1
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
2
|
Rico-Mesa JS, Haloot J, Anupama BK, Atluri S, Liu J, Khalid U. The Role and Implications of COVID-19 in Incident and Prevalent Heart Failure. Curr Heart Fail Rep 2024; 21:485-497. [PMID: 39042238 DOI: 10.1007/s11897-024-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE OF REVIEW This review examines the pathophysiological interactions between COVID-19 and heart failure, highlighting the exacerbation of heart failure in COVID-19 patients. It focuses on the complex mechanisms driving worse outcomes in these patients. RECENT FINDINGS Patients with pre-existing heart failure experience more severe symptoms and higher mortality rates due to mechanisms such as cytokine storms, myocardial infarction, myocarditis, microvascular dysfunction, thrombosis, and stress cardiomyopathy. Elevated biomarkers like troponin and natriuretic peptides correlate with severe disease. Long-term cardiovascular risks for COVID-19 survivors include increased incidence of heart failure, non-ischemic cardiomyopathy, cardiac arrest, and cardiogenic shock. COVID-19 significantly impacts patients with pre-existing heart failure, leading to severe symptoms and higher mortality. Elevated cardiac biomarkers are indicators of severe disease. Acute and long-term cardiovascular complications are common, calling for ongoing research into targeted therapies and improved management strategies to better prevent, diagnose, and treat heart failure in the context of COVID-19.
Collapse
Affiliation(s)
| | - Justin Haloot
- Department of Cardiology, Baylor College of Medicine, 2002 Holcombe Blvd, Houston, TX, 77030, USA
| | - B K Anupama
- Department of Cardiology, Baylor College of Medicine, 2002 Holcombe Blvd, Houston, TX, 77030, USA
| | - Suman Atluri
- Department of Cardiology, Baylor College of Medicine, 2002 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jing Liu
- Department of Cardiology, Baylor College of Medicine, 2002 Holcombe Blvd, Houston, TX, 77030, USA
| | - Umair Khalid
- Department of Cardiology, Baylor College of Medicine, 2002 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Liu S, Wang B, Chen T, Wang H, Liu J, Zhao X, Zhang Y. Two new and effective food-extracted immunomodulatory agents exhibit anti-inflammatory response activity in the hACE2 acute lung injury murine model of COVID-19. Front Immunol 2024; 15:1374541. [PMID: 38807598 PMCID: PMC11130445 DOI: 10.3389/fimmu.2024.1374541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Objective The coronavirus disease 2019 (COVID-19) spread rapidly and claimed millions of lives worldwide. Acute respiratory distress syndrome (ARDS) is the major cause of COVID-19-associated deaths. Due to the limitations of current drugs, developing effective therapeutic options that can be used rapidly and safely in clinics for treating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections is necessary. This study aims to investigate the effects of two food-extracted immunomodulatory agents, ajoene-enriched garlic extract (AGE) and cruciferous vegetables-extracted sulforaphane (SFN), on anti-inflammatory and immune responses in a SARS-CoV-2 acute lung injury mouse model. Methods In this study, we established a mouse model to mimic the SARS-CoV-2 infection acute lung injury model via intratracheal injection of polyinosinic:polycytidylic acid (poly[I:C]) and SARS-CoV-2 recombinant spike protein (SP). After the different agents treatment, lung sections, bronchoalveolar lavage fluid (BALF) and fresh faeces were harvested. Then, H&E staining was used to examine symptoms of interstitial pneumonia. Flow cytometry was used to examine the change of immune cell populations. Multiplex cytokines assay was used to examine the inflammatory cytokines.16S rDNA high-throughput sequencing was used to examine the change of gut microbiome. Results Our results showed that AGE and SFN significantly suppressed the symptoms of interstitial pneumonia, effectively inhibited the production of inflammatory cytokines, decreased the percentage of inflammatory cell populations, and elevated T cell populations in the mouse model. Furthermore, we also observed that the gut microbiome of genus Paramuribaculum were enriched in the AGE-treated group. Conclusion Here, for the first time, we observed that these two novel, safe, and relatively inexpensive immunomodulatory agents exhibited the same effects on anti-inflammatory and immune responses as neutralizing monoclonal antibodies (mAbs) against interleukin 6 receptor (IL-6R), which have been suggested for treating COVID-19 patients. Our results revealed the therapeutic ability of these two immunomodulatory agents in a mouse model of SARS-CoV-2 acute lung injury by promoting anti-inflammatory and immune responses. These results suggest that AGE and SFN are promising candidates for the COVID-19 treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baiqiao Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tianran Chen
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, China
| |
Collapse
|
4
|
Li JX, Shang RY, Xie DD, Luo XC, Hu TY, Cheng BH, Lin HW, Jiao WH. Arenarialins A-F, Anti-inflammatory Meroterpenoids with Rearranged Skeletons from the Marine Sponge Dysidea arenaria. JOURNAL OF NATURAL PRODUCTS 2024; 87:396-403. [PMID: 38330072 DOI: 10.1021/acs.jnatprod.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Six new sesquiterpene quinone/hydroquinone meroterpenoids, arenarialins A-F (1-6), were isolated from the marine sponge Dysidea arenaria collected from the South China Sea. Their chemical structures and absolute configurations were determined by HRMS and NMR data analyses coupled with DP4+ and ECD calculations. Arenarialin A (1) features an unprecedented tetracyclic 6/6/5/6 carbon skeleton, whereas arenarialins B-D (2-4) possess two rare secomeroterpene scaffolds. Arenarialins A-F showed inhibitory activity on the production of inflammatory cytokines TNF-α and IL-6 in LPS-induced RAW264.7 macrophages with arenarialin D regulating the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jia-Xin Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ru-Yi Shang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dong-Dong Xie
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiang-Chao Luo
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen 518172, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen 518172, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
5
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Hieba AR, Arida EA, Osman HAH, Imbaby SAEDM, Moharem HAHA. Endothelial glycocalyx shedding during active COVID-19 infection and its effect on disease severity. EGYPTIAN JOURNAL OF ANAESTHESIA 2023. [DOI: 10.1080/11101849.2023.2192099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
7
|
Kervancioglu Demirci E, Onen EA, Sevic Yilmaz E, Karagoz Koroglu A, Akakin D. SARS-CoV-2 Causes Brain Damage: Therapeutic Intervention with AZD8797. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2161-2173. [PMID: 37967299 DOI: 10.1093/micmic/ozad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Elevated CX3CL1 is associated with severe COVID-19 and neurologic symptoms. We aimed to investigate the potential protective effects of selective CX3CR1 antagonist AZD8797 on SARS-CoV-2-induced neuronal damage, and to identify the underlying mechanisms. K18-hACE2 transgenic mice (n = 37) were randomly divided into control groups and SARS-CoV-2 groups, with and without intraperitoneal administration of vehicle or AZD8797 (2.5 mg/mL/day), following exposure to either a single dose of SARS-CoV-2 inhalation or no exposure. Object recognition and hole board tests were performed to assess memory function. Postinfection 8 days, brain tissues were analyzed for histopathological changes, viral, glial, apoptotic, and other immunohistochemical markers, along with measuring malondialdehyde, glutathione, and myeloperoxidase activities. Serum samples were analyzed for proinflammatory cytokines. The SARS-CoV-2 group showed significant weight loss, neuronal damage, oxidative stress, and impaired object recognition memory, while AZD8797 treatment mitigated some of these effects, especially in weight, apoptosis, glutathione, and MCP-1. Histopathological analyses supported the protective effects of AZD8797 against SARS-CoV-2-induced damage. The CX3CL1-CX3CR1 signaling pathway could offer a promising target for reducing SARS-CoV-2's neurological impact, but additional research is needed to confirm these findings in combination with other therapies and assess the clinical significance.
Collapse
Affiliation(s)
- Elif Kervancioglu Demirci
- Histology and Embryology Department, Istanbul Faculty of Medicine, Istanbul University, Turgut Ozal Cd. No:118m, Capa-Fatih, Istanbul 34093, Turkey
| | - Engin Alp Onen
- Vaccine and Biotechnology R&D, Kocak Pharmaceuticals, Karaagac O.S.B. 11.Sk No:5, Kapakli, Tekirdag 59520, Turkey
| | - Erva Sevic Yilmaz
- Histology and Embryology Department, Istanbul Faculty of Medicine, Istanbul University, Turgut Ozal Cd. No:118m, Capa-Fatih, Istanbul 34093, Turkey
| | - Ayca Karagoz Koroglu
- Histology and Embryology Department, School of Medicine, Istinye University, Azerbaycan Cd. No:3C, Sariyer, Istanbul 34010, Turkey
- Histology and Embryology Department, School of Medicine, Marmara University, Basibuyuk Mh. Maltepe Basibuyuk Yolu Sk. No:9/2, Basibuyuk-Maltepe, Istanbul 34854, Turkey
| | - Dilek Akakin
- Histology and Embryology Department, School of Medicine, Marmara University, Basibuyuk Mh. Maltepe Basibuyuk Yolu Sk. No:9/2, Basibuyuk-Maltepe, Istanbul 34854, Turkey
| |
Collapse
|
8
|
Herrera S, Aguado JM, Candel FJ, Cordero E, Domínguez-Gil B, Fernández-Ruiz M, Los Arcos I, Len Ò, Marcos MÁ, Muñez E, Muñoz P, Rodríguez-Goncer I, Sánchez-Céspedes J, Valerio M, Bodro M. Executive summary of the consensus statement of the group for the study of infection in transplantation and other immunocompromised host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the treatment of SARS-CoV-2 infection in solid organ transplant recipients. Transplant Rev (Orlando) 2023; 37:100788. [PMID: 37591117 DOI: 10.1016/j.trre.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - Jose M Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, Madrid 28040, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
| | - Elisa Cordero
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | | | - Mario Fernández-Ruiz
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ibai Los Arcos
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Òscar Len
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | | | - Elena Muñez
- Infectious Diseases Unit, Internal Medicine Department, University Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Patricia Muñoz
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Javier Sánchez-Céspedes
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | - Maricela Valerio
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Tresoldi M, Zangrillo A, Belletti A, Ramirez GA, Bozzolo E, Guzzo F, Marinosci A, Fominskiy EV, DA Prat V, Marmiere M, Palumbo D, Del Prete L, D'Amico F, Bellino C, Morando D, Saracino M, Ortalda A, Castelli E, Rocchi M, Baiardo Redaelli M, Scotti R, DI Terlizzi G, Azzolini ML, Guaschino G, Avitabile E, Borghi G, Soddu D, Dagna L, Landoni G, DE Cobelli F. Two-year multidisciplinary follow-up of COVID-19 patients requiring invasive and noninvasive respiratory support. Minerva Med 2023; 114:773-784. [PMID: 37021472 DOI: 10.23736/s0026-4806.22.08397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND COVID-19 patients frequently develop respiratory failure requiring mechanical ventilation. Data on long-term survival of patients who had severe COVID-19 are insufficient. We assessed and compared two-year survival, CT imaging, quality of life, and functional recovery of COVID-19 ARDS patients requiring respiratory support with invasive (IMV) versus noninvasive ventilation (NIV). METHODS Patients with COVID-19 pneumonia admitted up to May 28th, 2020, who required IMV or NIV, and survived to hospital discharge were enrolled. Patients were contacted two years after discharge to assess vital status, functional, psychological, and cognitive outcomes using validated scales. Patients with persistent respiratory symptoms or high burden of residual lung damage at previous CT scan received a two-year chest CT scan. RESULTS Out of 61 IMV survivors, 98% were alive at two-year follow-up, and 52 completed the questionnaire. Out of 82 survivors receiving NIV only, 94% were alive at two years, and 47 completed the questionnaire. We found no major differences between invasively and noninvasively ventilated patients, with overall acceptable functional recovery. Among the 99 patients completing the questionnaire, 23 have more than moderate exertional dyspnea. Chest CT scans showed that 4 patients (all received IMV) had fibrotic-like changes. CONCLUSIONS Patients who received mechanical ventilation due to COVID-19 and were discharged from hospital had a 96% survival rate at the two-year follow-up. There was no difference in overall recovery and quality of life between patients who did and did not require IMV, although respiratory morbidity remains high.
