1
|
Bamikole OJ, Ademola SA, Olufeagba MDB, Adedeji BA, Amodu OK. Association of toll like receptors polymorphism ( TLR1-rs4833095, TLR1-rs5743611, TLR6-rs5743810, TLR6-rs5743809, TLR4-rs4986790, TLR4-rs4986791, TLR9 rs187084) with clinical outcome of malaria among children in Ibadan, Southwest Nigeria. Pathog Glob Health 2025:1-12. [PMID: 40114662 DOI: 10.1080/20477724.2025.2478362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Different genetic polymorphisms, particularly in the erythrocyte receptors and immune response-related genes, have been implicated in the development of malaria. With the first immune response to Plasmodium falciparum related to the activity of toll-like receptors (TLRs), we investigated the association of TLR polymorphisms with the clinical outcome of malaria among 662 children in Ibadan, Nigeria. The participants were genotyped for TLR1-rs5743611, TLR1-rs4833095, TLR4-rs4986791, TLR4-rs4986790, TLR6-rs5743810, TLR9-rs187084 and TLR9-rs5743809 using TaqMan real-time PCR probes and analyzed using the Sequenom iPLEX platform. Statistical analyses were performed using PLINK 2.0, Haploview 4.2 and SPSS® 20.0. Overall, the TLR genes were consistent with the Hardy-Weinberg equilibrium. The minor allelic frequency (MAF) of TRL1-rs4833095, TLR4-rs4986790, TLR4-rs4986791, TLR9-rs187084, TLR9-rs5743809 was 0.094, 0.089, 0.011, 0.288, and 0.044, respectively. The CT genotype of TLR1-rs4833095 was significantly associated with increased susceptibility to clinical malaria. Similarly, the GA and CT genotypes of TLR4-rs4986790 and TLR4-rs4986791, respectively, were linked to susceptibility to complicated malaria. TLR9-rs187084 CT was associated with the development of uncomplicated malaria, while TLR6-rs5743809 showed no significant association with malaria. Notably, TLR1-rs5743611 and TLR6-rs5743810 were monomorphic in the population. This study, pioneering in its exploration of TLR polymorphisms among Yorubas', underscores the need for expansive, large-scale investigations involving diverse TLR polymorphisms across multiple malaria-endemic populations.
Collapse
Affiliation(s)
- Oluwayemi J Bamikole
- Public Health Biotechnology Programme, Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Subulade A Ademola
- Public Health Biotechnology Programme, Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Miles-Dei B Olufeagba
- Public Health Biotechnology Programme, Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babajide A Adedeji
- Public Health Biotechnology Programme, Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Microbiology, Modibbo Adama University of Technology, Yola, Nigeria
| | - Olukemi K Amodu
- Public Health Biotechnology Programme, Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Kariuki SN, Gilchrist JJ, Uyoga S, Macharia A, Makale J, Rayner JC, Williams TN. Relation Between the Dantu Blood Group Variant and Bacteremia in Kenyan Children: A Population-Based Case-Control Study. J Infect Dis 2025; 231:e10-e16. [PMID: 38979599 PMCID: PMC11793031 DOI: 10.1093/infdis/jiae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The Dantu blood group variant protects against Plasmodium falciparum infections, but its wider consequences have not been previously explored. Here, we investigate the impact of Dantu on susceptibility to bacteremia. METHODS We conducted a case-control study in children presenting with community-acquired bacteremia to Kilifi County Hospital in Kenya between 1998 and 2010. We used logistic regression to test for associations between the Dantu marker single-nucleotide polymorphism rs186873296 A > G and both all-cause and pathogen-specific bacteremia under an additive model. We used date of admission as a proxy measure of malaria transmission intensity, given known differences in malaria prevalence over the course of the study. RESULTS Dantu was associated with protection from all-cause bacteremia (OR, 0.81; P = .014), the association being greatest in homozygotes (OR, 0.30; P = .013). This protection was shared across the major bacterial pathogens but, notably, was only significant during the era of high malaria transmission pre-2003 (OR, 0.79; P = .023). CONCLUSIONS Consistent with previous studies showing the indirect impact on bacteremia risk of other malaria-associated red cell variants, our study also shows that Dantu is protective against bacteremia via its effect on malaria risk. Dantu does not appear to be under balancing selection through an increased risk of bacterial infections.
Collapse
Affiliation(s)
- Silvia N Kariuki
- Department of Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi
| | - James J Gilchrist
- Department of Paediatrics
- Medical Research Council–Weatherall Institute of Molecular Medicine, University of Oxford
| | - Sophie Uyoga
- Department of Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi
| | - Alexander Macharia
- Department of Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi
| | - Johnstone Makale
- Department of Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge
| | - Thomas N Williams
- Department of Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, United Kingdom
| |
Collapse
|
3
|
Brooks SD, Ruhl AP, Zeng X, Cruz P, Hassan SA, Kamenyeva O, Hakim MA, Ridley LA, Nagata BM, Kabat J, Ganesan S, Smith RL, Jackson M, Nino de Rivera J, McLure AJ, Jackson JM, Emeh RO, Tesfuzigta N, Laurence K, Joyce S, Yek C, Chea S, Alves DA, Isakson BE, Manning J, Davis JL, Ackerman HC. Sickle Trait and Alpha Thalassemia Increase NOS-Dependent Vasodilation of Human Arteries Through Disruption of Endothelial Hemoglobin-eNOS Interactions. Circulation 2025; 151:8-30. [PMID: 39633569 DOI: 10.1161/circulationaha.123.066003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/06/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Severe malaria is associated with impaired nitric oxide (NO) synthase (NOS)-dependent vasodilation, and reversal of this deficit improves survival in murine models. Malaria might have selected for genetic polymorphisms that increase endothelial NO signaling and now contribute to heterogeneity in vascular function among humans. One protein potentially selected for is alpha globin, which, in mouse models, interacts with endothelial NOS (eNOS) to negatively regulate NO signaling. We sought to evaluate the impact of alpha globin gene deletions on NO signaling and unexpectedly found human arteries use not only alpha but also beta globin to regulate eNOS. METHODS The eNOS-hemoglobin complex was characterized by multiphoton imaging, gene expression analysis, and coimmunoprecipitation studies of human resistance arteries. Novel contacts between eNOS and hemoglobin were mapped using molecular modeling and simulation. Pharmacological or genetic disruption of the eNOS-hemoglobin complex was evaluated using pressure myography. The association between alpha globin gene deletion and blood pressure was assessed in a population study. RESULTS Alpha and beta globin transcripts were detected in the endothelial layer of the artery wall. Imaging colocalized alpha and beta globin proteins with eNOS at myoendothelial junctions. Immunoprecipitation demonstrated that alpha globin and beta globin form a complex with eNOS and cytochrome b5 reductase. Modeling predicted negatively charged glutamic acids at positions 6 and 7 of beta globin to interact with positively charged arginines at positions 97 and 98 of eNOS. Arteries from donors with a glutamic acid-to-valine substitution at beta globin position 6 (sickle trait) exhibited increased NOS-dependent vasodilation. Alpha globin gene deletions were associated with decreased arterial alpha globin expression, increased NOS-dependent vasodilation, and lower blood pressure. Mimetic peptides that targeted the interactions between hemoglobin and eNOS recapitulated the effects of these genetic variants on human arterial vasoreactivity. CONCLUSIONS Alpha and beta globin subunits of hemoglobin interact with eNOS to restrict NO signaling in human resistance arteries. Malaria-protective genetic variants that alter the expression of alpha globin or the structure of beta globin are associated with increased NOS-dependent vasodilation. Targeting the hemoglobin-eNOS interface could potentially improve NO signaling in diseases of endothelial dysfunction such as severe malaria or chronic cardiovascular conditions.
Collapse
Affiliation(s)
- Steven D Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - A Parker Ruhl
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
- Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD (A.P.R.)
| | - Xianke Zeng
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (P.C., S.A.H.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (P.C., S.A.H.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Olena Kamenyeva
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD (O.K., J.K., S.G.)
| | - Md Abdul Hakim
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Lauryn A Ridley
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section (B.M.N., D.A.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD (O.K., J.K., S.G.)
| | - Sundar Ganesan
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD (O.K., J.K., S.G.)
| | - Rachel L Smith
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Mary Jackson
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Jessica Nino de Rivera
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Alison J McLure
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Jarrett M Jackson
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Robert O Emeh
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Naomi Tesfuzigta
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Kyeisha Laurence
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Stacy Joyce
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD (S.J., J.L.D.)
| | - Christina Yek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia (C.Y., S.C., J.M.)
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD (C.Y.)
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia (C.Y., S.C., J.M.)
| | - Derron A Alves
- Infectious Disease Pathogenesis Section (B.M.N., D.A.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (B.E.I.), University of Virginia School of Medicine, Charlottesville
- Department of Molecular Physiology and Biological Physics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Jessica Manning
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia (C.Y., S.C., J.M.)
| | - Jeremy L Davis
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD (S.J., J.L.D.)
| | - Hans C Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| |
Collapse
|
4
|
Adjemout M, Gallardo F, Torres M, Thiam A, Mbengue B, Dieye A, Marquet S, Rihet P. From Genome-wide Association Studies to Functional Variants: ARL14 Cis-regulatory Variants Are Associated With Severe Malaria. J Infect Dis 2024; 230:e743-e752. [PMID: 38531688 PMCID: PMC11420786 DOI: 10.1093/infdis/jiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Genome-wide association studies have identified several nonfunctional tag single-nucleotide polymorphisms (SNPs) associated with severe malaria. We hypothesized that causal SNPs could play a significant role in severe malaria by altering promoter or enhancer activity. Here, we sought to identify such regulatory SNPs. METHODS SNPs in linkage disequilibrium with tagSNPs associated with severe malaria were identified and were further annotated using FUMA. Then, SNPs were prioritized using the integrative weighted scoring method to identify regulatory ones. Gene reporter assays were performed to assess the regulatory effect of a region containing candidates. The association between SNPs and severe malaria was assessed using logistic regression models in a Senegalese cohort. RESULTS Among 418 SNPs, the best candidates were rs116525449 and rs79644959, which were in full disequilibrium between them, and located within the ARL14 promoter. Our gene reporter assay results revealed that the region containing the SNPs exhibited cell-specific promoter or enhancer activity, while the SNPs influenced promoter activity. We detected an association between severe malaria and those 2 SNPs using the overdominance model and we replicated the association of severe malaria with the tagSNP rs116423146. CONCLUSIONS We suggest that these SNPs regulate ARL14 expression in immune cells and the presentation of antigens to T lymphocytes, thus influencing severe malaria development.
