10.1186/s12890-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Large variations in respiratory system compliance and resistance may cause the accuracy of tidal volume (VT) delivery beyond the declared range. This study aimed at evaluating the accuracy of VT delivery using a test lung model to simulate pulmonary mechanics under normal or disease conditions. METHODS In vitro assessment of the VT delivery accuracy was carried out on two commercial ventilators. Measurements of the inspired and expired VT from the ventilator and FlowAnalyser were compared to evaluate the separated and combined influences of compliance and resistance on the delivered VT accuracy. To do this, the errors of five delivered volumes (30 ml, 50 ml, 100 ml, 300 ml, and 500 ml) were checked under 29 test conditions involving a total of 27 combinations of resistance and compliance. RESULTS For the tested ventilator S1 with a flow sensor near the expiratory valve, the average of expired VT errors (ΔVTexp) in three measurements (4 test conditions for each measurement) correlated to test lung compliance (r=-0.96, p = 0.044), and the average of inspired VT errors (ΔVTins) correlated to compliance (r = 0.89, p = 0.106); for the tested ventilator S2 with a flow sensor located at the Y piece, no clear relationship between compliance and ΔVTexp or ΔVTins was found. Furthermore, on two ventilators tested, the current measurements revealed a poor correlation between test lung resistance and ΔVTins or ΔVTexp, and the maximum values of ΔVTexp and ΔVTins correspond to the maximum resistance of 200 cmH2O/(L/s), at which the phenomenon of the flap fluttering in the variable orifice flow senor was observed, and the recorded peak inspiratory pressure (Ppeak) was much higher than the Ppeak estimated by the classical equation of motion. In contrast, at the lower resistance values of 5, 20, 50 and 100 cmH2O/(L/s), the recorded Ppeak was very close to the estimated Ppeak. Overall, the delivered VT errors were in the range of ± 14% on two ventilators studied. CONCLUSIONS Depending on the placement site of the flow sensor in the ventilator circuit, the compliance and resistance of the test lung have different influences on the accuracy of VT delivery, which is further attributed to different fluid dynamics effects of the compliance and resistance. The main influence of compliance is to raise the peak inspiratory pressure Ppeak, thereby increasing the compression volume within the ventilator circuit; whereas a high resistance not only contributes to elevating Ppeak, but more importantly, it governs the gas flow conditions. Ppeak is a critical predictive indicator for the accuracy of the VT delivered by a ventilator.
Collapse
Affiliation(s)
- Zheng-Long Chen
- Department of Respiratory and Critical Care Medicine, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Yu-Zhong Yan
- Laboratory Department, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Hong-Yi Yu
- Shanghai Institute of Medical Device Testing, 1 Jinyinhua Road, Pudong New Area, Shanghai, 201318, China
| | - Qiu-Bo Wang
- Department of Respiratory and Critical Care Medicine, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Wei Wang
- Shanghai Institute of Medical Device Testing, 1 Jinyinhua Road, Pudong New Area, Shanghai, 201318, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
13
|
Bianquis C, De Leo G, Morana G, Duarte-Silva M, Nolasco S, Vilde R, Tripipitsiriwat A, Viegas P, Purenkovs M, Duiverman M, Karagiannids C, Fisser C. Highlights from the Respiratory Failure and Mechanical Ventilation Conference 2024. Breathe (Sheff) 2024; 20:240105. [PMID: 39534488 PMCID: PMC11555592 DOI: 10.1183/20734735.0105-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
The Respiratory Intensive Care Assembly of the European Respiratory Society gathered in Berlin to organise the third Respiratory Failure and Mechanical Ventilation Conference in February 2024. The conference covered key points of acute and chronic respiratory failure in adults. During the 3-day conference ventilatory strategies, patient selection, diagnostic approaches, treatment and health-related quality of life topics were addressed by a panel of international experts. In this article, lectures delivered during the event have been summarised by early career members of the Assembly and take-home messages highlighted.
Collapse
Affiliation(s)
- Clara Bianquis
- Sorbonne Université-APHP, URMS 1158, Department R3S, Hôpital Pitié-Salpétriêre, Paris, France
| | - Giancarlo De Leo
- Pulmonology Department, Regional General Hospital ‘F. Miulli’, Acquaviva delle Fonti, Italy
| | - Giorgio Morana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marta Duarte-Silva
- Pulmonology Department, Hospital Santa Marta, Unidade Local de Saúde São José, Lisboa, Portugal
| | - Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico ‘G. Rodolico-San Marco’ University Hospital, Catania, Italy
| | - Rūdolfs Vilde
- Centre of Lung disease and Thoracic surgery, Pauls Stradins clinical university hospital, Riga, Latvia
- Department of internal medicine, Riga Stradins University, Riga, Latvia
| | - Athiwat Tripipitsiriwat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand
| | - Pedro Viegas
- Departamento de Pneumonologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Porto, Portugal
| | - Martins Purenkovs
- Centre of Pulmonology and Thoracic surgery, Pauls Stradiņš Clinical university hospital, Riga, Latvia
- Riga Stradiņš University, Riga, Latvia
| | - Marieke Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Christian Karagiannids
- Department of Pneumology and Critical Care Medicine, ARDS and ECMO Centre, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Cologne, Germany
| | - Christoph Fisser
- Department of Internal Medicine II University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. JOURNAL OF INTENSIVE MEDICINE 2024; 4:417-432. [PMID: 39310055 PMCID: PMC11411438 DOI: 10.1016/j.jointm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS represents a major global public health burden, and the management of ARDS continues to challenge healthcare systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions regarding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exogenous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in ARDS, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Tanios M, Wu TT, Nguyen H(M, Smith L, Mahidhara R, Devlin JW. Comparing the impact of targeting limited driving pressure to low tidal volume ventilation on mortality in mechanically ventilated adults with COVID-19 ARDS: an exploratory target trial emulation. BMJ Open Respir Res 2024; 11:e002439. [PMID: 39353713 PMCID: PMC11448172 DOI: 10.1136/bmjresp-2024-002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND An association between driving pressure (∆P) and the outcomes of invasive mechanical ventilation (IMV) may exist. However, the effect of a sustained limitation of ∆P on mortality in patients with acute respiratory distress syndrome (ARDS), including patients with COVID-19 (COVID-19-related acute respiratory distress syndrome (C-ARDS)) undergoing IMV, has not been rigorously evaluated. The use of emulations of a target trial in intensive care unit research remains in its infancy. To inform future, large ARDS target trials, we explored using a target trial emulation approach to analyse data from a cohort of IMV adults with C-ARDS to determine whether maintaining daily ∆p<15 cm H2O (in addition to traditional low tidal volume ventilation (LTVV) (tidal volume 5-7 cc/PBW+plateau pressure (Pplat) ≤30 cm H2O), compared with LTVV alone, affects the 28-day mortality. METHODS To emulate a target trial, adults with C-ARDS requiring >24 hours of IMV were considered to be assigned to limited ∆P or LTVV. Lung mechanics were measured twice daily after ventilator setting adjustments were made. To evaluate the effect of each lung-protective ventilation (LPV) strategy on the 28-day mortality, we fit a stabilised inverse probability weighted marginal structural model that adjusted for baseline and time-varying confounders known to affect protection strategy use/adherence or survival. RESULTS Among the 92 patients included, 27 (29.3%) followed limited ∆P ventilation, 23 (25.0%) the LTVV strategy and 42 (45.7%) received no LPV strategy. The adjusted estimated 28-day survival was 47.0% (95% CI 23%, 76%) in the limited ∆P group, 70.3% in the LTVV group (95% CI 37.6%, 100%) and 37.6% (95% CI 20.8%, 58.0%) in the no LPV strategy group. INTERPRETATION Limiting ∆P may not provide additional survival benefits for patients with C-ARDS over LTVV. Our results help inform the development of future target trial emulations focused on evaluating LPV strategies, including reduced ∆P, in adults with ARDS.
Collapse
Affiliation(s)
- Maged Tanios
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Division of Pulmonary and Critical Care Medicine, University of California Irvine, Irvine, California, USA
| | - Ting Ting Wu
- Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Louisa Smith
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
| | - Raja Mahidhara
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Sound Physicians, Tacoma, Washington, USA
| | - John W Devlin
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Goossen RL, van Vliet R, Bos LDJ, Buiteman-Kruizinga LA, Hollman MW, Myatra SN, Neto AS, Spronk PE, van der Woude MCE, van Meenen DMP, Paulus F, Schultz MJ. High PEEP/low FiO 2 ventilation is associated with lower mortality in COVID-19. J Crit Care 2024; 83:154854. [PMID: 38996499 DOI: 10.1016/j.jcrc.2024.154854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
RATIONALE The positive end-expiratory pressure (PEEP) strategy in patients with coronavirus 2019 (COVID-19) acute respiratory distress syndrome (ARDS) remains debated. Most studies originate from the initial waves of the pandemic. Here we aimed to assess the impact of high PEEP/low FiO2 ventilation on outcomes during the second wave in the Netherlands. METHODS Retrospective observational study of invasively ventilated COVID-19 patients during the second wave. Patients were categorized based on whether they received high PEEP or low PEEP ventilation according to the ARDS Network tables. The primary outcome was ICU mortality, and secondary outcomes included hospital and 90-day mortality, duration of ventilation and length of stay, and the occurrence of kidney injury. Propensity matching was performed to correct for factors with a known relationship to ICU mortality. RESULTS This analysis included 790 COVID-ARDS patients. At ICU discharge, 32 (22.5%) out of 142 high PEEP patients and 254 (39.2%) out of 848 low PEEP patients had died (HR 0.66 [0.46-0.96]; P = 0.03). High PEEP was linked to improved secondary outcomes. Matched analysis did not change findings. CONCLUSIONS High PEEP ventilation was associated with improved ICU survival in patients with COVID-ARDS.