Collapse
Affiliation(s)
- Moreno Tresoldi
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrica Bozzolo
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Guzzo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Marinosci
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evgeny V Fominskiy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina DA Prat
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Marmiere
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diego Palumbo
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lidia Del Prete
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Filippo D'Amico
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bellino
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Deodata Morando
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Saracino
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Ortalda
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Castelli
- Cardiothoracic Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Rocchi
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Baiardo Redaelli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Scotti
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaetano DI Terlizzi
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria L Azzolini
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy -
| | - Giulia Guaschino
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Avitabile
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Borghi
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Soddu
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco DE Cobelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Farina N, Dagna L. Immune regulators for the treatment of COVID-19: A critical appraisal after two years. Eur J Intern Med 2023; 116:34-35. [PMID: 37541923 DOI: 10.1016/j.ejim.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Affiliation(s)
- Nicola Farina
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
11
|
Mohamed Hussein AAR, Sayad R, Abdelshafi A, Hammam IA, Kedwany AM, Elkholy SAE, Ibrahim IH. A meta analysis on the utility of Anakinra in severe COVID-19 disease. Cytokine 2023; 169:156311. [PMID: 37536222 DOI: 10.1016/j.cyto.2023.156311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The most important presentation of COVID-19 is hyper inflammatory condition and cytokine storm that occurs due to excessive increase of the inflammatory mediators specially, pro-inflammatory interleukins such as IL-1β, IL-6 and tumor necrosis factor-α which have an important role in the cytokine storm pathway. Up till now there is not a definitive treatment for COVID-19 disease, but according to the pathophysiology of the disease, Anakinra (Interleukin- 1 inhibitor) is an adjuvant treatment option in patients with severe COVID-19 by blocking the effect of IL-1. So, we aimed to summarize the studies that evaluated the safety and efficacy of Anakinra in patients diagnosed with COVID-19. METHODS We performed a search in PubMed, Cochrane Library, Scopus, and Web of Science (WOS) databases from inception till 7 Jan 2022. Additionally, we searched randomized and non-randomized clinical trials, cohort, case series, case control, case report more than 3 patients which contain confirmed cases of COVID-19 who received Anakinra (Interleukin- 1 inhibitor) for the management of hyper-inflammatory condition associated with COVID-19 disease. A meta-analysis was conducted using review manager 5.4. RESULTS We included 44 articles in the systematic review. Ultimately, 23 studies were incorporated in the meta-analysis with a total number of 3179 patients. Our analysis showed statistically significant difference in the following outcomes: duration of ICU stays [MD = -0.65, 95% CI (-1.09, -0.03), p = 0.04], the number of patients who needed invasive mechanical ventilation [RR = 0.57, 95% CI (0.39, 0.84), p = 0.004], and number of deaths [RR = 0.80, 95% CI (0.66, 0.99), p = 0.04]. Our analysis showed no statistically significant difference in the following outcomes: length of hospital stays [MD = -0.16, 95% CI (-0.42, 0.11), p = 0.26], oxygen-free days [MD = -0.81, 95% CI (-3.81, 2.20), p = 0.60], and the number of patients who needed non-invasive mechanical ventilation [RR = 1.09, 95% CI (0.47, 2.52), p = 0.84]. CONCLUSION Anakinra showed some promising results in important outcomes related to COVID-19 as it significantly reduced the rate of mortality and the need of invasive mechanical ventilation. It should be used in severe cases more than mild and moderate cases to avoid possible immunosuppression complications. Anakinra use is safe in cases of COVID-19 at dose less than 100 mg. Another important outcome was significant reduction is the D-dimer level. Anakinra may be effective in the treatment of specific immunocompromised cases, but it should be used cautiously.
Collapse
Affiliation(s)
- Aliae A R Mohamed Hussein
- Pulmonology, Chest Department, Assiut Faculty of Medicine, Assiut, Egypt; Assiut Research Team (ART), Assiut 71515, Egypt.
| | - Reem Sayad
- Assiut Research Team (ART), Assiut 71515, Egypt; Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdelrahman Abdelshafi
- Assiut Research Team (ART), Assiut 71515, Egypt; Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Islam Abdelaal Hammam
- Assiut Research Team (ART), Assiut 71515, Egypt; Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M Kedwany
- Assiut Research Team (ART), Assiut 71515, Egypt; Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Islam H Ibrahim
- Assiut Research Team (ART), Assiut 71515, Egypt; Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Singulani JL, Silva DL, Lima CM, Magalhães VCR, Baltazar LM, Moura AS, Santos ARO, Fereguetti T, Martins JC, Rabelo LF, Lyon AC, Martins-Filho OA, Johann S, Peres NTA, Coelho Dos Reis JGA, Santos DA. COVID-19 and candiduria: an investigation of the risk factors and immunological aspects. Braz J Microbiol 2023; 54:1783-1793. [PMID: 37405625 PMCID: PMC10484861 DOI: 10.1007/s42770-023-01042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Secondary fungal infections are frequently observed in COVID-19 patients. However, the occurrence of candiduria in these patients and its risk factors are underexplored. We evaluated the risk factors of candiduria in COVID-19 patients, including inflammatory mediators that could be used as prognostic markers. Clinical information, laboratory test results, and outcomes were collected from severely ill COVID-19 patients with and without candiduria. Candida species identification, antifungal susceptibility, and plasma inflammatory mediators' measurements were performed. Regression logistic and Cox regression model were used to evaluate the risk factors. A higher risk of longer hospitalization and mortality were observed in patients with candiduria compared to those with COVID-19 only. Candiduria was caused by Candida albicans, C. glabrata, and C. tropicalis. Isolates with intermediate susceptibility to voriconazole and resistant to caspofungin were identified. Classic factors such as the use of corticosteroids and antibacterials, the worsening of renal function, and hematological parameters (hemoglobin and platelets) were found to predispose to candiduria. The mediators IL-1β, IL-1ra, IL-2, CXCL-8, IL-17, IFN-γ, basic FGF, and MIP-1β were significantly increased in patients with COVID-19 and candiduria. Furthermore, IFN-γ, IL-1ra, and CXCL-8 were associated with the occurrence of candiduria in COVID-19 patients, whereas basic FGF, IL-1β, and CXCL-8 were associated with the risk of death in these patients. Classical and immunological factors were associated with worse prognosis among patients with COVID-19 and candiduria. Some mediators, especially CXCL-8, can be a reliable biomarker of fungal coinfection and may guide the diagnostic and the treatment of these patients.
Collapse
Affiliation(s)
- Junya L Singulani
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle L Silva
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline M Lima
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa C R Magalhães
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila M Baltazar
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre S Moura
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
- Center of Post-Graduation and Research - IEP, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Raquel O Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiani Fereguetti
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliana C Martins
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Lívia F Rabelo
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana C Lyon
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Olindo A Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Susana Johann
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nalu T A Peres
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana G A Coelho Dos Reis
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel A Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Jiao WH, Li JX, Liu HY, Luo XC, Hu TY, Shi GH, Xie DD, Chen HF, Cheng BH, Lin HW. Dysambiol, an Anti-inflammatory Secomeroterpenoid from a Dysidea sp. Marine Sponge. Org Lett 2023; 25:6391-6395. [PMID: 37610094 DOI: 10.1021/acs.orglett.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An unusual secomeroterpenoid, dysambiol (1), was isolated from a Dysidea sp. marine sponge collected from the South China Sea. Dysambiol features an unprecedented secomeroterpene scaffold with a rare lactone bridge. The structure of 1 was determined by extensive spectroscopic analysis, Mosher's method, and electronic circular dichroism calculation. Dysambiol displayed potent anti-inflammatory activity in LPS-induced Raw 264.7 macrophages by regulating the NF-κB/MPAK signaling pathway.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jia-Xin Li
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong-Yan Liu
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiang-Chao Luo
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen 518172, China
| | - Guo-Hua Shi
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dong-Dong Xie
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hai-Feng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen 518172, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
14
|
Taher I, El-Masry E, Abouelkheir M, Taha AE. Anti‑inflammatory effect of metformin against an experimental model of LPS‑induced cytokine storm. Exp Ther Med 2023; 26:415. [PMID: 37559933 PMCID: PMC10407980 DOI: 10.3892/etm.2023.12114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Cytokine storm is one of the leading causes of death in patients with COVID-19. Metformin has been shown to inhibit the action of a wide range of proinflammatory cytokines such as IL-6, and TNF-α which may ultimately affect cytokine storm due to Covid-19. The present study analyzed the anti-inflammatory effect of oral and intraperitoneal (IP) metformin administration routes in a mouse model of lipopolysaccharide (LPS)-induced cytokine storm. A total of 60 female BALB/c mice were randomly assigned to one of six groups: i) Control; ii) LPS model; iii) oral saline + LPS; iv) oral metformin + LPS; v) IP saline + LPS; and vi) IP metformin + LPS. Metformin or saline were administered to the mice for 30 days, after which an IP injection of 0.5 mg/kg LPS induced a cytokine storm in the five treatment groups. Mice were sacrificed and serum cytokine levels were measured. Pretreatment of mice with either oral or IP metformin significantly reduced the increase in IL-1, IL-6 and TNF-α following LPS injection. Both metformin administration routes significantly reduced IL-1 and TNF-α levels, although IP metformin appeared to be significantly more effective at reducing IL-6 levels compared with oral metformin. Neither the oral or IP route of administration of metformin demonstrated a significant effect on IL-17 levels. Based on its ability to suppress the proinflammatory LPS-induced cytokine storm, metformin may have future potential benefits in ameliorating human diseases caused by elevated cytokine levels.