Collapse
Affiliation(s)
- Mathieu Adjemout
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Frederic Gallardo
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Magali Torres
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Alassane Thiam
- Pole d'Immunophysiopathologie & Maladies Infectieuses, Institut Pasteur de Dakar
| | - Babacar Mbengue
- Service d'Immunologie, Université Cheikh Anta Diop de Dakar, Senegal
| | - Alioune Dieye
- Service d'Immunologie, Université Cheikh Anta Diop de Dakar, Senegal
| | - Sandrine Marquet
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Pascal Rihet
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| |
Collapse
|
5
|
Cheng H, Lyu Y, Liu Z, Li C, Qu K, Li S, Ahmed Z, Ma W, Qi X, Chen N, Lei C. A Whole-Genome Scan Revealed Genomic Features and Selection Footprints of Mengshan Cattle. Genes (Basel) 2024; 15:1113. [PMID: 39336704 PMCID: PMC11431585 DOI: 10.3390/genes15091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Mengshan cattle from the Yimeng mountainous region in China stand out as a unique genetic resource, known for their adaptive traits and environmental resilience. However, these cattle are currently endangered and comprehensive genomic characterization remains largely unexplored. This study aims to address this gap by investigating the genomic features and selection signals in Mengshan cattle. (2) Methods: Utilizing whole-genome resequencing data from 122 cattle, including 37 newly sequenced Mengshan cattle, we investigated population structure, genetic diversity, and selection signals. (3) Results: Our analyses revealed that current Mengshan cattle primarily exhibit European taurine cattle ancestry, with distinct genetic characteristics indicative of adaptive traits. We identified candidate genes associated with immune response, growth traits, meat quality, and neurodevelopment, shedding light on the genomic features underlying the unique attributes of Mengshan cattle. Enrichment analysis highlighted pathways related to insulin secretion, calcium signaling, and dopamine synapse, further elucidating the genetic basis of their phenotypic traits. (4) Conclusions: Our results provide valuable insights for further research and conservation efforts aimed at preserving this endangered genetic resource. This study enhances the understanding of population genetics and underscores the importance of genomic research in informing genetic resources and conservation initiatives for indigenous cattle breeds.
Collapse
Affiliation(s)
- Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Ziao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Chuanqing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675099, China;
| | - Shuang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Baoji 722203, China;
| | - Xingshan Qi
- Animal Husbandry Bureau in Biyang County, Zhumadian 463700, China;
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| |
Collapse
|
6
|
Stucke EM, Lawton JG, Travassos MA. ApoE: A new piece to the severe malaria puzzle. Pediatr Res 2024; 96:12-14. [PMID: 38388820 DOI: 10.1038/s41390-024-03096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Emily M Stucke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan G Lawton
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Constantinescu AE, Hughes DA, Bull CJ, Fleming K, Mitchell RE, Zheng J, Kar S, Timpson NJ, Amulic B, Vincent EE. A genome-wide association study of neutrophil count in individuals associated to an African continental ancestry group facilitates studies of malaria pathogenesis. Hum Genomics 2024; 18:26. [PMID: 38491524 PMCID: PMC10941368 DOI: 10.1186/s40246-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND 'Benign ethnic neutropenia' (BEN) is a heritable condition characterized by lower neutrophil counts, predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of extensive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe malaria (MalariaGEN, N = 17,056). RESULTS We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-LMM was reliable when conducted in a non-European population, and additional covariates added to the model did not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neutrophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe anaemia, although the confidence intervals crossed the null. CONCLUSION Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further exploring the link between neutrophils and severe malaria.
Collapse
Affiliation(s)
- Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Louisiana State University, Louisiana, USA
| | - Caroline J Bull
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
- Health Data Research UK, London, UK
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases, National Health Commission, Shanghai, People's Republic of China
- Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Early Cancer Insitute, University of Cambridge, Cambridge, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK.
- School of Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Musallam KM, Cappellini MD, Coates TD, Kuo KHM, Al-Samkari H, Sheth S, Viprakasit V, Taher AT. Αlpha-thalassemia: A practical overview. Blood Rev 2024; 64:101165. [PMID: 38182489 DOI: 10.1016/j.blre.2023.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
α-Thalassemia is an inherited blood disorder characterized by decreased synthesis of α-globin chains that results in an imbalance of α and β globin and thus varying degrees of ineffective erythropoiesis, decreased red blood cell (RBC) survival, chronic hemolytic anemia, and subsequent comorbidities. Clinical presentation varies depending on the genotype, ranging from a silent or mild carrier state to severe, transfusion-dependent or lethal disease. Management of patients with α-thalassemia is primarily supportive, addressing either symptoms (eg, RBC transfusions for anemia), complications of the disease, or its transfusion-dependence (eg, chelation therapy for iron overload). Several novel therapies are also in development, including curative gene manipulation techniques and disease modifying agents that target ineffective erythropoiesis and chronic hemolytic anemia. This review of α-thalassemia and its various manifestations provides practical information for clinicians who practice beyond those regions where it is found with high frequency.
Collapse
Affiliation(s)
- Khaled M Musallam
- Center for Research on Rare Blood Disorders (CR-RBD), Burjeel Medical City, Abu Dhabi, United Arab Emirates
| | - M Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, Ca' Granda Foundation IRCCS Maggiore Policlinico Hospital, Milan, Italy
| | - Thomas D Coates
- Hematology Section, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Kevin H M Kuo
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hanny Al-Samkari
- Center for Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sujit Sheth
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Vip Viprakasit
- Department of Pediatrics & Thalassemia Center, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
9
|
Alves-Rosa MF, Tayler NM, Dorta D, Coronado LM, Spadafora C. P. falciparum Invasion and Erythrocyte Aging. Cells 2024; 13:334. [PMID: 38391947 PMCID: PMC10887143 DOI: 10.3390/cells13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Plasmodium parasites need to find red blood cells (RBCs) that, on the one hand, expose receptors for the pathogen ligands and, on the other hand, maintain the right geometry to facilitate merozoite attachment and entry into the red blood cell. Both characteristics change with the maturation of erythrocytes. Some Plasmodia prefer younger vs. older erythrocytes. How does the life evolution of the RBC affect the invasion of the parasite? What happens when the RBC ages? In this review, we present what is known up until now.
Collapse
Affiliation(s)
| | | | | | | | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (M.F.A.-R.); (N.M.T.); (D.D.); (L.M.C.)
| |
Collapse
|
10
|
King NR, Martins Freire C, Touhami J, Sitbon M, Toye AM, Satchwell TJ. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog 2024; 20:e1011989. [PMID: 38315723 PMCID: PMC10868855 DOI: 10.1371/journal.ppat.1011989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.
Collapse
Affiliation(s)
- Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Jawida Touhami
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
11
|
Pance A, Ng BL, Mwikali K, Koutsourakis M, Agu C, Rouhani FJ, Montandon R, Law F, Ponstingl H, Rayner JC. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front Cell Infect Microbiol 2023; 13:1287355. [PMID: 38173794 PMCID: PMC10762799 DOI: 10.3389/fcimb.2023.1287355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.
Collapse
Affiliation(s)
- Alena Pance
- Wellcome Sanger Institute, Cambridge, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bee L. Ng
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Chukwuma Agu
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Ruddy Montandon
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances Law
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Julian C. Rayner
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
13
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
14
|
Opi DH, Ndila CM, Uyoga S, Macharia AW, Fennell C, Ochola LB, Nyutu G, Siddondo BR, Ojal J, Shebe M, Awuondo KO, Mturi N, Peshu N, Tsofa B, Band G, Maitland K, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria. PLoS Genet 2023; 19:e1010910. [PMID: 37708213 PMCID: PMC10522014 DOI: 10.1371/journal.pgen.1010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/26/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.
Collapse
Affiliation(s)
- D. Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne M. Ndila
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alex W. Macharia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Clare Fennell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy B. Ochola
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gideon Nyutu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bethseba R. Siddondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - John Ojal
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mohammed Shebe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy O. Awuondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benjamin Tsofa
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gavin Band
- Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | | | - Thomas N. Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Bhardwaj J, Upadhye A, Gaskin EL, Doumbo S, Kayentao K, Ongoiba A, Traore B, Crompton PD, Tran TM. Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study. J Infect Dis 2023; 228:202-211. [PMID: 36961831 PMCID: PMC10345479 DOI: 10.1093/infdis/jiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Waweru H, Kanoi BN, Kuja JO, Maranga M, Kongere J, Maina M, Kinyua J, Gitaka J. Limited genetic variations of the Rh5-CyRPA-Ripr invasion complex in Plasmodium falciparum parasite population in selected malaria-endemic regions, Kenya. FRONTIERS IN TROPICAL DISEASES 2023; 4:1102265. [PMID: 38406638 PMCID: PMC7615667 DOI: 10.3389/fitd.2023.1102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The invasion of human erythrocytes by Plasmodium falciparum merozoites requires interaction between parasite ligands and host receptors. Interaction of PfRh5-CyRPA-Ripr protein complex with basigin, an erythrocyte surface receptor, via PfRh5 is essential for erythrocyte invasion. Antibodies raised against each antigen component of the complex have demonstrated erythrocyte invasion inhibition, making these proteins potential blood-stage vaccine candidates. Genetic polymorphisms present a significant challenge in developing efficacious vaccines, leading to variant-specific immune responses. This study investigated the genetic variations of the PfRh5 complex proteins in P. falciparum isolates from Lake Victoria islands, Western Kenya. Here, twenty-nine microscopically confirmed P. falciparum field samples collected from islands in Lake Victoria between July 2014 and July 2016 were genotyped by whole genome sequencing, and results compared to sequences mined from the GenBank database, from a study conducted in Kilifi, as well as other sequences from the MalariaGEN repository. We analyzed the frequency of polymorphisms in the PfRh5 protein complex proteins, PfRh5, PfCyRPA, PfRipr, and PfP113, and their location mapped on the 3D protein complex structure. We identified a total of 58 variants in the PfRh5 protein complex. PfRh5 protein was the most polymorphic with 30 SNPs, while PfCyRPA was relatively conserved with 3 SNPs. The minor allele frequency of the SNPs ranged between 1.9% and 21.2%. Ten high-frequency alleles (>5%) were observed in PfRh5 at codons 147, 148, 277, 410, and 429 and in PfRipr at codons 190, 255, 259, and 1003. A SNP was located in protein-protein interaction region C203Y and F292V of PfRh5 and PfCyRPA, respectively. Put together, this study revealed low polymorphisms in the PfRh5 invasion complex in the Lake Victoria parasite population. However, the two mutations identified on the protein interaction regions prompts for investigation on their impacts on parasite invasion process to support the consideration of PfRh5 components as potential malaria vaccine candidates.