Collapse
Affiliation(s)
- Robin L Goossen
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands.
| | - Relin van Vliet
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Laura A Buiteman-Kruizinga
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Department of Intensive Care, Reinier de Graaf Hospital, Delft, the Netherlands
| | - Markus W Hollman
- Department of Anesthesiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Sheila N Myatra
- Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Critical Care, University of Melbourne, Melbourne, Australia; Department of Critical Care Medicine, Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Peter E Spronk
- Department of Intensive Care, Gelre Hospitals, Apeldoorn, the Netherlands
| | | | - David M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Department of Anesthesiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Faculty of Health, ACHIEVE, center of applied research, University of Applied Research, Amsterdam, the Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Anesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Bromley SE, Shakery K, Vora P, Atabaki A, Reimer T, McDermott L, Hajizadeh N. Understanding Causes of Death in Patients With Acute Respiratory Distress Syndrome: A Narrative Review. Crit Care Explor 2024; 6:e1147. [PMID: 39172623 PMCID: PMC11343544 DOI: 10.1097/cce.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVES To provide a comprehensive summary of the published data on cause of death in patients with acute respiratory distress syndrome (ARDS). DATA SOURCES PubMed (January 2015 to April 2024), bibliographies of relevant articles, and ARDS Network and Prevention & Early Treatment of Acute Lung Injury (PETAL) network websites. STUDY SELECTION Observational studies and clinical trials that reported on cause of death in greater than or equal to 30 patients with ARDS, not obtained from death certificates. Animal studies, case reports, review articles, study protocols, and studies in pediatrics were excluded. DATA EXTRACTION Causes of death among ARDS patients who died were extracted and tabulated along with other pertinent study characteristics. DATA SYNTHESIS We identified 15 observational studies (nine non-COVID ARDS, five COVID-related ARDS; one both) and five clinical trials (all non-COVID ARDS). Mutually exclusive prespecified categories were used for recording the cause of death in only eight studies although studies differed in the categories included and their definitions. When multiple organ failure was a predetermined category, it was the most common cause of death recorded (~50% of deaths), followed by respiratory causes with proportions varying from 16% to 42% depending on nomenclature (e.g., refractory hypoxemia, pulmonary causes) and definitions. However, the largest observational study in non-COVID ARDS (964 deaths), did not include multiple organ failure as a predetermined category, and found that pulmonary failure (42%) and cardiac failure (37%) were the most common causes of death. In COVID-related ARDS observational studies, pulmonary reasons were the most reported cause of death (up to 88%). CONCLUSIONS Few studies have reported cause of death in patients with ARDS. In those that do, cause of death categories and definitions used are heterogeneous. Further research is needed to see whether a more rigorous and unified approach to assigning and reporting cause of death in ARDS would help identify more relevant endpoints for the assessment of targeted treatments in clinical trials.
Collapse
Affiliation(s)
| | | | - Pareen Vora
- Integrated Evidence Generation, Bayer AG, Berlin, Germany
| | | | | | | | | |
Collapse
|
18
|
Battaglini D, Lassola S, Schultz MJ, Rocco PR. Innovations in protective mechanical ventilation for acute respiratory distress syndrome management. Expert Rev Med Devices 2024; 21:789-792. [PMID: 39160769 DOI: 10.1080/17434440.2024.2393773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Sergio Lassola
- Anesthesia and Intensive Care 1, Santa Chiara Hospital, APSS, Trento, Italy
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University Wien, Vienna, Austria
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Boesing C, Rocco PRM, Luecke T, Krebs J. Positive end-expiratory pressure management in patients with severe ARDS: implications of prone positioning and extracorporeal membrane oxygenation. Crit Care 2024; 28:277. [PMID: 39187853 PMCID: PMC11348554 DOI: 10.1186/s13054-024-05059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
The optimal strategy for positive end-expiratory pressure (PEEP) titration in the management of severe acute respiratory distress syndrome (ARDS) patients remains unclear. Current guidelines emphasize the importance of a careful risk-benefit assessment for PEEP titration in terms of cardiopulmonary function in these patients. Over the last few decades, the primary goal of PEEP usage has shifted from merely improving oxygenation to emphasizing lung protection, with a growing focus on the individual pattern of lung injury, lung and chest wall mechanics, and the hemodynamic consequences of PEEP. In moderate-to-severe ARDS patients, prone positioning (PP) is recommended as part of a lung protective ventilation strategy to reduce mortality. However, the physiologic changes in respiratory mechanics and hemodynamics during PP may require careful re-assessment of the ventilation strategy, including PEEP. For the most severe ARDS patients with refractory gas exchange impairment, where lung protective ventilation is not possible, veno-venous extracorporeal membrane oxygenation (V-V ECMO) facilitates gas exchange and allows for a "lung rest" strategy using "ultraprotective" ventilation. Consequently, the importance of lung recruitment to improve oxygenation and homogenize ventilation with adequate PEEP may differ in severe ARDS patients treated with V-V ECMO compared to those managed conservatively. This review discusses PEEP management in severe ARDS patients and the implications of management with PP or V-V ECMO with respect to respiratory mechanics and hemodynamic function.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
20
|
Filippini DFL, Smit MR, Bos LDJ. Subphenotypes in Acute Respiratory Distress Syndrome: Universal Steps Toward Treatable Traits. Anesth Analg 2024:00000539-990000000-00908. [PMID: 39636214 DOI: 10.1213/ane.0000000000006727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Patients with acute respiratory distress syndrome (ARDS) have severe respiratory impairment requiring mechanical ventilation resulting in high mortality. Despite extensive research, no effective pharmacological interventions have been identified in unselected ARDS, which has been attributed to the considerable heterogeneity. The identification of more homogeneous subgroups through phenotyping has provided a novel method to improve our pathophysiological understanding, trial design, and, most importantly, patient care through targeted interventions. The objective of this article is to outline a structured, stepwise approach toward identifying and classifying heterogeneity within ARDS and subsequently derive, validate, and integrate targeted treatment options. We present a 6-step roadmap toward the identification of effective phenotype-targeted treatments: development of distinct and reproducible subphenotypes, derivation of a possible parsimonious bedside classification method, identification of possible interventions, prospective validation of subphenotype classification, testing of subphenotype-targeted intervention prospectively in randomized clinical trial (RCT), and finally implementation of subphenotype classification and intervention in guidelines and clinical practice. Based on this framework, the current literature was reviewed. Respiratory physiology, lung morphology, and systemic inflammatory biology subphenotypes were identified. Currently, lung morphology and systemic inflammatory biology subphenotypes are being tested prospectively in RCTs.
Collapse
Affiliation(s)
- Daan F L Filippini
- From the Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marry R Smit
- From the Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lieuwe D J Bos
- From the Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
van der Ven FSLIM, Blok SG, Azevedo LC, Bellani G, Botta M, Estenssoro E, Fan E, Ferreira JC, Laffey JG, Martin-Loeches I, Motos A, Pham T, Peñuelas O, Pesenti A, Pisani L, Neto AS, Schultz MJ, Torres A, Tsonas AM, Paulus F, van Meenen DMP. Epidemiology, ventilation management and outcomes of COVID-19 ARDS patients versus patients with ARDS due to pneumonia in the Pre-COVID era. Respir Res 2024; 25:312. [PMID: 39153979 PMCID: PMC11330602 DOI: 10.1186/s12931-024-02910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Ventilation management may differ between COVID-19 ARDS (COVID-ARDS) patients and patients with pre-COVID ARDS (CLASSIC-ARDS); it is uncertain whether associations of ventilation management with outcomes for CLASSIC-ARDS also exist in COVID-ARDS. METHODS Individual patient data analysis of COVID-ARDS and CLASSIC-ARDS patients in six observational studies of ventilation, four in the COVID-19 pandemic and two pre-pandemic. Descriptive statistics were used to compare epidemiology and ventilation characteristics. The primary endpoint were key ventilation parameters; other outcomes included mortality and ventilator-free days and alive (VFD-60) at day 60. RESULTS This analysis included 6702 COVID-ARDS patients and 1415 CLASSIC-ARDS patients. COVID-ARDS patients received lower median VT (6.6 [6.0 to 7.4] vs 7.3 [6.4 to 8.5] ml/kg PBW; p < 0.001) and higher median PEEP (12.0 [10.0 to 14.0] vs 8.0 [6.0 to 10.0] cm H2O; p < 0.001), at lower median ΔP (13.0 [10.0 to 15.0] vs 16.0 [IQR 12.0 to 20.0] cm H2O; p < 0.001) and higher median Crs (33.5 [26.6 to 42.1] vs 28.1 [21.6 to 38.4] mL/cm H2O; p < 0.001). Following multivariable adjustment, higher ΔP had an independent association with higher 60-day mortality and less VFD-60 in both groups. Higher PEEP had an association with less VFD-60, but only in COVID-ARDS patients. CONCLUSIONS Our findings show important differences in key ventilation parameters and associations thereof with outcomes between COVID-ARDS and CLASSIC-ARDS. TRIAL REGISTRATION Clinicaltrials.gov (identifier NCT05650957), December 14, 2022.
Collapse
Affiliation(s)
- Fleur-Stefanie L I M van der Ven
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
- Department of Intensive Care, Rode Kruis Ziekenhuis, Beverwijk, The Netherlands.
