1
|
Henrich TJ, Bosch RJ, Godfrey C, Mar H, Nair A, Keefer M, Fichtenbaum C, Moisi D, Clagett B, Buck AM, Deitchman AN, Aweeka F, Li JZ, Kuritzkes DR, Lederman MM, Hsue PY, Deeks SG. Sirolimus reduces T cell cycling, immune checkpoint marker expression, and HIV-1 DNA in people with HIV. Cell Rep Med 2024; 5:101745. [PMID: 39321793 PMCID: PMC11513808 DOI: 10.1016/j.xcrm.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/10/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Key HIV cure strategies involve reversing immune dysfunction and limiting the proliferation of infected T cells. We evaluate the safety of sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, in people with HIV (PWH) and study the impact of sirolimus on HIV-1 reservoir size and HIV-1-specific immunity in a single-arm study of 20 weeks of treatment in PWH on antiretroviral therapy (ART). Sirolimus treatment does not impact HIV-1-specific CD8 T cell responses but leads to a significant decrease in CD4+ T cell-associated HIV-1 DNA levels at 20 weeks of therapy in the primary efficacy population (n = 16; 31% decline, p = 0.008). This decline persists for at least 12 weeks following cessation of the study drug. Sirolimus treatment also leads to a significant reduction in CD4+ T cell cycling and PD-1 expression on CD8+ lymphocytes. These data suggest that homeostatic proliferation of infected cells, an important mechanism for HIV persistence, is an intriguing therapeutic target.
Collapse
Affiliation(s)
- Timothy J Henrich
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA.
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Catherine Godfrey
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hanna Mar
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Apsara Nair
- Frontier Science and Technology Research Foundation, Amherst, NY 14226, USA
| | - Michael Keefer
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Carl Fichtenbaum
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniela Moisi
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian Clagett
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amanda M Buck
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; San Francisco State University, San Francisco, CA 94132, USA
| | - Amelia N Deitchman
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael M Lederman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
2
|
Wu L, Zheng Z, Xun J, Liu L, Wang J, Zhang X, Shao Y, Shen Y, Zhang R, Zhang M, Sun M, Qi T, Wang Z, Xu S, Song W, Tang Y, Zhao B, Song Z, Routy JP, Lu H, Chen J. Anti-PD-L1 antibody ASC22 in combination with a histone deacetylase inhibitor chidamide as a "shock and kill" strategy for ART-free virological control: a phase II single-arm study. Signal Transduct Target Ther 2024; 9:231. [PMID: 39245675 PMCID: PMC11381521 DOI: 10.1038/s41392-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
The combination of ASC22, an anti-PD-L1 antibody potentially enhancing HIV-specific immunity and chidamide, a HIV latency reversal agent, may serve as a strategy for antiretroviral therapy-free virological control for HIV. People living with HIV, having achieved virological suppression, were enrolled to receive ASC22 and chidamide treatment in addition to their antiretroviral therapy. Participants were monitored over 24 weeks to measure changes in viral dynamics and the function of HIV-specific CD8+ T cells (NCT05129189). 15 participants completed the study. At week 8, CA HIV RNA levels showed a significant increase from baseline, and the values returned to baseline after discontinuing ASC22 and chidamide. The total HIV DNA was only transiently increased at week 4 (P = 0.014). In contrast, integrated HIV DNA did not significantly differ from baseline. Increases in the proportions of effector memory CD4+ and CD8+ T cells (TEM) were observed from baseline to week 24 (P = 0.034 and P = 0.002, respectively). The combination treatment did not succeed in enhancing the function of HIV Gag/Pol- specific CD8+ T cells. Nevertheless, at week 8, a negative correlation was identified between the proportions of HIV Gag-specific TEM cells and alterations in integrated DNA in the T cell function improved group (P = 0.042 and P = 0.034, respectively). Nine adverse events were solicited, all of which were graded 1 and resolved spontaneously. The combined treatment of ASC22 and chidamide was demonstrated to be well-tolerated and effective in activating latent HIV reservoirs. Further investigations are warranted in the context of analytic treatment interruption.
Collapse
Affiliation(s)
- Luling Wu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihang Zheng
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jingna Xun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yueming Shao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiyan Sun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zichen Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Hongzhou Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Guangdong, China.
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Petrara MR, Ruffoni E, Carmona F, Cavallari I, Zampieri S, Morello M, Del Bianco P, Rampon O, Cotugno N, Palma P, Rossi P, Giaquinto C, Giunco S, De Rossi A. HIV reservoir and premature aging: risk factors for aging-associated illnesses in adolescents and young adults with perinatally acquired HIV. PLoS Pathog 2024; 20:e1012547. [PMID: 39312589 PMCID: PMC11449303 DOI: 10.1371/journal.ppat.1012547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Despite receiving antiretroviral therapy (ART), an increasing number of adolescents and young adults with perinatally acquired HIV (PHIVAYA) are at risk of developing premature senescence and aging-associated illnesses, including cancer. Given this concern, it is crucial to assess aging biomarkers and their correlation with the HIV reservoir in order to comprehensively characterize and monitor these individuals. Fifty-five PHIVAYA (median age: 23, interquartile range [IQR]: 20-27 years, and 21 [18-23] years on ART at the time of study sampling) were studied along with 23 age-matched healthy controls. The PHIVAYA exhibited significantly higher percentages of activated, senescent, exhausted CD4 and CD8 T cells, shorter telomeres, reduced thymic output, and higher levels of circulating inflammatory markers (PAMPs, DAMPs, and pro-inflammatory cytokines IL-6, IL-8, and TNFα) as well as denervation biomarkers (neural cell adhesion molecule 1 [NCAM1] and C-terminal Agrin fragment [CAF]), compared to controls. HIV-DNA levels positively correlated with activated, senescent, exhausted CD4 and CD8 T cells, circulating biomarkers levels, and inversely with regulatory T and B cells and telomere length. According to their viremia over time, PHIVAYA were subgrouped into 14 Not Suppressed (NS)-PHIVAYA and 41 Suppressed (S)-PHIVAYA, of whom 6 who initiated ART within one year of age and maintained sustained viral suppression overtime were defined as Early Suppressed (ES)-PHIVAYA and the other 35 as Late Suppressed (LS)-PHIVAYA. ES-PHIVAYA exhibited significantly lower HIV-DNA reservoir, decreased percentages of senescent and exhausted CD4 and CD8 T cells, reduced levels of circulating inflammatory and denervation biomarkers, but longer telomere compared to LS- and NS-PHIVAYA. They differed significantly from healthy controls only in a few markers, including higher percentages of regulatory T and B cells, and higher levels of DAMPs. Overall, these results underscore the importance of initiating ART early and maintaining viral suppression to limit the establishment of the viral reservoir and to counteract immune and cellular premature aging. These findings also suggest new approaches for minimally invasive monitoring of individuals at high risk of developing premature aging and age-related illnesses.
Collapse
Affiliation(s)
- Maria Raffaella Petrara
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Elena Ruffoni
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesco Carmona
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Ilaria Cavallari
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marzia Morello
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Osvalda Rampon
- Department of Women's and Children's Health, Division of Pediatric Infectious Diseases, University of Padova, Padova, Italy
| | - Nicola Cotugno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Paolo Palma
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Paolo Rossi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Carlo Giaquinto
- Department of Women's and Children's Health, Division of Pediatric Infectious Diseases, University of Padova, Padova, Italy
| | - Silvia Giunco
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Anita De Rossi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Sun B, da Costa KAS, Alrubayyi A, Kokici J, Fisher-Pearson N, Hussain N, D'Anna S, Piermatteo L, Salpini R, Svicher V, Kucykowicz S, Ghosh I, Burns F, Kinloch S, Simoes P, Bhagani S, Kennedy PTF, Maini MK, Bashford-Rogers R, Gill US, Peppa D. HIV/HBV coinfection remodels the immune landscape and natural killer cell ADCC functional responses. Hepatology 2024; 80:649-663. [PMID: 38687604 DOI: 10.1097/hep.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS HBV and HIV coinfection is a common occurrence globally, with significant morbidity and mortality. Both viruses lead to immune dysregulation including changes in natural killer (NK) cells, a key component of antiviral defense and a promising target for HBV cure strategies. Here we used high-throughput single-cell analysis to explore the immune cell landscape in people with HBV mono-infection and HIV/HBV coinfection, on antiviral therapy, with emphasis on identifying the distinctive characteristics of NK cell subsets that can be therapeutically harnessed. APPROACH AND RESULTS Our data show striking differences in the transcriptional programs of NK cells. HIV/HBV coinfection was characterized by an over-representation of adaptive, KLRC2 -expressing NK cells, including a higher abundance of a chemokine-enriched ( CCL3/CCL4 ) adaptive cluster. The NK cell remodeling in HIV/HBV coinfection was reflected in enriched activation pathways, including CD3ζ phosphorylation and ZAP-70 translocation that can mediate stronger antibody-dependent cellular cytotoxicity responses and a bias toward chemokine/cytokine signaling. By contrast, HBV mono-infection imposed a stronger cytotoxic profile on NK cells and a more prominent signature of "exhaustion" with higher circulating levels of HBsAg. Phenotypic alterations in the NK cell pool in coinfection were consistent with increased "adaptiveness" and better capacity for antibody-dependent cellular cytotoxicity compared to HBV mono-infection. Overall, an adaptive NK cell signature correlated inversely with circulating levels of HBsAg and HBV-RNA in our cohort. CONCLUSIONS This study provides new insights into the differential signature and functional profile of NK cells in HBV and HIV/HBV coinfection, highlighting pathways that can be manipulated to tailor NK cell-focused approaches to advance HBV cure strategies in different patient groups.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | | | - Jonida Kokici
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Stefano D'Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Stephanie Kucykowicz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Indrajit Ghosh
- Department of HIV, Mortimer Market Centre, CNWL NHS Trust, London, UK
| | - Fiona Burns
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
- UCL Faculty of Population Health Sciences, Institute for Global Health, University College London, London, UK
| | - Sabine Kinloch
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Pedro Simoes
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sanjay Bhagani
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
- Department of HIV Medicine, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Patrick T F Kennedy
- Centre for Immunobiology, Barts Liver Centre, Barts & The London School of Medicine & Dentistry, QMUL, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | | | - Upkar S Gill
- Centre for Immunobiology, Barts Liver Centre, Barts & The London School of Medicine & Dentistry, QMUL, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
- Department of HIV, Mortimer Market Centre, CNWL NHS Trust, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Serrano-Villar S, Gala A, Bacchetti P, Hoh R, di Germanio C, Cohn LB, Henrich TJ, Hunt PW, Laird GM, Pillai SK, Deeks SG, Peluso MJ. Galectin-9 Levels as a Potential Predictor of Intact HIV Reservoir Decay. J Infect Dis 2024:jiae426. [PMID: 39207259 DOI: 10.1093/infdis/jiae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND During antiretroviral therapy (ART), the HIV reservoir exhibits variability as cells with intact genomes decay faster than those with defective genomes, especially in the first years of therapy. The host factors influencing this decay are yet to be characterized. METHODS Observational study in 74 PWH on ART, of whom 70 (94.6%) were male. We used the intact proviral DNA assay to measure intact proviruses and Luminex immunoassay to measure 32 inflammatory cytokines in plasma. Linear spline models, with a knot at seven years, evaluated the impact of baseline cytokine levels and their trajectories on intact HIV kinetics over these years. RESULTS Baseline Gal-9 was the most predictive marker for intact HIV kinetics, with lower Gal-9 predicting faster decay over the subsequent seven years. For each 10-fold decrease in Gal-9 at baseline, there was a mean 45% (95%CI 14%-84%) greater decay of intact HIV genomes per year. Conversely, higher baseline ITAC, IL-17, and MIP-1α predicted faster intact HIV decreases. Longitudinal changes in MIP-3α and IL-6 levels strongly associated with intact HIV kinetics, with a 10-fold increase in MIP-3α and a 10-fold decrease in IL-6 associated with a a 9.5% and 10% faster decay of intact HIV genomes per year, respectively. CONCLUSION The pronounced association between baseline Gal-9 levels and subsequent intact HIV decay suggests that strategies reducing Gal-9 levels could accelerate reservoir decay. Additionally, the correlations of MIP-3α and IL-6 with HIV kinetics indicate a broader cytokine-mediated regulatory network, hinting at multi-targeted interventions that could modulate HIV reservoir dynamics.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
- Department of Infectious Diseases. Hospital Universitario Ramón y Cajal and IRICYS. Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Madrid, Spain
| | - Akshay Gala
- Vitalant Research Institute and University of California, San Francisco, California, USA
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | - Clara di Germanio
- Vitalant Research Institute and University of California, San Francisco, California, USA
| | - Lillian B Cohn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | | | - Satish K Pillai
- Vitalant Research Institute and University of California, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Earl J, Dawson L, Rid A. The Social Value Misconception in Clinical Research. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2024:1-17. [PMID: 39007856 DOI: 10.1080/15265161.2024.2371119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Clinical researchers should help respect the autonomy and promote the well-being of prospective study participants by helping them make voluntary, informed decisions about enrollment. However, participants often exhibit poor understanding of important information about clinical research. Bioethicists have given special attention to "misconceptions" about clinical research that can compromise participants' decision-making, most notably the "therapeutic misconception." These misconceptions typically involve false beliefs about a study's purpose, or risks or potential benefits for participants. In this article, we describe a misconception involving false beliefs about a study's potential benefits for non-participants, or its expected social value. This social value misconception can compromise altruistically motivated participants' decision-making, potentially threatening their autonomy and well-being. We show how the social value misconception raises ethical concerns for inherently low-value research, hyped research, and even ordinary research, and advocate for empirical and normative work to help understand and counteract this misconception's potential negative impacts on participants.