Collapse
Affiliation(s)
- Harrison Waweru
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Bernard N. Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Josiah O. Kuja
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mary Maranga
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - James Kongere
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Michael Maina
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| |
Collapse
|
17
|
Thiam A, Nisar S, Adjemout M, Gallardo F, Ka O, Mbengue B, Diop G, Dieye A, Marquet S, Rihet P. ATP2B4 regulatory genetic variants are associated with mild malaria. Malar J 2023; 22:68. [PMID: 36849945 PMCID: PMC9972758 DOI: 10.1186/s12936-023-04503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Genome-wide association studies have identified ATP2B4 as a severe malaria resistance gene. Recently, 8 potential causal regulatory variants have been shown to be associated with severe malaria. METHODS Genotyping of rs10900585, rs11240734, rs1541252, rs1541253, rs1541254, rs1541255, rs10751450, rs10751451 and rs10751452 was performed in 154 unrelated individuals (79 controls and 75 mild malaria patients). rs10751450, rs10751451 and rs10751452 were genotyped by Taqman assays, whereas the fragment of the ATP2B4 gene containing the remaining SNPs was sequenced. Logistic regression analysis was used to assess the association between the SNPs and mild malaria. RESULTS The results showed that mild malaria was associated with rs10900585, rs11240734, rs1541252, rs1541253, rs1541254, rs1541255, rs10751450, rs10751451 and rs10751452. The homozygous genotypes for the major alleles were associated with an increased risk of mild malaria. Furthermore, the haplotype containing the major alleles and that containing the minor alleles were the most frequent haplotypes. Individuals with the major haplotypes had a significantly higher risk of mild malaria compared to the carriers of the minor allele haplotype. CONCLUSIONS ATP2B4 polymorphisms that have been associated with severe malaria are also associated with mild malaria.
Collapse
Affiliation(s)
- Alassane Thiam
- grid.418508.00000 0001 1956 9596Unité d’Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal
| | - Samia Nisar
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France ,grid.444997.30000 0004 1761 3137Sardar Bahadur Khan Women’s University, Quetta, 1800 Balochistan Pakistan
| | - Mathieu Adjemout
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France
| | - Frederic Gallardo
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France
| | - Oumar Ka
- grid.8191.10000 0001 2186 9619Service d’Immunologie, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Babacar Mbengue
- grid.8191.10000 0001 2186 9619Service d’Immunologie, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Gora Diop
- grid.418508.00000 0001 1956 9596Unité d’Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alioune Dieye
- grid.8191.10000 0001 2186 9619Service d’Immunologie, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Sandrine Marquet
- Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France.
| | - Pascal Rihet
- Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France.
| |
Collapse
|
18
|
Joof F, Hartmann E, Jarvis A, Colley A, Cross JH, Avril M, Prentice AM, Cerami C. Genetic variations in human ATP2B4 gene alter Plasmodium falciparum in vitro growth in RBCs from Gambian adults. Malar J 2023; 22:5. [PMID: 36604655 PMCID: PMC9817369 DOI: 10.1186/s12936-022-04359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Polymorphisms in ATP2B4 coding for PMCA4b, the primary regulator of erythrocyte calcium concentration, have been shown by GWAS and cross-sectional studies to protect against severe malaria but the mechanism remains unknown. METHODS Using a recall-by-genotype design, we investigated the impact of a common haplotype variant in ATP2B4 using in vitro assays that model erythrocyte stage malaria pathogenesis. Ninety-six donors representing homozygote (carriers of the minor allele, C/C), heterozygote (T/C) and wildtype (T/T) carriers of the tagging SNP rs1541252 were selected from a cohort of over 12,000 participants in the Keneba Biobank. RESULTS Red blood cells (RBCs) from homozygotes showed reduced PMCA4b protein expression (mean fluorescence intensities (MFI = 2428 ± 124, 3544 ± 159 and 4261 ± 283], for homozygotes, heterozygotes and wildtypes respectively, p < 0.0001) and slower rates of calcium expulsion (calcium t½ ± SD = 4.7 ± 0.5, 1.8 ± 0.3 and 1.9 ± 0.4 min, p < 0.0001). Growth of a Plasmodium falciparum laboratory strain (FCR3) and two Gambian field isolates was decreased in RBCs from homozygotes compared to heterozygotes and wildtypes (p < 0.01). Genotype group did not affect parasite adhesion in vitro or var-gene expression in malaria-infected RBCs. Parasite growth was inhibited by a known inhibitor of PMCA4b, aurintricarboxylic acid (IC50 = 122uM CI: 110-134) confirming its sensitivity to calcium channel blockade. CONCLUSION The data support the hypothesis that this ATP2B4 genotype, common in The Gambia and other malaria-endemic areas, protects against severe malaria through the suppression of parasitaemia during an infection. Reduction in parasite density plays a pivotal role in disease outcome by minimizing all aspects of malaria pathogenesis. Follow up studies are needed to further elucidate the mechanism of protection and to determine if this ATP2B4 genotype carries a fitness cost or increases susceptibility to other human disease.
Collapse
Affiliation(s)
- Fatou Joof
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | - Alhassan Colley
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - James H Cross
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Andrew M Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Carla Cerami
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
19
|
Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, Aboagye B, Ghartey-Kwansah G. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. Cell Biosci 2022; 12:91. [PMID: 35715862 PMCID: PMC9204375 DOI: 10.1186/s13578-022-00830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cerebral malaria (CM) is a preeminent cause of severe disease and premature deaths in Sub-Saharan Africa, where an estimated 90% of cases occur. The key features of CM are a deep, unarousable coma that persists for longer than 1 h in patients with peripheral Plasmodium falciparum and no other explanation for encephalopathy. Significant research efforts on CM in the last few decades have focused on unravelling the molecular underpinnings of the disease pathogenesis and the identification of potential targets for therapeutic or pharmacologic intervention. These efforts have been greatly aided by the generation and study of mouse models of CM, which have provided great insights into key events of CM pathogenesis, revealed an interesting interplay of host versus parasite factors that determine the progression of malaria to severe disease and exposed possible targets for therapeutic intervention in severe disease.
Main Body
This paper reviews our current understanding of the pathogenic and immunologic factors involved in CM. We present the current view of the roles of certain gene products e.g., the var gene, ABCA-1, ICAM-1, TNF-alpha, CD-36, PfEMP-1 and G6PD, in CM pathogenesis. We also present alterations in the blood–brain barrier as a consequence of disease proliferation as well as complicated host and parasite interactions, including the T-cell immune reaction, reduced deformation of erythrocytes and cytoadherence. We further looked at recent advances in cerebral malaria treatment interventions by emphasizing on biomarkers, new diagnostic tools and emerging therapeutic options.
Conclusion
Finally, we discuss how the current understanding of some of these pathogenic and immunologic factors could inform the development of novel therapeutic interventions to fight CM.
Collapse
|
20
|
Erythrocyte-Plasmodium interactions: genetic manipulation of the erythroid lineage. Curr Opin Microbiol 2022; 70:102221. [PMID: 36242898 DOI: 10.1016/j.mib.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
Targeting critical host factors is an emerging concept in the treatment of infectious diseases. As obligate pathogens of erythrocytes, the Plasmodium spp. parasites that cause malaria must exploit erythroid host factors for their survival. However, our understanding of this important aspect of the malaria lifecycle is limited, in part because erythrocytes are enucleated cells that lack a nucleus and DNA, rendering them genetically intractable. Recent advances in genetic analysis of the erythroid lineage using small-hairpin RNAs and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) in red-blood cells derived from stem cells have generated new insights into the functions of several candidate host factors for Plasmodium parasites. Along with efforts in other hematopoietic cells, these advances have also laid a strong foundation for genetic screens to identify novel erythrocyte host factors for malaria.
Collapse
|
21
|
Abstract
Since the identification of sickle cell trait as a heritable form of resistance to malaria, candidate gene studies, linkage analysis paired with sequencing, and genome-wide association (GWA) studies have revealed many examples of genetic resistance and susceptibility to infectious diseases. GWA studies enabled the identification of many common variants associated with small shifts in susceptibility to infectious diseases. This is exemplified by multiple loci associated with leprosy, malaria, HIV, tuberculosis, and coronavirus disease 2019 (COVID-19), which illuminate genetic architecture and implicate pathways underlying pathophysiology. Despite these successes, most of the heritability of infectious diseases remains to be explained. As the field advances, current limitations may be overcome by applying methodological innovations such as cellular GWA studies and phenome-wide association (PheWA) studies as well as by improving methodological rigor with more precise case definitions, deeper phenotyping, increased cohort diversity, and functional validation of candidate loci in the laboratory or human challenge studies.
