1
|
Singh V, Mahra K, Jung D, Shin JH. Gut Microbes in Polycystic Ovary Syndrome and Associated Comorbidities; Type 2 Diabetes, Non-Alcoholic Fatty Liver Disease (NAFLD), Cardiovascular Disease (CVD), and the Potential of Microbial Therapeutics. Probiotics Antimicrob Proteins 2024; 16:1744-1761. [PMID: 38647957 DOI: 10.1007/s12602-024-10262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine anomalies among females of reproductive age, highlighted by hyperandrogenism. PCOS is multifactorial as it can be associated with obesity, insulin resistance, low-grade chronic inflammation, and dyslipidemia. PCOS also leads to dysbiosis by lowering microbial diversity and beneficial microbes, such as Faecalibacterium, Roseburia, Akkermenisa, and Bifidobacterium, and by causing a higher load of opportunistic pathogens, such as Escherichia/Shigella, Fusobacterium, Bilophila, and Sutterella. Wherein, butyrate producers and Akkermansia participate in the glucose uptake by inducing glucagon-like peptide-1 (GLP-1) and glucose metabolism, respectively. The abovementioned gut microbes also maintain the gut barrier function and glucose homeostasis by releasing metabolites such as short-chain fatty acids (SCFAs) and Amuc_1100 protein. In addition, PCOS-associated gut is found to be higher in gut-microbial enzyme β-glucuronidase, causing the de-glucuronidation of conjugated androgen, making it susceptible to reabsorption by entero-hepatic circulation, leading to a higher level of androgen in the circulatory system. Overall, in PCOS, such dysbiosis increases the gut permeability and LPS in the systemic circulation, trimethylamine N-oxide (TMAO) in the circulatory system, chronic inflammation in the adipose tissue and liver, and oxidative stress and lipid accumulation in the liver. Thus, in women with PCOS, dysbiosis can promote the progression and severity of type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). To alleviate such PCOS-associated complications, microbial therapeutics (probiotics and fecal microbiome transplantation) can be used without any side effects, unlike in the case of hormonal therapy. Therefore, this study sought to understand the mechanistic significance of gut microbes in PCOS and associated comorbidities, along with the role of microbial therapeutics that can ease the life of PCOS-affected women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Kanika Mahra
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - DaRyung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
2
|
Wang X, Lu C, Li X, Ye P, Ma J, Chen X. Exploring causal effects of gut microbiota and metabolites on body fat percentage using two-sample Mendelian randomization. Diabetes Obes Metab 2024; 26:3541-3551. [PMID: 38828839 DOI: 10.1111/dom.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
AIM The relationship between the gut microbiota, metabolites and body fat percentage (BFP) remains unexplored. We systematically assessed the causal relationships between gut microbiota, metabolites and BFP using Mendelian randomization analysis. MATERIALS AND METHODS Single nucleotide polymorphisms associated with gut microbiota, blood metabolites and BFP were screened via a genome-wide association study enrolling individuals of European descent. Summary data from genome-wide association studies were extracted from the MiBioGen consortium and the UK Biobank. The inverse variance-weighted model was the primary method used to estimate these causal relationships. Sensitivity analyses were performed using pleiotropy, Mendelian randomization-Egger regression, heterogeneity tests and leave-one-out tests. RESULTS In the aspect of phyla, classes, orders, families and genera, we observed that o_Bifidobacteriales [β = -0.05; 95% confidence interval (CI): -0.07 to -0.03; false discovery rate (FDR) = 2.76 × 10-3], f_Bifidobacteriaceae (β = -0.05; 95% CI: -0.07 to -0.07; FDR = 2.76 × 10-3), p_Actinobacteria (β = -0.06; 95% CI: -0.09 to -0.03; FDR = 6.36 × 10-3), c_Actinobacteria (β = -0.05; 95% CI: -0.08 to -0.02; FDR = 1.06 × 10-2), g_Bifidobacterium (β = -0.05; 95% CI: -0.07 to -0.02; FDR = 1.85 × 10-2), g_Ruminiclostridium9 (β = -0.03; 95% CI: -0.06 to -0.01; FDR = 4.81 × 10-2) were negatively associated with BFP. G_Olsenella (β = 0.02; 95% CI: 0.01-0.03; FDR = 2.16 × 10-2) was positively associated with BFP. Among the gut microbiotas, f_Bifidobacteriales, o_Bifidobacteriales, c_Actinobacteria and p_Actinobacteria were shown to be significantly associated with BFP in the validated dataset. In the aspect of metabolites, we only observed that valine (β = 0.77; 95% CI: 0.5-1.04; FDR = 8.65 × 10-6) was associated with BFP. CONCLUSIONS Multiple gut microbiota and metabolites were strongly associated with an increased BFP. Further studies are required to elucidate the mechanisms underlying this putative causality. In addition, BFP, a key indicator of obesity, suggests that obesity-related interventions can be developed from gut microbiota and metabolite perspectives.