Collapse
Affiliation(s)
- Jake Earl
- Walter Reed Army Institute of Research
| | | | | |
Collapse
|
7
|
Alum EU, Uti DE, Ugwu OPC, Alum BN. Toward a cure - Advancing HIV/AIDs treatment modalities beyond antiretroviral therapy: A Review. Medicine (Baltimore) 2024; 103:e38768. [PMID: 38968496 PMCID: PMC11224816 DOI: 10.1097/md.0000000000038768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
Antiretroviral therapy, also known as antiretroviral therapy (ART), has been at the forefront of the ongoing battle against human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDs). ART is effective, but it has drawbacks such as side effects, medication resistance, and difficulty getting access to treatment, which highlights the urgent need for novel treatment approaches. This review explores the complex field of HIV/AIDS treatment, covering both established alternative treatment modalities and orthodox antiretroviral therapy. Numerous reliable databases were reviewed, including PubMed, Web of Science, Scopus, and Google Scholar. The results of a thorough literature search revealed numerous therapeutic options, including stem cell transplantation, immunotherapy, gene therapy, latency reversal agents, and pharmaceutical vaccinations. While gene therapy has promise for altering cellular resistance to infection and targeting HIV-positive cells, immunotherapy treatments seek to strengthen the immune system's ability to combat HIV. Latency reversal agents offer a promising method of breaking the viral latency and making infected cells vulnerable to immune system destruction or antiretroviral drugs. Furthermore, there is potential for improving immune responses against HIV using medical vaccinations. This review stresses the vital significance of ongoing research and innovation in the hunt for a successful HIV/AIDS treatment through a thorough examination of recent developments and lingering challenges. The assessment notes that even though there has been tremendous progress in treating the illness, there is still more work to be done in addressing current barriers and investigating various treatment options in order to achieve the ultimate objective of putting an end to the HIV/AIDS pandemic.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| | - Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| | | | - Benedict Nnachi Alum
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| |
Collapse
|
8
|
Gianella S, Anderson C, Chaillon A, Wells A, Porrachia M, Caballero G, Vargas M, Lonergan J, Woodworth B, Gaitan N, Rawlings SA, Muttera L, Harkness L, Little SJ, May S, Smith D. Impact of influenza and pneumococcal vaccines on HIV persistence and immune dynamics during suppressive antiretroviral therapy. AIDS 2024; 38:1131-1140. [PMID: 38526550 PMCID: PMC11141237 DOI: 10.1097/qad.0000000000003882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
OBJECTIVE We sought to determine if standard influenza and pneumococcal vaccines can be used to stimulate HIV reservoirs during antiretroviral therapy (ART). DESIGN A prospective, randomized, double-blinded, placebo-controlled, crossover trial of two clinically recommended vaccines (influenza and pneumococcal). METHODS Persons with HIV on ART ( N = 54) were enrolled in the clinical trial. Blood was collected at baseline and days 2,4,7,14, and 30 postimmunizations. Levels of cellular HIV RNA and HIV DNA were measured by ddPCR. Expression of immunological markers on T cell subsets was measured by flow cytometry. Changes in unspliced cellular HIV RNA from baseline to day 7 postinjection between each vaccine and placebo was the primary outcome. RESULTS Forty-seven participants completed at least one cycle and there were no serious adverse events related to the intervention. We observed no significant differences in the change in cellular HIV RNA after either vaccine compared with placebo at any timepoint. In secondary analyses, we observed a transient increase in total HIV DNA levels after influenza vaccine, as well as increased T cell activation and exhaustion on CD4 + T cells after pneumococcal vaccine. CONCLUSION Clinically recommended vaccines were well tolerated but did not appear to stimulate the immune system strongly enough to elicit significantly noticeable HIV RNA transcription during ART.Clinicaltrials.gov identifier: NCT02707692.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Christy Anderson
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alan Wells
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Magali Porrachia
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Gemma Caballero
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Milenka Vargas
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Joseph Lonergan
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Brendon Woodworth
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Noah Gaitan
- Department of Medicine, University of California San Diego, La Jolla, CA
| | | | - Leticia Muttera
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Liliana Harkness
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Susan J. Little
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Susanne May
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Davey Smith
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
9
|
Chernofsky A, Bosch RJ, Lok JJ. Causal mediation analysis with mediator values below an assay limit. Stat Med 2024; 43:2299-2313. [PMID: 38556761 PMCID: PMC11207996 DOI: 10.1002/sim.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Causal indirect and direct effects provide an interpretable method for decomposing the total effect of an exposure on an outcome into the indirect effect through a mediator and the direct effect through all other pathways. A natural choice for a mediator in a randomized clinical trial is the treatment's targeted biomarker. However, when the mediator is a biomarker, values can be subject to an assay lower limit. The mediator is affected by the treatment and is a putative cause of the outcome, so the assay lower limit presents a compounded problem in mediation analysis. We propose two approaches to estimate indirect and direct effects with a mediator subject to an assay limit: (1) extrapolation and (2) numerical optimization and integration of the observed likelihood. Since these estimation methods solely rely on the so-called Mediation Formula, they apply to most approaches to causal mediation analysis: natural, separable, and organic indirect, and direct effects. A simulation study compares the two estimation approaches to imputing with half the assay limit. Using HIV interruption study data from the AIDS Clinical Trials Group described in Li et al 2016, AIDS; Lok and Bosch 2021, Epidemiology, we illustrate our methods by estimating the organic/pure indirect effect of a hypothetical HIV curative treatment on viral suppression mediated by two HIV persistence measures: cell-associated HIV-RNA and single-copy plasma HIV-RNA.
Collapse
Affiliation(s)
- Ariel Chernofsky
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Judith J. Lok
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
11
|
Armani-Tourret M, Gao C, Hartana CA, Sun W, Carrere L, Vela L, Hochroth A, Bellefroid M, Sbrolla A, Shea K, Flynn T, Roseto I, Rassadkina Y, Lee C, Giguel F, Malhotra R, Bushman FD, Gandhi RT, Yu XG, Kuritzkes DR, Lichterfeld M. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 2024; 187:1238-1254.e14. [PMID: 38367616 PMCID: PMC10903630 DOI: 10.1016/j.cell.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Collapse
Affiliation(s)
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - WeiWei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Amy Sbrolla
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina Shea
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Theresa Flynn
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Carole Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Kopycinski J, Yang H, Hancock G, Pace M, Kim E, Frater J, Stöhr W, Hanke T, Fidler S, Dorrell L. Therapeutic vaccination following early antiretroviral therapy elicits highly functional T cell responses against conserved HIV-1 regions. Sci Rep 2023; 13:17155. [PMID: 37821472 PMCID: PMC10567821 DOI: 10.1038/s41598-023-42888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
'Kick and kill' cure strategies aim to induce HIV protein expression in latently infected cells (kick), and thus trigger their elimination by cytolytic T cells (kill). In the Research in Viral Eradication of HIV Reservoirs trial (NCT02336074), people diagnosed with primary HIV infection received immediate antiretroviral therapy (ART) and were randomised 24 weeks later to either a latency-reversing agent, vorinostat, together with ChAdV63.HIVconsv and MVA.HIVconsv vaccines, or ART alone. This intervention conferred no reduction in HIV-1 reservoir size over ART alone, despite boosting virus-specific CD4+ and CD8+ T cells. The effects of the intervention were examined at the cellular level in the two trial arms using unbiased computational analysis of polyfunctional scores. This showed that the frequency and polyfunctionality of virus-specific CD4+ and CD8+ T cell populations were significantly increased over 12 weeks post-vaccination, compared to the ART-only arm. HIV-specific IL-2-secreting CD8+ T cells also expanded significantly in the intervention arm and were correlated with antiviral activity against heterologous HIV in vitro. Therapeutic vaccination during ART commenced in primary infection can induce functional T cell responses that are phenotypically similar to those of HIV controllers. Analytical therapy interruption may help determine their ability to control HIV in vivo.