| | - Siebe G Blok
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Luciano C Azevedo
- Department of Emergency Medicine, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Giacomo Bellani
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento, Trento, Italy
| | - Michela Botta
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Elisa Estenssoro
- Department of Intensive Care, Hospital Interzonal de Agudos General San Martin La Plata, Buenos Aires, Argentina
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Juliana Carvalho Ferreira
- Department of Pulmonology, Instituto Do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Intensive Care, AC Camargo Cancer Center, São Paulo, Brazil
- Brazilian Research in Intensive Care Network (BRICNet), São Paulo, Brazil
| | - John G Laffey
- Department of Anaesthesiology and Intensive Care, Galway University Hospital, Saolta Hospital Group, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
- Department of Intensive Care, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Motos
- Departement of Pulmonology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Institute of Health Carlos III, Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Tai Pham
- Equipe d'Epidémiologie Respiratoire Integrative, Université Paris-Saclay, Paris, France
- Service de Médecine Intensive-Réanimation, DMU CORREVE, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Hôpital de Bicêtre, Paris, France
| | - Oscar Peñuelas
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Intensive Care, Hospital Universitario de Getafe, Getafe, Spain
| | - Antonio Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Pisani
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
- Department of Anesthesia and Intensive Care, Miulli Regional Hospital, Acquaviva Delle Fonti, Italy
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Ary Serpa Neto
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Anesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Medical University of Vienna, Vienna, Austria
- Laboratory of Experimental Intensive Care & Anaesthesiology (L·E·I·C·A), Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Antoni Torres
- Departement of Pulmonology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Institute of Health Carlos III, Madrid, Spain
- University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Anissa M Tsonas
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
- Center of Expertise Urban Vitality, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - David M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
- Department of Anaesthesiology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Rezoagli E, Xin Y, Signori D, Sun W, Gerard S, Delucchi KL, Magliocca A, Vitale G, Giacomini M, Mussoni L, Montomoli J, Subert M, Ponti A, Spadaro S, Poli G, Casola F, Herrmann J, Foti G, Calfee CS, Laffey J, Bellani G, Cereda M. Phenotyping COVID-19 respiratory failure in spontaneously breathing patients with AI on lung CT-scan. Crit Care 2024; 28:263. [PMID: 39103945 PMCID: PMC11301830 DOI: 10.1186/s13054-024-05046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Automated analysis of lung computed tomography (CT) scans may help characterize subphenotypes of acute respiratory illness. We integrated lung CT features measured via deep learning with clinical and laboratory data in spontaneously breathing subjects to enhance the identification of COVID-19 subphenotypes. METHODS This is a multicenter observational cohort study in spontaneously breathing patients with COVID-19 respiratory failure exposed to early lung CT within 7 days of admission. We explored lung CT images using deep learning approaches to quantitative and qualitative analyses; latent class analysis (LCA) by using clinical, laboratory and lung CT variables; regional differences between subphenotypes following 3D spatial trajectories. RESULTS Complete datasets were available in 559 patients. LCA identified two subphenotypes (subphenotype 1 and 2). As compared with subphenotype 2 (n = 403), subphenotype 1 patients (n = 156) were older, had higher inflammatory biomarkers, and were more hypoxemic. Lungs in subphenotype 1 had a higher density gravitational gradient with a greater proportion of consolidated lungs as compared with subphenotype 2. In contrast, subphenotype 2 had a higher density submantellar-hilar gradient with a greater proportion of ground glass opacities as compared with subphenotype 1. Subphenotype 1 showed higher prevalence of comorbidities associated with endothelial dysfunction and higher 90-day mortality than subphenotype 2, even after adjustment for clinically meaningful variables. CONCLUSIONS Integrating lung-CT data in a LCA allowed us to identify two subphenotypes of COVID-19, with different clinical trajectories. These exploratory findings suggest a role of automated imaging characterization guided by machine learning in subphenotyping patients with respiratory failure. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04395482. Registration date: 19/05/2020.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy.
| | - Yi Xin
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
| | - Davide Signori
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Wenli Sun
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, USA
| | - Sarah Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kevin L Delucchi
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Aurora Magliocca
- Department of Anesthesia and Intensive Care Medicine, Policlinico San Marco, Gruppo Ospedaliero San Donato, Bergamo, Italy
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Giovanni Vitale
- Department of Anesthesia and Intensive Care Medicine, Policlinico San Marco, Gruppo Ospedaliero San Donato, Bergamo, Italy
| | - Matteo Giacomini
- Department of Anesthesia and Intensive Care Medicine, Policlinico San Marco, Gruppo Ospedaliero San Donato, Bergamo, Italy
| | - Linda Mussoni
- Istituto per la Sicurezza Sociale, San Marino, San Marino
| | - Jonathan Montomoli
- Department of Anesthesia and Intensive Care, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Matteo Subert
- Department of Anesthesia and Intensive Care Medicine, Melzo-Gorgonzola Hospital, Azienda Socio-Sanitaria Territoriale Melegnano e della Martesana, Melegnano, Milan, Italy
| | - Alessandra Ponti
- Department of Anesthesiology and Intensive Care, ASST Lecco, Lecco, Italy
| | - Savino Spadaro
- Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giancarla Poli
- Department of Anaesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Casola
- Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA, 02138, USA
- Harvard-Smithsonian Centre for Astrophysics, 60 Garden St., Cambridge, MA, 02138, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy
| | - Carolyn S Calfee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - John Laffey
- School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Giacomo Bellani
- University of Trento, Centre for Medical Sciences-CISMed, Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Maurizio Cereda
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
23
|
Jaber S, Pensier J, Futier E, Paugam-Burtz C, Seguin P, Ferrandiere M, Lasocki S, Pottecher J, Abback PS, Riu B, Belafia F, Constantin JM, Verzilli D, Chanques G, De Jong A, Molinari N. Noninvasive ventilation on reintubation in patients with obesity and hypoxemic respiratory failure following abdominal surgery: a post hoc analysis of a randomized clinical trial. Intensive Care Med 2024; 50:1265-1274. [PMID: 39073580 DOI: 10.1007/s00134-024-07522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Although noninvasive ventilation (NIV) may reduce reintubation in patients with acute hypoxemic respiratory failure following abdominal surgery, this strategy has not been specifically assessed in patients with obesity. METHODS We conducted a post hoc analysis of a multicenter randomized controlled trial comparing NIV delivered via facial mask to standard oxygen therapy among patients with obesity and acute hypoxemic respiratory failure within 7 days after abdominal surgery. The primary outcome was reintubation within 7 days. Secondary outcomes were invasive ventilation-free days at day 30, intensive care unit (ICU)-acquired pneumonia and 30-day survival. RESULTS Among 293 patients with hypoxemic respiratory failure following abdominal surgery, 76 (26%) patients had obesity and were included in the intention-to-treat analysis. Reintubation rate was significantly lower with NIV (13/42, 31%) than with standard oxygen therapy (19/34, 56%) within 7 days (absolute difference: - 25%, 95% confidence interval (CI) - 49 to - 1%, p = 0.03). NIV was associated with significantly more invasive ventilation-free days compared with standard oxygen therapy (27.1 ± 8.6 vs 22.7 ± 11.1 days; p = 0.02), while fewer patients developed ICU-acquired pneumonia (1/42, 2% vs 6/34, 18%; p = 0.04). The 30-day survival was 98% in the NIV group (41/42) versus 85% in the standard oxygen therapy (p = 0.08). In patients with body mass index (BMI) < 30 kg/m2, no significant difference was observed between NIV (36/105, 34%) and standard oxygen therapy (47/109, 43%, p = 0.03). An interaction test showed no statistically significant difference between the two subsets (BMI ≥ 30 kg/m2 and BMI < 30 kg/m2). CONCLUSIONS Among patients with obesity and hypoxemic respiratory failure following abdominal surgery, use of NIV compared with standard oxygen therapy reduced the risk of reintubation within 7 days, contrary to patients without obesity. However, no interaction was found according to the presence of obesity or not, suggesting either a lack of power to conclude in the non-obese subgroup despite existing differences, or that the statistical difference found in the overall sample was driven by a large effect in the obese subsets.
Collapse
Affiliation(s)
- Samir Jaber
- Anesthesiology and Intensive Care; Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, PhyMedExp, University of Montpellier, INSERM U1046, 1, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, Montpellier, France.
- Centre Hospitalier Universitaire Montpellier, 34295, Montpellier, France.
| | - Joris Pensier
- Anesthesiology and Intensive Care; Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, PhyMedExp, University of Montpellier, INSERM U1046, 1, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, 34295, Montpellier, France
| | | | | | | | | | | | | | | | | | - Fouad Belafia
- Anesthesiology and Intensive Care; Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, PhyMedExp, University of Montpellier, INSERM U1046, 1, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, Montpellier, France
| | | | - Daniel Verzilli
- Anesthesiology and Intensive Care; Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, PhyMedExp, University of Montpellier, INSERM U1046, 1, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, Montpellier, France
| | - Gérald Chanques
- Anesthesiology and Intensive Care; Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, PhyMedExp, University of Montpellier, INSERM U1046, 1, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, 34295, Montpellier, France
| | - Audrey De Jong
- Anesthesiology and Intensive Care; Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, PhyMedExp, University of Montpellier, INSERM U1046, 1, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, 34295, Montpellier, France
| | - Nicolas Molinari
- Medical Information, IMAG, CNRS, Univ Montpellier, Centre Hospitalier Regional Universitaire de Montpellier, Montpellier, France
- Institut Desbrest de Santé Publique (IDESP), INSERM - Université de Montpellier, Département d'informatique Médicale, CHRU Montpellier, Montpellier, France
| |
Collapse
|
24
|
Gordon AC, Alipanah-Lechner N, Bos LD, Dianti J, Diaz JV, Finfer S, Fujii T, Giamarellos-Bourboulis EJ, Goligher EC, Gong MN, Karakike E, Liu VX, Lumlertgul N, Marshall JC, Menon DK, Meyer NJ, Munroe ES, Myatra SN, Ostermann M, Prescott HC, Randolph AG, Schenck EJ, Seymour CW, Shankar-Hari M, Singer M, Smit MR, Tanaka A, Taccone FS, Thompson BT, Torres LK, van der Poll T, Vincent JL, Calfee CS. From ICU Syndromes to ICU Subphenotypes: Consensus Report and Recommendations for Developing Precision Medicine in the ICU. Am J Respir Crit Care Med 2024; 210:155-166. [PMID: 38687499 PMCID: PMC11273306 DOI: 10.1164/rccm.202311-2086so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.
Collapse
Affiliation(s)
| | - Narges Alipanah-Lechner
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Departamento de Cuidados Intensivos, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | | | - Simon Finfer
- School of Public Health, Imperial College London, London, United Kingdom
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Tomoko Fujii
- Jikei University School of Medicine, Jikei University Hospital, Tokyo, Japan
| | | | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Ng Gong
- Division of Critical Care Medicine and
- Division of Pulmonary Medicine, Department of Medicine and Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Eleni Karakike
- Second Department of Critical Care Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vincent X. Liu
- Division of Research, Kaiser Permanente, Oakland, California
| | - Nuttha Lumlertgul
- Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - John C. Marshall
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David K. Menon
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth S. Munroe
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sheila N. Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- King’s College London, Guy’s & St Thomas’ Hospital, London, United Kingdom
| | - Hallie C. Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Anaesthesia and
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward J. Schenck
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Christopher W. Seymour
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | | | - Aiko Tanaka
- Department of Intensive Care, University of Fukui Hospital, Yoshida, Fukui, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fabio S. Taccone
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lisa K. Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, and
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Louis Vincent
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
25
|
Boumans MMA, Aerts W, Pisani L, Bos LDJ, Smit MR, Tuinman PR. Diagnostic accuracy of lung ultrasound in diagnosis of ARDS and identification of focal or non-focal ARDS subphenotypes: a systematic review and meta-analysis. Crit Care 2024; 28:224. [PMID: 38978055 PMCID: PMC11232316 DOI: 10.1186/s13054-024-04985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening respiratory condition with high mortality rates, accounting for 10% of all intensive care unit admissions. Lung ultrasound (LUS) as diagnostic tool for acute respiratory failure has garnered widespread recognition and was recently incorporated into the updated definitions of ARDS. This raised the hypothesis that LUS is a reliable method for diagnosing ARDS. OBJECTIVES We aimed to establish the accuracy of LUS for ARDS diagnosis and classification of focal versus non-focal ARDS subphenotypes. METHODS This systematic review and meta-analysis used a systematic search strategy, which was applied to PubMed, EMBASE and cochrane databases. Studies investigating the diagnostic accuracy of LUS compared to thoracic CT or chest radiography (CXR) in ARDS diagnosis or focal versus non-focal subphenotypes in adult patients were included. Quality of studies was evaluated using the QUADAS-2 tool. Statistical analyses were performed using "Mada" in Rstudio, version 4.0.3. Sensitivity and specificity with 95% confidence interval of each separate study were summarized in a Forest plot. RESULTS The search resulted in 2648 unique records. After selection, 11 reports were included, involving 2075 patients and 598 ARDS cases (29%). Nine studies reported on ARDS diagnosis and two reported on focal versus non-focal ARDS subphenotypes classification. Meta-analysis showed a pooled sensitivity of 0.631 (95% CI 0.450-0.782) and pooled specificity of 0.942 (95% CI 0.856-0.978) of LUS for ARDS diagnosis. In two studies, LUS could accurately differentiate between focal versus non-focal ARDS subphenotypes. Insufficient data was available to perform a meta-analysis. CONCLUSION This review confirms the hypothesis that LUS is a reliable method for diagnosing ARDS in adult patients. For the classification of focal or non-focal subphenotypes, LUS showed promising results, but more research is needed.