Collapse
Affiliation(s)
- Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA;
| | - Benjamin H Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Hamilton F, Mitchell R, Cunnington A, Ghazal P, Timpson NJ. HMOX1 STR polymorphism and malaria: an analysis of a large clinical dataset. Malar J 2022; 21:342. [PMID: 36397106 PMCID: PMC9670449 DOI: 10.1186/s12936-022-04352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Inducible expression of heme oxygenase-1 (encoded by the gene HMOX1) may determine protection from heme released during malaria infections. A variable length, short tandem GT(n) repeat (STR) in HMOX1 that may influence gene expression has been associated with outcomes of human malaria in some studies. In this study, an analysis of the association between variation at the STR in HMOX1 on severe malaria and severe malaria subtypes is presented in a large, prospectively collected dataset (MalariaGEN). METHODS The HMOX1 STR was imputed using a recently developed reference haplotype panel designed for STRs. The STR was classified by total length and split into three alleles based on an observed trimodal distribution of repeat lengths. Logistic regression was used to assess the association between this repeat on cases of severe malaria and severe malaria subtypes (cerebral malaria and severe malarial anaemia). Individual analyses were performed for each MalariaGEN collection site and combined for meta-analysis. One site (Kenya), had detailed clinical metadata, allowing the assessment of the effect of the STR on clinical variables (e.g. parasite count, platelet count) and regression analyses were performed to investigate whether the STR interacted with any clinical variables. RESULTS Data from 17,960 participants across 11 collection sites were analysed. In logistic regression, there was no strong evidence of association between STR length and severe malaria (Odds Ratio, OR: 0.96, 95% confidence intervals 0.91-1.02 per ten GT(n) repeats), although there did appear to be an association at some sites (e.g., Kenya, OR 0.90, 95% CI 0.82-0.99). There was no evidence of an interaction with any clinical variables. CONCLUSIONS Meta-analysis suggested that increasing HMOX1 STR length is unlikely to be reliably associated with severe malaria. It cannot be ruled out that repeat length may alter risk in specific populations, although whether this is due to chance variation, or true variation due to underlying biology (e.g., gene vs environment interaction) remains unanswered.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK.
- Infection Sciences, North Bristol NHS Trust, Bristol, England, UK.
| | - Ruth Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Aubrey Cunnington
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Peter Ghazal
- System Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
23
|
Chen H, Lin R, Lu Y, Zhang R, Gao Y, He Y, Xu S. Tracing Bai-Yue Ancestry in Aboriginal Li People on Hainan Island. Mol Biol Evol 2022; 39:6731089. [PMID: 36173765 PMCID: PMC9585476 DOI: 10.1093/molbev/msac210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the most prevalent aboriginal group on Hainan Island located between South China and the mainland of Southeast Asia, the Li people are believed to preserve some unique genetic information due to their isolated circumstances, although this has been largely uninvestigated. We performed the first whole-genome sequencing of 55 Hainan Li (HNL) individuals with high coverage (∼30-50×) to gain insight into their genetic history and potential adaptations. We identified the ancestry enriched in HNL (∼85%) is well preserved in present-day Tai-Kadai speakers residing in South China and North Vietnam, that is, Bai-Yue populations. A lack of admixture signature due to the geographical restriction exacerbated the bottleneck in the present-day HNL. The genetic divergence among Bai-Yue populations began ∼4,000-3,000 years ago when the proto-HNL underwent migration and the settling of Hainan Island. Finally, we identified signatures of positive selection in the HNL, some outstanding examples included FADS1 and FADS2 related to a diet rich in polyunsaturated fatty acids. In addition, we observed that malaria-driven selection had occurred in the HNL, with population-specific variants of malaria-related genes (e.g., CR1) present. Interestingly, HNL harbors a high prevalence of malaria leveraged gene variants related to hematopoietic function (e.g., CD3G) that may explain the high incidence of blood disorders such as B-cell lymphomas in the present-day HNL. The results have advanced our understanding of the genetic history of the Bai-Yue populations and have provided new insights into the adaptive scenarios of the Li people.
Collapse
Affiliation(s)
| | | | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | | | | |
Collapse
|
24
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Tai KY, Dhaliwal J, Wong K. Risk score prediction model based on single nucleotide polymorphism for predicting malaria: a machine learning approach. BMC Bioinformatics 2022; 23:325. [PMID: 35934714 PMCID: PMC9358850 DOI: 10.1186/s12859-022-04870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The malaria risk prediction is currently limited to using advanced statistical methods, such as time series and cluster analysis on epidemiological data. Nevertheless, machine learning models have been explored to study the complexity of malaria through blood smear images and environmental data. However, to the best of our knowledge, no study analyses the contribution of Single Nucleotide Polymorphisms (SNPs) to malaria using a machine learning model. More specifically, this study aims to quantify an individual's susceptibility to the development of malaria by using risk scores obtained from the cumulative effects of SNPs, known as weighted genetic risk scores (wGRS). RESULTS We proposed an SNP-based feature extraction algorithm that incorporates the susceptibility information of an individual to malaria to generate the feature set. However, it can become computationally expensive for a machine learning model to learn from many SNPs. Therefore, we reduced the feature set by employing the Logistic Regression and Recursive Feature Elimination (LR-RFE) method to select SNPs that improve the efficacy of our model. Next, we calculated the wGRS of the selected feature set, which is used as the model's target variables. Moreover, to compare the performance of the wGRS-only model, we calculated and evaluated the combination of wGRS with genotype frequency (wGRS + GF). Finally, Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), and Ridge regression algorithms are utilized to establish the machine learning models for malaria risk prediction. CONCLUSIONS Our proposed approach identified SNP rs334 as the most contributing feature with an importance score of 6.224 compared to the baseline, with an importance score of 1.1314. This is an important result as prior studies have proven that rs334 is a major genetic risk factor for malaria. The analysis and comparison of the three machine learning models demonstrated that LightGBM achieves the highest model performance with a Mean Absolute Error (MAE) score of 0.0373. Furthermore, based on wGRS + GF, all models performed significantly better than wGRS alone, in which LightGBM obtained the best performance (0.0033 MAE score).
Collapse
Affiliation(s)
- Kah Yee Tai
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jasbir Dhaliwal
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia.
| | - KokSheik Wong
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
26
|
Watson JA, Uyoga S, Wanjiku P, Makale J, Nyutu GM, Mturi N, George EC, Woodrow CJ, Day NPJ, Bejon P, Opoka RO, Dondorp AM, John CC, Maitland K, Williams TN, White NJ. Improving the diagnosis of severe malaria in African children using platelet counts and plasma PfHRP2 concentrations. Sci Transl Med 2022; 14:eabn5040. [PMID: 35857826 PMCID: PMC7613613 DOI: 10.1126/scitranslmed.abn5040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Severe malaria caused by Plasmodium falciparum is difficult to diagnose accurately in children in high-transmission settings. Using data from 2649 pediatric and adult patients enrolled in four studies of severe illness in three countries (Bangladesh, Kenya, and Uganda), we fitted Bayesian latent class models using two diagnostic markers: the platelet count and the plasma concentration of P. falciparum histidine-rich protein 2 (PfHRP2). In severely ill patients with clinical features consistent with severe malaria, the combination of a platelet count of ≤150,000/μl and a plasma PfHRP2 concentration of ≥1000 ng/ml had an estimated sensitivity of 74% and specificity of 93% in identifying severe falciparum malaria. Compared with misdiagnosed children, pediatric patients with true severe malaria had higher parasite densities, lower hematocrits, lower rates of invasive bacterial disease, and a lower prevalence of both sickle cell trait and sickle cell anemia. We estimate that one-third of the children enrolled into clinical studies of severe malaria in high-transmission settings in Africa had another cause of their severe illness.
Collapse
Affiliation(s)
- James A. Watson
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Uyoga
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Perpetual Wanjiku
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Johnstone Makale
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Gideon M. Nyutu
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Neema Mturi
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Elizabeth C. George
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Charles J. Woodrow
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Robert O. Opoka
- Makerere University, Department of Paediatrics and Child Health, Kampala, Uganda
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chandy C. John
- Department of Pediatrics, Indiana University, Indiana, IN, USA
| | - Kathryn Maitland
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, UK
| | - Thomas N. Williams
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, UK
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Alpha globin gene copy number and hypertension risk among Black Americans. PLoS One 2022; 17:e0271031. [PMID: 35834496 PMCID: PMC9282593 DOI: 10.1371/journal.pone.0271031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Alpha globin is expressed in the endothelial cells of human resistance arteries where it binds to endothelial nitric oxide synthase and limits release of the vasodilator nitric oxide. Genomic deletion of the alpha globin gene (HBA) is common among Black Americans and could lead to increased endothelial nitric oxide signaling and reduced risk of hypertension. METHODS Community-dwelling US adults aged 45 years or older were enrolled and examined from 2003 to 2007, followed by telephone every 6 months, and reexamined from 2013 to 2016. At both visits, trained personnel performed standardized, in-home blood pressure measurements and pill bottle review. Prevalent hypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg or anti-hypertensive medication use. Droplet digital PCR was used to determine HBA copy number. The associations of HBA copy number with prevalent hypertension, resistant hypertension, and incident hypertension were estimated using multivariable regression. RESULTS Among 9,684 Black participants, 7,439 (77%) had hypertension at baseline and 1,044 of those had treatment-resistant hypertension. 1,000 participants were not hypertensive at baseline and participated in a follow up visit; 517 (52%) developed hypertension over median 9.2 years follow-up. Increased HBA copy number was not associated with prevalent hypertension (PR = 1.00; 95%CI 0.98,1.02), resistant hypertension (PR = 0.95; 95%CI 0.86,1.05), or incident hypertension (RR = 0.96; 95%CI 0.86,1.07). CONCLUSIONS There were no associations between increased HBA copy number and risk of hypertension. These findings suggest that variation in alpha globin gene copy number does not modify the risk of hypertension among Black American adults.