Collapse
Affiliation(s)
- Ibrahim Taher
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Eman El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University, Shebin El Koum 32511, Egypt
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
15
|
Yin M, Marrone L, Peace CG, O’Neill LAJ. NLRP3, the inflammasome and COVID-19 infection. QJM 2023; 116:502-507. [PMID: 36661317 PMCID: PMC10382191 DOI: 10.1093/qjmed/hcad011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by respiratory failure, shock or multiorgan dysfunction, often accompanied by systemic hyperinflammation and dysregulated cytokine release. These features are linked to the intense and rapid stimulation of the innate immune response. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a central player in inflammatory macrophage activation which via caspase-1 activation leads to the release of the mature forms of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and via cleavage of Gasdermin D pyroptosis, an inflammatory form of cell death. Here, we discuss the role of NLRP3 activation in COVID-19 and clinical trials currently underway to target NLRP3 to treat severe COVID-19.
Collapse
Affiliation(s)
- Maureen Yin
- From the School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura Marrone
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), “Federico II” University of Naples, Naples 80131, Italy
| | - Christian G Peace
- From the School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luke A J O’Neill
- From the School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Lin Y, Sun Q, Zhang B, Zhao W, Shen C. The regulation of lncRNAs and miRNAs in SARS-CoV-2 infection. Front Cell Dev Biol 2023; 11:1229393. [PMID: 37576600 PMCID: PMC10416254 DOI: 10.3389/fcell.2023.1229393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) was a global endemic that continues to cause a large number of severe illnesses and fatalities. There is increasing evidence that non-coding RNAs (ncRNAs) are crucial regulators of viral infection and antiviral immune response and the role of non-coding RNAs in SARS-CoV-2 infection has now become the focus of scholarly inquiry. After SARS-CoV-2 infection, some ncRNAs' expression levels are regulated to indirectly control the expression of antiviral genes and viral gene replication. However, some other ncRNAs are hijacked by SARS-CoV-2 in order to help the virus evade the immune system by suppressing the expression of type I interferon (IFN-1) and controlling cytokine levels. In this review, we summarize the recent findings of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) among non-coding RNAs in SARS-CoV-2 infection and antiviral response, discuss the potential mechanisms of actions, and prospects for the detection, treatment, prevention and future directions of SARS-CoV-2 infection research.
Collapse
Affiliation(s)
| | | | | | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Peng Z, Chen H, Wang M. Identification of the biological processes, immune cell landscape, and hub genes shared by acute anaphylaxis and ST-segment elevation myocardial infarction. Front Pharmacol 2023; 14:1211332. [PMID: 37469874 PMCID: PMC10353022 DOI: 10.3389/fphar.2023.1211332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Patients with anaphylaxis are at risk for ST-segment elevation myocardial infarction (STEMI). However, the pathological links between anaphylaxis and STEMI remain unclear. Here, we aimed to explore shared biological processes, immune effector cells, and hub genes of anaphylaxis and STEMI. Methods: Gene expression data for anaphylactic (GSE69063) and STEMI (GSE60993) patients with corresponding healthy controls were pooled from the Gene Expression Omnibus database. Differential expression analysis, enrichment analysis, and CIBERSORT were used to reveal transcriptomic signatures and immune infiltration profiles of anaphylaxis and STEMI, respectively. Based on common differentially expressed genes (DEGs), Gene Ontology analysis, cytoHubba algorithms, and correlation analyses were performed to identify biological processes, hub genes, and hub gene-related immune cells shared by anaphylaxis and STEMI. The robustness of hub genes was assessed in external anaphylactic (GSE47655) and STEMI (GSE61144) datasets. Furthermore, a murine model of anaphylaxis complicated STEMI was established to verify hub gene expressions. The logistic regression analysis was used to evaluate the diagnostic efficiency of hub genes. Results: 265 anaphylaxis-related DEGs were identified, which were associated with immune-inflammatory responses. 237 STEMI-related DEGs were screened, which were involved in innate immune response and myeloid leukocyte activation. M0 macrophages and dendritic cells were markedly higher in both anaphylactic and STEMI samples compared with healthy controls, while CD4+ naïve T cells and CD8+ T cells were significantly lower. Enrichment analysis of 33 common DEGs illustrated shared biological processes of anaphylaxis and STEMI, including cytokine-mediated signaling pathway, response to reactive oxygen species, and positive regulation of defense response. Six hub genes were identified, and their expression levels were positively correlated with M0 macrophage abundance and negatively correlated with CD4+ naïve T cell abundance. In external anaphylactic and STEMI samples, five hub genes (IL1R2, FOS, MMP9, DUSP1, CLEC4D) were confirmed to be markedly upregulated. Moreover, experimentally induced anaphylactic mice developed impaired heart function featuring STEMI and significantly increased expression of the five hub genes. DUSP1 and CLEC4D were screened as blood diagnostic biomarkers of anaphylaxis and STEMI based on the logistic regression analysis. Conclusion: Anaphylaxis and STEMI share the biological processes of inflammation and defense responses. Macrophages, dendritic cells, CD8+ T cells, and CD4+ naïve T cells constitute an immune cell population that acts in both anaphylaxis and STEMI. Hub genes (DUSP1 and CLEC4D) identified here provide candidate genes for diagnosis, prognosis, and therapeutic targeting of STEMI in anaphylactic patients.
Collapse
Affiliation(s)
- Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
19
|
di Filippo L, Uygur M, Locatelli M, Nannipieri F, Frara S, Giustina A. Low vitamin D levels predict outcomes of COVID-19 in patients with both severe and non-severe disease at hospitalization. Endocrine 2023; 80:669-683. [PMID: 36854858 PMCID: PMC9974397 DOI: 10.1007/s12020-023-03331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Low vitamin D in COVID-19 have been related to worse outcomes. However, most of the studies conducted so far were not-controlled and retrospective, including biases potentially influencing this association. We evaluated 25(OH)vitamin D levels of patients with both severe and non-severe disease at hospital-admission, and in a cohort of control subjects. Moreover, we evaluated sACE-2 levels to investigate the mechanisms underlying the association between vitamin D and COVID-19. METHODS COVID-19 patients were enrolled in a matched for age, sex and comorbidities 1:1-ratio based on the presence/or not of respiratory-distress/severe-disease at hospital-admission. Control matched subjects were enrolled from an outpatient-setting. RESULTS Seventy-three COVID-19 patients (36 severe and 37 non-severe) and 30 control subjects were included. We observed a higher vitamin D deficiency (<20 ng/mL) prevalence in COVID-19 patients than control subjects (75% vs 43%). No differences were found regarding 25(OH)vitamin D and sACE-2 levels between patients with and without severe-disease at study entry. During the disease-course, in the severe group a life-threatening disease occurred in 17 patients (47.2%), and, in the non-severe group, a worsening disease occurred in 10 (27%). 25(OH)vitamin D levels, at admission, were negatively correlated with sACE-2 levels, and were lower in patients whose disease worsened as compared to those in whom it did not, independently from the disease severity at admission. In multivariate-analysis, lower 25(OH)vitamin D resulted as an independent risk factor for disease worsening. CONCLUSIONS 25(OH)vitamin D levels at hospital-admission strongly predicted the occurrence of worsening outcomes in COVID-19 independently of the disease severity at presentation.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Melin Uygur
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
20
|
Pontali E, Filauro F. Repurposing an 'Old' Drug for the Treatment of COVID-19-Related Cytokine Storm. J Clin Med 2023; 12:jcm12103386. [PMID: 37240492 DOI: 10.3390/jcm12103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has hit more than 200 countries with more than 750 million confirmed cases and more than 6 million deaths worldwide [...].
Collapse
Affiliation(s)
- Emanuele Pontali
- Department of Infectious Diseases, Galliera Hospital, 16128 Genoa, Italy
| | | |
Collapse
|
21
|
Toussi SS, Hammond JL, Gerstenberger BS, Anderson AS. Therapeutics for COVID-19. Nat Microbiol 2023; 8:771-786. [PMID: 37142688 DOI: 10.1038/s41564-023-01356-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Vaccines and monoclonal antibody treatments to prevent severe coronavirus disease 2019 (COVID-19) illness were available within a year of the pandemic being declared but there remained an urgent need for therapeutics to treat patients who were not vaccinated, were immunocompromised or whose vaccine immunity had waned. Initial results for investigational therapies were mixed. AT-527, a repurposed nucleoside inhibitor for hepatitis C virus, enabled viral load reduction in a hospitalized cohort but did not reduce viral load in outpatients. The nucleoside inhibitor molnupiravir prevented death but failed to prevent hospitalization. Nirmatrelvir, an inhibitor of the main protease (Mpro), co-dosed with the pharmacokinetic booster ritonavir, reduced hospitalization and death. Nirmatrelvir-ritonavir and molnupiravir received an Emergency Use Authorization in the United States at the end of 2021. Immunomodulatory drugs such as baricitinib, tocilizumab and corticosteroid, which target host-driven COVID-19 symptoms, are also in use. We highlight the development of COVID-19 therapies and the challenges that remain for anticoronavirals.