Collapse
Affiliation(s)
- Xiaojun Wang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Chunrong Lu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiang Li
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
- Medical College, Guangxi University, Nanning, China
| | - Pengpeng Ye
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Jie Ma
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| |
Collapse
|
3
|
Abdul Kalam Saleena L, Chang SK, Simarani K, Arunachalam KD, Thammakulkrajang R, How YH, Pui LP. A comprehensive review of Bifidobacterium spp: as a probiotic, application in the food and therapeutic, and forthcoming trends. Crit Rev Microbiol 2024; 50:581-597. [PMID: 37551693 DOI: 10.1080/1040841x.2023.2243617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Recently, more consumers are interested in purchasing probiotic food and beverage products that may improve their immune health. The market for functional foods and beverages that include Bifidobacterium is expanding because of their potential uses in both food and therapeutic applications. However, maintaining Bifidobacterium's viability during food processing and storage remains a challenge. Microencapsulation technique has been explored to improve the viability of Bifidobacterium. Despite the technical, microbiological, and economic challenges, the market potential for immune-supporting functional foods and beverages is significant. Additionally, there is a shift toward postbiotics as a solution for product innovation, a promising postbiotic product that can be incorporated into various food and beverage formats is also introduced in this review. As consumers become more health-conscious, future developments in the functional food and beverage market discussed in this review could serve as a reference for researchers and industrialist.
Collapse
Affiliation(s)
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman Kampar, Perak, Malaysia
| | - Khanom Simarani
- Faculty of Science, Institute Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kantha Deivi Arunachalam
- Directorate of Research, Center For Environmental Nuclear Research, SRM Institute of Science and Technology, SRM Nagar, Chennai, India
- Faculty of Sciences, Marwadi University, Rajkot, India
| | | | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Lee M, Bok MK, Son K, Lee M, Park H, Yang J, Lim H. Bifidobacterium lactis IDCC 4301 ( B. lactis Fit™) supplementation effects on body fat, serum triglyceride, and adipokine ratio in obese women: a randomized clinical trial. Food Funct 2024; 15:8448-8458. [PMID: 39051504 DOI: 10.1039/d4fo00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Obesity is a common metabolic disease characterized by abnormal fat accumulation. It contributes to health issues, such as type 2 diabetes, cardiovascular disease, and dyslipidemia, necessitating continuous management through diet and physical activity. Probiotics, particularly Bifidobacterium lactis IDCC 4301 (B. lactis Fit™), have shown promise in positively regulating the gut microbiota. Therefore, this study aimed to evaluate the anti-obesity effect of B. lactis IDCC 4301 (B. lactis Fit™) in obese women. A randomized, double-blind, placebo-controlled, parallel-arm study was performed in 99 volunteers with a body mass index (BMI) of 25-30 kg m-2. The participants were randomly assigned to probiotics (n = 49, >5.0 × 109 CFU day-1) or placebo (n = 50) groups. Body fat, lipid profiles, and adipokine levels were assessed at baseline and at 12 weeks. After 12 weeks, changes in total fat (placebo -0.16 ± 0.83 kg; probiotics -0.45 ± 0.83 kg; p = 0.0407), trunk fat (placebo -0.03 ± 0.50 kg; probiotics -0.22 ± 0.51 kg; p = 0.0200), and serum triglyceride concentration (placebo 13 ± 60 mg dL-1; probiotics -15 ± 62 mg dL-1; p = 0.0088) were significantly different between the groups. The difference in total fat mass change between groups among postmenopausal women was greater than that of all women. A significant positive correlation was found between the change in total fat mass and log leptin/adiponectin ratio (R = 0.371, p = 0.0112) in the probiotics group. In addition, BMI (26.6 ± 1.9 kg m-2 to 26.4 ± 2.0 kg m-2, p = 0.0009) and leg fat (42 ± 5% to 41 ± 5%, p = 0.0006) significantly decreased in the probiotics group after 12 weeks, but there was no difference in the placebo group. In conclusion, B. lactis IDCC 4301 (B. lactis Fit™) may be associated with body fat loss through changes in metabolic health parameters, such as serum triglyceride and adipokine levels. The clinical trial registry number is KCT0007425 (https://cris.nih.go.kr).