Collapse
Affiliation(s)
- Maud M A Boumans
- Department of Intensive Care Medicine, Noordwest Ziekenhuisgroep, Wilhelminalaan 12, Alkmaar, The Netherlands
| | - William Aerts
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Luigi Pisani
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, 10400, Thailand
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Lieuwe D J Bos
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam Medisch Centrum, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marry R Smit
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Pieter R Tuinman
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Leiden IC Focused Echography (ALIFE), Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Murgolo F, Grieco DL, Spadaro S, Bartolomeo N, di Mussi R, Pisani L, Fiorentino M, Crovace AM, Lacitignola L, Staffieri F, Grasso S. Recruitment-to-inflation ratio reflects the impact of peep on dynamic lung strain in a highly recruitable model of ARDS. Ann Intensive Care 2024; 14:106. [PMID: 38963617 PMCID: PMC11224186 DOI: 10.1186/s13613-024-01343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The recruitment-to-inflation ratio (R/I) has been recently proposed to bedside assess response to PEEP. The impact of PEEP on ventilator-induced lung injury depends on the extent of dynamic strain reduction. We hypothesized that R/I may reflect the potential for lung recruitment (i.e. recruitability) and, consequently, estimate the impact of PEEP on dynamic lung strain, both assessed through computed tomography scan. METHODS Fourteen lung-damaged pigs (lipopolysaccharide infusion) underwent ventilation at low (5 cmH2O) and high PEEP (i.e., PEEP generating a plateau pressure of 28-30 cmH2O). R/I was measured through a one-breath derecruitment maneuver from high to low PEEP. PEEP-induced changes in dynamic lung strain, difference in nonaerated lung tissue weight (tissue recruitment) and amount of gas entering previously nonaerated lung units (gas recruitment) were assessed through computed tomography scan. Tissue and gas recruitment were normalized to the weight and gas volume of previously ventilated lung areas at low PEEP (normalized-tissue recruitment and normalized-gas recruitment, respectively). RESULTS Between high (median [interquartile range] 20 cmH2O [18-21]) and low PEEP, median R/I was 1.08 [0.88-1.82], indicating high lung recruitability. Compared to low PEEP, tissue and gas recruitment at high PEEP were 246 g [182-288] and 385 ml [318-668], respectively. R/I was linearly related to normalized-gas recruitment (r = 0.90; [95% CI 0.71 to 0.97) and normalized-tissue recruitment (r = 0.69; [95% CI 0.25 to 0.89]). Dynamic lung strain was 0.37 [0.29-0.44] at high PEEP and 0.59 [0.46-0.80] at low PEEP (p < 0.001). R/I was significantly related to PEEP-induced reduction in dynamic (r = - 0.93; [95% CI - 0.78 to - 0.98]) and global lung strain (r = - 0.57; [95% CI - 0.05 to - 0.84]). No correlation was found between R/I and and PEEP-induced changes in static lung strain (r = 0.34; [95% CI - 0.23 to 0.74]). CONCLUSIONS In a highly recruitable ARDS model, R/I reflects the potential for lung recruitment and well estimates the extent of PEEP-induced reduction in dynamic lung strain.
Collapse
Affiliation(s)
- Francesco Murgolo
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy.
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università Degli Studi "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy.
| | - Domenico L Grieco
- Department of Anesthesia, Intensive Care and Emergency, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Savino Spadaro
- Department of Translational Medicine, Section of Anesthesiology and Intensive Care Medicine, University of Ferrara, Ferrara, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Rossella di Mussi
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Luigi Pisani
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | | | - Luca Lacitignola
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Staffieri
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Salvatore Grasso
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
27
|
Smit MR, Mayo PH, Mongodi S. Lung ultrasound for diagnosis and management of ARDS. Intensive Care Med 2024; 50:1143-1145. [PMID: 38656359 DOI: 10.1007/s00134-024-07422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Marry R Smit
- Department of Intensive Care, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands.
| | - Paul H Mayo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health LIJ/NSUH Medical Center, Hempstead, NY, USA
| | - Silvia Mongodi
- Anaesthesia and Intensive Care, San Matteo Hospital, Pavia, Italy
| |
Collapse
|
28
|
Murali M, Ni M, Karbing DS, Rees SE, Komorowski M, Marshall D, Ramnarayan P, Patel BV. Clinical practice, decision-making, and use of clinical decision support systems in invasive mechanical ventilation: a narrative review. Br J Anaesth 2024; 133:164-177. [PMID: 38637268 PMCID: PMC11213991 DOI: 10.1016/j.bja.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Invasive mechanical ventilation is a key supportive therapy for patients on intensive care. There is increasing emphasis on personalised ventilation strategies. Clinical decision support systems (CDSS) have been developed to support this. We conducted a narrative review to assess evidence that could inform device implementation. A search was conducted in MEDLINE (Ovid) and EMBASE. Twenty-nine studies met the inclusion criteria. Role allocation is well described, with interprofessional collaboration dependent on culture, nurse:patient ratio, the use of protocols, and perception of responsibility. There were no descriptions of process measures, quality metrics, or clinical workflow. Nurse-led weaning is well-described, with factors grouped by patient, nurse, and system. Physician-led weaning is heterogenous, guided by subjective and objective information, and 'gestalt'. No studies explored decision-making with CDSS. Several explored facilitators and barriers to implementation, grouped by clinician (facilitators: confidence using CDSS, retaining decision-making ownership; barriers: undermining clinician's role, ambiguity moving off protocol), intervention (facilitators: user-friendly interface, ease of workflow integration, minimal training requirement; barriers: increased documentation time), and organisation (facilitators: system-level mandate; barriers: poor communication, inconsistent training, lack of technical support). One study described factors that support CDSS implementation. There are gaps in our understanding of ventilation practice. A coordinated approach grounded in implementation science is required to support CDSS implementation. Future research should describe factors that guide clinical decision-making throughout mechanical ventilation, with and without CDSS, map clinical workflow, and devise implementation toolkits. Novel research design analogous to a learning organisation, that considers the commercial aspects of device design, is required.
Collapse
Affiliation(s)
- Mayur Murali
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Melody Ni
- NIHR London In Vitro Diagnostics Cooperative, London, UK
| | - Dan S Karbing
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Stephen E Rees
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Dominic Marshall
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Padmanabhan Ramnarayan
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK; Imperial Centre for Paediatrics and Child Health, London, UK
| | - Brijesh V Patel
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anaesthesia & Critical Care, Royal Brompton Hospital, London, UK
| |
Collapse
|
29
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
30
|
Dayan RR, Blau M, Taylor J, Hasidim A, Galante O, Almog Y, Gat T, Shavialiova D, Miller JD, Khazanov G, Abu Ghalion F, Sagy I, Ben Shitrit I, Fuchs L. Lung ultrasound is associated with distinct clinical phenotypes in COVID-19 ARDS: A retrospective observational study. PLoS One 2024; 19:e0304508. [PMID: 38829891 PMCID: PMC11146726 DOI: 10.1371/journal.pone.0304508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND ARDS is a heterogeneous syndrome with distinct clinical phenotypes. Here we investigate whether the presence or absence of large pulmonary ultrasonographic consolidations can categorize COVID-19 ARDS patients requiring mechanical ventilation into distinct clinical phenotypes. METHODS This is a retrospective study performed in a tertiary-level intensive care unit in Israel between April and September 2020. Data collected included lung ultrasound (LUS) findings, respiratory parameters, and treatment interventions. The primary outcome was a composite of three ARDS interventions: prone positioning, high PEEP, or a high dose of inhaled nitric oxide. RESULTS A total of 128 LUS scans were conducted among 23 patients. The mean age was 65 and about two-thirds were males. 81 scans identified large consolidation and were classified as "C-type", and 47 scans showed multiple B-lines with no or small consolidation and were classified as "B-type". The presence of a "C-type" study had 2.5 times increased chance of receiving the composite primary outcome of advanced ARDS interventions despite similar SOFA scores, Pao2/FiO2 ratio, and markers of disease severity (OR = 2.49, %95CI 1.40-4.44). CONCLUSION The presence of a "C-type" profile with LUS consolidation potentially represents a distinct COVID-19 ARDS subphenotype that is more likely to require aggressive ARDS interventions. Further studies are required to validate this phenotype in a larger cohort and determine causality, diagnostic, and treatment responses.