Collapse
|
22
|
Leyfman Y, Emmanuel N, Menon GP, Joshi M, Wilkerson WB, Cappelli J, Erick TK, Park CH, Sharma P. Cancer and COVID-19: unravelling the immunological interplay with a review of promising therapies against severe SARS-CoV-2 for cancer patients. J Hematol Oncol 2023; 16:39. [PMID: 37055774 PMCID: PMC10100631 DOI: 10.1186/s13045-023-01432-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/25/2023] [Indexed: 04/15/2023] Open
Abstract
Cancer patients, due to their immunocompromised status, are at an increased risk for severe SARS-CoV-2 infection. Since severe SARS-CoV-2 infection causes multiple organ damage through IL-6-mediated inflammation while stimulating hypoxia, and malignancy promotes hypoxia-induced cellular metabolic alterations leading to cell death, we propose a mechanistic interplay between both conditions that results in an upregulation of IL-6 secretion resulting in enhanced cytokine production and systemic injury. Hypoxia mediated by both conditions results in cell necrosis, dysregulation of oxidative phosphorylation, and mitochondrial dysfunction. This produces free radicals and cytokines that result in systemic inflammatory injury. Hypoxia also catalyzes the breakdown of COX-1 and 2 resulting in bronchoconstriction and pulmonary edema, which further exacerbates tissue hypoxia. Given this disease model, therapeutic options are currently being studied against severe SARS-COV-2. In this study, we review several promising therapies against severe disease supported by clinical trial evidence-including Allocetra, monoclonal antibodies (Tixagevimab-Cilgavimab), peginterferon lambda, Baricitinib, Remdesivir, Sarilumab, Tocilizumab, Anakinra, Bevacizumab, exosomes, and mesenchymal stem cells. Due to the virus's rapid adaptive evolution and diverse symptomatic manifestation, the use of combination therapies offers a promising approach to decrease systemic injury. By investing in such targeted interventions, cases of severe SARS-CoV-2 should decrease along with its associated long-term sequelae and thereby allow cancer patients to resume their treatments.
Collapse
Affiliation(s)
- Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Rockville Centre, NY, USA
| | - Nancy Emmanuel
- Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | | | - Muskan Joshi
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
23
|
Yangi K, Demir DD, Uzunkol A. Intracranial Hemorrhage After Pfizer-BioNTech (BNT162b2) mRNA COVID-19 Vaccination: A Case Report. Cureus 2023; 15:e37747. [PMID: 37214039 PMCID: PMC10193189 DOI: 10.7759/cureus.37747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
The Coronavirus 2019 (COVID-19) pandemic has affected over 700 million people worldwide and caused nearly 7 million deaths. Vaccines currently developed or in development are the most effective tools for curbing the pandemic and mitigating its impacts. In Turkey, inoculation with the Pfizer-BioNTech COVID-19 vaccine (BNT162b2, also known as tozinameran) has been approved. We report a 56-year-old female patient with underlying essential hypertension who experienced intracranial hemorrhage after receiving her first dose of tozinameran. The patient underwent immediate surgical evacuation of the hematoma, during which a left middle cerebral artery bifurcation aneurysm was macroscopically identified and clipped. The patient was pronounced deceased on the second postoperative day. This is the second case of intracranial hemorrhage following tozinameran administration caused by a ruptured middle cerebral artery bifurcation aneurysm. Upon analyzing the case, there might be a connection between the vaccine's potential immune-triggering effect on hemodynamic patterns and the rupture of the previously unknown cerebral aneurysm. However, these severe complications do not justify avoiding vaccines; further studies are needed. This study emphasizes the need for increased vigilance in patients with underlying systemic comorbidities who have recently been vaccinated and to share our insights into the potential relationship between tozinameran and intracranial hemorrhage.
Collapse
Affiliation(s)
- Kivanc Yangi
- Neurological Surgery, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, TUR
| | - Doga D Demir
- Emergency Medicine, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, TUR
| | - Ajlan Uzunkol
- Neurological Surgery, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, TUR
| |
Collapse
|
24
|
Achour TB, Elhaj WB, Jridi M, Naceur I, Smiti M, Ghorbel IB, Lamloum M, Said F, Houman MH. Adult-onset Still's disease after SARS-Cov-2 infection. Clin Case Rep 2023; 11:e7006. [PMID: 36873075 PMCID: PMC9979958 DOI: 10.1002/ccr3.7006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is an uncommon inflammatory disorder. AOSD and SARS-Cov-2 infection share clinical and laboratory features, including systemic inflammation. A 19-year-old woman had prolonged fever for 3 weeks, joint pain, and biological inflammatory syndrome. Post COVID-19 AOSD was diagnosed. SARS-Cov-2 infection induces many inflammatory diseases including AOSD.
Collapse
Affiliation(s)
| | | | | | - Ines Naceur
- Rabta University Hospital CenterTunisTunisia
| | - Monia Smiti
- Rabta University Hospital CenterTunisTunisia
| | | | | | - Fatma Said
- Rabta University Hospital CenterTunisTunisia
| | | |
Collapse
|
25
|
Wallis RS, O'Garra A, Sher A, Wack A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol 2023; 23:121-133. [PMID: 35672482 PMCID: PMC9171745 DOI: 10.1038/s41577-022-00734-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The advent of COVID-19 and the persistent threat of infectious diseases such as tuberculosis, malaria, influenza and HIV/AIDS remind us of the marked impact that infections continue to have on public health. Some of the most effective protective measures are vaccines but these have been difficult to develop for some of these infectious diseases even after decades of research. The development of drugs and immunotherapies acting directly against the pathogen can be equally challenging, and such pathogen-directed therapeutics have the potential disadvantage of selecting for resistance. An alternative approach is provided by host-directed therapies, which interfere with host cellular processes required for pathogen survival or replication, or target the host immune response to infection (immunotherapies) to either augment immunity or ameliorate immunopathology. Here, we provide a historical perspective of host-directed immunotherapeutic interventions for viral and bacterial infections and then focus on SARS-CoV-2 and Mycobacterium tuberculosis, two major human pathogens of the current era, to indicate the key lessons learned and discuss candidate immunotherapeutic approaches, with a focus on drugs currently in clinical trials.
Collapse
Affiliation(s)
- Robert S Wallis
- The Aurum Institute, Johannesburg, South Africa.
- Vanderbilt University, Nashville, TN, USA.
- Rutgers University, Newark, NJ, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
26
|
Bektaş M, Yüce S, Ay M, Uyar MH, Önder ME, Kılıç Mİ. High-dose intravenous anakinra treatment is safe and effective in severe and critical COVID-19 patients: a propensity score-matched study in a single center. Inflammopharmacology 2023; 31:787-797. [PMID: 36707494 PMCID: PMC9882740 DOI: 10.1007/s10787-023-01138-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND In COVID-19, severe disease course such as need of intensive care unit (ICU) as well as development of mortality is mainly due to cytokine storm. In this study, we aimed to evaluate the high-dose intravenous anakinra treatment response and outcome in patients with severe and critically ill COVID-19 compared to standard of care. METHODS This retrospective observational study was carried out at a tertiary referral center. The study population consisted of two groups as follows: the patients receiving high-dose intravenous anakinra (anakinra group) between 01.09.2021 and 01.02.2022 and the patients treated with standard of care (SoC, control group) as historical control group who were hospitalized between 01.07.2021 and 01.09.2021. RESULTS After the propensity score 1:1 matching, 79 patients in anakinra and 79 patients in SoC matched and were included into the analysis. Mean ± SD patient age was 67.4 ± 16.7 and 67.1 ± 16.3 years in anakinra and SoC groups, respectively (p = 0.9). Male gender was 38 (48.7%) in anakinra and 36 (46.2%) in SoC (p = 0.8). Overall, ICU admission was in 14.1% (n = 11) and 30.8% (n = 24) (p = 0.013; OR 6.2), intubation in 12.8% (n = 10) and 16.7% (n = 13) patients (p = 0.5), and 14.1% (n = 11) and 32.1% (n = 25) patients died in anakinra and control groups, respectively (p = 0.008; OR 7.1). CONCLUSION In our study, mortality was lower in patients receiving anakinra compared to SoC. Intravenous high-dose anakinra is safe and effective treatment in patients with severe and critical COVID-19.
Collapse
Affiliation(s)
- Murat Bektaş
- Division of Rheumatology, Department of Internal Medicine, Aksaray Training and Research Hospital, Yeni Sanayi Mahallesi, 68200 Merkez/Aksaray, Turkey
| | - Servet Yüce
- Department of Public Health and Biostatistics, Istanbul Faculty of Medicine, Çapa, Şehremini, Istanbul, Turkey
| | - Mustafa Ay
- Department of Emergency Medicine, Aksaray Training and Research Hospital, 68200 Merkez/Aksaray, Turkey
| | - Muhammed Hamdi Uyar
- Department of Emergency Medicine, Aksaray Training and Research Hospital, 68200 Merkez/Aksaray, Turkey
| | - Mustafa Erkut Önder
- Division of Rheumatology, Department of Physical Therapy and Rehabilitation, Aksaray Training and Research Hospital, Yeni Sanayi Mahallesi, 68200 Merkez/Aksaray, Turkey
| | - Muhammed İkbal Kılıç
- Department of Internal Medicine, Aksaray Training and Research Hospital, Yeni Sanayi Mahallesi, 68200 Merkez/Aksaray, Turkey
| |
Collapse
|
27
|
Elmekaty EZI, Maklad A, Abouelhassan R, Munir W, Ibrahim MIM, Nair A, Alibrahim R, Iqbal F, Al Bishawi A, Abdelmajid A, Aboukamar M, Hadi HA, Khattab MA, Al Soub H, Al Maslamani M. Evaluation of anakinra in the management of patients with COVID-19 infection: A randomized clinical trial. Front Microbiol 2023; 14:1098703. [PMID: 36778864 PMCID: PMC9910697 DOI: 10.3389/fmicb.2023.1098703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Background The global COVID-19 pandemic led to substantial clinical and economic outcomes with catastrophic consequences. While the majority of cases has mild to moderate disease, minority of patients progress into severe disease secondary to the stimulation of the immune response. The hyperinflammatory state contributes towards progression into multi-organ failure which necessitates suppressive therapy with variable outcomes. This study aims to explore the safety and efficacy of anakinra in COVID-19 patients with severe disease leading to cytokine release syndromes. Methods In this open-label, multi-center, randomized clinical trial, patients with confirmed COVID-19 infection with evidence of respiratory distress and signs of cytokine release syndrome were randomized in 1:1 ratio to receive either standard of care (SOC) or anakinra (100 mg subcutaneously every 12 h for 3 days then 100 mg subcutaneously once daily for 4 days) in addition to SOC. The primary outcome was treatment success at day 14 as defined by the WHO clinical progression score of ≤3. Primary analysis was based upon intention-to-treat population, with value of p of <0.05. Results Out 327 patients screened for eligibility, 80 patients were recruited for the study. The mean age was 49.9 years (SD = 11.7), with male predominance at 82.5% (n = 66). The primary outcome was not statistically different (87.5% (n = 35) in anakinra group vs. 92.5% (n = 37) in SOC group, p = 0.712; OR = 1.762 (95%CI: 0.39-7.93). The majority of reported adverse events were mild in severity and not related to the study treatment. Elevated aspartate aminotransferase was the only significant adverse event which was not associated with discontinuation of therapy. Conclusion In patients with severe COVID-19 infection, the addition of anakinra to SOC treatment was safe but was not associated with significant improvement according to the WHO clinical progression scale. Further studies are warranted to explore patients' subgroups characteristics that might benefit from administered therapy. Clinical Trial Registration Trial registration at ClinicalTrials.gov, identifier: NCT04643678.