Collapse
Affiliation(s)
- Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gemma Hancock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew Pace
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ellen Kim
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Tomás Hanke
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Centre for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, and National Institute for Health Research Imperial Biomedical Research Centre, London, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Immunocore Ltd, 93 Park Drive, Milton Park, Abingdon, OX14 4RY, Oxon, UK.
| |
Collapse
|
13
|
He Y, Wu C, Liu Z, Zhang Y, Feng F, Lin Z, Wang C, Yang Q, Wen Z, Liu Y, Zhang F, Lin Y, Zhang H, Qu L, Li L, Cai W, Sun C, Chen L, Li P. Arsenic trioxide-induced apoptosis contributes to suppression of viral reservoir in SIV-infected rhesus macaques. Microbiol Spectr 2023; 11:e0052523. [PMID: 37695104 PMCID: PMC10581169 DOI: 10.1128/spectrum.00525-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023] Open
Abstract
Latent viral reservoir is recognized as the major obstacle to achieving a functional cure for HIV infection. We previously reported that arsenic trioxide (As2O3) combined with antiretroviral therapy (ART) can reactivate the viral reservoir and delay viral rebound after ART interruption in chronically simian immunodeficiency virus (SIV)-infected macaques. In this study, we further investigated the effect of As2O3 independent of ART in chronically SIV-infected macaques. We found that As2O3-only treatment significantly increased the CD4/CD8 ratio, improved SIV-specific T cell responses, and reactivated viral latency in chronically SIVmac239-infected macaques. RNA-sequencing analysis revealed that As2O3 treatment downregulated the expression levels of genes related to HIV entry and infection, while the expression levels of genes related to transcription initiation, cell apoptosis, and host restriction factors were significantly upregulated. Importantly, we found that As2O3 treatment specifically induced apoptosis of SIV-infected CD4+ T cells. These findings revealed that As2O3 might not only impact viral latency, but also induce the apoptosis of HIV-infected cells and thus block the secondary infection of bystanders. Moreover, we investigated the therapeutic potential of this regimen in acutely SIVmac239-infected macaques and found that As2O3 + ART treatment effectively restored the CD4+ T cell count, delayed disease progression, and improved survival in acutely SIV-infected macaques. In sum, this work provides new insights to develop As2O3 as a component of the "shock-and-kill" strategy toward HIV functional cure. IMPORTANCE Although antiretroviral therapy (ART) can effectively suppress the viral load of AIDS patients, it cannot functionally cure HIV infection due to the existence of HIV reservoir. Strategies toward HIV functional cure are still highly anticipated to ultimately end the pandemic of AIDS. Herein, we investigated the direct role of As2O3 independent of ART in chronically SIV-infected macaques and explored the underlying mechanisms of the potential of As2O3 in the treatment of HIV/SIV infection. Meanwhile, we investigated the therapeutic effects of ART+As2O3 in acutely SIVmac239-infected macaques. This study showed that As2O3 has the potential to be launched into the "shock-and-kill" strategy to suppress HIV/SIV reservoir due to its latency-reversing and apoptosis-inducing properties.
Collapse
Affiliation(s)
- Yizi He
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiu Wu
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijian Liu
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yudi Zhang
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zihan Lin
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qing Yang
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yichu Liu
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fan Zhang
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanqin Lin
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Zhang
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linbing Qu
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linghua Li
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ling Chen
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pingchao Li
- Guangdong Laboratory of Computational Biomedicine, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Maggiorella MT, Sernicola L, Picconi O, Pizzi E, Belli R, Fulgenzi D, Rovetto C, Bruni R, Costantino A, Taffon S, Chionne P, Madonna E, Pisani G, Borsetti A, Falvino C, Ranieri R, Baccalini R, Pansera A, Castelvedere F, Babudieri S, Madeddu G, Starnini G, Dell'Isola S, Cervellini P, Ciccaglione AR, Ensoli B, Buttò S. Epidemiological and molecular characterization of HBV and HCV infections in HIV-1-infected inmate population in Italy: a 2017-2019 multicenter cross-sectional study. Sci Rep 2023; 13:14908. [PMID: 37689795 PMCID: PMC10492787 DOI: 10.1038/s41598-023-41814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
HBV/HCV co-infection is common in HIV-1-infected prisoners. To investigate the characteristics of HIV co-infections, and to evaluate the molecular heterogeneity of HIV, HBV and HCV in prisoners, we carried-out a multicenter cross-sectional study, including 65 HIV-1-infected inmates enrolled in 5 Italian detention centers during the period 2017-2019. HIV-1 subtyping showed that 77.1% of inmates were infected with B subtype and 22.9% with non-B subtypes. Italian nationals were all infected with subtype B (93.1%), except two individuals, one infected with the recombinant form CRF72_BF1, and the other with the HIV-1 sub-subtype A6, both previously not identified in inmates of Italian nationality. Non-Italian nationals were infected with subtype B (52.6%), CRFs (36.8%) and sub-subtypes A1 and A3 (5.2%). HIV variants carrying resistance mutations to NRTI, NNRTI, PI and InSTI were found in 7 inmates, 4 of which were never exposed to the relevant classes of drugs associated with these mutations. HBV and/or HCV co-infections markers were found in 49/65 (75.4%) inmates, while 27/65 (41.5%) showed markers of both HBV and HCV coinfection. Further, Italian nationals showed a significant higher presence of HCV markers as compared to non-Italian nationals (p = 0.0001). Finally, HCV phylogenetic analysis performed in 18 inmates revealed the presence of HCV subtypes 1a, 3a, 4d (66.6%, 16.7% and 16.7%, respectively). Our data suggest the need to monitor HIV, HBV and HCV infections in prisons in order to prevent spreading of these viruses both in jails and in the general population, and to implement effective public health programs that limit the circulation of different genetic forms as well as of viral variants with mutations conferring resistance to treatment.
Collapse
Affiliation(s)
- Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy.
| | - L Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - O Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - E Pizzi
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - R Belli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - D Fulgenzi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - C Rovetto
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - R Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - A Costantino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - S Taffon
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - P Chionne
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - E Madonna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - G Pisani
- National Center for Immunobiologicals, Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - A Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - C Falvino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - R Ranieri
- Infectious Diseases Service, Penitentiary Health System, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | | | | | | | - S Babudieri
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - G Madeddu
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - G Starnini
- Belcolle Hospital, ASL Viterbo, Viterbo, Italy
| | | | | | - A R Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - B Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - S Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
15
|
Bekker LG, Beyrer C, Mgodi N, Lewin SR, Delany-Moretlwe S, Taiwo B, Masters MC, Lazarus JV. HIV infection. Nat Rev Dis Primers 2023; 9:42. [PMID: 37591865 DOI: 10.1038/s41572-023-00452-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
The AIDS epidemic has been a global public health issue for more than 40 years and has resulted in ~40 million deaths. AIDS is caused by the retrovirus, HIV-1, which is transmitted via body fluids and secretions. After infection, the virus invades host cells by attaching to CD4 receptors and thereafter one of two major chemokine coreceptors, CCR5 or CXCR4, destroying the host cell, most often a T lymphocyte, as it replicates. If unchecked this can lead to an immune-deficient state and demise over a period of ~2-10 years. The discovery and global roll-out of rapid diagnostics and effective antiretroviral therapy led to a large reduction in mortality and morbidity and to an expanding group of individuals requiring lifelong viral suppressive therapy. Viral suppression eliminates sexual transmission of the virus and greatly improves health outcomes. HIV infection, although still stigmatized, is now a chronic and manageable condition. Ultimate epidemic control will require prevention and treatment to be made available, affordable and accessible for all. Furthermore, the focus should be heavily oriented towards long-term well-being, care for multimorbidity and good quality of life. Intense research efforts continue for therapeutic and/or preventive vaccines, novel immunotherapies and a cure.
Collapse
Affiliation(s)
- Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, RSA, Cape Town, South Africa.
| | - Chris Beyrer
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Nyaradzo Mgodi
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | | | - Babafemi Taiwo
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Jeffrey V Lazarus
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Zhu Y, Jiang Z, Liu L, Yang X, Li M, Cheng Y, Xu J, Yin C, Zhu H. Scopoletin Reactivates Latent HIV-1 by Inducing NF-κB Expression without Global T Cell Activation. Int J Mol Sci 2023; 24:12649. [PMID: 37628826 PMCID: PMC10454185 DOI: 10.3390/ijms241612649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Reversing HIV-1 latency promotes the killing of infected cells and is essential for cure strategies. However, current latency-reversing agents (LRAs) are not entirely effective and safe in activating latent viruses in patients. In this study, we investigated whether Scopoletin (6-Methoxy-7-hydroxycoumarin), an important coumarin phytoalexin found in plants with multiple pharmacological activities, can reactivate HIV-1 latency and elucidated its underlying mechanism. Using the Jurkat T cell model of HIV-1 latency, we found that Scopoletin can reactivate latent HIV-1 replication with a similar potency to Prostratin and did so in a dose- and time-dependent manner. Moreover, we provide evidence indicating that Scopoletin-induced HIV-1 reactivation involves the nuclear factor kappa B (NF-κB) signaling pathway. Importantly, Scopoletin did not have a stimulatory effect on T lymphocyte receptors or HIV-1 receptors. In conclusion, our study suggests that Scopoletin has the potential to reactivate latent HIV-1 without causing global T-cell activation, making it a promising treatment option for anti-HIV-1 latency strategies.
Collapse
Affiliation(s)
- Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Lin Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Yipeng Cheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| |
Collapse
|
17
|
Clain JA, Rabezanahary H, Racine G, Boutrais S, Soundaramourty C, Joly Beauparlant C, Jenabian MA, Droit A, Ancuta P, Zghidi-Abouzid O, Estaquier J. Early ART reduces viral seeding and innate immunity in liver and lungs of SIV-infected macaques. JCI Insight 2023; 8:e167856. [PMID: 37485876 PMCID: PMC10443800 DOI: 10.1172/jci.insight.167856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Identifying immune cells and anatomical tissues that contribute to the establishment of viral reservoirs is of central importance in HIV-1 cure research. Herein, we used rhesus macaques (RMs) infected with SIVmac251 to analyze viral seeding in the liver and lungs of either untreated or early antiretroviral therapy-treated (ART-treated) RMs. Consistent with viral replication and sensing, transcriptomic analyses showed higher levels of inflammation, pyroptosis, and chemokine genes as well as of interferon-stimulating gene (ISG) transcripts, in the absence of ART. Our results highlighted the infiltration of monocyte-derived macrophages (HLA-DR+CD11b+CD14+CD16+) in inflamed liver and lung tissues associated with the expression of CD183 and CX3CR1 but also with markers of tissue-resident macrophages (CD206+ and LYVE+). Sorting of myeloid cell subsets demonstrated that CD14+CD206-, CD14+CD206+, and CD14-CD206+ cell populations were infected, in the liver and lungs, in SIVmac251-infected RMs. Of importance, early ART drastically reduced viral seeding consistent with the absence of ISG detection but also of genes related to inflammation and tissue damage. Viral DNA was only detected in CD206+HLA-DR+CD11b+ cells in ART-treated RMs. The observation of pulmonary and hepatic viral rebound after ART interruption reinforces the importance of early ART implementation to limit viral seeding and inflammatory reactions.