Collapse
Affiliation(s)
- Miji Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, South Korea.
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Min Kyung Bok
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, South Korea.
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Kumhee Son
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, South Korea.
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do 17957, South Korea
| | - HyunMin Park
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do 17957, South Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, South Korea.
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, South Korea
| |
Collapse
|
5
|
Hamed Riveros NF, García-Corredor L, Martínez-Solarte MA, González-Clavijo A. Effect of Bifidobacterium Intake on Body Weight and Body Fat in Overweight and Obese Adult Subjects: A Systematic Review and Meta-Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:519-531. [PMID: 38498828 DOI: 10.1080/27697061.2024.2320192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
This systematic review aimed to assess the impact of Bifidobacterium genus probiotics on body weight and body composition parameters in overweight and obese individuals. A systematic search for randomized controlled trials was conducted in MEDLINE, EMBASE, LILACS, and Google Scholar databases until April 17, 2023. The inclusion criteria required the trials to involve Bifidobacterium genus probiotics interventions and the evaluation of obesity-related anthropometric and body composition outcomes in overweight or obese subjects. Studies were excluded when involving obese individuals with genetic syndromes or pregnant women, as well as probiotic mixture interventions. The revised Cochrane risk-of-bias tool for randomized trials was utilized to assess the quality of the included studies. A random-effects meta-analysis was performed using the mean difference between endpoint measurements and change from baseline for body mass index, body weight, body fat mass, body fat percentage, waist circumference, waist-to-hip ratio, and visceral fat area. From 1,527 retrieved reports, 11 studies (911 subjects) were included in this review. Bifidobacterium probiotics administration resulted in significant reductions in body fat mass (MD = -0.64 kg, 95% CI: -1.09, -0.18, p = 0.006), body fat percentage (MD = -0.64%, 95% CI: -1.18, -0.11, p = 0.02), waist circumference (MD = -1.39 cm, 95% CI: -1.99, -0.79, p < 0.00001), and visceral fat area (MD = -4.38 cm2, 95% CI: -7.24, -1.52, p = 0.003). No significant differences were observed for body mass index, body weight, or waist-to-hip ratio. This systematic review suggests that Bifidobacterium genus probiotics may contribute to managing overweight and obesity by reducing body fat mass, body fat percentage, waist circumference, and visceral fat area. Further research is required to understand strain and species interactions, optimal dosages, and effective delivery methods for probiotics in obesity management. This review was pre-registered under the PROSPERO record CRD42022370057.
Collapse
Affiliation(s)
| | - Lady García-Corredor
- Departamento de Ciencias Fisiológicas, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
6
|
Marbun KT, Sugata M, Purnomo JS, Dikson, Mudana SO, Jan TT, Jo J. Genomic Characterization and Safety Assessment of Bifidobacterium breve BS2-PB3 as Functional Food. J Microbiol Biotechnol 2024; 34:871-879. [PMID: 38494884 DOI: 10.4014/jmb.2311.11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/19/2024]
Abstract
Our group had isolated Bifidobacterium breve strain BS2-PB3 from human breast milk. In this study, we sequenced the whole genome of B. breve BS2-PB3, and with a focus on its safety profile, various probiotic characteristics (presence of antibiotic resistance genes, virulence factors, and mobile elements) were then determined through bioinformatic analyses. The antibiotic resistance profile of B. breve BS2-PB3 was also evaluated. The whole genome of B. breve BS2-PB3 consisted of 2,268,931 base pairs with a G-C content of 58.89% and 2,108 coding regions. The average nucleotide identity and whole-genome phylogenetic analyses supported the classification of B. breve BS2-PB3. According to our in silico assessment, B. breve BS2-PB3 possesses antioxidant and immunomodulation properties in addition to various genes related to the probiotic properties of heat, cold, and acid stress, bile tolerance, and adhesion. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk-diffusion test, in which the minimum inhibitory concentrations for selected antibiotics were subsequently tested using the Epsilometer test. B. breve BS2-PB3 only exhibited selected resistance phenotypes, i.e., to mupirocin (minimum inhibitory concentration/MIC >1,024 μg/ml), sulfamethoxazole (MIC >1,024 μg/ml), and oxacillin (MIC >3 μg/ml). The resistance genes against those antibiotics, i.e., ileS, mupB, sul4, mecC and ramA, were detected within its genome as well. While no virulence factor was detected, four insertion sequences were identified within the genome but were located away from the identified antibiotic resistance genes. In conclusion, B. breve BS2-PB3 demonstrated a sufficient safety profile, making it a promising candidate for further development as a potential functional food.