Collapse
|
28
|
Chong ETJ, Goh LPW, Yap HJ, Yong EWC, Lee PC. Risk Association, Linkage Disequilibrium, and Haplotype Analyses of β-Like Globin Gene Polymorphisms with Malaria Risk in the Sabah Population of Malaysian Borneo. Genes (Basel) 2022; 13:1229. [PMID: 35886012 PMCID: PMC9319382 DOI: 10.3390/genes13071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the β-like globin gene of the human hosts to the risk of malaria are unclear. Therefore, this study investigates these associations in the Sabah population, with a high incidence of malaria cases. In brief, DNA was extracted from 188 post-diagnostic blood samples infected with Plasmodium parasites and 170 healthy controls without a history of malaria. Genotyping of the β-like globin C-158T, G79A, C16G, and C-551T SNPs was performed using a polymerase chain reaction-restriction fragment length polymorphism approach. Risk association, linkage disequilibrium (LD), and haplotype analyses of these SNPs were assessed. This study found that the variant allele in the C-158T and C16G SNPs were protective against malaria infections by 0.5-fold, while the variant allele in the G79A SNP had a 6-fold increased risk of malaria infection. No SNP combination was in perfect LD, but several haplotypes (CGCC, CGCT, and CGGC) were identified to link with different correlation levels of malaria risk in the population. In conclusion, the C-158T, G79A, and C16G SNPs in the β-like globin gene are associated with the risk of malaria. The haplotypes (CGCC, CGCT, and CGGC) identified in this study could serve as biomarkers to estimate malaria risk in the population. This study provides essential data for the design of malaria control and management strategies.
Collapse
Affiliation(s)
- Eric Tzyy Jiann Chong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Lucky Poh Wah Goh
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| | - Ho Jin Yap
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| | - Eric Wei Choong Yong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| |
Collapse
|
29
|
Hasegawa RB, Small DS. Estimating Malaria Vaccine Efficacy in the Absence of a Gold Standard Case Definition: Mendelian Factorial Design. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2020.1863222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Raiden B. Hasegawa
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA
| | - Dylan S. Small
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Asih PBS, Siregar JE, Dewayanti FK, Pravitasari NE, Rozi IE, Rizki AFM, Risandi R, Couper KN, Oceandy D, Syafruddin D. Treatment with specific and pan-plasma membrane calcium ATPase (PMCA) inhibitors reduces malaria parasite growth in vitro and in vivo. Malar J 2022; 21:206. [PMID: 35768835 PMCID: PMC9241181 DOI: 10.1186/s12936-022-04228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background Rapid emergence of Plasmodium resistance to anti-malarial drug mainstays has driven a continual effort to discover novel drugs that target different biochemical pathway (s) during infection. Plasma membrane Calcium + 2 ATPase (PMCA4), a novel plasma membrane protein that regulates Calcium levels in various cells, namely red blood cell (RBC), endothelial cell and platelets, represents a new biochemical pathway that may interfere with susceptibility to malaria and/or severe malaria. Methods This study identified several pharmacological inhibitors of PMCA4, namely ATA and Resveratrol, and tested for their anti-malarial activities in vitro and in vivo using the Plasmodium falciparum 3D7 strain, the Plasmodium berghei ANKA strain, and Plasmodium yoelii 17XL strain as model. Results In vitro propagation of P. falciparum 3D7 strain in the presence of a wide concentration range of the inhibitors revealed that the parasite growth was inhibited in a dose-dependent manner, with IC50s at 634 and 0.231 µM, respectively. Results The results confirmed that both compounds exhibit moderate to potent anti-malarial activities with the strongest parasite growth inhibition shown by resveratrol at 0.231 µM. In vivo models using P. berghei ANKA for experimental cerebral malaria and P. yoelii 17XL for the effect on parasite growth, showed that the highest dose of ATA, 30 mg/kg BW, increased survival of the mice. Likewise, resveratrol inhibited the parasite growth following 4 days intraperitoneal injection at the dose of 100 mg/kg BW. Conclusion The findings indicate that the PMCA4 of the human host may be a potential target for novel anti-malarials, either as single drug or in combination with the currently available effective anti-malarials.
Collapse
Affiliation(s)
- Puji B S Asih
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Josephine E Siregar
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Farahana K Dewayanti
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Normalita E Pravitasari
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Ismail E Rozi
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Andita F M Rizki
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Rifqi Risandi
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Kevin N Couper
- Division of Infection, Immunity & Respiratory Medicine, The University of Manchester, Manchester, UK
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia. .,Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| |
Collapse
|
31
|
Uyoga S, Watson JA, Wanjiku P, Rop JC, Makale J, Macharia AW, Kariuki SN, Nyutu GM, Shebe M, Mosobo M, Mturi N, Rockett KA, Woodrow CJ, Dondorp AM, Maitland K, White NJ, Williams TN. The impact of malaria-protective red blood cell polymorphisms on parasite biomass in children with severe Plasmodium falciparum malaria. Nat Commun 2022; 13:3307. [PMID: 35676275 PMCID: PMC9178016 DOI: 10.1038/s41467-022-30990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Severe falciparum malaria is a major cause of preventable child mortality in sub-Saharan Africa. Plasma concentrations of P. falciparum Histidine-Rich Protein 2 (PfHRP2) have diagnostic and prognostic value in severe malaria. We investigate the potential use of plasma PfHRP2 and the sequestration index (the ratio of PfHRP2 to parasite density) as quantitative traits for case-only genetic association studies of severe malaria. Data from 2198 Kenyan children diagnosed with severe malaria, genotyped for 14 major candidate genes, show that polymorphisms in four major red cell genes that lead to hemoglobin S, O blood group, α-thalassemia, and the Dantu blood group, are associated with substantially lower admission plasma PfHRP2 concentrations, consistent with protective effects against extensive parasitized erythrocyte sequestration. In contrast the known protective ATP2B4 polymorphism is associated with higher plasma PfHRP2 concentrations, lower parasite densities and a higher sequestration index. We provide testable hypotheses for the mechanism of protection of ATP2B4.
Collapse
Affiliation(s)
- S Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - J A Watson
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - P Wanjiku
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - J C Rop
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - J Makale
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - A W Macharia
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - S N Kariuki
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - G M Nyutu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - M Shebe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - M Mosobo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - N Mturi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - K A Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - C J Woodrow
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - A M Dondorp
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - K Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Surgery and Cancer, Institute of Global Health Innovation, Imperial College, London, UK
| | - N J White
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Department of Surgery and Cancer, Institute of Global Health Innovation, Imperial College, London, UK.
| |
Collapse
|
32
|
Introini V, Govendir MA, Rayner JC, Cicuta P, Bernabeu M. Biophysical Tools and Concepts Enable Understanding of Asexual Blood Stage Malaria. Front Cell Infect Microbiol 2022; 12:908241. [PMID: 35711656 PMCID: PMC9192966 DOI: 10.3389/fcimb.2022.908241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Forces and mechanical properties of cells and tissues set constraints on biological functions, and are key determinants of human physiology. Changes in cell mechanics may arise from disease, or directly contribute to pathogenesis. Malaria gives many striking examples. Plasmodium parasites, the causative agents of malaria, are single-celled organisms that cannot survive outside their hosts; thus, thost-pathogen interactions are fundamental for parasite’s biological success and to the host response to infection. These interactions are often combinations of biochemical and mechanical factors, but most research focuses on the molecular side. However, Plasmodium infection of human red blood cells leads to changes in their mechanical properties, which has a crucial impact on disease pathogenesis because of the interaction of infected red blood cells with other human tissues through various adhesion mechanisms, which can be probed and modelled with biophysical techniques. Recently, natural polymorphisms affecting red blood cell biomechanics have also been shown to protect human populations, highlighting the potential of understanding biomechanical factors to inform future vaccines and drug development. Here we review biophysical techniques that have revealed new aspects of Plasmodium falciparum invasion of red blood cells and cytoadhesion of infected cells to the host vasculature. These mechanisms occur differently across Plasmodium species and are linked to malaria pathogenesis. We highlight promising techniques from the fields of bioengineering, immunomechanics, and soft matter physics that could be beneficial for studying malaria. Some approaches might also be applied to other phases of the malaria lifecycle and to apicomplexan infections with complex host-pathogen interactions.
Collapse
Affiliation(s)
- Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Viola Introini,
| | - Matt A. Govendir
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Identification of ATP2B4 Regulatory Element Containing Functional Genetic Variants Associated with Severe Malaria. Int J Mol Sci 2022; 23:ijms23094849. [PMID: 35563239 PMCID: PMC9101746 DOI: 10.3390/ijms23094849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Genome-wide association studies for severe malaria (SM) have identified 30 genetic variants mostly located in non-coding regions. Here, we aimed to identify potential causal genetic variants located in these loci and demonstrate their functional activity. We systematically investigated the regulatory effect of the SNPs in linkage disequilibrium (LD) with the malaria-associated genetic variants. Annotating and prioritizing genetic variants led to the identification of a regulatory region containing five ATP2B4 SNPs in LD with rs10900585. We found significant associations between SM and rs10900585 and our candidate SNPs (rs11240734, rs1541252, rs1541253, rs1541254, and rs1541255) in a Senegalese population. Then, we demonstrated that both individual SNPs and the combination of SNPs had regulatory effects. Moreover, CRISPR/Cas9-mediated deletion of this region decreased ATP2B4 transcript and protein levels and increased Ca2+ intracellular concentration in the K562 cell line. Our data demonstrate that severe malaria-associated genetic variants alter the expression of ATP2B4 encoding a plasma membrane calcium-transporting ATPase 4 (PMCA4) expressed on red blood cells. Altering the activity of this regulatory element affects the risk of SM, likely through calcium concentration effect on parasitaemia.