Collapse
Affiliation(s)
- Eman Zeyad I. Elmekaty
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar,*Correspondence: Eman Zeyad I. Elmekaty,
| | - Aya Maklad
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Waqar Munir
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | | | - Arun Nair
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Rim Alibrahim
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Iqbal
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad Al Bishawi
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | | | - Mohamed Aboukamar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Hamad Abdel Hadi
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | | | - Hussam Al Soub
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al Maslamani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
28
|
Palassin P, Bres V, Hassan S, Alfonsi A, Massy N, Gras-Champel V, Maria ATJ, Faillie JL. Comprehensive description of adult-onset Still's disease after COVID-19 vaccination. J Autoimmun 2023; 134:102980. [PMID: 36592513 PMCID: PMC9755011 DOI: 10.1016/j.jaut.2022.102980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Cases of adult-onset Still's disease (AOSD) have been reported after COVID-19 vaccination. Here we provide a comprehensive description and analysis of all cases of AOSD reported in the literature and in pharmacovigilance databases through April 2022. Disproportionality analyses of pharmacovigilance data were performed in order to further explore the association between vaccination and AOSD. We included 159 patients, 144 from the World Health Organization pharmacovigilance database and 15 from the literature. Detailed clinical characteristics were described for the cases from the literature and from the French pharmacovigilance database (n = 9). The cases of AOSD after COVID-19 vaccination concerned women in 52.2% of cases. The median age was 43.4 years. More than 80% of AOSD reports occurred during the first three weeks and concerned mostly the BNT162b2 mRNA vaccine. We identified 14.5% of disease flare with a median time-to-onset of AOSD flare-up significantly shorter than for the new onset form. More than 90% patients received steroids. Although all cases were considered serious and required hospitalization, most cases presented a favorable outcome (67.1%) with a good response to corticosteroid therapy with a mean time to recovery of 7.2 days. Disproportionality analyses suggested that AOSD was associated with COVID-19 vaccines as well as other vaccines. AOSD was nearly five times more frequently reported with COVID-19 vaccines than with all other drugs. Clinicians should be informed about the potential risk of AOSD onset or flare following COVID vaccines and the importance of its early detection to optimize its management.
Collapse
Affiliation(s)
- Pascale Palassin
- Department of Medical Pharmacology and Toxicology, CHU Montpellier, Montpellier, France.
| | - Virginie Bres
- Department of Medical Pharmacology and Toxicology, CHU Montpellier, Montpellier, France
| | | | - Ange Alfonsi
- Department of Medical Pharmacology and Toxicology, CHU Montpellier, Montpellier, France
| | - Nathalie Massy
- Regional Pharmacovigilance Center, Department of Pharmacology, CHU Rouen, Rouen, France
| | - Valérie Gras-Champel
- Regional Pharmacovigilance Center, Department of Clinical Pharmacology, CHU Amiens-Picardie, Amiens, France
| | - Alexandre Thibault Jacques Maria
- Internal Medicine & Immuno-Oncology (MedI2O), Institute for Regenerative Medicine and Biotherapy (IRMB), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France,Univ Montpellier, IRMB, Montpellier, France
| | - Jean-Luc Faillie
- Department of Medical Pharmacology and Toxicology, CHU Montpellier, Montpellier, France,Univ Montpellier, IDESP INSERM, Montpellier, France
| | | |
Collapse
|
29
|
Severe COVID-19 May Impact Hepatic Fibrosis /Hepatic Stellate Cells Activation as Indicated by a Pathway and Population Genetic Study. Genes (Basel) 2022; 14:genes14010022. [PMID: 36672763 PMCID: PMC9858736 DOI: 10.3390/genes14010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) has affected over 112 million people and killed more than 2.5 million worldwide. When the pandemic was declared, Spain and Italy accounted for 29% of the total COVID-19 related deaths in Europe, while most infected patients did not present severe illness. We hypothesised that shared genomic characteristics, distinct from the rest of Europe, could be a contributor factor to a poor prognosis in these two populations. To identify pathways related to COVID-19 severity, we shortlisted 437 candidate genes associated with host viral intake and immune evasion from SARS-like viruses. From these, 21 were associated specifically with clinically aggressive COVID-19. To determine the potential mechanism of viral infections, we performed signalling pathway analysis with either the full list (n = 437) or the subset group (n = 21) of genes. Four pathways were significantly associated with the full gene list (Caveolar-mediated Endocytosis and the MSP-RON Signalling) or with the aggressive gene list (Hepatic Fibrosis/Hepatic Stellate Cell (HSC) Activation and the Communication between Innate and Adaptive Immune Cells). Single nucleotide polymorphisms (SNPs) from the ±1 Mb window of all genes related to these four pathways were retrieved from the dbSNP database. We then performed Principal Component analysis for these SNPs in individuals from the 1000 Genomes of European ancestry. Only the Hepatic Fibrosis/HSC Activation pathway showed population-specific segregation. The Spanish and Italian populations clustered together and away from the rest of the European ancestries, with the first segregating further from the rest. Additional in silico analysis identified potential genetic markers and clinically actionable therapeutic targets in this pathway, that may explain the severe disease.
Collapse
|
30
|
Subramaniam S, Kothari H, Bosmann M. Tissue factor in COVID-19-associated coagulopathy. Thromb Res 2022; 220:35-47. [PMID: 36265412 PMCID: PMC9525243 DOI: 10.1016/j.thromres.2022.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Evidence of micro- and macro-thrombi in the arteries and veins of critically ill COVID-19 patients and in autopsies highlight the occurrence of COVID-19-associated coagulopathy (CAC). Clinical findings of critically ill COVID-19 patients point to various mechanisms for CAC; however, the definitive underlying cause is unclear. Multiple factors may contribute to the prothrombotic state in patients with COVID-19. Aberrant expression of tissue factor (TF), an initiator of the extrinsic coagulation pathway, leads to thrombotic complications during injury, inflammation, and infections. Clinical evidence suggests that TF-dependent coagulation activation likely plays a role in CAC. Multiple factors could trigger abnormal TF expression and coagulation activation in patients with severe COVID-19 infection. Proinflammatory cytokines that are highly elevated in COVID-19 (IL-1β, IL-6 and TNF-α) are known induce TF expression on leukocytes (e.g. monocytes, macrophages) and non-immune cells (e.g. endothelium, epithelium) in other conditions. Antiphospholipid antibodies, TF-positive extracellular vesicles, pattern recognition receptor (PRR) pathways and complement activation are all candidate factors that could trigger TF-dependent procoagulant activity. In addition, coagulation factors, such as thrombin, may further potentiate the induction of TF via protease-activated receptors on cells. In this systematic review, with other viral infections, we discuss potential mechanisms and cell-type-specific expressions of TF during SARS-CoV-2 infection and its role in the development of CAC.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Hema Kothari
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
31
|
Autmizguine J, Barton M, Burton C, Dixit D, Papenburg J, Robinson J, Top KA, Rubin E. AMMI Canada Practice Point on the treatment of acute COVID-19 in pediatrics. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2022; 7:307-316. [PMID: 37397826 PMCID: PMC10312226 DOI: 10.3138/jammi-2022-09-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Affiliation(s)
- Julie Autmizguine
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Michelle Barton
- Division of Infectious Diseases, Department of Pediatrics, Western University, London, Ontario, Canada
| | - Catherine Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Devika Dixit
- Division of Infectious Diseases, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jesse Papenburg
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montréal Children’s Hospital, McGill University Health Centre, Montréal, Québec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | - Joan Robinson
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Karina A Top
- Division of Infectious Diseases, Department of Pediatrics, IWK Health and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Earl Rubin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montréal Children’s Hospital, McGill University Health Centre, Montréal, Québec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | | |
Collapse
|
32
|
Multisystem Inflammatory Syndrome in a Young Adult (MIC-A) Following SARS-CoV-2 Infection. Medicina (B Aires) 2022; 58:medicina58111515. [PMID: 36363472 PMCID: PMC9698889 DOI: 10.3390/medicina58111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Multisystem Inflammatory Syndrome (MIS) is a rare but increasingly recognized complication of SARS-CoV-2 infection, usually presenting 2 to 6 weeks after the onset of COVID-19 infection symptoms and affecting mainly children. However, there have been reported several cases of a similar multisystem inflammatory syndrome in adults (MIS-A). We describe the case of a previously healthy 28-year-old male who presented with a clinical profile with multiorgan involvement within four weeks after confirmed SARS-CoV-2 infection, suggestive for multisystem inflammatory syndrome (MIS-A). The clinical presentation included persistent high grade of fever, gastrointestinal and mucocutaneous lesions, lymphadenopathy, elevated cardiac and inflammatory biomarkers, cytopenia and shock. This case report illustrates the wide range of presentations, diagnosis, and treatment modalities of multisystem inflammatory syndrome. The pathophysiology and the mechanisms by which SARS-CoV-2 triggers an abnormal immune response leading to MIS remain poorly understood. Better characterization of MIS-A and early recognition of MIS is important because it is associated with high mortality if left untreated.