Collapse
Affiliation(s)
- Roy Rafael Dayan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maayan Blau
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jonathan Taylor
- Intensive Care Unit, Soroka University Medical Center, Beersheba, Israel
| | - Ariel Hasidim
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ori Galante
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yaniv Almog
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tomer Gat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Darya Shavialiova
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jacob David Miller
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Georgi Khazanov
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Fahmi Abu Ghalion
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Iftach Sagy
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Clinical Research Center, Soroka University Medical Center, Beersheba, Israel
| | - Itamar Ben Shitrit
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Clinical Research Center, Soroka University Medical Center, Beersheba, Israel
| | - Lior Fuchs
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
31
|
Serafini SC, van Meenen DMP, Pisani L, Neto AS, Ball L, de Abreu MG, Algera AG, Azevedo L, Bellani G, Dondorp AM, Fan E, Laffey JG, Pham T, Tschernko EM, Schultz MJ, van der Woude MCE. Different ventilation intensities among various categories of patients ventilated for reasons other than ARDS--A pooled analysis of 4 observational studies. J Crit Care 2024; 81:154531. [PMID: 38341938 DOI: 10.1016/j.jcrc.2024.154531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE We investigated driving pressure (ΔP) and mechanical power (MP) and associations with clinical outcomes in critically ill patients ventilated for reasons other than ARDS. MATERIALS AND METHODS Individual patient data analysis of a pooled database that included patients from four observational studies of ventilation. ΔP and MP were compared among invasively ventilated non-ARDS patients with sepsis, with pneumonia, and not having sepsis or pneumonia. The primary endpoint was ΔP; secondary endpoints included MP, ICU mortality and length of stay, and duration of ventilation. RESULTS This analysis included 372 (11%) sepsis patients, 944 (28%) pneumonia patients, and 2040 (61%) patients ventilated for any other reason. On day 1, median ΔP was higher in sepsis (14 [11-18] cmH2O) and pneumonia patients (14 [11-18]cmH2O), as compared to patients not having sepsis or pneumonia (13 [10-16] cmH2O) (P < 0.001). Median MP was also higher in sepsis and pneumonia patients. ΔP, as opposed to MP, was associated with ICU mortality in sepsis and pneumonia patients. CONCLUSIONS The intensity of ventilation differed between patients with sepsis or pneumonia and patients receiving ventilation for any other reason; ΔP was associated with higher mortality in sepsis and pneumonia patients. REGISTRATION This post hoc analysis was not registered; the individual studies that were merged into the used database were registered at clinicaltrials.gov: NCT01268410 (ERICC), NCT02010073 (LUNG SAFE), NCT01868321 (PRoVENT), and NCT03188770 (PRoVENT-iMiC).
Collapse
Affiliation(s)
- Simon Corrado Serafini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy; Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands.
| | - David M P van Meenen
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands; Department of Anesthesiology, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands
| | - Luigi Pisani
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands; Section of Operational Research, Doctors with Africa, Padova, Italy; Department of Anesthesiology and Intensive Care Medicine, Miulli Regional Hospital, Acquaviva delle Fonti, Italy; Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, Australia; Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Marcelo Gama de Abreu
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Geke Algera
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands
| | - Luciano Azevedo
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Department of Emergency Medicine, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Giacomo Bellani
- Centro Interdipartimentale di Scienze Mediche (CISMed), Università di Trento, Italy; UOC anesthesia and Intensive Care 1, Ospedale Santa Chiara, APSS, Trento, Italy
| | - Arjen M Dondorp
- Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, National University of Ireland, and Galway University Hospitals Ireland, Galway, Ireland
| | - Tai Pham
- Equipe d'Epidémiologie Respiratoire integrative, Université Paris-Saclay, Paris, France; Department of Intensive Care, Hôpital de Bicêtre, Paris, France
| | - Edda M Tschernko
- Clinical Department of Cardiothoracic Vascular Surgery Anesthesia and Intensive Care Medicine, Medical University Wien, Vienna, Austria
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands; Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK; Clinical Department of Cardiothoracic Vascular Surgery Anesthesia and Intensive Care Medicine, Medical University Wien, Vienna, Austria
| | | |
Collapse
|
32
|
Chen Y, Li H, Lin J, Su Z, Lin T. Association between (ΔPaO2/FiO2)/PEEP and in-hospital mortality in patients with COVID-19 pneumonia: A secondary analysis. PLoS One 2024; 19:e0304518. [PMID: 38820377 PMCID: PMC11142544 DOI: 10.1371/journal.pone.0304518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The arterial pressure of oxygen (PaO2)/inspiratory fraction of oxygen (FiO2) is associated with in-hospital mortality in patients with Coronavirus Disease 2019 (COVID-19) pneumonia. ΔPaO2/FiO2 [the difference between PaO2/FiO2 after 24 h of invasive mechanical ventilation (IMV) and PaO2/FiO2 before IMV] is associated with in-hospital mortality. However, the value of PaO2 can be influenced by the end-expiratory pressure (PEEP). To the best of our knowledge, the relationship between the ratio of (ΔPaO2/FiO2)/PEEP and in-hospital mortality remains unclear. This study aimed to evaluate their association. METHODS The study was conducted in southern Peru from April 2020 to April 2021. A total of 200 patients with COVID-19 pneumonia requiring IMV were included in the present study. We analyzed the association between (ΔPaO2/FiO2)/PEEP and in-hospital mortality by Cox proportional hazards regression models. RESULTS The median (ΔPaO2/FiO2)/PEEP was 11.78 mmHg/cmH2O [interquartile range (IQR) 8.79-16.08 mmHg/cmH2O], with a range of 1 to 44.36 mmHg/cmH2O. Patients were divided equally into two groups [low group (< 11.80 mmHg/cmH2O), and high group (≥ 11.80 mmHg/cmH2O)] according to the (ΔPaO2/FiO2)/PEEP ratio. In-hospital mortality was lower in the high (ΔPaO2/FiO2)/PEEP group than in the low (ΔPaO2/FiO2)/PEEP group [18 (13%) vs. 38 (38%)]; hazard ratio (HR), 0.33 [95% confidence intervals (CI), 0.17-0.61, P < 0.001], adjusted HR, 0.32 (95% CI, 0.11-0.94, P = 0.038). The finding that the high (ΔPaO2/FiO2)/PEEP group exhibited a lower risk of in-hospital mortality compared to the low (ΔPaO2/FiO2)/PEEP group was consistent with the results from the sensitivity analysis. After adjusting for confounding variables, we found that each unit increase in (ΔPaO2/FiO2)/PEEP was associated with a 12% reduction in the risk of in-hospital mortality (HR, 0.88, 95%CI, 0.80-0.97, P = 0.013). CONCLUSIONS The (ΔPaO2/FiO2)/PEEP ratio was associated with in-hospital mortality in patients with COVID-19 pneumonia. (ΔPaO2/FiO2)/PEEP might be a marker of disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Youli Chen
- Intensive Care Unit, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, PR China
| | - Huangen Li
- Intensive Care Unit, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, PR China
| | - Jinhuang Lin
- Intensive Care Unit, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, PR China
| | - Zhiwei Su
- Intensive Care Unit, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, PR China
| | - Tianlai Lin
- Intensive Care Unit, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, PR China
| |
Collapse
|
33
|
Sinnige JS, Smit MR, Ghose A, de Grooth HJ, Itenov TS, Ischaki E, Laffey J, Paulus F, Póvoa P, Pierrakos C, Pisani L, Roca O, Schultz MJ, Szuldrzynski K, Tuinman PR, Zimatore C, Bos LDJ. Personalized mechanical ventilation guided by ultrasound in patients with acute respiratory distress syndrome (PEGASUS): study protocol for an international randomized clinical trial. Trials 2024; 25:308. [PMID: 38715118 PMCID: PMC11077821 DOI: 10.1186/s13063-024-08140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a frequent cause of hypoxemic respiratory failure with a mortality rate of approximately 30%. Identifying ARDS subphenotypes based on "focal" or "non-focal" lung morphology has the potential to better target mechanical ventilation strategies of individual patients. However, classifying morphology through chest radiography or computed tomography is either inaccurate or impractical. Lung ultrasound (LUS) is a non-invasive bedside tool that can accurately distinguish "focal" from "non-focal" lung morphology. We hypothesize that LUS-guided personalized mechanical ventilation in ARDS patients leads to a reduction in 90-day mortality compared to conventional mechanical ventilation. METHODS The Personalized Mechanical Ventilation Guided by UltraSound in Patients with Acute Respiratory Distress Syndrome (PEGASUS) study is an investigator-initiated, international, randomized clinical trial (RCT) that plans to enroll 538 invasively ventilated adult intensive care unit (ICU) patients with moderate to severe ARDS. Eligible patients will receive a LUS exam to classify lung morphology as "focal" or "non-focal". Thereafter, patients will be randomized within 12 h after ARDS diagnosis to receive standard care or personalized ventilation where the ventilation strategy is adjusted to the morphology subphenotype, i.e., higher positive end-expiratory pressure (PEEP) and recruitment maneuvers for "non-focal" ARDS and lower PEEP and prone positioning for "focal" ARDS. The primary endpoint is all-cause mortality at day 90. Secondary outcomes are mortality at day 28, ventilator-free days at day 28, ICU length of stay, ICU mortality, hospital length of stay, hospital mortality, and number of complications (ventilator-associated pneumonia, pneumothorax, and need for rescue therapy). After a pilot phase of 80 patients, the correct interpretation of LUS images and correct application of the intervention within the safe limits of mechanical ventilation will be evaluated. DISCUSSION PEGASUS is the first RCT that compares LUS-guided personalized mechanical ventilation with conventional ventilation in invasively ventilated patients with moderate and severe ARDS. If this study demonstrates that personalized ventilation guided by LUS can improve the outcomes of ARDS patients, it has the potential to shift the existing one-size-fits-all ventilation strategy towards a more individualized approach. TRIAL REGISTRATION The PEGASUS trial was registered before the inclusion of the first patient, https://clinicaltrials.gov/ (ID: NCT05492344).