Collapse
Affiliation(s)
- Kristin Talia Marbun
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Marcelia Sugata
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Jonathan Suciono Purnomo
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Dikson
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Samuel Owen Mudana
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Tan Tjie Jan
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Juandy Jo
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15811, Indonesia
| |
Collapse
|
7
|
Li Y, Wang X, Zhang Z, Shi L, Cheng L, Zhang X. Effect of the gut microbiome, plasma metabolome, peripheral cells, and inflammatory cytokines on obesity: a bidirectional two-sample Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1348347. [PMID: 38558794 PMCID: PMC10981273 DOI: 10.3389/fimmu.2024.1348347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Obesity is a metabolic and chronic inflammatory disease involving genetic and environmental factors. This study aimed to investigate the causal relationship among gut microbiota abundance, plasma metabolomics, peripheral cell (blood and immune cell) counts, inflammatory cytokines, and obesity. Methods Summary statistics of 191 gut microbiota traits (N = 18,340), 1,400 plasma metabolite traits (N = 8,299), 128 peripheral cell counts (blood cells, N = 408,112; immune cells, N = 3,757), 41 inflammatory cytokine traits (N = 8,293), and 6 obesity traits were obtained from publicly available genome-wide association studies. Two-sample Mendelian randomization (MR) analysis was applied to infer the causal links using inverse variance-weighted, maximum likelihood, MR-Egger, weighted median, weighted mode, and Wald ratio methods. Several sensitivity analyses were also utilized to ensure reliable MR results. Finally, we used mediation analysis to identify the pathway from gut microbiota to obesity mediated by plasma metabolites, peripheral cells, and inflammatory cytokines. Results MR revealed a causal effect of 44 gut microbiota taxa, 281 plasma metabolites, 27 peripheral cells, and 8 inflammatory cytokines on obesity. Among them, five shared causal gut microbiota taxa belonged to the phylum Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae, genus Lachnospiraceae UCG008, and species Eubacterium nodatum group. Furthermore, we screened 42 shared causal metabolites, 7 shared causal peripheral cells, and 1 shared causal inflammatory cytokine. Based on known causal metabolites, we observed that the metabolic pathways of D-arginine, D-ornithine, linoleic acid, and glycerophospholipid metabolism were closely related to obesity. Finally, mediation analysis revealed 20 mediation relationships, including the causal pathway from gut microbiota to obesity, mediated by 17 metabolites, 2 peripheral cells, and 1 inflammatory cytokine. Sensitivity analysis represented no heterogeneity or pleiotropy in this study. Conclusion Our findings support a causal relationship among gut microbiota, plasma metabolites, peripheral cells, inflammatory cytokines, and obesity. These biomarkers provide new insights into the mechanisms underlying obesity and contribute to its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ying Li
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Xin Wang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liang Cheng
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xue Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
9
|
Peng LJ, Chen YP, Qu F, Zhong Y, Jiang ZS. Correlation of Gut Microbiota with Children Obesity and Weight Loss. Indian J Microbiol 2024; 64:82-91. [PMID: 38468732 PMCID: PMC10924870 DOI: 10.1007/s12088-023-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/03/2023] [Indexed: 03/13/2024] Open
Abstract
Children obesity is a serious public health problem drawing much attention around the world. Recent research indicated that gut microbiota plays a vital role in children obesity, and disturbed gut microbiota is a prominent characteristic of obese children. Diet and exercise are efficient intervention for weight loss in obesity children, however, how the gut microbiota is modulated which remains largely unknown. To characterize the feature of gut microbiota in obese children and explore the effect of dietary and exercise on gut microbiota in simple obese children, 107 healthy children and 86 obese children were recruited, and among of the obese children 39 received the dietary-exercise combined weight loss intervention (DEI). The gut microbiota composition was detected by the 16S amplicon sequencing method. The gut microbiota composition was significantly different between obese children and the healthy cohort, and DEI significantly reduced the body weight and ameliorated the gut microbiota dysbiosis. After DEI, the abundance of the Akkermansia muciniphila was increased, while the abundance of the Sutterella genus was decreased in simple obese children. Our results may provide theoretical reference for future personalized obesity interventions based on gut microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01088-3.