Collapse
Affiliation(s)
- Julien A. Clain
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | - Gina Racine
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Steven Boutrais
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | | | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Arnaud Droit
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Petronela Ancuta
- Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
- INSERM U1124, University of Paris, Paris, France
| |
Collapse
|
18
|
Chiu CY, Schou MD, McMahon JH, Deeks SG, Fromentin R, Chomont N, Wykes MN, Rasmussen TA, Lewin SR. Soluble immune checkpoints as correlates for HIV persistence and T cell function in people with HIV on antiretroviral therapy. Front Immunol 2023; 14:1123342. [PMID: 37056754 PMCID: PMC10086427 DOI: 10.3389/fimmu.2023.1123342] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction In people with HIV (PWH) both off and on antiretroviral therapy (ART), the expression of immune checkpoint (IC) proteins is elevated on the surface of total and HIV-specific T-cells, indicating T-cell exhaustion. Soluble IC proteins and their ligands can also be detected in plasma, but have not been systematically examined in PWH. Since T-cell exhaustion is associated with HIV persistence on ART, we aimed to determine if soluble IC proteins and their ligands also correlated with the size of the HIV reservoir and HIV-specific T-cell function. Methods We used multiplex bead-based immunoassay to quantify soluble programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin domain and mucin domain 3 (TIM-3), PD-1 Ligand 1 (PD-L1) and PD-1 Ligand 2 (PD-L2) in plasma from PWH off ART (n=20), on suppressive ART (n=75) and uninfected controls (n=20). We also quantified expression of membrane-bound IC and frequencies of functional T-cells to Gag and Nef peptide stimulation on CD4+ and CD8+ T-cells using flow cytometry. The HIV reservoir was quantified in circulating CD4+ T-cells using qPCR for total and integrated HIV DNA, cell-associated unspliced HIV RNA and 2LTR circles. Results Soluble (s) PD-L2 level was higher in PWH off and on ART compared to uninfected controls. Higher levels of sPD-L2 correlated with lower levels of HIV total DNA and higher frequencies of gag-specific CD8+ T-cells expressing CD107a, IFNγ or TNFα. In contrast, the concentration of sLAG-3 was similar in uninfected individuals and PWH on ART, but was significantly elevated in PWH off ART. Higher levels of sLAG-3 correlated with higher levels of HIV total and integrated DNA, and lower frequency of gag-specific CD4+ T cells expressing CD107a. Similar to sLAG-3, levels of sPD-1 were elevated in PWH off ART and normalized in PWH on ART. sPD-1 was positively correlated with the frequency of gag-specific CD4+ T cells expressing TNF-a and the expression of membrane-bound PD-1 on total CD8+ T-cells in PWH on ART. Discussion Plasma soluble IC proteins and their ligands correlate with markers of the HIV reservoir and HIV-specific T-cell function and should be investigated further in in large population-based studies of the HIV reservoir or cure interventions in PWH on ART.
Collapse
Affiliation(s)
- Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maya D. Schou
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University and the Alfred Hospital, Melbourne, VIC, Australia
| | - Steven G. Deeks
- Department of Medicine, University California San Francisco, San Francisco, CA, United States
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University and the Alfred Hospital, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Pedersen ML, Pedersen DV, Winkler MBL, Olesen HG, Søgaard OS, Østergaard L, Laursen NS, Rahimic AHF, Tolstrup M. Nanobody-mediated complement activation to kill HIV-infected cells. EMBO Mol Med 2023; 15:e16422. [PMID: 36799046 PMCID: PMC10086584 DOI: 10.15252/emmm.202216422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
The complement system which is part of the innate immune response against invading pathogens represents a powerful mechanism for killing of infected cells. Utilizing direct complement recruitment for complement-mediated elimination of HIV-1-infected cells is underexplored. We developed a novel therapeutic modality to direct complement activity to the surface of HIV-1-infected cells. This bispecific complement engager (BiCE) is comprised of a nanobody recruiting the complement-initiating protein C1q, and single-chain variable fragments of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope (Env) protein. Here, we show that two anti-HIV BiCEs targeting the V3 loop and the CD4 binding site, respectively, increase C3 deposition and mediate complement-dependent cytotoxicity (CDC) of HIV-1 Env-expressing Raji cells. Furthermore, anti-HIV BiCEs trigger complement activation on primary CD4 T cells infected with laboratory-adapted HIV-1 strain and facilitates elimination of HIV-1-infected cells over time. In summary, we present a novel approach to direct complement deposition to the surface of HIV-1-infected cells leading to complement-mediated killing of these cells.
Collapse
Affiliation(s)
| | | | | | - Heidi Gytz Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
de Gea-Grela A, Moreno S. Controversies in the Design of Strategies for the Cure of HIV Infection. Pathogens 2023; 12:322. [PMID: 36839593 PMCID: PMC9961067 DOI: 10.3390/pathogens12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The cure for chronic human immunodeficiency virus (HIV) infections has been a goal pursued since the antiretroviral therapy that improved the clinical conditions of patients became available. However, the exclusive use of these drugs is not enough to achieve a cure, since the viral load rebounds when the treatment is discontinued, leading to disease progression. There are several theories and hypotheses about the biological foundations that prevent a cure. The main obstacle appears to be the existence of a latent viral reservoir that cannot be eliminated pharmacologically. This concept is the basis of the new strategies that seek a cure, known as kick and kill. However, there are other lines of study that recognize mechanisms of persistent viral replication in patients under effective treatment, and that would modify the current lines of research on the cure of HIV. Given the importance of these concepts, in this work, we propose to review the most recent evidence on these hypotheses, covering both the evidence that is positioned in favor and against, trying to expose what are some of the challenges that remain to be resolved in this field of research.
Collapse
Affiliation(s)
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Alcalá University, 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| |
Collapse
|
21
|
Vos WAJW, Groenendijk AL, Blaauw MJT, van Eekeren LE, Navas A, Cleophas MCP, Vadaq N, Matzaraki V, dos Santos JC, Meeder EMG, Fröberg J, Weijers G, Zhang Y, Fu J, ter Horst R, Bock C, Knoll R, Aschenbrenner AC, Schultze J, Vanderkerckhove L, Hwandih T, Wonderlich ER, Vemula SV, van der Kolk M, de Vet SCP, Blok WL, Brinkman K, Rokx C, Schellekens AFA, de Mast Q, Joosten LAB, Berrevoets MAH, Stalenhoef JE, Verbon A, van Lunzen J, Netea MG, van der Ven AJAM. The 2000HIV study: Design, multi-omics methods and participant characteristics. Front Immunol 2022; 13:982746. [PMID: 36605197 PMCID: PMC9809279 DOI: 10.3389/fimmu.2022.982746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Background Even during long-term combination antiretroviral therapy (cART), people living with HIV (PLHIV) have a dysregulated immune system, characterized by persistent immune activation, accelerated immune ageing and increased risk of non-AIDS comorbidities. A multi-omics approach is applied to a large cohort of PLHIV to understand pathways underlying these dysregulations in order to identify new biomarkers and novel genetically validated therapeutic drugs targets. Methods The 2000HIV study is a prospective longitudinal cohort study of PLHIV on cART. In addition, untreated HIV spontaneous controllers were recruited. In-depth multi-omics characterization will be performed, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and metagenomics, functional immunological assays and extensive immunophenotyping. Furthermore, the latent viral reservoir will be assessed through cell associated HIV-1 RNA and DNA, and full-length individual proviral sequencing on a subset. Clinical measurements include an ECG, carotid intima-media thickness and plaque measurement, hepatic steatosis and fibrosis measurement as well as psychological symptoms and recreational drug questionnaires. Additionally, considering the developing pandemic, COVID-19 history and vaccination was recorded. Participants return for a two-year follow-up visit. The 2000HIV study consists of a discovery and validation cohort collected at separate sites to immediately validate any finding in an independent cohort. Results Overall, 1895 PLHIV from four sites were included for analysis, 1559 in the discovery and 336 in the validation cohort. The study population was representative of a Western European HIV population, including 288 (15.2%) cis-women, 463 (24.4%) non-whites, and 1360 (71.8%) MSM (Men who have Sex with Men). Extreme phenotypes included 114 spontaneous controllers, 81 rapid progressors and 162 immunological non-responders. According to the Framingham score 321 (16.9%) had a cardiovascular risk of >20% in the next 10 years. COVID-19 infection was documented in 234 (12.3%) participants and 474 (25.0%) individuals had received a COVID-19 vaccine. Conclusion The 2000HIV study established a cohort of 1895 PLHIV that employs multi-omics to discover new biological pathways and biomarkers to unravel non-AIDS comorbidities, extreme phenotypes and the latent viral reservoir that impact the health of PLHIV. The ultimate goal is to contribute to a more personalized approach to the best standard of care and a potential cure for PLHIV.
Collapse
Affiliation(s)
- Wilhelm A. J. W. Vos
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands,*Correspondence: Wilhelm A. J. W. Vos,
| | - Albert L. Groenendijk
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Marc J. T. Blaauw
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Louise E. van Eekeren
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Adriana Navas
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Maartje C. P. Cleophas
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Jéssica C. dos Santos
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Elise M. G. Meeder
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands,Donders Institute for Brain, Radboud University, Cognition and Behavior, Nijmegen, Netherlands,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Janeri Fröberg
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Gert Weijers
- Medical UltraSound Imaging Center (MUSIC) Department of Medical Imaging, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Yue Zhang
- Universitair Medisch Centrum Groningen, University of Groningen, Groningen, Netherlands
| | - Jingyuan Fu
- Universitair Medisch Centrum Groningen, University of Groningen, Groningen, Netherlands
| | - Rob ter Horst
- Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Medical University of Vienna, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Institute of Artificial Intelligence, Vienna, Austria
| | - Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) eingetragener Verein (e.V.), Bonn, Germany,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna C. Aschenbrenner
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Platform for Single Cell Genomics and Epigenomics (PRECISE), DZNE and University of Bonn, Bonn, Germany
| | - Joachim Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) eingetragener Verein (e.V.), Bonn, Germany,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany,Platform for Single Cell Genomics and Epigenomics (PRECISE), DZNE and University of Bonn, Bonn, Germany
| | - Linos Vanderkerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Talent Hwandih
- Medical Science Department, Sysmex Europe Societas Europaea (SE), Norderstedt, Germany
| | | | - Sai V. Vemula
- Clinical Development, ViiV Healthcare, Durham, NC, United States
| | - Mike van der Kolk
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Sterre C. P. de Vet
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Willem L. Blok
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Arnt F. A. Schellekens
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands,Donders Institute for Brain, Radboud University, Cognition and Behavior, Nijmegen, Netherlands,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marvin A. H. Berrevoets
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Janneke E. Stalenhoef
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Jan van Lunzen
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Andre J. A. M. van der Ven
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
22
|
Zerbato JM, Avihingsanon A, Singh KP, Zhao W, Deleage C, Rosen E, Cottrell ML, Rhodes A, Dantanarayana A, Tumpach C, Tennakoon S, Crane M, Price DJ, Braat S, Mason H, Roche M, Kashuba AD, Revill PA, Audsley J, Lewin SR. HIV DNA persists in hepatocytes in people with HIV-hepatitis B co-infection on antiretroviral therapy. EBioMedicine 2022; 87:104391. [PMID: 36502576 PMCID: PMC9763386 DOI: 10.1016/j.ebiom.2022.104391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV can infect multiple cells in the liver including hepatocytes, Kupffer cells and infiltrating T cells, but whether HIV can persist in the liver in people with HIV (PWH) on suppressive antiretroviral therapy (ART) remains unknown. METHODS In a prospective longitudinal cohort of PWH and hepatitis B virus (HBV) co-infection living in Bangkok, Thailand, we collected blood and liver biopsies from 18 participants prior to and following ART and quantified HIV and HBV persistence using quantitative (q)PCR and RNA/DNAscope. Antiretroviral (ARV) drug levels were quantified using mass spectroscopy. FINDINGS In liver biopsies taken prior to ART, HIV DNA and HIV RNA were detected by qPCR in 53% (9/17) and 47% (8/17) of participants respectively. Following a median ART duration of 3.4 years, HIV DNA was detected in liver in 61% (11/18) of participants by either qPCR, DNAscope or both, but only at very low and non-quantifiable levels. Using immunohistochemistry, HIV DNA was observed in both hepatocytes and liver infiltrating CD4+ T cells on ART. HIV RNA was not detected in liver biopsies collected on ART, by either qPCR or RNAscope. All ARVs were clearly detected in liver tissue. INTERPRETATION Persistence of HIV DNA in liver in PWH on ART represents an additional reservoir that warrants further investigation. FUNDING National Health and Medical Research Council of Australia (Project Grant APP1101836, 1149990, and 1135851); This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024.