Collapse
Affiliation(s)
- Jante S Sinnige
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Marry R Smit
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Aniruddha Ghose
- Department of Medicine, Chattogram Medical Centre, Chattogram, Bangladesh
| | - Harm-Jan de Grooth
- Department of Intensive Care, UMC, Vrije Universiteit, Amsterdam, HV, 1081, The Netherlands
| | - Theis Skovsgaard Itenov
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eleni Ischaki
- First Department of Intensive Care Medicine, University of Athens Medical School, 10676, Athens, AZ, Greece
| | - John Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, Galway University Hospitals, University of Galway, Galway, H91 TK33, Ireland
| | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Pedro Póvoa
- NOVA Medical School, CHRC, NOVA University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| | - Charalampos Pierrakos
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
- Department of Intensive Care, Brugmann University Hospital, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Luigi Pisani
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Oriol Roca
- Servei de Medicina Intensiva, Parc Taulí Hospital Universitari, Institut de Recerca Part Taulí (I3PT-CERCA), Parc del Taulí 1, 08028, Sabadell, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, 10400, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Konstanty Szuldrzynski
- Department of Anaesthesiology and Intensive Care, National Institute of Medicine of the Ministry of Interior and Administration, 02-507, Warsaw, Poland
| | - Pieter R Tuinman
- Department of Intensive Care, UMC, Vrije Universiteit, Amsterdam, HV, 1081, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Claudio Zimatore
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam University Medical Centres (UMC), University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
| |
Collapse
|
34
|
Wang Z, Zhou Y, Zhu M, Wang F, Zhou Y, Yu H, Luo F. Prone positioning does not improve outcomes of intubated patients with pneumocystis pneumonia and moderate-severe acute respiratory distress syndrome: a single-center, retrospective, observational, cohort study. Eur J Med Res 2024; 29:267. [PMID: 38698478 PMCID: PMC11067229 DOI: 10.1186/s40001-024-01868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Pneumocystis pneumonia is an uncommon precipitant of acute respiratory distress syndrome and is associated with high mortality. Prone positioning ventilation has been proven to reduce mortality in patients with moderate-severe acute respiratory distress syndrome. We investigated the effect of prone positioning on oxygenation and mortality in intubated patients with pneumocystis pneumonia comorbid with moderate-severe acute respiratory distress syndrome. METHODS In this single-center, retrospective, observational, cohort study, eligible patients were enrolled at West China Hospital of Sichuan University from January 1, 2017, to December 31, 2021. Data on demographics, clinical features, ventilation parameters, arterial blood gas, and outcomes were collected. Patients were assigned to the prone cohort or supine cohort according to whether they received prone positioning ventilation. The main outcome was 28-day mortality. FINDINGS A total of 79 patients were included in the study. Sixty-three patients were enrolled in the prone cohort, and 16 patients were enrolled in the supine cohort. The 28-day mortality was 61.9% in the prone cohort and 68.8% in the supine cohort (P = 0.26), and 90-day mortality was 66.7% in the prone cohort and 68.8% in the supine cohort (P = 0.55). Patients in the supine cohort had fewer invasive mechanical ventilation days and more ventilator-free days. The incidence of complications was higher in the prone cohort than in the supine cohort. CONCLUSIONS In patients with pneumocystis pneumonia and moderate-severe acute respiratory distress syndrome, prone positioning did not decrease 28-day or 90-day mortality. Trial registration ClinicalTrials.gov number, ChiCTR2200063889. Registered on 20 September 2022, https://www.chictr.org.cn/showproj.html?proj=174886 .
Collapse
Affiliation(s)
- Zhen Wang
- Department of Respiratory Care, Sichuan University West China Hospital, Chengdu, Sichuan, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
| | - Yuyan Zhou
- Department of Respiratory Care, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Min Zhu
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Faping Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yubei Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - He Yu
- Department of Respiratory Care, Sichuan University West China Hospital, Chengdu, Sichuan, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041.
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
35
|
Estenssoro E, González I, Plotnikow GA. Post-pandemic acute respiratory distress syndrome: A New Global Definition with extension to lower-resource regions. Med Intensiva 2024; 48:272-281. [PMID: 38644108 DOI: 10.1016/j.medine.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 04/23/2024]
Abstract
Acute respiratory distress syndrome (ARDS), first described in 1967, is characterized by acute respiratory failure causing profound hypoxemia, decreased pulmonary compliance, and bilateral CXR infiltrates. After several descriptions, the Berlin definition was adopted in 2012, which established three categories of severity according to hypoxemia (mild, moderate and severe), specified temporal aspects for diagnosis, and incorporated the use of non-invasive ventilation. The COVID-19 pandemic led to changes in ARDS management, focusing on continuous monitoring of oxygenation and on utilization of high-flow oxygen therapy and lung ultrasound. In 2021, a New Global Definition based on the Berlin definition of ARDS was proposed, which included a category for non-intubated patients, considered the use of SpO2, and established no particular requirement for oxygenation support in regions with limited resources. Although debates persist, the continuous evolution seeks to adapt to clinical and epidemiological needs, and to the search of personalized treatments.
Collapse
Affiliation(s)
- Elisa Estenssoro
- Escuela de Gobierno en Salud, Ministerio de Salud, Buenos Aires, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| | - Iván González
- Servicio de Rehabilitación, Área de Kinesiología Crítica, Hospital Británico de Buenos Aires, CABA, Argentina
| | - Gustavo A Plotnikow
- Servicio de Rehabilitación, Área de Kinesiología Crítica, Hospital Británico de Buenos Aires, CABA, Argentina; Facultad de Medicina y Ciencias de la Salud, Universidad Abierta Interamericana, Argentina
| |
Collapse
|
36
|
Nasa P, Bos LD, Estenssoro E, van Haren FM, Serpa Neto A, Rocco PR, Slutsky AS, Schultz MJ. Consensus statements on the utility of defining ARDS and the utility of past and current definitions of ARDS-protocol for a Delphi study. BMJ Open 2024; 14:e082986. [PMID: 38670604 PMCID: PMC11057280 DOI: 10.1136/bmjopen-2023-082986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS), marked by acute hypoxemia and bilateral pulmonary infiltrates, has been defined in multiple ways since its first description. This Delphi study aims to collect global opinions on the conceptual framework of ARDS, assess the usefulness of components within current and past definitions and investigate the role of subphenotyping. The varied expertise of the panel will provide valuable insights for refining future ARDS definitions and improving clinical management. METHODS A diverse panel of 35-40 experts will be selected based on predefined criteria. Multiple choice questions (MCQs) or 7-point Likert-scale statements will be used in the iterative Delphi rounds to achieve consensus on key aspects related to the utility of definitions and subphenotyping. The Delphi rounds will be continued until a stable agreement or disagreement is achieved for all statements. ANALYSIS Consensus will be considered as reached when a choice in MCQs or Likert-scale statement achieved ≥80% of votes for agreement or disagreement. The stability will be checked by non-parametric χ2 tests or Kruskal Wallis test starting from the second round of Delphi process. A p-value ≥0.05 will be used to define stability. ETHICS AND DISSEMINATION The study will be conducted in full concordance with the principles of the Declaration of Helsinki and will be reported according to CREDES guidance. This study has been granted an ethical approval waiver by the NMC Healthcare Regional Research Ethics Committee, Dubai (NMCHC/CR/DXB/REC/APP/002), owing to the nature of the research. Informed consent will be obtained from all panellists before the start of the Delphi process. The study will be published in a peer-review journal with the authorship agreed as per ICMJE requirements. TRIAL REGISTRATION NUMBER NCT06159465.
Collapse
Affiliation(s)
- Prashant Nasa
- Department of Intensive Care, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Critical Care Medicine, NMC Specialty Hospital, Dubai, UAE
| | - Lieuwe D Bos
- Department of Intensive Care, Amsterdam UMC, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Elisa Estenssoro
- Facultad de Ciencias Médicas, Universidad Nacional de la Plata, La Plata, Argentina
- Ministerio de Salud de la Provincia de Buenos Aires, La Plata, Argentina
| | - Frank Mp van Haren
- College of Health and Medicine, Australian National University, Canberra, ACT, Australia
- Intensive Care Unit, St George Hospital, Sydney, NSW, Australia
| | - Ary Serpa Neto
- Department of Intensive Care, Amsterdam UMC, Amsterdam, The Netherlands
- Monash University, Clayton, VIC, Australia
- Austin Hospital, Heidelberg, VIC, Australia
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigations, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, Amsterdam, The Netherlands
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Division of Cardiac Thoracic Vascular Anesthesia and Intensive Care Medicine, Medical University Vienna, Vienna, Austria
| |
Collapse
|
37
|
Szuldrzynski K, Kowalewski M, Swol J. Mechanical ventilation during extracorporeal membrane oxygenation support - New trends and continuing challenges. Perfusion 2024; 39:107S-114S. [PMID: 38651573 DOI: 10.1177/02676591241232270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND The impact of mechanical ventilation on the survival of patients supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO) due to severe acute respiratory distress syndrome (ARDS) remains still a focus of research. METHODS Recent guidelines, randomized trials, and registry data underscore the importance of lung-protective ventilation during respiratory and cardiac support on ECMO. RESULTS This approach includes decreasing mechanical power delivery by reducing tidal volume and driving pressure as much as possible, using low or very low respiratory rate, and a personalized approach to positive-end expiratory pressure (PEEP) setting. Notably, the use of ECMO in awake and spontaneously breathing patients is increasing, especially as a bridging strategy to lung transplantation. During respiratory support in V-V ECMO, native lung function is of highest importance and adjustments of blood flow on ECMO, or ventilator settings significantly impact the gas exchange. These interactions are more complex in veno-arterial (V-A) ECMO configuration and cardiac support. The fraction on delivered oxygen in the sweep gas and sweep gas flow rate, blood flow per minute, and oxygenator efficiency have an impact on gas exchange on device side. On the patient side, native cardiac output, native lung function, carbon dioxide production (VCO2), and oxygen consumption (VO2) play a role. Avoiding pulmonary oedema includes left ventricle (LV) distension monitoring and prevention, pulse pressure >10 mm Hg and aortic valve opening assessment, higher PEEP adjustment, use of vasodilators, ECMO flow adjustment according to the ejection fraction, moderate use of inotropes, diuretics, or venting strategies as indicated and according to local expertise and resources. CONCLUSION Understanding the physiological principles of gas exchange during cardiac support on femoro-femoral V-A ECMO configuration and the interactions with native gas exchange and haemodynamics are essential for the safe applications of these techniques in clinical practice. Proning during ECMO remains to be discussed until further data is available from prospective, randomized trials implementing individualized PEEP titration during proning.