Collapse
Affiliation(s)
- Li-Jun Peng
- Women’s Committee, Hunan Children’s Hospital and the Pediatric Academy of University of South China, Changsha, 410007 Hunan People’s Republic of China
| | - Yan-Ping Chen
- Department of Respiratory, Hunan Children’s Hospital, Changsha, 410007 Hunan People’s Republic of China
| | - Fang Qu
- Medical Record Statistics and Library Management Office, Hunan Children’s Hospital and the Pediatric Academy of University of South China, Changsha, 410007 Hunan People’s Republic of China
| | - Yan Zhong
- Children’s Healthcare Institute, Hunan Children’s Hospital, and the Pediatric Academy of University of South China, Changsha, 410007 Hunan People’s Republic of China
| | - Zhi-Sheng Jiang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001 Hunan People’s Republic of China
| |
Collapse
|
10
|
Singh S, Shukla A, Sharma S. Overview of Natural Supplements for the Management of Diabetes and Obesity. Curr Diabetes Rev 2024; 20:e061123223235. [PMID: 37933216 DOI: 10.2174/0115733998262859231020071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023]
Abstract
Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Arpit Shukla
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Shiwangi Sharma
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| |
Collapse
|
11
|
Van Syoc EP, Damani J, DiMattia Z, Ganda E, Rogers CJ. The Effects of Bifidobacterium Probiotic Supplementation on Blood Glucose: A Systematic Review and Meta-Analysis of Animal Models and Clinical Evidence. Adv Nutr 2024; 15:100137. [PMID: 37923223 PMCID: PMC10831893 DOI: 10.1016/j.advnut.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Probiotic supplementation is a potential therapeutic for metabolic diseases, including obesity, metabolic syndrome (MetS), and type 2 diabetes (T2D), but most studies deliver multiple species of bacteria in addition to prebiotics or oral pharmaceuticals. This may contribute to conflicting evidence in existing meta-analyses of probiotics in these populations and warrants a systematic review of the literature to assess the contribution of a single probiotic genus to better understand the contribution of individual probiotics to modulate blood glucose. We conducted a systematic review and meta-analysis of animal studies and human randomized controlled trials (RCTs) to assess the effects of Bifidobacterium (BF) probiotic supplementation on markers of glycemia. In a meta-analysis of 6 RCTs, BF supplementation had no effect on fasting blood glucose {FBG; mean difference [MD] = -1.99 mg/dL [95% confidence interval (CI): -4.84, 0.86], P = 0.13}, and there were no subgroup differences between subjects with elevated FBG concentrations and normoglycemia. However, BF supplementation reduced FBG concentrations in a meta-analysis comprised of studies utilizing animal models of obesity, MetS, or T2D [n = 16; MD = -36.11 mg/dL (CI: -49.04, -23.18), P < 0.0001]. Translational gaps from animal to human trials include paucity of research in female animals, BF supplementation in subjects that were normoglycemic, and lack of methodologic reporting regarding probiotic viability and stability. More research is necessary to assess the effects of BF supplementation in human subjects with elevated FBG concentrations. Overall, there was consistent evidence of the efficacy of BF probiotics to reduce elevated FBG concentrations in animal models but not clinical trials, suggesting that BF alone may have minimal effects on glycemic control, may be more effective when combined with multiple probiotic species, or may be more effective in conditions of hyperglycemia rather than elevated FBG concentrations.