Collapse
Affiliation(s)
- Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anchalee Avihingsanon
- HIV-NAT, Thai Red Cross AIDS Research Centre and Centre of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kasha P. Singh
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Elias Rosen
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Surekha Tennakoon
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Megan Crane
- National Centre for Infections in Cancer, Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David J. Price
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Melbourne, Australia
| | - Sabine Braat
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Melbourne, Australia,MISCH (Methods and Implementation Support for Clinical Health) Research Hub, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Hugh Mason
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Angela D.M. Kashuba
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia,Corresponding author. Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 786-798 Elizabeth Street, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
23
|
Nanfack AJ, Ambada Ndzengue GE, Fokam J, Ka'e AC, Sonela N, Kenou L, Tsoptio M, Sagnia B, Elong E, Beloumou G, Perno CF, Colizzi V, Ndjolo A. Characterization of the Viral Reservoirs Among HIV-1 Non-B Vertically Infected Adolescents Receiving Antiretroviral Therapy: Protocol for an Observational and Comparative Study in Cameroon. JMIR Res Protoc 2022; 11:e41473. [PMID: 36449339 PMCID: PMC9752448 DOI: 10.2196/41473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) can bring HIV-1 levels in blood plasma to the undetectable level and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, ART is not curative and must be taken for life, because within a few weeks of treatment cessation, HIV viremia rebounds in most patients except for rare elite or posttreatment controllers of viremia. The primary source of this rebound is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of the resting memory cluster of differentiation 4 (CD4+) T cells. To achieve a cure for HIV, understanding the cell reservoir environment is of paramount importance. The size and nature of the viral reservoir might vary according to the timing of therapy, therapeutic response, ART duration, and immune response. The mechanisms of reservoir maintenance generally depend on the levels/type of immune recognition; in addition, the dynamics of viral persistence are different between pediatric and adult populations. This difference could become more evident as children grow toward adolescence. OBJECTIVE We aim to characterize the HIV reservoirs and their variability as per the virological and immunological profiles of HIV-1 non-B vertically infected adolescents receiving ART in Cameroon during the Adolescents' Viral Reservoirs study to provide accurate and reliable data for HIV cure research. METHODS This study will involve HIV-1 non-B vertically infected adolescents selected from an existing cohort in our institution. Blood samples will be collected for analyzing immunological/virological profiles, including CD4/CD8 count, plasma viral load, immune activation/inflammatory markers, genotyping, and quantification of HIV-1 viral reservoirs. We will equally recruit an age-matched group of HIV-negative adolescents as control for immunological profiling. RESULTS This study received funding in November 2021 and was approved by the national institutional review board in December 2021. Sample collection will start in November 2022, and the study will last for 18 months. The HIV-1 sequences generated will provide information on the circulating HIV-1 subtypes to guide the selection of the most appropriate ART for the participants. The levels of immune biomarkers will help determine the immune profile and help identify factors driving persistent immune activation/inflammation in HIV-infected adolescents compared to those in HIV-uninfected adolescents. Analysis of the virological and immunological parameters in addition to the HIV-1 reservoir size will shed light on the characteristics of the viral reservoir in adolescents with HIV-1 non-B infection. CONCLUSIONS Our findings will help in advancing the knowledge on HIV reservoirs, in terms of size and genetic variability in adolescents living with HIV. Such evidence will also help in understanding the effects of ART timing and duration on the size of the reservoirs among adolescents living with HIV-a unique population from whom the findings generated will largely contribute to designing functional cure strategies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/41473.
Collapse
Affiliation(s)
| | - Georgia Elna Ambada Ndzengue
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Animal Biology and Physiology, University of Yaounde, Yaounde, Cameroon
| | - Joseph Fokam
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Faculty of Health Science, University of Buea, Buea, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon
| | - Aude Christelle Ka'e
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Nelson Sonela
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Medical School, University of KwaZulu-Natal, Durban, South Africa
| | - Leslie Kenou
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Microbiology and Parasitology, Protestant University of Central Africa, Yaounde, Cameroon
| | - Michelle Tsoptio
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Faculty of Medicine and Biomedical Science, University of Dschang, Dschang, Cameroon
| | - Bertrand Sagnia
- International Reference Center Chantal Biya, Yaounde, Cameroon
| | - Elise Elong
- International Reference Center Chantal Biya, Yaounde, Cameroon
| | - Grace Beloumou
- International Reference Center Chantal Biya, Yaounde, Cameroon
| | | | - Vittorio Colizzi
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Alexis Ndjolo
- International Reference Center Chantal Biya, Yaounde, Cameroon
| |
Collapse
|
24
|
Rasmussen TA, Zerbato JM, Rhodes A, Tumpach C, Dantanarayana A, McMahon JH, Lau JS, Chang JJ, Gubser C, Brown W, Hoh R, Krone M, Pascoe R, Chiu CY, Bramhall M, Lee HJ, Haque A, Fromentin R, Chomont N, Milush J, Van der Sluis RM, Palmer S, Deeks SG, Cameron PU, Evans V, Lewin SR. Memory CD4 + T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency. Cell Rep Med 2022; 3:100766. [PMID: 36198308 PMCID: PMC9589005 DOI: 10.1016/j.xcrm.2022.100766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/03/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1−CTLA4−) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency. CD4+ T cells co-expressing PD1 and CTLA4 (double positive [DP]) are enriched for HIV DNA DP cells contain virus that is more resistant to stimulation DP cells display differential expression of genes regulating T cell activation These features favor persistence of HIV latency in cells co-expressing PD1 and CTLA4
Collapse
Affiliation(s)
- Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Health, Melbourne, VIC, Australia
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Michael Bramhall
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rèmi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renee M. Van der Sluis
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Aarhus Institute of Advanced Studies and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Vanessa Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,School of Medicine and Dentistry, Griffith University, Sunshine Coast, QLD, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia,Corresponding author
| |
Collapse
|
25
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
26
|
Cafaro A, Ensoli B. HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Rev Vaccines 2022; 21:1243-1253. [PMID: 35695268 DOI: 10.1080/14760584.2022.2089119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Upon the introduction of the combination antiretroviral therapy (cART), HIV infection has become a chronic disease. However, cART is unable to eradicate the virus and fails to restore the CD4 counts in about 30% of the treated individuals. Furthermore, treatment is life-long, and it does not protect from morbidities typically observed in the elderly. Therapeutic vaccines represent the most cost-effective intervention to intensify or replace cART. AREAS COVERED Here, we briefly discuss the obstacles to the development and evaluation of the efficacy of therapeutic vaccines and review recent approaches evaluated in clinical trials. EXPERT OPINION Although vaccines were generally safe and immunogenic, evidence of efficacy was negligible or marginal in most trials. A notable exception is the therapeutic Tat vaccine approach showing promising results of cART intensification, with CD4 T-cell increase and proviral load reduction beyond those afforded by cART alone. Rationale and evidence in support of choosing Tat as the vaccine target are thoroughly discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
27
|
Mandal S, Sunagawa SW, Prathipati PK, Belshan M, Shibata A, Destache CJ. Targeted Immuno-Antiretroviral to Promote Dual Protection against HIV: A Proof-of-Concept Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1942. [PMID: 35683795 PMCID: PMC9183115 DOI: 10.3390/nano12111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
The C-C motif chemokine receptor-5 (CCR5) expression on the T-cell surface is the prime barrier to HIV/AIDS eradication, as it promotes both active human immunodeficiency virus (HIV)-infection and latency; however, antiretrovirals (ARVs) suppress plasma viral loads to non-detectable levels. Keeping this in mind, we strategically designed a targeted ARVs-loaded nanoformulation that targets CCR5 expressing T-cells (e.g., CD4+ cells). Conceptually, CCR5-blocking and targeted ARV delivery would be a dual protection strategy to prevent HIV infection. For targeting CCR5+ T-cells, the nanoformulation was surface conjugated with anti-CCR5 monoclonal antibodies (CCR5 mAb) and loaded with dolutegravir+tenofovir alafenamide (D+T) ARVs to block HIV replication. The result demonstrated that the targeted-ARV nanoparticle's multimeric CCR5 binding property improved its antigen-binding affinity, prolonged receptor binding, and ARV intracellular retention. Further, nanoformulation demonstrated high binding affinity to CCR5 expressing CD4+ cells, monocytes, and other CCR5+ T-cells. Finally, the short-term pre-exposure prophylaxis study demonstrated that prolonged CCR5 blockage and ARV presence further induced a "protective immune phenotype" with a boosted T-helper (Th), temporary memory (TM), and effector (E) sub-population. The proof-of-concept study that the targeted-ARV nanoformulation dual-action mechanism could provide a multifactorial solution toward achieving HIV "functional cure."
Collapse
Affiliation(s)
- Subhra Mandal
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
| | - Shawnalyn W. Sunagawa
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
| | - Pavan Kumar Prathipati
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
| | - Michael Belshan
- Department of Medical Microbiology & Immunology, Creighton University School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Annemarie Shibata
- Department of Biology, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA;
| | - Christopher J. Destache
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (S.W.S.); (P.K.P.); (C.J.D.)
- Division of Infectious Diseases, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
28
|
Perceptions of HIV cure and willingness to participate in HIV cure-related trials among people enrolled in the Netherlands cohort study on acute HIV infection. J Virus Erad 2022; 8:100072. [PMID: 35769632 PMCID: PMC9234345 DOI: 10.1016/j.jve.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background People who initiate antiretroviral therapy (ART) during acute HIV infection are potential candidates for HIV cure-related clinical trials, as early ART reduces the size of the HIV reservoir. These trials, which may include ART interruption (ATI), might involve potential risks. We explored knowledge and perception of HIV cure and willingness to participate in cure-related trials among participants of the Netherlands Cohort Study on Acute HIV infection (NOVA study), who started antiretroviral therapy immediately after diagnosis of acute HIV infection. Methods We conducted 20 in-depth qualitative interviews with NOVA study participants between October-December 2018. Data were analyzed thematically, using inductive and iterative coding techniques. Findings Most participants had limited knowledge of HIV cure and understood HIV cure as complete eradication of HIV from their bodies. HIV cure was considered important to most participants, mostly due to the stigma surrounding HIV. More than half would consider undergoing brief ATI during trial participation, but only one person considered extended ATI. Viral rebound and increased infectiousness during ATI were perceived as large concerns. Participants remained hopeful of being cured during trial participation, even though they were informed that no personal medical benefit was to be expected. Interpretation Our results highlight the need for thorough informed consent procedures with assessment of comprehension and exploration of personal motives prior to enrollment in cure-related trials. Researchers might need to moderate their expectations about how many participants will enroll in a trial with extended ATI.