Collapse
Affiliation(s)
- Konstanty Szuldrzynski
- Department of Anaesthesiology and Intensive Care, National Institute of Medicine of the Ministry of Interior and Administration in Warsaw, Warsaw, Poland
| | - Mariusz Kowalewski
- Department of Cardiac Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Thoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, Bydgoszcz, Poland
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Justyna Swol
- Department of Respiratory Medicine, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
38
|
Trieu M, Qadir N. Adjunctive Therapies in Acute Respiratory Distress Syndrome. Crit Care Clin 2024; 40:329-351. [PMID: 38432699 DOI: 10.1016/j.ccc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Despite significant advances in understanding acute respiratory distress syndrome (ARDS), mortality rates remain high. The appropriate use of adjunctive therapies can improve outcomes, particularly for patients with moderate to severe hypoxia. In this review, the authors discuss the evidence basis behind prone positioning, recruitment maneuvers, neuromuscular blocking agents, corticosteroids, pulmonary vasodilators, and extracorporeal membrane oxygenation and considerations for their use in individual patients and specific clinical scenarios. Because the heterogeneity of ARDS poses challenges in finding universally effective treatments, an individualized approach and continued research efforts are crucial for optimizing the utilization of adjunctive therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Megan Trieu
- Division of Pulmonary Critical Care Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037-1300, USA
| | - Nida Qadir
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Room 43-229 CHS, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Cysneiros A, Galvão T, Domingues N, Jorge P, Bento L, Martin-Loeches I. ARDS Mortality Prediction Model Using Evolving Clinical Data and Chest Radiograph Analysis. Biomedicines 2024; 12:439. [PMID: 38398041 PMCID: PMC10886631 DOI: 10.3390/biomedicines12020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Within primary ARDS, SARS-CoV-2-associated ARDS (C-ARDS) emerged in late 2019, reaching its peak during the subsequent two years. Recent efforts in ARDS research have concentrated on phenotyping this heterogeneous syndrome to enhance comprehension of its pathophysiology. METHODS AND RESULTS A retrospective study was conducted on C-ARDS patients from April 2020 to February 2021, encompassing 110 participants with a mean age of 63.2 ± 11.92 (26-83 years). Of these, 61.2% (68) were male, and 25% (17) experienced severe ARDS, resulting in a mortality rate of 47.3% (52). Ventilation settings, arterial blood gases, and chest X-ray (CXR) were evaluated on the first day of invasive mechanical ventilation and between days two and three. CXR images were scrutinized using a convolutional neural network (CNN). A binary logistic regression model for predicting C-ARDS mortality was developed based on the most influential variables: age, PaO2/FiO2 ratio (P/F) on days one and three, CNN-extracted CXR features, and age. Initial performance assessment on test data (23 patients out of the 110) revealed an area under the receiver operating characteristic (ROC) curve of 0.862 with a 95% confidence interval (0.654-0.969). CONCLUSION Integrating data available in all intensive care units enables the prediction of C-ARDS mortality by utilizing evolving P/F ratios and CXR. This approach can assist in tailoring treatment plans and initiating early discussions to escalate care and extracorporeal life support. Machine learning algorithms for imaging classification can uncover otherwise inaccessible patterns, potentially evolving into another form of ARDS phenotyping. The combined features of these algorithms and clinical variables demonstrate superior performance compared to either element alone.
Collapse
Affiliation(s)
- Ana Cysneiros
- Nova Medical School, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Unidade de Urgência Médica, Hospital de São José, Centro Hospitalar Universitário Lisboa Central, 1169-050 Lisbon, Portugal
| | - Tiago Galvão
- Instituto Politécnico de Lisboa/Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal; (T.G.); (N.D.); (P.J.)
| | - Nuno Domingues
- Instituto Politécnico de Lisboa/Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal; (T.G.); (N.D.); (P.J.)
| | - Pedro Jorge
- Instituto Politécnico de Lisboa/Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal; (T.G.); (N.D.); (P.J.)
| | - Luis Bento
- Nova Medical School, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Unidade de Urgência Médica, Hospital de São José, Centro Hospitalar Universitário Lisboa Central, 1169-050 Lisbon, Portugal
| | | |
Collapse
|
40
|
Mounier R, Diop S, Kallel H, Constantin JM, Roujansky A. Tidal volume in mechanically ventilated patients: Searching for Cinderella's shoe rather than 6 mL/kg for all. Anaesth Crit Care Pain Med 2024; 43:101356. [PMID: 38365168 DOI: 10.1016/j.accpm.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Affiliation(s)
- R Mounier
- Department of Anaesthesiology and Critical Care, Georges Pompidou European Hospital, Paris, France; Université Paris, Paris, France; INSERM U955, Équipe 15, Institut Mondor de la Recherche Biomédicale, Université Paris-Est-Créteil, France.
| | - S Diop
- Department of Anesthesiology, Marie Lannelongue Hospital, Paris Saint Joseph Hospital, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; Cardiothoracic Intensive Care Unit. Marie Lannelongue Hospital, Paris Saint Joseph Hospital, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France
| | - H Kallel
- Réanimation Polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana; Tropical Biome et Immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| | - J M Constantin
- Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Paris, France
| | - A Roujansky
- Réanimation Polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana; Tropical Biome et Immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| |
Collapse
|
41
|
Mousa A, Klompmaker P, Tuinman PR. Setting positive end-expiratory pressure: lung and diaphragm ultrasound. Curr Opin Crit Care 2024; 30:53-60. [PMID: 38085883 PMCID: PMC10962429 DOI: 10.1097/mcc.0000000000001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the role of lung ultrasound and diaphragm ultrasound in guiding ventilator settings with an emphasis on positive end-expiratory pressure (PEEP). Recent advances for using ultrasound to assess the effects of PEEP on the lungs and diaphragm are discussed. RECENT FINDINGS Lung ultrasound can accurately diagnose the cause of acute respiratory failure, including acute respiratory distress syndrome and can identify focal and nonfocal lung morphology in these patients. This is essential in determining optimal ventilator strategy and PEEP level. Assessment of the effect of PEEP on lung recruitment using lung ultrasound is promising, especially in the perioperative setting. Diaphragm ultrasound can monitor the effects of PEEP on the diaphragm, but this needs further validation. In patients with an acute exacerbation of chronic obstructive pulmonary disease, diaphragm ultrasound can be used to predict noninvasive ventilation failure. Lung and diaphragm ultrasound can be used to predict weaning outcome and accurately diagnose the cause of weaning failure. SUMMARY Lung and diaphragm ultrasound are useful for diagnosing the cause of respiratory failure and subsequently setting the ventilator including PEEP. Effects of PEEP on lung and diaphragm can be monitored using ultrasound.
Collapse
Affiliation(s)
- Amne Mousa
- Department of Intensive Care, Amsterdam UMC location Vrije Universiteit Amsterdam
- Amsterdam Cardiovascular Sciences research institute, Amsterdam UMC
- Amsterdam Leiden Intensive Care Focused Echography (ALIFE), Amsterdam, The Netherlands
| | - Peter Klompmaker
- Department of Intensive Care, Amsterdam UMC location Vrije Universiteit Amsterdam
- Amsterdam Cardiovascular Sciences research institute, Amsterdam UMC
- Amsterdam Leiden Intensive Care Focused Echography (ALIFE), Amsterdam, The Netherlands
| | - Pieter R. Tuinman
- Department of Intensive Care, Amsterdam UMC location Vrije Universiteit Amsterdam
- Amsterdam Cardiovascular Sciences research institute, Amsterdam UMC
- Amsterdam Leiden Intensive Care Focused Echography (ALIFE), Amsterdam, The Netherlands
| |
Collapse
|
42
|
Wong H, Chi Y, Zhang R, Yin C, Jia J, Wang B, Liu Y, Shang Y, Wang R, Long Y, Zhao Z, He H. Multicentre, parallel, open-label, two-arm, randomised controlled trial on the prognosis of electrical impedance tomography-guided versus low PEEP/FiO2 table-guided PEEP setting: a trial protocol. BMJ Open 2024; 14:e080828. [PMID: 38307528 PMCID: PMC10836340 DOI: 10.1136/bmjopen-2023-080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Previous studies suggested that electrical impedance tomography (EIT) has the potential to guide positive end-expiratory pressure (PEEP) titration via quantifying the alveolar collapse and overdistension. The aim of this trial is to compare the effect of EIT-guided PEEP and acute respiratory distress syndrome (ARDS) network low PEEP/fraction of inspired oxygen (FiO2) table strategy on mortality and other clinical outcomes in patients with ARDS. METHODS This is a parallel, two-arm, multicentre, randomised, controlled trial, conducted in China. All patients with ARDS under mechanical ventilation admitted to the intensive care unit will be screened for eligibility. The enrolled patients are stratified by the aetiology (pulmonary/extrapulmonary) and partial pressure of arterial oxygen/FiO2 (≥150 mm Hg or <150 mm Hg) and randomised into the intervention group or the control group. The intervention group will receive recruitment manoeuvre and EIT-guided PEEP titration. The EIT-guided PEEP will be set for at least 12 hours after titration. The control group will not receive recruitment manoeuvre routinely and the PEEP will be set according to the lower PEEP/FiO2 table proposed by the ARDS Network. The primary outcome is 28-day survival. ANALYSIS Qualitative data will be analysed using the χ2 test or Fisher's exact test, quantitative data will be analysed using independent samples t-test or Mann-Whitney U test. Kaplan-Meier analysis with log-rank test will be used to evaluate the 28-day survival rate between two groups. All outcomes will be analysed based on the intention-to-treat principle. ETHICS AND DISSEMINATION The trial is approved by the Institutional Research and Ethics Committee of the Peking Union Medical College Hospital. Data will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05307913.
Collapse
Affiliation(s)
- HouPeng Wong
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yi Chi
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Rui Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai, China
| | | | - Jianwei Jia
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - You Shang
- Critical Care Medicine, Wuhan Union Hospital, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
43
|
Mojoli F, Pozzi M, Arisi E. Setting positive end-expiratory pressure: using the pressure-volume curve. Curr Opin Crit Care 2024; 30:35-42. [PMID: 38085871 DOI: 10.1097/mcc.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To discuss the role of pressure-volume curve (PV curve) in exploring elastic properties of the respiratory system and setting mechanical ventilator to reduce ventilator-induced lung injury. RECENT FINDINGS Nowadays, quasi-static PV curves and loops can be easily obtained and analyzed at the bedside without disconnection of the patient from the ventilator. It is shown that this tool can provide useful information to optimize ventilator setting. For example, PV curves can assess for patient's individual potential for lung recruitability and also evaluate the risk for lung injury of the ongoing mechanical ventilation setting. SUMMARY In conclusion, PV curve is an easily available bedside tool: its correct interpretation can be extremely valuable to enlighten potential for lung recruitability and select a high or low positive end-expiratory pressure (PEEP) strategy. Furthermore, recent studies have shown that PV curve can play a significant role in PEEP and driving pressure fine tuning: clinical studies are needed to prove whether this technique will improve outcome.