Collapse
Affiliation(s)
- Emily P Van Syoc
- Dual-Title Ph.D Program in Integrative & Biomedical Physiology and Clinical & Translational Science, The Pennsylvania State University, University Park, PA, United States; Department of Animal Science, The Pennsylvania State University, University Park, PA, United States; The One Health Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| | - Janhavi Damani
- The Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Zachary DiMattia
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States; The One Health Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
12
|
Wu W, Chen Z, Han J, Qian L, Wang W, Lei J, Wang H. Endocrine, genetic, and microbiome nexus of obesity and potential role of postbiotics: a narrative review. Eat Weight Disord 2023; 28:84. [PMID: 37861729 PMCID: PMC10589153 DOI: 10.1007/s40519-023-01593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Zhengfang Chen
- Department of Endocrinology, Changshu First People's Hospital, Changshu, 215501, Jiangsu, People's Republic of China.
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Huaguan Wang
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Shibata M, Ozato N, Tsuda H, Mori K, Kinoshita K, Katashima M, Katsuragi Y, Nakaji S, Maeda H. Mouse Model of Anti-Obesity Effects of Blautia hansenii on Diet-Induced Obesity. Curr Issues Mol Biol 2023; 45:7147-7160. [PMID: 37754236 PMCID: PMC10528399 DOI: 10.3390/cimb45090452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Reportedly, a relationship exists between intestinal microflora and obesity-related lifestyle diseases. Blautia spp. a major intestinal microbiota, accounts for 3-11% of human intestinal microflora. Epidemiological reports have described that people with more visceral fat have less Blautia hansenii in their intestinal tract irrespective of age or gender. However, the effect of oral administration of heat-sterilized Blautia hansenii on obesity has not been clarified. Therefore, the aim of this study was to evaluate the effects of dietary Blautia hansenii administration on obesity in high-fat-diet-induced obesity in a mouse model. Heat-sterilized cells of Blautia hansenii were used. C57BL/6J mice (normal mice, n = 7) were fed with each experimental diet for nine weeks. Diets for experimentation were: normal-fat (NF) diets, high-fat (HF) diets, and high-fat + Blautia hansenii (HF + Blautia) diets. The HF + Blautia group was administered about 1 × 109 (CFU/mouse/day) of Blautia hansenii. During the periods of experimentation, body weight, food intake, water consumption, and fecal weight were recorded, and glucose tolerance tests were performed. Subsequently, the white adipose tissue (WAT) weight and serum components were measured. Short-chain fatty acid contents in the feces and cecum were analyzed. Furthermore, changes in the intestinal microflora were analyzed using meta-genomics analysis. Results showed that the total weight of WAT in the HF + Blautia group was significantly lower (13.2%) than that of the HF group. Moreover, the HF + Blautia group exhibited better glucose tolerance than the HF group. Productivity of short-chain fatty acids in the intestinal tract was at a significantly (p < 0.05) low level in the HF group; on the other hand, it recovered in the HF + Blautia group. Furthermore, there was a higher ratio of Blautia (p < 0.05) in the intestinal tracts of the HF + Blautia group than in the HF group. These results suggest that Blautia hansenii administration suppresses obesity induced by a high-fat diet.
Collapse
Affiliation(s)
- Masaki Shibata
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
| | - Naoki Ozato
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Harutoshi Tsuda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
| | - Kenta Mori
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Keita Kinoshita
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Mitsuhiro Katashima
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Yoshihisa Katsuragi
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Shigeyuki Nakaji
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
- Institute of Regional Innovation, Hirosaki University, 2-1-1 Yanagawa, Aomori 038-0012, Japan
| |
Collapse
|
14
|
Meyer RK, Duca FA. RISING STARS: Endocrine regulation of metabolic homeostasis via the intestine and gut microbiome. J Endocrinol 2023; 258:e230019. [PMID: 37171833 PMCID: PMC10524498 DOI: 10.1530/joe-23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.