Collapse
|
29
|
Dijkstra S, Hofstra LM, Mudrikova T, Wensing AMJ, Oomen PGA, Hoepelman AIM, van Welzen BJ. Lower Incidence of HIV-1 Blips Observed During Integrase Inhibitor-Based Combination Antiretroviral Therapy. J Acquir Immune Defic Syndr 2022; 89:575-582. [PMID: 34966148 DOI: 10.1097/qai.0000000000002898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND As the nature of viral blips remains unclear, their occurrence often leads to uncertainty. This study compares blip incidence rates during treatment with different combination antiretroviral therapy anchors. SETTING Retrospective cohort study in a tertiary hospital. METHODS All antiretroviral regimens between 2010 and 2020 containing 2 nucleos(-t)ide reverse transcriptase inhibitors and 1 anchor in virologically suppressed people living with HIV (PLWH) from our center were evaluated for the occurrence of blips [isolated viral loads (VLs) 50-499 copies/mL between measurements <50 copies/mL]. Factors associated with blips were identified using multivariable generalized estimating equation-based negative binomial models. The relationship between blips and either persistent low-level viremia (consecutive VLs ≥ 50 copies/mL not classified as failure) or virologic failure (consecutive VLs ≥ 200 or 1 VL ≥ 500 copies/mL) was also evaluated. RESULTS In total, 308 blips occurred during 3405 treatment courses in 1661 PLWH. Compared with a non-nucleoside reverse transcriptase inhibitor anchor, blip incidence was higher for protease inhibitors (incidence rate ratio 1.37; 95% confidence interval 1.05 to 1.78) and lower for integrase inhibitors (INSTIs) (incidence rate ratio 0.64; 95% confidence interval: 0.43 to 0.96). In addition, blips were associated with higher zenith VL, higher VL test frequency, and shorter time since antiretroviral therapy initiation. PLWH experiencing blips were more likely to demonstrate persistent low-level viremia but not virologic failure. Blips led to extra consultations and measurements. CONCLUSIONS INSTI-based regimens display a low number of blips. Although we found no correlation with virologic failure, the occurrence of blips led to an increased clinical burden. Further research is needed to elucidate the implications and underlying mechanisms of these findings.
Collapse
Affiliation(s)
- Suzan Dijkstra
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - L Marije Hofstra
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Tania Mudrikova
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, the Netherlands; and
- Ezinthsa, WITS RHI University of the Witwatersrand, Johannesburg, South-Africa
| | - Patrick G A Oomen
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Berend J van Welzen
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
30
|
Awareness of HIV functional cure and willingness in participating in related clinical trials: comparison between antiretroviral naïve and experienced men who have sex with men living with HIV. BMC Infect Dis 2022; 22:383. [PMID: 35428275 PMCID: PMC9013029 DOI: 10.1186/s12879-022-07346-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Human immunodeficiency virus (HIV) functional cure is a novel biomedical strategy characterized by sustained viral suppression without the need for life-long medications. The attitude of people living with HIV (PLHIV) towards functional cure and clinical trials are understudied. We aimed to examine the awareness and levels of anticipation for HIV functional cure among men who have sex with men (MSM) living with HIV, and their willingness to join trials as differentiated by their antiretroviral treatment status.
Methods
MSM living with HIV with and those without treatment history were recruited from Hong Kong’s HIV specialist clinics. Self-administered questionnaires covering behavioral profile, perceived impact of HIV cure, attitude towards HIV functional cure and related clinical trials were collected. Clinical data were separately transcribed. Determinants of perceptions and attitudes were identified by logistic regression models.
Results
Of 356 MSM living with HIV recruited, less than half (42%) were aware of HIV functional cure, but they had a high level of anticipation for it. Treatment-experienced participants were more likely to be aware of HIV functional cure. Awareness was associated with continued engagement in sexual activities after HIV diagnosis and sexually transmitted infection (STI) diagnosis. Higher anticipation was observed among older MSM living with HIV but it was negatively associated with one’s awareness. Over 90% were willing to join functional cure trials, especially those who had previously been diagnosed with STI and had engaged in chemsex in the past year. Advice from healthcare professional was an important factor considered by those willing to join clinical trials. Younger, better educated MSM, and those with lower CD4 counts were more concerned about potential risk of AIDS and potential complications upon trial participation.
Conclusions
MSM living with HIV, especially those sexually active, showed positive attitude towards functional cure and willingness to join related clinical trials despite low awareness. To enhance preparedness for HIV functional cure trials, community education, updated information and appropriate medical advice would be needed. Safety is a major concern for potential enrollees in HIV functional cure trials.
Collapse
|
31
|
Abstract
Human immunodeficiency virus (HIV)-infected macrophages are long-lived cells that sustain persistent virus expression, which is both a barrier to viral eradication and contributor to neurological complications in patients despite antiretroviral therapy (ART). To better understand the regulation of HIV-1 in macrophages, we compared HIV-infected primary human monocyte-derived macrophages (MDM) to acutely infected primary CD4 T cells and Jurkat cells latently infected with HIV (JLAT 8.4). HIV genomes in MDM were actively transcribed despite enrichment with heterochromatin-associated H3K9me3 across the complete HIV genome in combination with elevated activation marks of H3K9ac and H3K27ac at the long terminal repeat (LTR). Macrophage patterns contrasted with JLAT cells, which showed conventional bivalent H3K4me3/H3K27me3, and acutely infected CD4 T cells, which showed an intermediate epigenotype. 5'-Methylcytosine (5mC) was enriched across the HIV genome in latently infected JLAT cells, while 5'-hydroxymethylcytosine (5hmC) was enriched in CD4 cells and MDMs. HIV infection induced multinucleation of MDMs along with DNA damage-associated p53 phosphorylation, as well as loss of TET2 and the nuclear redistribution of 5-hydoxymethylation. Taken together, our findings suggest that HIV induces a unique macrophage nuclear and transcriptional profile, and viral genomes are maintained in a noncanonical bivalent epigenetic state. IMPORTANCE Macrophages serve as a reservoir for long-term persistence and chronic production of HIV. We found an atypical epigenetic control of HIV in macrophages marked by heterochromatic H3K9me3 despite active viral transcription. HIV infection induced changes in macrophage nuclear morphology and epigenetic regulatory factors. These findings may identify new mechanisms to control chronic HIV expression in infected macrophages.
Collapse
|
32
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
33
|
Salido J, Czernikier A, Trifone C, Polo ML, Figueroa MI, Urioste A, Cahn P, Sued O, Salomon H, Laufer N, Ghiglione Y, Turk G. Pre-cART Immune Parameters in People Living With HIV Might Help Predict CD8+ T-Cell Characteristics, Inflammation Levels, and Reservoir Composition After Effective cART. Pathog Immun 2022; 6:60-89. [PMID: 34988339 PMCID: PMC8714178 DOI: 10.20411/pai.v6i2.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Combined antiretroviral treatment (cART) for HIV infection is highly effective in controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have been proposed to achieve a functional cure, some of them based on immune-mediated clearing of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC quality before cART initiation that associate with the persistence of CD8TC antiviral response after cART, inflammation levels, and the size of the viral reservoir. Methods Samples from 25 persons living with HIV were obtained before and after (15 months) cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured by ELISA. Results Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific response correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflammation post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated with the composition of the HIV reservoir post-cART and the level of inflammation. Conclusions Overall, this work provides data to help understand and identify parameters that could be used as markers in the development of immune-based functional HIV cure strategies.
Collapse
Affiliation(s)
- Jimena Salido
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Alejandro Czernikier
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - César Trifone
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Polo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | | | - Alejandra Urioste
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomon
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Hospital General de Agudos "Dr. JA Fernández" Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Gabriela Turk
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
34
|
Implications of the accumulation of CXCR5 + NK cells in lymph nodes of HIV-1 infected patients. EBioMedicine 2022; 75:103794. [PMID: 34973625 PMCID: PMC8728057 DOI: 10.1016/j.ebiom.2021.103794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background B cell follicles are immune-privileged sites where intensive HIV-1 replication and latency occur, preventing a permanent cure. Recent study showed that CXCR5+ NK cells in B cell follicles can inhibit SIV replication in African green monkeys, but this has not been reported in HIV-1 infected patients. Methods Lymphocytes and tissue sections of lymph node were collected from 11 HIV-1 positive antiretroviral therapy (ART)-naive and 19 HIV-1 negative donors. We performed immunofluorescence and RNA-scope to detect the location of CXCR5+ NK cells and its relationship with HIV-1 RNA, and performed flow cytometry and RNA-seq to analyze the frequency, phenotypic and functional characteristics of CXCR5+ NK cells. The CXCL13 expression were detected by immunohistochemistry. Findings CXCR5+ NK cells, which accumulated in LNs from HIV-1 infected individuals, expressed high levels of activating receptors such as NKG2D and NKp44. CXCR5+ NK cells had upregulated expression of CD107a and β-chemokines, which were partially impaired in HIV-1 infection. Importantly, the frequency of CXCR5+NK cells was inversely related to the HIV-1 viral burden in LNs. In addition, CXCL13—the ligand of CXCR5—was upregulated in HIV-1 infected individuals and positively correlated with the frequency of CXCR5+ NK cells. Interpretation During chronic HIV-1 infection, CXCR5+ NK cells accumulated in lymph node, exhibit altered immune characteristics and underlying anti-HIV-1 effect, which may be an effective target for a functional cure of HIV-1.
Collapse
|
35
|
Chiu CY, Chang JJ, Dantanarayana AI, Soloman A, Evans VA, Pascoe R, Gubser C, Trautman L, Fromentin R, Chomont N, McMahon JH, Cameron PU, Rasmussen TA, Lewin SR. Combination Immune Checkpoint Blockade Enhances IL-2 and CD107a Production from HIV-Specific T Cells Ex Vivo in People Living with HIV on Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:54-62. [PMID: 34853078 PMCID: PMC8702486 DOI: 10.4049/jimmunol.2100367] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
In people with HIV (PWH) on antiretroviral therapy (ART), immune dysfunction persists, including elevated expression of immune checkpoint (IC) proteins on total and HIV-specific T cells. Reversing immune exhaustion is one strategy to enhance the elimination of HIV-infected cells that persist in PWH on ART. We aimed to evaluate whether blocking CTL-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), T cell Ig domain and mucin domain 3 (TIM-3), T cell Ig and ITIM domain (TIGIT) and lymphocyte activation gene-3 (LAG-3) alone or in combination would enhance HIV-specific CD4+ and CD8+ T cell function ex vivo. Intracellular cytokine staining was performed using human PBMCs from PWH on ART (n = 11) and expression of CD107a, IFN-γ, TNF-α, and IL-2 was quantified with HIV peptides and Abs to IC. We found the following: 1) IC blockade enhanced the induction of CD107a and IL-2 but not IFN-γ and TNF-α in response to Gag and Nef peptides; 2) the induction of CD107a and IL-2 was greatest with multiple combinations of two Abs; and 3) Abs to LAG-3, CTLA-4, and TIGIT in combinations showed synergistic induction of IL-2 in HIV-specific CD8+ and CD107a and IL-2 production in HIV-specific CD4+ and CD8+ T cells. These results demonstrate that the combination of Abs to LAG-3, CTLA-4, or TIGIT can increase the frequency of cells expressing CD107a and IL-2 that associated with cytotoxicity and survival of HIV-specific CD4+ and CD8+ T cells in PWH on ART. These combinations should be further explored for an HIV cure.