Collapse
|
34
|
Groomes PV, Kanjee U, Duraisingh MT. RBC membrane biomechanics and Plasmodium falciparum invasion: probing beyond ligand-receptor interactions. Trends Parasitol 2022; 38:302-315. [PMID: 34991983 PMCID: PMC8917059 DOI: 10.1016/j.pt.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.
Collapse
Affiliation(s)
- Patrice V Groomes
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Tai KY, Dhaliwal J, Balasubramaniam V. Leveraging Mann-Whitney U test on large-scale genetic variation data for analysing malaria genetic markers. Malar J 2022; 21:79. [PMID: 35264165 PMCID: PMC8905822 DOI: 10.1186/s12936-022-04104-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The malaria risk analysis of multiple populations is crucial and of great importance whilst compressing limitations. However, the exponential growth in diversity and accumulation of genetic variation data obtained from malaria-infected patients through Genome-Wide Association Studies opens up unprecedented opportunities to explore the significant differences between genetic markers (risk factors), particularly in the resistance or susceptibility of populations to malaria risk. Thus, this study proposes using statistical tests to analyse large-scale genetic variation data, comprising 20,854 samples from 11 populations within three continents: Africa, Oceania, and Asia. Methods Even though statistical tests have been utilized to conduct case–control studies since the 1950s to link risk factors to a particular disease, several challenges faced, including the choice of data (ordinal vs. non-ordinal) and test (parametric vs. non-parametric). This study overcomes these challenges by adopting the Mann–Whitney U test to analyse large-scale genetic variation data; to explore the statistical significance of markers between populations; and to further identify the highly differentiated markers. Results The findings of this study revealed a significant difference in the genetic markers between populations (p < 0.01) in all the case groups and most control groups. However, for the highly differentiated genetic markers, a significant difference (p < 0.01) was present for most genetic markers with varying p-values between the populations in the case and control groups. Moreover, several genetic markers were observed to have very significant differences (p < 0.001) across all populations, while others exist between certain specific populations. Also, several genetic markers have no significant differences between populations. Conclusions These findings further support that the genetic markers contribute differently between populations towards malaria resistance or susceptibility, thus showing differences in the likelihood of malaria infection. In addition, this study demonstrated the robustness of the Mann–Whitney U test in analysing genetic markers in large-scale genetic variation data, thereby indicating an alternative method to explore genetic markers in other complex diseases. The findings hold great promise for genetic markers analysis, and the pipeline emphasized in this study can fully be reproduced to analyse new data. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04104-x.
Collapse
Affiliation(s)
- Kah Yee Tai
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jasbir Dhaliwal
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia.
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
36
|
Futagbi G, Otu PS, Abdul-Rahman M, Aidoo EK, Lo AC, Gyan BA, Afrane YA, Amoah LE. Association of TNF-Alpha, MBL2, NOS2, and G6PD with Malaria Outcomes in People in Southern Ghana. Genet Res (Camb) 2022; 2022:6686406. [PMID: 35291755 PMCID: PMC8901335 DOI: 10.1155/2022/6686406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background One major issue that has set back the gains of the numerous malaria control interventions that national malaria control programs have implemented is asymptomatic malaria. Certain host genetic factors are known to influence symptomatic malaria; however, not much is known about how host genetics influences the acquisition of asymptomatic malaria. Methods Genomic DNA was extracted from whole blood collected from 60 symptomatic and 149 nonfebrile (asymptomatic, N = 109, and uninfected, N = 40) volunteers aged between 2 and 69 years from a high (Obom) and a low (Asutsuare) malaria transmission setting in Southern Ghana. Restriction fragment length polymorphism (RFLP) was used to determine polymorphisms at the MBL2 54, TNF-α 308, NOS2 954, and G6PD 202/376 gene loci. Results Polymorphisms at the MBL2 54 and TNF-α 308 loci were significantly different amongst the three categories of volunteers in both Asutsuare (p = 0.006) and Obom (p=0.05). In Asutsuare, a low malaria transmission area, the allele G has significantly higher odds (3.15) of supporting asymptomatic malaria as against symptomatic malaria. There were significantly higher odds of TNF-α genotype GA being associated with symptomatic malaria as against asymptomatic malaria in both sites, Obom (p=0.027) and Asutsuare (p=0.027). The allele B of the G6PD gene was more prevalent in symptomatic rather than asymptomatic parasite-infected individuals in both Obom (p=0.001) and Asutsuare (p=0.003). Conclusion Individuals in Southern Ghana carrying the TNF-α 308 GA genotype are more likely to exhibit symptoms of malaria when infected with the malaria parasite as opposed to harboring an asymptomatic infection. Also, the B allele of the G6PD gene is likely to prevent a P. falciparum-infected person from exhibiting symptoms and thereby promote asymptomatic parasite carriage.
Collapse
Affiliation(s)
- Godfred Futagbi
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Paulina S Otu
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Mubarak Abdul-Rahman
- Department of Pathology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Ebenezer K Aidoo
- Department of Medical Laboratory, Accra Technical University, Accra, Ghana
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
37
|
Gilchrist JJ, Kariuki SN, Watson JA, Band G, Uyoga S, Ndila CM, Mturi N, Mwarumba S, Mohammed S, Mosobo M, Alasoo K, Rockett KA, Mentzer AJ, Kwiatkowski DP, Hill AVS, Maitland K, Scott JAG, Williams TN. BIRC6 modifies risk of invasive bacterial infection in Kenyan children. eLife 2022; 11:77461. [PMID: 35866869 PMCID: PMC9391038 DOI: 10.7554/elife.77461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Invasive bacterial disease is a major cause of morbidity and mortality in African children. Despite being caused by diverse pathogens, children with sepsis are clinically indistinguishable from one another. In spite of this, most genetic susceptibility loci for invasive infection that have been discovered to date are pathogen specific and are not therefore suggestive of a shared genetic architecture of bacterial sepsis. Here, we utilise probabilistic diagnostic models to identify children with a high probability of invasive bacterial disease among critically unwell Kenyan children with Plasmodium falciparum parasitaemia. We construct a joint dataset including 1445 bacteraemia cases and 1143 severe malaria cases, and population controls, among critically unwell Kenyan children that have previously been genotyped for human genetic variation. Using these data, we perform a cross-trait genome-wide association study of invasive bacterial infection, weighting cases according to their probability of bacterial disease. In doing so, we identify and validate a novel risk locus for invasive infection secondary to multiple bacterial pathogens, that has no apparent effect on malaria risk. The locus identified modifies splicing of BIRC6 in stimulated monocytes, implicating regulation of apoptosis and autophagy in the pathogenesis of sepsis in Kenyan children.
Collapse
Affiliation(s)
- James J Gilchrist
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom,MRC–Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom,Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Silvia N Kariuki
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Gavin Band
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Carolyne M Ndila
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Neema Mturi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Salim Mwarumba
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Shebe Mohammed
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Moses Mosobo
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Kaur Alasoo
- Institute of Computer Science, University of TartuTartuEstonia
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom,Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Adrian VS Hill
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom,The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya,Division of Medicine, Imperial CollegeLondonUnited Kingdom
| | - J Anthony G Scott
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya,Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial CollegeLondonUnited Kingdom
| |
Collapse
|
38
|
Watson JA, White NJ, Dondorp AM. Falciparum malaria mortality in sub-Saharan Africa in the pretreatment era. Trends Parasitol 2022; 38:11-14. [PMID: 34862145 DOI: 10.1016/j.pt.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Driven by the malaria-protective effect of sickle-cell trait, balancing selection results in hemoglobin S equilibrium allele frequencies of between 15% and 20% in areas of high Plasmodium falciparum transmission in sub-Saharan Africa. From this we estimate that the malaria-attributable childhood mortality in the pretreatment era was between 15% and 24%.
Collapse
Affiliation(s)
- James A Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Ebel ER, Uricchio LH, Petrov DA, Egan ES. Revisiting the malaria hypothesis: accounting for polygenicity and pleiotropy. Trends Parasitol 2022; 38:290-301. [PMID: 35065882 PMCID: PMC8916997 DOI: 10.1016/j.pt.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
The malaria hypothesis predicts local, balancing selection of deleterious alleles that confer strong protection from malaria. Three protective variants, recently discovered in red cell genes, are indeed more common in African than European populations. Still, up to 89% of the heritability of severe malaria is attributed to many genome-wide loci with individually small effects. Recent analyses of hundreds of genome-wide association studies (GWAS) in humans suggest that most functional, polygenic variation is pleiotropic for multiple traits. Interestingly, GWAS alleles and red cell traits associated with small reductions in malaria risk are not enriched in African populations. We propose that other selective and neutral forces, in addition to malaria prevalence, explain the global distribution of most genetic variation impacting malaria risk.
Collapse
|
40
|
Hedberg P, Sirel M, Moll K, Kiwuwa MS, Höglund P, Ribacke U, Wahlgren M. Red blood cell blood group A antigen level affects the ability of heparin and PfEMP1 antibodies to disrupt Plasmodium falciparum rosettes. Malar J 2021; 20:441. [PMID: 34794445 PMCID: PMC8600353 DOI: 10.1186/s12936-021-03975-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background The histo-blood group ABO system has been associated with adverse outcomes in COVID-19, thromboembolic diseases and Plasmodium falciparum malaria. An integral part of the severe malaria pathogenesis is rosetting, the adherence of parasite infected red blood cells (RBCs) to uninfected RBCs. Rosetting is influenced by the host’s ABO blood group (Bg) and rosettes formed in BgA have previously been shown to be more resilient to disruption by heparin and shield the parasite derived surface antigens from antibodies. However, data on rosetting in weak BgA subgroups is scarce and based on investigations of relatively few donors. Methods An improved high-throughput flow cytometric assay was employed to investigate rosetting characteristics in an extensive panel of RBC donor samples of all four major ABO Bgs, as well as low BgA expressing samples. Results All non-O Bgs shield the parasite surface antigens from strain-specific antibodies towards P. falciparum erythrocyte membrane protein 1 (PfEMP1). A positive correlation between A-antigen levels on RBCs and rosette tightness was observed, protecting the rosettes from heparin- and antibody-mediated disruption. Conclusions These results provide new insights into how the ABO Bg system affects the disease outcome and cautions against interpreting the results from the heterogeneous BgA phenotype as a single group in epidemiological and experimental studies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03975-w.