Collapse
Affiliation(s)
- Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Pelczyńska M, Moszak M, Wesołek A, Bogdański P. The Preventive Mechanisms of Bioactive Food Compounds against Obesity-Induced Inflammation. Antioxidants (Basel) 2023; 12:1232. [PMID: 37371961 DOI: 10.3390/antiox12061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary patterns are promising strategies for preventing and treating obesity and its coexisting inflammatory processes. Bioactive food compounds have received considerable attention due to their actions against obesity-induced inflammation, with limited harmful side effects. They are perceived as food ingredients or dietary supplements other than those necessary to meet basic human nutritional needs and are responsible for positive changes in the state of health. These include polyphenols, unsaturated fatty acids, and probiotics. Although the exact mechanisms of bioactive food compounds' action are still poorly understood, studies have indicated that they involve the modulation of the secretion of proinflammatory cytokines, adipokines, and hormones; regulate gene expression in adipose tissue; and modify the signaling pathways responsible for the inflammatory response. Targeting the consumption and/or supplementation of foods with anti-inflammatory potential may represent a new approach to obesity-induced inflammation treatment. Nevertheless, more studies are needed to evaluate strategies for bioactive food compound intake, especially times and doses. Moreover, worldwide education about the advantages of bioactive food compound consumption is warranted to limit the consequences of unhealthy dietary patterns. This work presents a review and synthesis of recent data on the preventive mechanisms of bioactive food compounds in the context of obesity-induced inflammation.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Małgorzata Moszak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Agnieszka Wesołek
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| |
Collapse
|
16
|
Sung HK, Youn SJ, Choi Y, Eun SW, Shin SM. Reply to Lee, S.Y. Comment on "Sung et al. Body Fat Reduction Effect of Bifidobacterium breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients 2023, 15, 28". Nutrients 2023; 15:1094. [PMID: 36904095 PMCID: PMC10005205 DOI: 10.3390/nu15051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Thank you kindly for your interest in and opinion [...].
Collapse
Affiliation(s)
- Hyun Kyung Sung
- Department of Pediatrics, College of Korean Medicine, Semyung University, Jecheon-si 27136, Republic of Korea
| | | | - Yong Choi
- RnBS Corp., Seoul 06032, Republic of Korea
| | - Sang Won Eun
- Daehan Chemtech Co., Ltd., Seoul 01811, Republic of Korea
| | - Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Jecheon-si 27136, Republic of Korea
| |
Collapse
|
17
|
Lee SY. Comment on Sung et al. Body Fat Reduction Effect of Bifidobacterium breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients 2023, 15, 28. Nutrients 2023; 15:1093. [PMID: 36904094 PMCID: PMC10005726 DOI: 10.3390/nu15051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
I read with interest the paper by Sung et al. entitled "Body Fat Reduction Effect of Bifidobacterium breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial" where a reduction in body fat mass after Bifidobacterium breve B-3 (BB-3) ingestion for 12 weeks was reported [...].
Collapse
Affiliation(s)
- Sang Yeoup Lee
- Family Medicine Clinic, Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; ; Tel.: +82-55-3601442
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan 50612, Republic of Korea
- Department of Medical Education, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
18
|
Corrie L, Awasthi A, Kaur J, Vishwas S, Gulati M, Kaur IP, Gupta G, Kommineni N, Dua K, Singh SK. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:197. [PMID: 37259345 PMCID: PMC9967581 DOI: 10.3390/ph16020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600007, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Kamal Dua
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
19
|
Sung HK, Youn SJ, Choi Y, Eun SW, Shin SM. Body Fat Reduction Effect of Bifidobacterium breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients 2022; 15:nu15010028. [PMID: 36615686 PMCID: PMC9824586 DOI: 10.3390/nu15010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This double-blind, randomized clinical trial aimed to evaluate the efficacy and safety of Bifidobacterium breve B-3 (BB-3) for reducing body fat. Healthy individuals were randomized into the BB-3 or placebo group (1:1). Dual-energy X-ray absorptiometry was used to evaluate body fat reduction objectively. In the BB-3 group, body weight was lower than before BB-3 ingestion. Regarding waist circumference, hip circumference, and waist/hip circumference ratio, waist circumference and hip circumference were lower in the BB-3 group than in the placebo group at 12 weeks; the waist/hip circumference ratio was found to decrease at each visit in the BB-3 group, although there was no significant difference in the amount of change after 12 weeks. BB-3 did not cause any severe adverse reactions. Body fat was significantly lower in the BB-3 group than in the placebo group. In conclusion, ingesting BB-3 significantly reduces body weight, waist circumference, and hip circumference. Thus, BB-3 is safe and effective for reducing body fat.