Collapse
Affiliation(s)
- Francesco Mojoli
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Marco Pozzi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Eric Arisi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
44
|
Piquilloud L. Peep setting: let us come back to physiology. Curr Opin Crit Care 2024; 30:1-3. [PMID: 38164972 DOI: 10.1097/mcc.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
45
|
Somhorst P, Mousa A, Jonkman AH. Setting positive end-expiratory pressure: the use of esophageal pressure measurements. Curr Opin Crit Care 2024; 30:28-34. [PMID: 38062927 PMCID: PMC10763716 DOI: 10.1097/mcc.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To summarize the key concepts, physiological rationale and clinical evidence for titrating positive end-expiratory pressure (PEEP) using transpulmonary pressure ( PL ) derived from esophageal manometry, and describe considerations to facilitate bedside implementation. RECENT FINDINGS The goal of an esophageal pressure-based PEEP setting is to have sufficient PL at end-expiration to keep (part of) the lung open at the end of expiration. Although randomized studies (EPVent-1 and EPVent-2) have not yet proven a clinical benefit of this approach, a recent posthoc analysis of EPVent-2 revealed a potential benefit in patients with lower APACHE II score and when PEEP setting resulted in end-expiratory PL values close to 0 ± 2 cmH 2 O instead of higher or more negative values. Technological advances have made esophageal pressure monitoring easier to implement at the bedside, but challenges regarding obtaining reliable measurements should be acknowledged. SUMMARY Esophageal pressure monitoring has the potential to individualize the PEEP settings. Future studies are needed to evaluate the clinical benefit of such approach.
Collapse
Affiliation(s)
- Peter Somhorst
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amne Mousa
- Department of Intensive Care Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Annemijn H. Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Wildi K, Colombo SM, McGuire D, Ainola C, Heinsar S, Sato N, Sato K, Liu K, Bouquet M, Wilson E, Passmore M, Hyslop K, Livingstone S, Di Feliciantonio M, Strugnell W, Palmieri C, Suen J, Li Bassi G, Fraser J. An appraisal of lung computer tomography in very early anti-inflammatory treatment of two different ovine ARDS phenotypes. Sci Rep 2024; 14:2162. [PMID: 38272980 PMCID: PMC10810785 DOI: 10.1038/s41598-024-52698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Mortality and morbidity of Acute Respiratory Distress Syndrome (ARDS) are largely unaltered. A possible new approach to treatment of ARDS is offered by the discovery of inflammatory subphenotypes. In an ovine model of ARDS phenotypes, matching key features of the human subphenotypes, we provide an imaging characterization using computer tomography (CT). Nine animals were randomized into (a) OA (oleic acid, hypoinflammatory; n = 5) and (b) OA-LPS (oleic acid and lipopolysaccharides, hyperinflammatory; n = 4). 48 h after ARDS induction and anti-inflammatory treatment, CT scans were performed at high (H) and then low (L) airway pressure. After CT, the animals were euthanized and lung tissue was collected. OA-LPS showed a higher air fraction and OA a higher tissue fraction, resulting in more normally aerated lungs in OA-LPS in contrast to more non-aerated lung in OA. The change in lung and air volume between H and L was more accentuated in OA-LPS, indicating a higher recruitment potential. Strain was higher in OA, indicating a higher level of lung damage, while the amount of lung edema and histological lung injury were largely comparable. Anti-inflammatory treatment might be beneficial in terms of overall ventilated lung portion and recruitment potential, especially in the OA-LPS group.
Collapse
Affiliation(s)
- Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia.
- The University of Queensland, Brisbane, Australia.
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniel McGuire
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- The Prince Charles Hospital, Chermside, QLD, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
| | - Mahé Bouquet
- The University of Queensland, Brisbane, Australia
| | - Emily Wilson
- The University of Queensland, Brisbane, Australia
| | - Margaret Passmore
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Marianna Di Feliciantonio
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wendy Strugnell
- The University of Queensland, Brisbane, Australia
- The Prince Charles Hospital, Chermside, QLD, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Jacky Suen
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia.
- The University of Queensland, Brisbane, Australia.
- St Andrews War Memorial Hospital, Intensive Care Unit, Spring Hill, QLD, Australia.
- The Wesley Hospital, Intensive Care Unit, Auchenflower, QLD, Australia.
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- St Andrews War Memorial Hospital, Intensive Care Unit, Spring Hill, QLD, Australia
| |
Collapse
|
47
|
Spadaro S, Jimenez-Santana JD, La Rosa R, Spinazzola G, Argente Navarro P, Volta CA, Scaramuzzo G. Prone Positioning and Molecular Biomarkers in COVID and Non-COVID ARDS: A Narrative Review. J Clin Med 2024; 13:317. [PMID: 38256451 PMCID: PMC10816213 DOI: 10.3390/jcm13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Prone positioning (PP) represents a therapeutic intervention with the proven capacity of ameliorating gas exchanges and ventilatory mechanics indicated in acute respiratory distress syndrome (ARDS). When PP is selectively applied to moderate-severe cases of ARDS, it sensitively affects clinical outcomes, including mortality. After the COVID-19 outbreak, clinical application of PP peaked worldwide and was applied in 60% of treated cases, according to large reports. Research on this topic has revealed many physiological underpinnings of PP, focusing on regional ventilation redistribution and the reduction of parenchymal stress and strain. However, there is a lack of evidence on biomarkers behavior in different phases and phenotypes of ARDS. Patients response to PP are, to date, decided on PaO2/FiO2 ratio improvement, whereas scarce data exist on biomarker tracking during PP. The purpose of this review is to explore current evidence on the clinical relevance of biomarkers in the setting of moderate-severe ARDS of different etiologies (i.e., COVID and non-COVID-related ARDS). Moreover, this review focuses on how PP may modulate biomarkers and which biomarkers may have a role in outcome prediction in ARDS patients.
Collapse
Affiliation(s)
- Savino Spadaro
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Jose Daniel Jimenez-Santana
- Department of Anaesthesiology, Hospital Universitari i Politécnic la Fe, 46026 Valencia, Spain; (J.D.J.-S.); (P.A.N.)
| | - Riccardo La Rosa
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Giorgia Spinazzola
- Department of Emergency, Anesthesiologic and Reanimation Sciences, Fondazione Policlinico Universitario Gemelli, IRCSS, 00168 Rome, Italy;
| | - Pilar Argente Navarro
- Department of Anaesthesiology, Hospital Universitari i Politécnic la Fe, 46026 Valencia, Spain; (J.D.J.-S.); (P.A.N.)
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
48
|
Jacquier M, Labruyère M, Ecarnot F, Roudaut JB, Andreu P, Voizeux P, Save Q, Pedri R, Rigaud JP, Quenot JP. Ventilatory Management of Patients with Acute Respiratory Distress Syndrome Due to SARS-CoV-2. J Clin Med 2023; 12:7509. [PMID: 38137578 PMCID: PMC10743400 DOI: 10.3390/jcm12247509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of the new SARS-CoV-2 in December 2019 caused a worldwide pandemic of the resultant disease, COVID-19. There was a massive surge in admissions to intensive care units (ICU), notably of patients with hypoxaemic acute respiratory failure. In these patients, optimal oxygen therapy was crucial. In this article, we discuss tracheal intubation to provide mechanical ventilation in patients with hypoxaemic acute respiratory failure due to SARS-CoV-2. We first describe the pathophysiology of respiratory anomalies leading to acute respiratory distress syndrome (ARDS) due to infection with SARS-CoV-2, and then briefly review management, focusing particularly on the ventilation strategy. Overall, the ventilatory management of ARDS due to SARS-CoV-2 infection is largely the same as that applied in ARDS from other causes, and lung-protective ventilation is recommended. The difference lies in the initial clinical presentation, with profound hypoxaemia often observed concomitantly with near-normal pulmonary compliance.
Collapse
Affiliation(s)
- Marine Jacquier
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, 21000 Dijon, France
| | - Marie Labruyère
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, 21000 Dijon, France
| | - Fiona Ecarnot
- Department of Cardiology, University Hospital Besancon, 25030 Besançon, France;
- EA3920, University of Franche-Comté, 25000 Besançon, France
| | - Jean-Baptiste Roudaut
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Pascal Andreu
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Pierre Voizeux
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Quentin Save
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Romain Pedri
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Jean-Philippe Rigaud
- Department of Intensive Care, Centre Hospitalier de Dieppe, 76202 Dieppe, France;
- Espace de Réflexion Éthique de Normandie, University Hospital Caen, 14000 Caen, France
| | - Jean-Pierre Quenot
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, 21000 Dijon, France
- INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, 21000 Dijon, France
- DRCI, USMR, CHU Dijon Bourgogne, 21000 Dijon, France
- Espace de Réflexion Éthique Bourgogne Franche-Comté (EREBFC), University of Burgundy, 21000 Dijon, France
| |
Collapse
|
49
|
Martin KT, Xin Y, Gaulton TG, Victor M, Santiago RR, Kim T, Morais CCA, Kazimi AA, Connell M, Gerard SE, Herrmann J, Mueller AL, Lenart A, Shen J, Khan SS, Petrov M, Reutlinger K, Rozenberg K, Amato M, Berra L, Cereda M. Electrical Impedance Tomography Identifies Evolution of Regional Perfusion in a Porcine Model of Acute Respiratory Distress Syndrome. Anesthesiology 2023; 139:815-826. [PMID: 37566686 PMCID: PMC10840641 DOI: 10.1097/aln.0000000000004731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
BACKGROUND Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Kevin T Martin
- Department of Anesthesia and Perioperative Care, University of California San Francisco, CA, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy G Gaulton
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcus Victor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Electronics Engineering Division, Aeronautics Institute of Technology, São Paulo, Brazil
| | - Roberta R Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taehwan Kim
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Caio C A Morais
- Department of Physical Therapy, Federal University of Pernambuco, Recife, Brazil
| | - Aubrey A Kazimi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Connell
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Ariel L Mueller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Austin Lenart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiacheng Shen
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Sherbano S Khan
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Mihail Petrov
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristan Reutlinger
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Karina Rozenberg
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo Amato
- Department of Cardio-Pulmonary, University of São Paulo, São Paulo, Brazil
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
de Grooth HJ, Cremer OL. Beyond patterns: how to assign biological meaning to ARDS and sepsis phenotypes. THE LANCET. RESPIRATORY MEDICINE 2023; 11:946-947. [PMID: 37633305 DOI: 10.1016/s2213-2600(23)00266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/28/2023]
Affiliation(s)
- Harm-Jan de Grooth
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|