Collapse
Affiliation(s)
- Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Judy J. Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ashanti I. Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ajantha Soloman
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Vanessa A. Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Céline Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Lydie Trautman
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2X 3E4, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2X 3E4, Canada;,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - James H. McMahon
- Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia;,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000
| |
Collapse
|
36
|
Wang H, Wang C. Peptide-Based Dual HIV and Coronavirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:87-100. [DOI: 10.1007/978-981-16-8702-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Dijkstra M, Prins H, Prins JM, Reiss P, Boucher C, Verbon A, Rokx C, de Bree G. Cohort profile: the Netherlands Cohort Study on Acute HIV infection (NOVA), a prospective cohort study of people with acute or early HIV infection who immediately initiate HIV treatment. BMJ Open 2021; 11:e048582. [PMID: 34845066 PMCID: PMC8634014 DOI: 10.1136/bmjopen-2020-048582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/14/2021] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Initiation of combination antiretroviral therapy (cART) during acute or early HIV-infection (AEHI) limits the size of the viral reservoir and preserves immune function. This renders individuals who started cART during AEHI promising participants in HIV-cure trials. Therefore, we established a multicentre prospective cohort study in the Netherlands that enrols people with AEHI. In anticipation of future cure trials, we will longitudinally investigate the properties of the viral reservoir size and HIV-specific immune responses among cohort participants. PARTICIPANTS Participants immediately initiate intensified cART: dolutegravir, emtricitabine/tenofovir and darunavir/ritonavir (DRV/r). After 4 weeks, once baseline resistance data are available, DRV/r is discontinued. Three study groups are assembled based on the preparedness of individuals to participate in the extensiveness of sampling. Participants accepting immediate treatment and follow-up but declining additional sampling are included in study group 1 ('standard') and routine diagnostic procedures are performed. Participants willing to undergo blood, leukapheresis and semen sampling are included in study group 2 ('less invasive'). In study group 3 ('extended'), additional tissue (gut-associated lymphoid tissue, peripheral lymph node) and cerebrospinal fluid sampling are performed. FINDINGS TO DATE Between 2015 and 2020, 140 individuals with AEHI have been enrolled at nine study sites. At enrolment, median age was 36 (IQR 28-47) years, and 134 (95.7%) participants were men. Distribution of Fiebig stages was as follows: Fiebig I, 3 (2.1%); II, 20 (14.3%); III, 7 (5.0%); IV, 49 (35.0%); V, 39 (27.9%); VI, 22 (15.7%). Median plasma HIV RNA was 5.9 (IQR 4.7-6.7) log10 copies/mL and CD4 count 510 (IQR 370-700) cells/mm3. Median time from cART initiation to viral suppression was 8.0 (IQR 4.0-16.0) weeks. FUTURE PLANS The Netherlands Cohort Study on Acute HIV infection remains open for participant enrolment and for additional sites to join the network. This cohort provides a unique nationwide platform for conducting future in-depth virological, immunological, host genetic and interventional studies investigating HIV-cure strategies.
Collapse
Affiliation(s)
- Maartje Dijkstra
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Henrieke Prins
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan M Prins
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Reiss
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- HIV Monitoring Foundation, Amsterdam, Noord-Holland, Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Charles Boucher
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Godelieve de Bree
- Department of Internal Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
38
|
Emerging Single-cell Approaches to Understand HIV in the Central Nervous System. Curr HIV/AIDS Rep 2021; 19:113-120. [PMID: 34822063 PMCID: PMC8613726 DOI: 10.1007/s11904-021-00586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 11/23/2022]
Abstract
Purpose of Review This review highlights emerging single-cell sequencing methods relevant to translational studies of HIV in the central nervous system (CNS), summarizes limited single-cell studies of HIV in the CNS, and discusses opportunities for future HIV translational CNS studies. Recent Findings Innovative methods utilizing single-cell technologies have advanced the study of genomes, proteomes, transcriptomes, and epigenomes at an enhanced resolution and depth. Single-cell analyses of central nervous system tissue, including autopsy brain and CSF cells, may shed light on CNS perturbations in people living with HIV. New strategies can distinguish distinct molecular identifies of rare infected cells at single-cell level, suggesting an opportunity to uncloak the molecular identity of hidden HIV in the CNS reservoir. Summary Adoption of multimodal “omics” analyses to translational HIV studies and tissue compartments beyond blood will be critical to advancing our understanding of viral establishment, persistence, and eradication.
Collapse
|
39
|
A new small-molecule compound, Q308, silences latent HIV-1 provirus by suppressing Tat- and FACT-mediated transcription. Antimicrob Agents Chemother 2021; 65:e0047021. [PMID: 34491808 DOI: 10.1128/aac.00470-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eliminating the latent HIV reservoir remains a difficult problem for creating an HIV functional cure or achieving remission. The "block-and-lock" strategy aims to steadily suppress transcription of the viral reservoir and lock the HIV promoter in deep latency using latency-promoting agents (LPAs). However, to date, most of the investigated LPA candidates are not available for clinical trials, and some of them exhibit immune-related adverse reactions. The discovery and development of new, active, and safe LPA candidates for an HIV cure are necessary to eliminate residual HIV-1 viremia through the "block-and-lock" strategy. In this study, we demonstrated that a new small-molecule compound, Q308, silenced the HIV-1 provirus by inhibiting Tat-mediated gene transcription and selectively downregulating the expression levels of the facilitated chromatin transcription (FACT) complex. Strikingly, Q308 induced the preferential apoptosis in HIV-1 latently infected cells, indicating that Q308 may reduce the size of the viral reservoir and thus further prevent viral rebound. These findings highlight that Q308 is a novel and safe anti-HIV-1 inhibitor candidate for a functional cure.
Collapse
|
40
|
Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer. Curr Opin HIV AIDS 2021; 15:157-164. [PMID: 32167944 DOI: 10.1097/coh.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. RECENT FINDINGS Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. SUMMARY For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure.
Collapse
|
41
|
Brandt L, Cristinelli S, Ciuffi A. Single-Cell Analysis Reveals Heterogeneity of Virus Infection, Pathogenicity, and Host Responses: HIV as a Pioneering Example. Annu Rev Virol 2021; 7:333-350. [PMID: 32991268 DOI: 10.1146/annurev-virology-021820-102458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While analyses of cell populations provide averaged information about viral infections, single-cell analyses offer individual consideration, thereby revealing a broad spectrum of diversity as well as identifying extreme phenotypes that can be exploited to further understand the complex virus-host interplay. Single-cell technologies applied in the context of human immunodeficiency virus (HIV) infection proved to be valuable tools to help uncover specific biomarkers as well as novel candidate players in virus-host interactions. This review aims at providing an updated overview of single-cell analyses in the field of HIV and acquired knowledge on HIV infection, latency, and host response. Although HIV is a pioneering example, similar single-cell approaches have proven to be valuable for elucidating the behavior and virus-host interplay in a range of other viruses.
Collapse
Affiliation(s)
- Ludivine Brandt
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
42
|
Scutari R, Costabile V, Galli L, Bellocchi MC, Carioti L, Barbaliscia S, Poli A, Galli A, Perno CF, Santoro MM, Castagna A, Ceccherini-Silberstein F, Alteri C, Spagnuolo V. Impact of Analytical Treatment Interruption on Burden and Diversification of HIV Peripheral Reservoir: A Pilot Study. Viruses 2021; 13:v13071403. [PMID: 34372609 PMCID: PMC8310290 DOI: 10.3390/v13071403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND If analytical antiretroviral-treatment (ART) interruption (ATI) might significantly impact quantitative or qualitative peripheral-total HIV-DNA is still debated. METHODS Six chronically HIV-1 infected patients enrolled in APACHE-study were analysed for peripheral-total HIV-DNA and residual viremia, major-resistance-mutations (MRMs) and C2-V3-C3 evolution at pre-ATI (T1), during ATI (T2) and at achievement of virological success after ART-resumption (post-ATI, T3). These data were obtained at three comparable time-points in five chronically HIV-1 infected patients on suppressive ART for ≥1 year, enrolled in MODAt-study. RESULTS At T1, APACHE and MODAt individuals had similar peripheral-total HIV-DNA and residual viremia (p = 0.792 and 0.662, respectively), and no significant changes for these parameters were observed between T1 and T3 in both groups. At T1, 4/6 APACHE and 2/5 MODAt carried HIV-DNA MRMs. MRMs disappeared at T3 in 3/4 APACHE. All disappearing MRMs were characterized by T1 intra-patient prevalence <80%, and mainly occurred in APOBEC3-related sites. All MRMs persisted over-time in the 2 MODAt. C2-V3-C3 genetic-distance significantly changed from T1 to T3 in APACHE individuals (+0.36[0.11-0.41], p = 0.04), while no significant changes were found in MODAt. Accordingly, maximum likelihood trees (bootstrap > 70%) and genealogical sorting indices (GSI > 0.50 with p-value < 0.05) showed that T1 C2-V3-C3 DNA sequences were distinct from T2 and T3 viruses in 4/6 APACHE. Virus populations at all three time-points were highly interspersed in MODAt. CONCLUSIONS This pilot study indicates that short ATI does not alter peripheral-total HIV-DNA burden and residual viremia, but in some cases could cause a genetic diversification of peripheral viral reservoir in term of both MRMs rearrangement and viral evolution.
Collapse
Affiliation(s)
- Rossana Scutari
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Valentino Costabile
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Laura Galli
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Silvia Barbaliscia
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Andrea Poli
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
| | - Andrea Galli
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
| | - Carlo Federico Perno
- Unit of Diagnostic Microbiology and Immunology, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Antonella Castagna
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.); (S.B.); (M.M.S.); (F.C.-S.)
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-(0)6-6859-7096
| | - Vincenzo Spagnuolo
- Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; (L.G.); (A.P.); (A.G.); (A.C.); (V.S.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
43
|
Analytical Treatment Interruption in HIV Trials: Statistical and Study Design Considerations. Curr HIV/AIDS Rep 2021; 18:475-482. [PMID: 34213731 PMCID: PMC8251690 DOI: 10.1007/s11904-021-00569-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review Analytical treatment interruption (ATI) remains an essential component in clinical studies investigating novel agents or combination treatment strategies aiming to induce HIV treatment-free remission or long-term viral control. We provide an overview on key study design aspects of ATI trials from the perspective of statisticians. Recent Findings ATI trial designs have evolved towards shorter treatment interruption phases and more frequent viral load monitoring aiming to reduce prolonged viremia risks. Criteria for ART resumption have evolved as well. Common outcome measures in modern ATI trials include time to viral rebound, viral control, and viral set point. Summary Design of the ATI component in HIV clinical trials is driven by the scientific question and the mechanism of action of the intervention being investigated.