Collapse
Affiliation(s)
- Pontus Hedberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 65, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Madle Sirel
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Kirsten Moll
- Department of Medicine, Huddinge, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Mpungu Steven Kiwuwa
- Department of Child Health and Development Centre, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Petter Höglund
- Department of Medicine, Huddinge, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
41
|
Amoah LE, Asare KK, Dickson D, Abankwa J, Busayo A, Bredu D, Annan S, Asumah GA, Peprah NY, Asamoah A, Laurencia Malm K. Genotypic glucose-6-phosphate dehydrogenase (G6PD) deficiency protects against Plasmodium falciparum infection in individuals living in Ghana. PLoS One 2021; 16:e0257562. [PMID: 34570821 PMCID: PMC8476035 DOI: 10.1371/journal.pone.0257562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/05/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The global effort to eradicate malaria requires a drastic measure to terminate relapse from hypnozoites as well as transmission via gametocytes in malaria-endemic areas. Primaquine has been recommended for the treatment of P. falciparum gametocytes and P. vivax hypnozoites, however, its implementation is challenged by the high prevalence of G6PD deficient (G6PDd) genotypes in malaria endemic countries. The objective of this study was to profile G6PDd genotypic variants and correlate them with malaria prevalence in Ghana. METHODS A cross-sectional survey of G6PDd genotypic variants was conducted amongst suspected malaria patients attending health care facilities across the entire country. Malaria was diagnosed using microscopy whilst G6PD deficiency was determined using restriction fragment length polymorphisms at position 376 and 202 of the G6PD gene. The results were analysed using GraphPad prism. RESULTS A total of 6108 subjects were enrolled in the study with females representing 65.59% of the population. The overall prevalence of malaria was 36.31%, with malaria prevalence among G6PDd genotypic variants were 0.07% for A-A- homozygous deficient females, 1.31% and 3.03% for AA- and BA- heterozygous deficient females respectively and 2.03% for A- hemizygous deficient males. The odd ratio (OR) for detecting P. falciparum malaria infection in the A-A- genotypic variant was 0.0784 (95% CI: 0.0265-0.2319, p<0.0001). Also, P. malariae and P. ovale parasites frequently were observed in G6PD B variants relative to G6PD A- variants. CONCLUSION G6PDd genotypic variants, A-A-, AA- and A- protect against P. falciparum, P. ovale and P. malariae infection in Ghana.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Dept. of Immunology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | - Kwame Kumi Asare
- Dept. of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Donu Dickson
- Dept. of Immunology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | - Joana Abankwa
- Dept. of Immunology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | - Abena Busayo
- Dept. of Immunology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Bredu
- Dept. of Immunology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | - Sherifa Annan
- Dept. of Immunology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | | | | | | | | |
Collapse
|
42
|
Ebel ER, Kuypers FA, Lin C, Petrov DA, Egan ES. Common host variation drives malaria parasite fitness in healthy human red cells. eLife 2021; 10:e69808. [PMID: 34553687 PMCID: PMC8497061 DOI: 10.7554/elife.69808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The replication of Plasmodium falciparum parasites within red blood cells (RBCs) causes severe disease in humans, especially in Africa. Deleterious alleles like hemoglobin S are well-known to confer strong resistance to malaria, but the effects of common RBC variation are largely undetermined. Here, we collected fresh blood samples from 121 healthy donors, most with African ancestry, and performed exome sequencing, detailed RBC phenotyping, and parasite fitness assays. Over one-third of healthy donors unknowingly carried alleles for G6PD deficiency or hemoglobinopathies, which were associated with characteristic RBC phenotypes. Among non-carriers alone, variation in RBC hydration, membrane deformability, and volume was strongly associated with P. falciparum growth rate. Common genetic variants in PIEZO1, SPTA1/SPTB, and several P. falciparum invasion receptors were also associated with parasite growth rate. Interestingly, we observed little or negative evidence for divergent selection on non-pathogenic RBC variation between Africans and Europeans. These findings suggest a model in which globally widespread variation in a moderate number of genes and phenotypes modulates P. falciparum fitness in RBCs.
Collapse
Affiliation(s)
- Emily R Ebel
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Frans A Kuypers
- Children's Hospital Oakland Research InstituteOaklandUnited States
| | - Carrie Lin
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Elizabeth S Egan
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Department of Microbiology & Immunology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
43
|
Ndila CM, Nyirongo V, Macharia AW, Jeffreys AE, Rowlands K, Hubbart C, Busby GBJ, Band G, Harding RM, Rockett KA, Williams TN. Haplotype heterogeneity and low linkage disequilibrium reduce reliable prediction of genotypes for the ‑α 3.7I form of α-thalassaemia using genome-wide microarray data. Wellcome Open Res 2021; 5:287. [PMID: 34632085 PMCID: PMC8474104 DOI: 10.12688/wellcomeopenres.16320.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The -α 3.7I-thalassaemia deletion is very common throughout Africa because it protects against malaria. When undertaking studies to investigate human genetic adaptations to malaria or other diseases, it is important to account for any confounding effects of α-thalassaemia to rule out spurious associations. Methods: In this study, we have used direct α-thalassaemia genotyping to understand why GWAS data from a large malaria association study in Kilifi Kenya did not identify the α-thalassaemia signal. We then explored the potential use of a number of new approaches to using GWAS data for imputing α-thalassaemia as an alternative to direct genotyping by PCR. Results: We found very low linkage-disequilibrium of the directly typed data with the GWAS SNP markers around α-thalassaemia and across the haemoglobin-alpha ( HBA) gene region, which along with a complex haplotype structure, could explain the lack of an association signal from the GWAS SNP data. Some indirect typing methods gave results that were in broad agreement with those derived from direct genotyping and could identify an association signal, but none were sufficiently accurate to allow correct interpretation compared with direct typing, leading to confusing or erroneous results. Conclusions: We conclude that going forwards, direct typing methods such as PCR will still be required to account for α-thalassaemia in GWAS studies.
Collapse
Affiliation(s)
- Carolyne M. Ndila
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
| | - Vysaul Nyirongo
- United Nation Statistics Division, United Nations, New York, New York, 10017, USA
| | - Alexander W. Macharia
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
| | - Kate Rowlands
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
| | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
| | - George B. J. Busby
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, Oxfordshire, OX3 7LF, UK
| | - Gavin Band
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Rosalind M. Harding
- Departments of Zoology and Statistics, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, UK
| | - Kirk A. Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Thomas N. Williams
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
- Department of Infectious Diseases, Imperial College Faculty of Medicine, London, W2 1NY, UK
| | - MalariaGEN Consortium
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
- United Nation Statistics Division, United Nations, New York, New York, 10017, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, Oxfordshire, OX3 7LF, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Departments of Zoology and Statistics, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, UK
- Department of Infectious Diseases, Imperial College Faculty of Medicine, London, W2 1NY, UK
| |
Collapse
|
44
|
Sheng Z, Liu Y, Li P, Qin J. Likelihood ratio test for genetic association study with case–control data under Probit model. J Appl Stat 2021; 49:3717-3731. [DOI: 10.1080/02664763.2021.1962261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhen Sheng
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, Shanghai, People's Republic of China
- School of Statistics, East China Normal University, Shanghai, People's Republic of China
| | - Yukun Liu
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, Shanghai, People's Republic of China
- School of Statistics, East China Normal University, Shanghai, People's Republic of China
| | - Pengfei Li
- Department of Statistics and Actuarial Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jing Qin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Watson JA, Ndila CM, Uyoga S, Macharia A, Nyutu G, Mohammed S, Ngetsa C, Mturi N, Peshu N, Tsofa B, Rockett K, Leopold S, Kingston H, George EC, Maitland K, Day NPJ, Dondorp AM, Bejon P, Williams TN, Holmes CC, White NJ. Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision. eLife 2021; 10:e69698. [PMID: 34225842 PMCID: PMC8315799 DOI: 10.7554/elife.69698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.