Collapse
|
33
|
Rondovic G, Djordjevic D, Udovicic I, Stanojevic I, Zeba S, Abazovic T, Vojvodic D, Abazovic D, Khan W, Surbatovic M. From Cytokine Storm to Cytokine Breeze: Did Lessons Learned from Immunopathogenesis Improve Immunomodulatory Treatment of Moderate-to-Severe COVID-19? Biomedicines 2022; 10:2620. [PMID: 36289881 PMCID: PMC9599155 DOI: 10.3390/biomedicines10102620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Complex immune response to infection has been highlighted, more than ever, during the COVID-19 pandemic. This review explores the immunomodulatory treatment of moderate-to-severe forms of this viral sepsis in the context of specific immunopathogenesis. Our objective is to analyze in detail the existing strategies for the use of immunomodulators in COVID-19. Immunomodulating therapy is very challenging; there are still underpowered or, in other ways, insufficient studies with inconclusive or conflicting results regarding a rationale for adding a second immunomodulatory drug to dexamethasone. Bearing in mind that a "cytokine storm" is not present in the majority of COVID-19 patients, it is to be expected that the path to the adequate choice of a second immunomodulatory drug is paved with uncertainty. Anakinra, a recombinant human IL-1 receptor antagonist, is a good choice in this setting. Yet, the latest update of the COVID-19 Treatment Guidelines Panel (31 May 2022) claims that there is insufficient evidence to recommend either for or against the use of anakinra for the treatment of COVID-19. EMA's human medicines committee recommended extending the indication of anakinra to include treatment of COVID-19 in adult patients only recently (17 December 2021). It is obvious that this is still a work in progress, with few ongoing clinical trials. With over 6 million deaths from COVID-19, this is the right time to speed up this process. Our conclusion is that, during the course of COVID-19, the immune response is changing from the early phase to the late phase in individual patients, so immunomodulating therapy should be guided by individual responses at different time points.
Collapse
Affiliation(s)
- Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dzihan Abazovic
- Biocell Hospital, Omladinskih Brigada 86a, 11000 Belgrade, Serbia
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| |
Collapse
|
34
|
Potere N, Del Buono MG, Caricchio R, Cremer PC, Vecchié A, Porreca E, Dalla Gasperina D, Dentali F, Abbate A, Bonaventura A. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine 2022; 85:104299. [PMID: 36209522 PMCID: PMC9536001 DOI: 10.1016/j.ebiom.2022.104299] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
A hyperinflammatory response during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection crucially worsens clinical evolution of coronavirus disease 2019 (COVID-19). The interaction between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) triggers the activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Enhanced inflammasome activity has been associated with increased disease severity and poor prognosis. Evidence suggests that inflammasome activation and interleukin-1β (IL-1β) release aggravate pulmonary injury and induce hypercoagulability, favoring progression to respiratory failure and widespread thrombosis eventually leading to multiorgan failure and death. Observational studies with the IL-1 blockers anakinra and canakinumab provided promising results. In the SAVE-MORE trial, early treatment with anakinra significantly shortened hospital stay and improved survival in patients with moderate-to-severe COVID-19. In this review, we summarize current evidence supporting the pathogenetic role of the NLRP3 inflammasome and IL-1β in COVID-19, and discuss clinical trials testing IL-1 inhibition in COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Paul C. Cremer
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandra Vecchié
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy
| | - Ettore Porreca
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | | | - Francesco Dentali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Aldo Bonaventura
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy,Corresponding author.
| |
Collapse
|
35
|
Garg SK. Anti-cytokine Therapy in Hospitalized Patients with COVID-19: The Jury is Out. Indian J Crit Care Med 2022; 26:1069-1071. [PMID: 36876195 PMCID: PMC9983665 DOI: 10.5005/jp-journals-10071-24336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
How to cite this article: Garg SK. Anti-cytokine Therapy in Hospitalized Patients with COVID-19: The Jury is Out. Indian J Crit Care Med 2022;26(10):1069-1071.
Collapse
Affiliation(s)
- Sunil Kumar Garg
- Department of Critical Care, NMC Healthcare, Dubai, United Arab Emirates
| |
Collapse
|
36
|
Haibel H, Poddubnyy D, Angermair S, Allers K, Vahldiek JL, Schumann M, Schneider T. Successful treatment of severe COVID-19 pneumonia, a case series with simultaneous interleukin-1 and interleukin-6 blockade with 1-month follow-up. Ther Adv Musculoskelet Dis 2022; 14:1759720X221116405. [PMID: 36071720 PMCID: PMC9444821 DOI: 10.1177/1759720x221116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Interleukin (IL)-6 and IL-1 blockade showed beneficial results in patients with severe COVID-19 pneumonia and evidence of cytokine release at the early disease stage. Here, we report outcomes of open-label therapy with a combination of blocking IL-6 with tocilizumab 8 mg/kg up to 800 mg and IL-1 receptor antagonist anakinra 100–300 mg over 3–5 days. Thirty-one adult patients with severe COVID-19 pneumonia and signs of cytokine release, mean age 54 (30–79) years, 5 female, 26 male, and mean symptom duration 6 (3–10) days were treated. Patients with more than 10 days of symptoms, evidence of bacterial infection/elevated procalcitonin and other severe lung diseases were excluded. Computed tomography (CT) scans of the lung were performed initially and after 1 month; inflammatory activity was assessed on a scale 0–25. Twenty-five patients survived without intubation and mechanical lung ventilation, two patients died. C-reactive protein decreased in 19/31 patients to normal ranges. The mean activity CT score decreased from 14 (8–20) to 6 (0–16, n = 16). In conclusion, most of our patients recovered fast and sustained, indicating that early interruption of cytokine release might be very effective in preventing patients from mechanical ventilation, death, and long-term damage.
Collapse
Affiliation(s)
- Hildrun Haibel
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Angermair
- Department of Anestesiology and Surgical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Allers
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Janis L Vahldiek
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schneider
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Baracaldo-Santamaría D, Barros-Arias GM, Hernández-Guerrero F, De-La-Torre A, Calderon-Ospina CA. Immune-related adverse events of biological immunotherapies used in COVID-19. Front Pharmacol 2022; 13:973246. [PMID: 36091800 PMCID: PMC9461090 DOI: 10.3389/fphar.2022.973246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
The use of biological immunotherapeutic drugs is one of the options currently being evaluated and employed to manage COVID-19, specifically monoclonal antibodies, which have shown benefit by regulating the excessive immune response seen in patients with severe infection, known as a cytokine storm. Tocilizumab has received particular importance for this clinical application, as has sarilumab. Both drugs share a substantial similarity in terms of pharmacodynamics, being inhibitors of the interleukin six receptor (IL-6Rα). Furthermore, sotrovimab, a neutralizing anti-SARS CoV-2 antibody, has gained the attention of the scientific community since it has recently been authorized under certain circumstances, positioning itself as a new therapeutic alternative in development. However, despite their clinical benefit, biological immunotherapies have the potential to generate life-threatening immune-related adverse events. Therefore it is essential to review their incidence, mechanism, and risk factors. This review aims to provide a comprehensive understanding of the safety of the biological immunotherapeutic drugs currently recommended for the treatment of COVID-19, provide a review of the known immune-mediated adverse events and explore the potential immune-related mechanisms of other adverse reactions.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario Bogotá, Bogotá, Colombia
| | - Giovanna María Barros-Arias
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario Bogotá, Bogotá, Colombia
| | - Felipe Hernández-Guerrero
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario Bogotá, Bogotá, Colombia
| | - Alejandra De-La-Torre
- Neuroscience Research Group (NEUROS). Neurovitae Center, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario Bogotá, Bogotá, Colombia
- Center for Research in Genetics and Genomics (CIGGUR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- *Correspondence: Carlos-Alberto Calderon-Ospina,
| |
Collapse
|
38
|
Risal U, Subedee A, Pangeni R, Pandey R, Pandey S, Adhikari S, Basnyat B. Case Report: Adult Onset Still’s Disease after vaccination against Covid-19. Wellcome Open Res 2022; 6:333. [PMID: 36072554 PMCID: PMC9396110 DOI: 10.12688/wellcomeopenres.17345.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
Vaccination against the virus responsible for COVID-19 has become key in preventing mortality and morbidity related to the infection. Studies have shown that the benefits of vaccination outweigh the risks. However, there are concerns regarding serious adverse events of some vaccines, although they are fortunately rare. Here, we report a case of a 47-year-old female from Kathmandu who presented with high grade fever, dry cough and erythematous rash a week after exposure to the Oxford-AstraZeneca vaccine. She had hepatosplenomegaly, persistent leucocytosis, anaemia and thrombocytosis along with markedly raised inflammatory markers. Her tests for infectious causes and haematological malignancies were negative and she showed no response to multiple antibiotics. Finally, she had a dramatic response to steroids with disappearance of fever and normalization of other laboratory parameters. Hence, she was diagnosed with Adult-onset Still’s Disease (AOSD). She was under methotrexate and prednisolone tapering dose and doing well as of the time of writing. The trigger for the disease was hypothesized to be the vaccine because of the strong temporal association.
Collapse
Affiliation(s)
- Ujjwol Risal
- Internal Medicine, Hospital for Advanced Medicine and Surgery, Kathmandu, Nepal
| | - Anup Subedee
- Internal Medicine, Hospital for Advanced Medicine and Surgery, Kathmandu, Nepal
| | - Raju Pangeni
- Pulmonary and Critical Care, Hospital for Advanced Medicine and Surgery, Kathmandu, Nepal
| | - Rakshya Pandey
- Pulmonary and Critical Care, Hospital for Advanced Medicine and Surgery, Kathmandu, Nepal
| | - Suravi Pandey
- Internal Medicine, Hospital for Advanced Medicine and Surgery, Kathmandu, Nepal
| | | | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Hospital, Kathmandu, Nepal
| |
Collapse
|
39
|
Lebedeva A, Molodtsov I, Anisimova A, Berestovskaya A, Dukhin O, Elizarova A, Fitzgerald W, Fomina D, Glebova K, Ivanova O, Kalinskaya A, Lebedeva A, Lysenko M, Maryukhnich E, Misyurina E, Protsenko D, Rosin A, Sapozhnikova O, Sokorev D, Shpektor A, Vorobyeva D, Vasilieva E, Margolis L. Comprehensive Cytokine Profiling of Patients with COVID-19 Receiving Tocilizumab Therapy. Int J Mol Sci 2022; 23:7937. [PMID: 35887283 PMCID: PMC9316906 DOI: 10.3390/ijms23147937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by immune activation in response to viral spread, in severe cases leading to the development of cytokine storm syndrome (CSS) and increased mortality. Despite its importance in prognosis, the pathophysiological mechanisms of CSS in COVID-19 remain to be defined. Towards this goal, we analyzed cytokine profiles and their interrelation in regard to anti-cytokine treatment with tocilizumab in 98 hospitalized patients with COVID-19. We performed a multiplex measurement of 41 circulating cytokines in the plasma of patients on admission and 3-5 days after, during the follow-up. Then we analyzed the patient groups separated in two ways: according to the clusterization of their blood cytokines and based on the administration of tocilizumab therapy. Patients with and without CSS formed distinct clusters according to their cytokine concentration changes. However, the tocilizumab therapy, administered based on the standard clinical and laboratory criteria, did not fully correspond to those clusters of CSS. Furthermore, among all cytokines, IL-6, IL-1RA, IL-10, and G-CSF demonstrated the most prominent differences between patients with and without clinical endpoints, while only IL-1RA was prognostically significant in both groups of patients with and without tocilizumab therapy, decreasing in the former and increasing in the latter during the follow-up period. Thus, CSS in COVID-19, characterized by a correlated release of multiple cytokines, does not fully correspond to the standard parameters of disease severity. Analysis of the cytokine signature, including the IL-1RA level in addition to standard clinical and laboratory parameters may be useful to define the onset of a cytokine storm in COVID-19 as well as the indications for anti-cytokine therapy.