Collapse
|
44
|
Wang Q, Su S, Xue J, Yu F, Pu J, Bi W, Xia S, Meng Y, Wang C, Yang W, Xu W, Zhu Y, Zheng Q, Qin C, Jiang S, Lu L. An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Sci Transl Med 2021; 12:12/546/eaaz2254. [PMID: 32493792 DOI: 10.1126/scitranslmed.aaz2254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/26/2022]
Abstract
HIV-associated morbidity and mortality have markedly declined because of combinational antiretroviral therapy, but HIV readily mutates to develop drug resistance. Developing antivirals against previously undefined targets is essential to treat existing drug-resistant HIV strains. Some peptides derived from HIV-1 envelope glycoprotein (Env, gp120-gp41) have been shown to be effective in inhibiting HIV-1 infection. Therefore, we screened a peptide library from HIV-1 Env and identified a peptide from the cytoplasmic region, designated F9170, able to effectively inactivate HIV-1 virions and induce necrosis of HIV-1-infected cells, and reactivated latently infected cells. F9170 specifically targeted the conserved cytoplasmic tail of HIV-1 Env and effectively disrupted the integrity of the viral membrane. Short-term monoadministration of F9170 controlled viral loads to below the limit of detection in chronically SHIV-infected macaques. F9170 can enter the brain and lymph nodes, anatomic reservoirs for HIV latency. Therefore, F9170 shows promise as a drug candidate for HIV treatment.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenwen Bi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenqian Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinwen Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China. .,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| |
Collapse
|
45
|
Martin GE, Sen DR, Pace M, Robinson N, Meyerowitz J, Adland E, Thornhill JP, Jones M, Ogbe A, Parolini L, Olejniczak N, Zacharopoulou P, Brown H, Willberg CB, Nwokolo N, Fox J, Fidler S, Haining WN, Frater J. Epigenetic Features of HIV-Induced T-Cell Exhaustion Persist Despite Early Antiretroviral Therapy. Front Immunol 2021; 12:647688. [PMID: 34149690 PMCID: PMC8213372 DOI: 10.3389/fimmu.2021.647688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
T cell dysfunction occurs early following HIV infection, impacting the emergence of non-AIDS morbidities and limiting curative efforts. ART initiated during primary HIV infection (PHI) can reverse this dysfunction, but the extent of recovery is unknown. We studied 66 HIV-infected individuals treated from early PHI with up to three years of ART. Compared with HIV-uninfected controls, CD4 and CD8 T cells from early HIV infection were characterised by T cell activation and increased expression of the immune checkpoint receptors (ICRs) PD1, Tim-3 and TIGIT. Three years of ART lead to partial – but not complete – normalisation of ICR expression, the dynamics of which varied for individual ICRs. For HIV-specific cells, epigenetic profiling of tetramer-sorted CD8 T cells revealed that epigenetic features of exhaustion typically seen in chronic HIV infection were already present early in PHI, and that ART initiation during PHI resulted in only a partial shift of the epigenome to one with more favourable memory characteristics. These findings suggest that although ART initiation during PHI results in significant immune reconstitution, there may be only partial resolution of HIV-related phenotypic and epigenetic changes.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Debattama R Sen
- Department of Immunology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Panagiota Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' National Health Service (NHS) Trust, London, United Kingdom.,King's College National Institute of Health Research (NIHR) Biomedical Research Centre, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom.,Imperial College NIHR Biomedical Research Centre, London, United Kingdom
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Discovery Oncology and Immunology, Merck Research Laboratories, Boston, MA, United States
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
46
|
Rasmussen TA, Lewin SR. Toll-like Receptor 7 Agonists in People Living With HIV: Implications for Immunotherapeutic Strategies for an HIV Cure. Clin Infect Dis 2021; 72:e825-e827. [PMID: 33044543 DOI: 10.1093/cid/ciaa1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas A Rasmussen
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.,Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
47
|
Moltó J, Rosás-Umbert M, Miranda C, Manzardo C, Puertas MC, Ruiz-Riol M, López M, Miró JM, Martinez-Picado J, Clotet B, Brander C, Mothe B, Valle M. Pharmacokinetic/pharmacodynamic analysis of romidepsin used as an HIV latency reversing agent. J Antimicrob Chemother 2021; 76:1032-1040. [PMID: 33367767 DOI: 10.1093/jac/dkaa523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To develop a population pharmacokinetic model for romidepsin given as an HIV latency reversing agent (LRA) and to explore the relationship between romidepsin exposure and its in vivo effects on viral gene expression and antiviral immunity. METHODS A population pharmacokinetic analysis was performed in 15 HIV-1-infected patients who received three weekly infusions of romidepsin (5 mg/m2) within the BCN02 clinical trial. A full pharmacokinetic profile was obtained for each participant at the first dose, and additional samples thereafter. A population pharmacokinetic model was developed. Bayesian estimates of the individual pharmacokinetic parameters of romidepsin were used to simulate individual time-concentration curves on each occasion. The relationship between romidepsin AUC0-∞ and its in vivo effects was assessed. RESULTS Romidepsin pharmacokinetics were best described by a three-compartment model with linear kinetics. Body weight influenced romidepsin disposition. A significant relationship was observed between romidepsin AUC0-∞ and increases in expression of exhaustion markers by CD4+ and CD8+ T cells and apoptosis markers in CD4+, but not with histone acetylation levels or HIV-1 cell-associated RNA in CD4+ T cells. For each increase of 100 ng·h/mL in romidepsin AUC0-∞, CD4+ counts decreased by a mean (95% CI) of 74 (42-94) cells/mm3 after dosing. CONCLUSIONS A population model describing the pharmacokinetics of romidepsin as an HIV LRA was developed. Higher exposure to romidepsin resulted in higher expression of apoptosis markers and declines in CD4+ count but did not increase viral reactivation levels. These observations have important implications for the optimization of effective kick-and-kill strategies for an HIV-1 cure.
Collapse
Affiliation(s)
- José Moltó
- Fundació Lluita contra la Sida, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Miriam Rosás-Umbert
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | | | - Christian Manzardo
- Infectious Diseases Department, Hospital Clinic- IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | - Jose M Miró
- Infectious Diseases Department, Hospital Clinic- IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- ICREA, Barcelona, Spain
| | - Bonaventura Clotet
- Fundació Lluita contra la Sida, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- ICREA, Barcelona, Spain
| | - Beatriz Mothe
- Fundació Lluita contra la Sida, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Valle
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- PKPD Modeling and Simulation, Sant Pau Institute of Biomedical Research (IIB St Pau), Barcelona, Spain
| |
Collapse
|
48
|
Devanathan AS, Cottrell ML. Pharmacology of HIV Cure: Site of Action. Clin Pharmacol Ther 2021; 109:841-855. [PMID: 33540481 DOI: 10.1002/cpt.2187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Despite significant advances in HIV treatment over the past 30 years, critical barriers to an HIV cure persist. The HIV reservoir, defined at both the cellular and anatomical level, constitutes the main barrier to cure. While the mechanisms underlying the reservoir are not yet well understood, one theory to explain persistence at the anatomical level is that subtherapeutic exposure to antiretroviral therapy (ART) within certain tissue compartments permits ongoing replication. Characterizing ART pharmacology throughout the body is important in the context of these potential pharmacologic sanctuaries and for maximizing the probability of success with forthcoming cure strategies that rely on latency reversal and require ART to prevent reseeding the reservoir. In this review, we provide a comprehensive overview of ART and latency reversal agent distribution at the site of action for HIV cure (i.e., anatomical sites commonly associated with HIV persistence, such as lymphoid organs and the central nervous system). We also discuss methodologic approaches that provide insight into HIV cure pharmacology, including experimental design and advances within the computational, pharmaceutical, and analytical chemistry fields. The information discussed in this review will assist in streamlining the development of investigational cure strategies by providing a roadmap to ensure therapeutic exposure within the site of action for HIV cure.
Collapse
Affiliation(s)
- Aaron S Devanathan
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Mackenzie L Cottrell
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
49
|
Zerbato JM, Khoury G, Zhao W, Gartner MJ, Pascoe RD, Rhodes A, Dantanarayana A, Gooey M, Anderson J, Bacchetti P, Deeks SG, McMahon J, Roche M, Rasmussen TA, Purcell DF, Lewin SR. Multiply spliced HIV RNA is a predictive measure of virus production ex vivo and in vivo following reversal of HIV latency. EBioMedicine 2021; 65:103241. [PMID: 33647768 PMCID: PMC7920823 DOI: 10.1016/j.ebiom.2021.103241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND One strategy being pursued to clear latently infected cells that persist in people living with HIV (PLWH) on antiretroviral therapy (ART) is to activate latent HIV infection with a latency reversing agent (LRA). Surrogate markers that accurately measure virus production following an LRA are needed. METHODS We quantified cell-associated unspliced (US), multiply spliced (MS) and supernatant (SN) HIV RNA by qPCR from total and resting CD4+ T cells isolated from seven PLWH on ART before and after treatment ex vivo with different LRAs, including histone deacetylase inhibitors (HDACi). MS and plasma HIV RNA were also quantified from PLWH on ART (n-11) who received the HDACi panobinostat. FINDINGS In total and resting CD4+ T cells from PLWH on ART, detection of US RNA was common while detection of MS RNA was infrequent. Primers used to detect MS RNA, in contrast to US RNA, bound sites of the viral genome that are commonly mutated or deleted in PLWH on ART. Following ex vivo stimulation with LRAs, we identified a strong correlation between the fold change increase in SN and MS RNA, but not the fold change increase in SN and US RNA. In PLWH on ART who received panobinostat, MS RNA was significantly higher in samples with detectable compared to non0detectable plasma HIV RNA. INTERPRETATION Following administration of an LRA, quantification of MS RNA is more likely to reflect an increase in virion production and is therefore a better indicator of meaningful latency reversal. FUNDING NHMRC, NIH DARE collaboratory.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georges Khoury
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rachel D Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Megan Gooey
- HIV Characterisation Laboratory, Victorian Infectious Diseases Reference Laboratory, the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jenny Anderson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, Division of HIV/AIDS, University of California San Francisco, San Francisco, USA
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Damian Fj Purcell
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
50
|
van der Sluis RM, Finzi A, Parsons MS. Editorial: Exploring Novel Approaches to Eliminate HIV Reservoirs to Achieve a Cure for HIV. Front Cell Infect Microbiol 2021; 11:658848. [PMID: 33718291 PMCID: PMC7946826 DOI: 10.3389/fcimb.2021.658848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Renée M van der Sluis
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Andrés Finzi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Centre de Recherche du CHUM, Montreal, QC, Canada
| | - Matthew S Parsons
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|