Collapse
Affiliation(s)
- James A Watson
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Carolyne M Ndila
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Alexander Macharia
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Gideon Nyutu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Shebe Mohammed
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Caroline Ngetsa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Neema Mturi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Norbert Peshu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Benjamin Tsofa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Kirk Rockett
- The Wellcome Sanger InstituteCambridgeUnited Kingdom
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Stije Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Hugh Kingston
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Elizabeth C George
- Medical Research Council Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
- Institute of Global Health Innovation, Imperial College, LondonLondonUnited Kingdom
| | - Nicholas PJ Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
- Institute of Global Health Innovation, Imperial College, LondonLondonUnited Kingdom
| | - Chris C Holmes
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Statistics, University of OxfordOxfordUnited Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
46
|
Villegas-Mendez A, Stafford N, Haley MJ, Pravitasari NE, Baudoin F, Ali A, Asih PBS, Siregar JE, Baena E, Syafruddin D, Couper KN, Oceandy D. The plasma membrane calcium ATPase 4 does not influence parasite levels but partially promotes experimental cerebral malaria during murine blood stage malaria. Malar J 2021; 20:297. [PMID: 34215257 PMCID: PMC8252299 DOI: 10.1186/s12936-021-03832-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recent genome wide analysis studies have identified a strong association between single nucleotide variations within the human ATP2B4 gene and susceptibility to severe malaria. The ATP2B4 gene encodes the plasma membrane calcium ATPase 4 (PMCA4), which is responsible for controlling the physiological level of intracellular calcium in many cell types, including red blood cells (RBCs). It is, therefore, postulated that genetic differences in the activity or expression level of PMCA4 alters intracellular Ca2+ levels and affects RBC hydration, modulating the invasion and growth of the Plasmodium parasite within its target host cell. METHODS In this study the course of three different Plasmodium spp. infections were examined in mice with systemic knockout of Pmca4 expression. RESULTS Ablation of PMCA4 reduced the size of RBCs and their haemoglobin content but did not affect RBC maturation and reticulocyte count. Surprisingly, knockout of PMCA4 did not significantly alter peripheral parasite burdens or the dynamics of blood stage Plasmodium chabaudi infection or reticulocyte-restricted Plasmodium yoelii infection. Interestingly, although ablation of PMCA4 did not affect peripheral parasite levels during Plasmodium berghei infection, it did promote slight protection against experimental cerebral malaria, associated with a minor reduction in antigen-experienced T cell accumulation in the brain. CONCLUSIONS The finding suggests that PMCA4 may play a minor role in the development of severe malarial complications, but that this appears independent of direct effects on parasite invasion, growth or survival within RBCs.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Michael J Haley
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | | | - Florence Baudoin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Adnan Ali
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | | | | | - Esther Baena
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, 10430, Indonesia
| | - Kevin N Couper
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
47
|
Rusmini M, Uva P, Amoroso A, Tolomeo M, Cavalli A. How Genetics Might Explain the Unusual Link Between Malaria and COVID-19. Front Med (Lausanne) 2021; 8:650231. [PMID: 33981715 PMCID: PMC8107224 DOI: 10.3389/fmed.2021.650231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated coronavirus disease 2019 (COVID-19) pandemic has been the subject of a large number of studies in recent times. Here, starting from the evidence that in Italy, the areas with the lowest number of COVID-19 cases were those with the highest incidence of malaria in the early 1900's, we explore possible inverse relationships between malaria and COVID-19. Indeed, some genetic variants, which have been demonstrated to give an advantage against malaria, can also play a role in the incidence and severity of SARS-CoV-2 infections (e.g., the ACE2 receptor). To verify this scientific hypothesis, we here use public data from whole-genome sequencing (WGS) experiments to extrapolate the genetic information of 46 world populations with matched COVID-19 data. In particular, we focus on 47 genes, including ACE2 and genes which have previously been reported to play a role in malaria. Only common variants (>5%) in at least 30% of the selected populations were considered, and, for this subset, we correlate the intra-population allele frequency with the COVID-19 data (cases/million inhabitants), eventually pinpointing meaningful variants in 6 genes. This study allows us to distinguish between positive and negative correlations, i.e., variants whose frequency significantly increases with increasing or decreasing COVID-19 cases. Finally, we discuss the possible molecular mechanisms associated with these variants and advance potential therapeutic options, which may help fight and/or prevent COVID-19.
Collapse
Affiliation(s)
- Marta Rusmini
- Computational and Chemical Biology, Italian Institute of Technology, Genova, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) G. Gaslini, Genova, Italy
| | - Paolo Uva
- Computational and Chemical Biology, Italian Institute of Technology, Genova, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) G. Gaslini, Genova, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Manlio Tolomeo
- Department of Health Promotion Sciences, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, Palermo, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Proteome of Stored RBC Membrane and Vesicles from Heterozygous Beta Thalassemia Donors. Int J Mol Sci 2021; 22:ijms22073369. [PMID: 33806028 PMCID: PMC8037027 DOI: 10.3390/ijms22073369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023] Open
Abstract
Genetic characteristics of blood donors may impact the storability of blood products. Despite higher basal stress, red blood cells (RBCs) from eligible donors that are heterozygous for beta-thalassemia traits (βThal+) possess a differential nitrogen-related metabolism, and cope better with storage stress compared to the control. Nevertheless, not much is known about how storage impacts the proteome of membrane and extracellular vesicles (EVs) in βThal+. For this purpose, RBC units from twelve βThal+ donors were studied through proteomics, immunoblotting, electron microscopy, and functional ELISA assays, versus units from sex- and aged-matched controls. βThal+ RBCs exhibited less irreversible shape modifications. Their membrane proteome was characterized by different levels of structural, lipid raft, transport, chaperoning, redox, and enzyme components. The most prominent findings include the upregulation of myosin proteoforms, arginase-1, heat shock proteins, and protein kinases, but the downregulation of nitrogen-related transporters. The unique membrane proteome was also mirrored, in part, to that of βThal+ EVs. Network analysis revealed interesting connections of membrane vesiculation with storage and stress hemolysis, along with proteome control modulators of the RBC membrane. Our findings, which are in line with the mild but consistent oxidative stress these cells experience in vivo, provide insight into the physiology and aging of stored βThal+ RBCs.
Collapse
|
49
|
Amuzu DS, Rockett KA, Leffler EM, Ansah F, Amoako N, Morang'a CM, Hubbart C, Rowlands K, Jeffreys AE, Amenga-Etego LN, Kwiatkowski DP, Awandare GA. High-throughput genotyping assays for identification of glycophorin B deletion variants in population studies. Exp Biol Med (Maywood) 2020; 246:916-928. [PMID: 33325748 PMCID: PMC8022085 DOI: 10.1177/1535370220968545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycophorins are the most abundant sialoglycoproteins on the surface of human erythrocyte membranes. Genetic variation in glycophorin region of human chromosome 4 (containing GYPA, GYPB, and GYPE genes) is of interest because the gene products serve as receptors for pathogens of major public health interest, including Plasmodiumsp., Babesiasp., Influenza virus, Vibrio cholerae El Tor Hemolysin, and Escherichia coli. A large structural rearrangement and hybrid glycophorin variant, known as Dantu, which was identified in East African populations, has been linked with a 40% reduction in risk for severe malaria. Apart from Dantu, other large structural variants exist, with the most common being deletion of the whole GYPB gene and its surrounding region, resulting in multiple different deletion forms. In West Africa particularly, these deletions are estimated to account for between 5 and 15% of the variation in different populations, mostly attributed to the forms known as DEL1 and DEL2. Due to the lack of specific variant assays, little is known of the distribution of these variants. Here, we report a modification of a previous GYPB DEL1 assay and the development of a novel GYPB DEL2 assay as high-throughput PCR-RFLP assays, as well as the identification of the crossover/breakpoint for GYPB DEL2. Using 393 samples from three study sites in Ghana as well as samples from HapMap and 1000 G projects for validation, we show that our assays are sensitive and reliable for genotyping GYPB DEL1 and DEL2. To the best of our knowledge, this is the first report of such high-throughput genotyping assays by PCR-RFLP for identifying specific GYPB deletion types in populations. These assays will enable better identification of GYPB deletions for large genetic association studies and functional experiments to understand the role of this gene cluster region in susceptibility to malaria and other diseases.
Collapse
Affiliation(s)
- Dominic Sy Amuzu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, GH 0233, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, GH 0233, Ghana.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.,Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Ellen M Leffler
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK.,Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, GH 0233, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, GH 0233, Ghana
| | - Nicholas Amoako
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, GH 0233, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, GH 0233, Ghana
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, GH 0233, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, GH 0233, Ghana
| | - Christina Hubbart
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Kate Rowlands
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Anna E Jeffreys
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, GH 0233, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, GH 0233, Ghana
| | - Dominic P Kwiatkowski
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.,Wellcome Sanger Institute, Hinxton CB10 1SA, UK.,Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, GH 0233, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, GH 0233, Ghana
| |
Collapse
|
50
|
Ndila CM, Nyirongo V, Macharia AW, Jeffreys AE, Rowlands K, Hubbart C, Busby GBJ, Band G, Harding RM, Rockett KA, Williams TN. Haplotype heterogeneity and low linkage disequilibrium reduce reliable prediction of genotypes for the ‑α 3.7I form of α-thalassaemia using genome-wide microarray data. Wellcome Open Res 2020; 5:287. [PMID: 34632085 PMCID: PMC8474104 DOI: 10.12688/wellcomeopenres.16320.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 01/13/2025] Open
Abstract
Background: The -α 3.7I-thalassaemia deletion is very common throughout Africa because it protects against malaria. When undertaking studies to investigate human genetic adaptations to malaria or other diseases, it is important to account for any confounding effects of α-thalassaemia to rule out spurious associations. Methods: In this study we have used direct α-thalassaemia genotyping to understand why GWAS data from a large malaria association study in Kilifi Kenya did not identify the α-thalassaemia signal. We then explored the potential use of a number of new approaches to using GWAS data for imputing α-thalassaemia as an alternative to direct genotyping by PCR. Results: We found very low linkage-disequilibrium of the directly typed data with the GWAS SNP markers around α-thalassaemia and across the haemoglobin-alpha ( HBA) gene region, which along with a complex haplotype structure, could explain the lack of an association signal from the GWAS SNP data. Some indirect typing methods gave results that were in broad agreement with those derived from direct genotyping and could identify an association signal, but none were sufficiently accurate to allow correct interpretation compared with direct typing, leading to confusing or erroneous results. Conclusions: We conclude that going forwards, direct typing methods such as PCR will still be required to account for α-thalassaemia in GWAS studies.
Collapse
Affiliation(s)
- Carolyne M. Ndila
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
| | - Vysaul Nyirongo
- United Nation Statistics Division, United Nations, New York, New York, 10017, USA
| | - Alexander W. Macharia
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
| | - Kate Rowlands
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
| | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
| | - George B. J. Busby
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, Oxfordshire, OX3 7LF, UK
| | - Gavin Band
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Rosalind M. Harding
- Departments of Zoology and Statistics, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, UK
| | - Kirk A. Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Thomas N. Williams
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
- Department of Infectious Diseases, Imperial College Faculty of Medicine, London, W2 1NY, UK
| | - MalariaGEN Consortium
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, PO BOX 230-80108, Kenya
- United Nation Statistics Division, United Nations, New York, New York, 10017, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, Oxfordshire, OX3 7LF, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Departments of Zoology and Statistics, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, UK
- Department of Infectious Diseases, Imperial College Faculty of Medicine, London, W2 1NY, UK
| |
Collapse
|