Collapse
Affiliation(s)
- Anna Lebedeva
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
| | - Ivan Molodtsov
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Alexandra Anisimova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Anastasia Berestovskaya
- Clinical City Hospital №40, Moscow Department of Healthcare, 7 Kasatkina Str., 129301 Moscow, Russia; (A.B.); (D.P.)
| | - Oleg Dukhin
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Antonina Elizarova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 29B Lincoln Dr., Bethesda, MD 20892, USA; (W.F.); (L.M.)
| | - Darya Fomina
- Clinical City Hospital №52, Moscow Department of Healthcare, 3 Pekhotnaya Str., 123182 Moscow, Russia; (D.F.); (M.L.); (E.M.)
| | - Kseniya Glebova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Oxana Ivanova
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Anna Kalinskaya
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
- Department of Cardiology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia
| | - Anastasia Lebedeva
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
- Clinical City Hospital №40, Moscow Department of Healthcare, 7 Kasatkina Str., 129301 Moscow, Russia; (A.B.); (D.P.)
| | - Maryana Lysenko
- Clinical City Hospital №52, Moscow Department of Healthcare, 3 Pekhotnaya Str., 123182 Moscow, Russia; (D.F.); (M.L.); (E.M.)
| | - Elena Maryukhnich
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Elena Misyurina
- Clinical City Hospital №52, Moscow Department of Healthcare, 3 Pekhotnaya Str., 123182 Moscow, Russia; (D.F.); (M.L.); (E.M.)
| | - Denis Protsenko
- Clinical City Hospital №40, Moscow Department of Healthcare, 7 Kasatkina Str., 129301 Moscow, Russia; (A.B.); (D.P.)
| | - Alexander Rosin
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Olga Sapozhnikova
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Denis Sokorev
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Alexander Shpektor
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
- Department of Cardiology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia
| | - Daria Vorobyeva
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (O.I.); (A.K.); (E.M.); (D.V.)
- Clinical City Hospital Named after I.V. Davidovsky, Moscow Department of Healthcare, 11/6 Yauzskaya Str., 109240 Moscow, Russia; (I.M.); (A.A.); (O.D.); (A.E.); (K.G.); (A.L.); (A.R.); (O.S.); (D.S.); (A.S.)
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 29B Lincoln Dr., Bethesda, MD 20892, USA; (W.F.); (L.M.)
| |
Collapse
|
40
|
Challenging management of a post-coronavirus disease 2019 invasive Aspergillus sinusitis in a person living with HIV. AIDS 2022; 36:1321-1323. [PMID: 35833686 DOI: 10.1097/qad.0000000000003243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Farina N, Dagna L. Interleukin 6 inhibition in severe COVID-19: Another piece of the puzzle. Eur J Intern Med 2022; 101:37-38. [PMID: 35491348 PMCID: PMC9035353 DOI: 10.1016/j.ejim.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Nicola Farina
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
42
|
Arias M, Oliveros H, Lechtig S, Bustos RH. Biologics in COVID-19 So Far: Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15070783. [PMID: 35890081 PMCID: PMC9321859 DOI: 10.3390/ph15070783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022] Open
Abstract
This systematic review aimed to reevaluate the available evidence of the use of biologics as treatment candidates for the treatment of severe and advanced COVID-19 disease; what are the rationale for their use, which are the most studied, and what kind of efficacy measures are described? A search through Cochrane, Embase, Pubmed, Medline, medrxiv.org, and Google scholar was performed on the use of biologic interventions in COVID-19/SARS-CoV-2 infection, viral pneumonia, and sepsis, until 11 January 2022. Throughout the research, we identified 4821 records, of which 90 were selected for qualitative analysis. Amongst the results, we identified five popular targets of use: IL6 and IL1 inhibitors, interferons, mesenchymal stem cells treatment, and anti-spike antibodies. None of them offered conclusive evidence of their efficacy with consistency and statistical significance except for some studies with anti-spike antibodies; however, Il6 and IL1 inhibitors as well as interferons show encouraging data in terms of increased survival and favorable clinical course that require further studies with better methodology standardization.
Collapse
Affiliation(s)
- Milton Arias
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Autopista Norte de Bogotá, Chía 140013, Colombia; (M.A.); (S.L.)
| | - Henry Oliveros
- Department of Epidemiology, Health Research Group, Faculty of Medicine, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia;
| | - Sharon Lechtig
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Autopista Norte de Bogotá, Chía 140013, Colombia; (M.A.); (S.L.)
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Autopista Norte de Bogotá, Chía 140013, Colombia; (M.A.); (S.L.)
- Correspondence: ; Tel.: +57-1608615555
| |
Collapse
|
43
|
Movassagh M, Morton SU, Hehnly C, Smith J, Doan TT, Irizarry R, Broach JR, Schiff SJ, Bailey JA, Paulson JN. mirTarRnaSeq: An R/Bioconductor Statistical Package for miRNA-mRNA Target Identification and Interaction Analysis. BMC Genomics 2022; 23:439. [PMID: 35698050 PMCID: PMC9191533 DOI: 10.1186/s12864-022-08558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
We introduce mirTarRnaSeq, an R/Bioconductor package for quantitative assessment of miRNA-mRNA relationships within sample cohorts. mirTarRnaSeq is a statistical package to explore predicted or pre-hypothesized miRNA-mRNA relationships following target prediction.We present two use cases applying mirTarRnaSeq. First, to identify miRNA targets, we examined EBV miRNAs for interaction with human and virus transcriptomes of stomach adenocarcinoma. This revealed enrichment of mRNA targets highly expressed in CD105+ endothelial cells, monocytes, CD4+ T cells, NK cells, CD19+ B cells, and CD34 cells. Next, to investigate miRNA-mRNA relationships in SARS-CoV-2 (COVID-19) infection across time, we used paired miRNA and RNA sequenced datasets of SARS-CoV-2 infected lung epithelial cells across three time points (4, 12, and 24 hours post-infection). mirTarRnaSeq identified evidence for human miRNAs targeting cytokine signaling and neutrophil regulation immune pathways from 4 to 24 hours after SARS-CoV-2 infection. Confirming the clinical relevance of these predictions, three of the immune specific mRNA-miRNA relationships identified in human lung epithelial cells after SARS-CoV-2 infection were also observed to be differentially expressed in blood from patients with COVID-19. Overall, mirTarRnaSeq is a robust tool that can address a wide-range of biological questions providing improved prediction of miRNA-mRNA interactions.
Collapse
Affiliation(s)
- Mercedeh Movassagh
- Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sarah U Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Christine Hehnly
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jasmine Smith
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Trang T Doan
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Center for Neural Engineering and Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery and Physics, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Rafael Irizarry
- Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - James R Broach
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Steven J Schiff
- Center for Neural Engineering and Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery and Physics, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Jeffrey A Bailey
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Joseph N Paulson
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.
| |
Collapse
|
44
|
Favalli A, Favalli EG, Gobbini A, Zagato E, Bombaci M, Maioli G, Pesce E, Donnici L, Gruarin P, Biggioggero M, Curti S, Manganaro L, Marchisio E, Bevilacqua V, Martinovic M, Fabbris T, Sarnicola ML, Crosti M, Marongiu L, Granucci F, Notarbartolo S, Bandera A, Gori A, De Francesco R, Abrignani S, Caporali R, Grifantini R. Immunosuppressant Treatment in Rheumatic Musculoskeletal Diseases Does Not Inhibit Elicitation of Humoral Response to SARS-CoV-2 Infection and Preserves Effector Immune Cell Populations. Front Immunol 2022; 13:873195. [PMID: 35757699 PMCID: PMC9226581 DOI: 10.3389/fimmu.2022.873195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
COVID-19 has proven to be particularly serious and life-threatening for patients presenting with pre-existing pathologies. Patients affected by rheumatic musculoskeletal disease (RMD) are likely to have impaired immune responses against SARS-CoV-2 infection due to their compromised immune system and the prolonged use of disease-modifying anti-rheumatic drugs (DMARDs), which include conventional synthetic (cs) DMARDs or biologic and targeted synthetic (b/ts) DMARDs. To provide an integrated analysis of the immune response following SARS-CoV-2 infection in RMD patients treated with different classes of DMARDs we carried out an immunological analysis of the antibody responses toward SARS-CoV-2 nucleocapsid and RBD proteins and an extensive immunophenotypic analysis of the major immune cell populations. We showed that RMD individuals under most DMARD treatments mount a sustained antibody response to the virus, with neutralizing activity. In addition, they displayed a sizable percentage of effector T and B lymphocytes. Among b-DMARDs, we found that anti-TNFα treatments are more favorable drugs to elicit humoral and cellular immune responses as compared to CTLA4-Ig and anti-IL6R inhibitors. This study provides a whole picture of the humoral and cellular immune responses in RMD patients by reassuring the use of DMARD treatments during COVID-19. The study points to TNF-α inhibitors as those DMARDs permitting elicitation of functional antibodies to SARS-CoV-2 and adaptive effector populations available to counteract possible re-infections.
Collapse
Affiliation(s)
- Andrea Favalli
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Ph.D. Program in Translational and Molecular Medicine, Dottorato in Medicina Molecolare e Traslazionale (DIMET), University of Milan-Bicocca, Monza, Italy
| | - Ennio Giulio Favalli
- Division of Clinical Rheumatology, Aziende Socio Sanitarie Territoriali (ASST) Gaetano Pini-Centro Traumatologico Ortopedico (CTO) Institute, Milan, Italy
| | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Zagato
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Gabriella Maioli
- Division of Clinical Rheumatology, Aziende Socio Sanitarie Territoriali (ASST) Gaetano Pini-Centro Traumatologico Ortopedico (CTO) Institute, Milan, Italy
| | - Elisa Pesce
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Lorena Donnici
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Martina Biggioggero
- Division of Clinical Rheumatology, Aziende Socio Sanitarie Territoriali (ASST) Gaetano Pini-Centro Traumatologico Ortopedico (CTO) Institute, Milan, Italy
| | - Serena Curti
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Lara Manganaro
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | | | - Valeria Bevilacqua
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Martina Martinovic
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Tanya Fabbris
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Maria Lucia Sarnicola
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Mariacristina Crosti
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Laura Marongiu
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Granucci
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Samuele Notarbartolo
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Alessandra Bandera
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Infectious Diseases Unit, Foundation Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale MaggiorePoliclinico, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Andrea Gori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Infectious Diseases Unit, Foundation Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale MaggiorePoliclinico, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, Aziende Socio Sanitarie Territoriali (ASST) Gaetano Pini-Centro Traumatologico Ortopedico (CTO) Institute, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| |
Collapse
|
45
|
Palla M, Scarpato L, Di Trolio R, Ascierto PA. Sonic hedgehog pathway for the treatment of inflammatory diseases: implications and opportunities for future research. J Immunother Cancer 2022; 10:jitc-2021-004397. [PMID: 35710292 PMCID: PMC9204405 DOI: 10.1136/jitc-2021-004397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway is an essential pathway in the human body that plays an important role in embryogenesis and tissue homeostasis. Aberrant activation of this pathway has been linked to the development of different diseases, ranging from cancer to immune dysregulation and infections. Uncontrolled activation of the pathway through sporadic mutations or other mechanisms is associated with cancer development and progression in various malignancies, such as basal cell carcinoma, medulloblastoma, pancreatic cancer, breast cancer and small-cell lung carcinoma. Targeted inhibition of the pathway components has therefore emerged as an attractive and validated therapeutic strategy for the treatment of a wide range of cancers. Currently, two main components of the pathway, the smoothened receptor and the glioma-associated oncogene homolog transcriptional factors, have been investigated for the development of targeted drugs, leading to the marketing authorization of three smoothened receptor inhibitors for the treatment of basal cell carcinoma and acute myeloid leukemia. The Shh pathway also seems to be involved in regulating the immune response, possibly playing a role in immune system evasions by tumors, development of autoimmune diseases, such as rheumatoid arthritis and Crohn’s disease, airway inflammation, and diseases related to aberrant activation of T-helper 2 cellular response, such as allergy, atopic dermatitis, and asthma. Finally, the Shh pathway is involved in pathogen-mediated infection, including influenza-A and, more recently, SARS-CoV-2 viruses. Therefore, agents that inhibit the Shh signaling pathway might be used to treat pathogenic infections, shifting the therapeutic approach from strain-specific treatments to host-based strategies that target highly conserved host targets.
Collapse
Affiliation(s)
- Marco Palla
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Scarpato
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Rossella Di Trolio
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
46
|
Hasanvand A. COVID-19 and the role of cytokines in this disease. Inflammopharmacology 2022; 30:789-798. [PMID: 35505267 PMCID: PMC9064717 DOI: 10.1007/s10787-022-00992-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Studies have shown that SARS-CoV-2 has the ability to activate and mature proinflammatory cytokines in the body. Cytokine markers are a group of polypeptide signalling molecules that can induce and regulate many cellular biological processes by stimulating cell receptors at the surface. SARS-CoV-2 has been shown to be associated with activation of innate immunity, and an increase in neutrophils, mononuclear phagocytes, and natural killer cells has been observed, as well as a decrease in T cells including CD4+ and CD8. It is noteworthy that during the SARS-CoV-2 infection, an increase in the secretion or production of IL-6 and IL-8 is seen in COVID-19 patients along with a decrease in CD4+ and CD8+ and T cells in general. SARS-CoV-2 has been shown to significantly increase Th2, Th1/Th17 cells and antibody production in the body of patients with COVID-19. Specific immune profiles of SARS-CoV-2 infection can lead to secondary infections and dysfunction of various organs in the body. It has been shown that Interleukins (such as IL-1, IL-4, IL-6, IL-7, IL-10, IL-12, IL-17, and IL-18), IFN-γ, TNF-α,TGF-β and NF-κB play major roles in the body's inflammatory response to SARS-CoV-2 infection. The most important goal of this review is to study the role of inflammatory cytokines in COVID-19.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
47
|
Mohseni Afshar Z, Barary M, Babazadeh A, Tavakoli Pirzaman A, Hosseinzadeh R, Alijanpour A, Allahgholipour A, Miri SR, Sio TT, Sullman MJM, Carson‐Chahhoud K, Ebrahimpour S. The role of cytokines and their antagonists in the treatment of COVID-19 patients. Rev Med Virol 2022; 33:e2372. [PMID: 35621229 PMCID: PMC9347599 DOI: 10.1002/rmv.2372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/28/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has various presentations, of which immune dysregulation or the so-called cytokine storm syndrome (COVID-CSS) is prominent. Even though cytokines are vital regulators of body immunoinflammatory responses, their exaggerated release can be harmful. This hyperinflammatory response is more commonly observed during severe COVID-19 infections, caused by the excessive release of pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-8, tumour necrosis factor, granulocyte-macrophage colony-stimulating factor, and interferon-gamma, making their blockers and antagonists of great interest as therapeutic options in this condition. Thus, the pathophysiology of excessive cytokine secretion is outlined, and their most important blockers and antagonists are discussed, mainly focussing on tocilizumab, an interleukin-6 receptor blocker approved to treat severe COVID-19 infections.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development CenterImam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Barary
- Student Research CommitteeVirtual School of Medical Education and ManagementShahid Beheshti University of Medical SciencesTehranIran,Students' Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research CenterHealth Research InstituteBabol University of Medical SciencesBabolIran
| | | | | | | | - Amirreza Allahgholipour
- Student Research CommitteeSchool of Nursing and MidwiferyShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Rouhollah Miri
- Cancer Research CenterCancer Institute of IranTehran University of Medical ScienceTehranIran
| | - Terence T. Sio
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Mark J. M. Sullman
- Department of Social SciencesUniversity of NicosiaNicosiaCyprus,Department of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| | | | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research CenterHealth Research InstituteBabol University of Medical SciencesBabolIran
| |
Collapse
|
48
|
Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F, Farahzadi R, Ghasemnejad T. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J 2022; 19:92. [PMID: 35619180 PMCID: PMC9134144 DOI: 10.1186/s12985-022-01814-1] [Citation(s) in RCA: 255] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/09/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a significant threat to global health. This virus affects the respiratory tract and usually leads to pneumonia in most patients and acute respiratory distress syndrome (ARDS) in 15% of cases. ARDS is one of the leading causes of death in patients with COVID-19 and is mainly triggered by elevated levels of pro-inflammatory cytokines, referred to as cytokine storm. Interleukins, such as interleukin-6 (1L-6), interleukin-1 (IL-1), interleukin-17 (IL-17), and tumor necrosis factor-alpha (TNF-α) play a very significant role in lung damage in ARDS patients through the impairments of the respiratory epithelium. Cytokine storm is defined as acute overproduction and uncontrolled release of pro-inflammatory markers, both locally and systemically. The eradication of COVID-19 is currently practically impossible, and there is no specific treatment for critically ill patients with COVID-19; however, suppressing the inflammatory response may be a possible strategy. In light of this, we review the efficacy of specific inhibitors of IL6, IL1, IL-17, and TNF-α for treating COVID-19-related infections to manage COVID-19 and improve the survival rate for patients suffering from severe conditions.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | | | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| |
Collapse
|
49
|
Bahmani M, Chegini R, Ghanbari E, Sheykhsaran E, Shiri Aghbash P, Leylabadlo HE, Moradian E, Kazemzadeh Houjaghan AM, Bannazadeh Baghi H. Severe acute respiratory syndrome coronavirus 2 infection: Role of interleukin-6 and the inflammatory cascade. World J Virol 2022; 11:113-128. [PMID: 35665236 PMCID: PMC9150027 DOI: 10.5501/wjv.v11.i3.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a novel coronavirus that represents a serious threat to human lives has emerged. There is still no definite treatment for severe cases of the disease caused by this virus, named coronavirus disease 2019 (COVID-19). One of the most considered treatment strategies targets the exaggerated immune regulator, and interleukin (IL)-6 is a crucial pro-inflammatory mediator. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases show an elevated level of IL-6 related to disease severity. IL-6 activity can be inhibited by the following: IL-6 itself, IL-6 signaling pathways such as Janus kinase and signal transducer and activator of transcription (JAK-STAT), gp130, IL-6R, and downstream activated ILs, such as IL-17 and IL-6 cytokine. Currently, according to these studies and their results, IL-6 blockade with anti-IL-6 or its receptor antibodies such as tocilizumab in COVID-19 is beneficial in severe cases and may reduce the mortality rate. JAK-STAT inhibitors block the cytokine storm by inhibiting several crucial pro-inflammatory mediators such as TNF-α and IL-6 and have shown various results in clinical trials. IL-6 induces IL-17 secretion, and IL-17 is involved in the pathogenesis of inflammatory processes. Clinical trials of anti-IL-17 drugs are currently recruiting, and anti-gp130 antibody is preclinical. However, this agent has shown positive effects in inflammatory bowel disease clinical trials and could be tested for SARS-CoV-2. This study aimed to review the role of IL-6 in the cytokine storm and studies regarding IL-6 and blockade of its inflammatory pathways in COVID-19 to determine if any of these agents are beneficial for COVID-19 patients.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Department of Virology, Student Research Committee, Tabriz Univer-sity of Medical Sciences, Tabriz 15731, Iran
| | - Rojin Chegini
- Department of Medical Science, Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran
| | - Elham Ghanbari
- Department of Medical Science, Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67159-59167, Iran
| | - Elham Sheykhsaran
- Department of Microbiology, Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | | | - Ehsan Moradian
- Department of Medical Science, Medical Faculty, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | | | - Hossein Bannazadeh Baghi
- Department of Virology, Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| |
Collapse
|
50
|
Jiménez D, Torres Arias M. Immunouniverse of SARS-CoV-2. Immunol Med 2022; 45:186-224. [PMID: 35502127 DOI: 10.1080/25785826.2022.2066251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|