Collapse
Affiliation(s)
- Hyun Kyung Sung
- Department of Pediatrics, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
| | | | - Yong Choi
- RnBS Corp., Seoul 06032, Republic of Korea
| | - Sang Won Eun
- Daehan Chemtech Co., Ltd., Seoul 01811, Republic of Korea
| | - Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
- Correspondence: ; Tel.: +82-43-649-1873
| |
Collapse
|
20
|
Polysaccharide from Salviae miltiorrhizae Radix et Rhizoma Attenuates the Progress of Obesity-Induced Non-Alcoholic Fatty Liver Disease through Modulating Intestinal Microbiota-Related Gut–Liver Axis. Int J Mol Sci 2022; 23:ijms231810620. [PMID: 36142520 PMCID: PMC9505563 DOI: 10.3390/ijms231810620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, thus treatments for it have attracted lots of interest. In this study, the Salviae miltiorrhizae Radix et Rhizoma (SMRR) polysaccharide was isolated by hot water extraction and ethanol precipitation, and then purified by DEAE anion exchange chromatography and gel filtration. With a high-fat-diet-induced obesity/NAFLD mouse model, we found that consumption of the SMRR polysaccharide could remarkably reverse obesity and its related progress of NAFLD, including attenuated hepatocellular steatosis, hepatic fibrosis and inflammation. In addition, we also reveal the potential mechanism behind these is that the SMRR polysaccharide could regulate the gut–liver axis by modulating the homeostasis of gut microbiota and thereby improving intestinal function.
Collapse
|
21
|
Meyer RK, Lane AI, Weninger SN, Martinez TM, Kangath A, Laubitz D, Duca FA. Oligofructose restores postprandial short-chain fatty acid levels during high-fat feeding. Obesity (Silver Spring) 2022; 30:1442-1452. [PMID: 35785478 PMCID: PMC9260920 DOI: 10.1002/oby.23456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Obesity is associated with consumption of a Western diet low in dietary fiber, while prebiotics reduce body weight. Fiber induces short-chain fatty acid (SCFA) production, and SCFA administration is beneficial to host metabolic homeostasis. However, the role of endogenous SCFA signaling in the development of obesity is contentious. Therefore, the primary objective of this study is to evaluate the postprandial time course of SCFA production and uptake in healthy (chow-fed), Western diet-fed (high-fat diet [HFD]) obese, and oligofructose-treated HFD-fed (HFD + OFS) rats. METHODS Male Sprague-Dawley rats were maintained on chow or HFD for 5 weeks, with or without supplementation of 10% OFS for 3 weeks. SCFAs were measured in the ileum, cecum, colon, portal vein, and vena cava at 0, 2, 4, 6, and 8 hours postprandially. RESULTS Postprandial cecal and portal vein SCFAs were decreased in obese rats compared with lean chow controls, whereas no differences were observed in fasting SCFA concentrations. OFS supplementation increased SCFA levels in the cecum and portal vein during obesity. Butyrate levels were positively associated with portal glucagon-like peptide 1 and adiposity and with Roseburia relative abundance. CONCLUSIONS The current study demonstrates that obesity is associated with reduced SCFA production, and that OFS supplementation increases SCFA levels. Additionally, postprandial butyrate production appears to be beneficial to host energy homeostasis.
Collapse
Affiliation(s)
- Rachel K Meyer
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Adelina I Lane
- Department of Physiological Sciences, University of Arizona, Tucson, Arizona, USA
| | - Savanna N Weninger
- Department of Physiological Sciences, University of Arizona, Tucson, Arizona, USA
| | - Taylor M Martinez
- Department of Physiological Sciences, University of Arizona, Tucson, Arizona, USA
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
22
|
Zheng H, Ji H, Fan K, Xu H, Huang Y, Zheng Y, Xu Q, Li C, Zhao L, Li Y, Gao H. Targeting Gut Microbiota and Host Metabolism with Dendrobium officinale Dietary Fiber to Prevent Obesity and Improve Glucose Homeostasis in Diet-Induced Obese Mice. Mol Nutr Food Res 2022; 66:e2100772. [PMID: 35225418 DOI: 10.1002/mnfr.202100772] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/29/2021] [Indexed: 12/26/2022]
Abstract
SCOPE Obesity is becoming a major public health problem due to excess dietary fat intake. Dendrobium officinale (D. officinale) is a medicine food homology plant and exerts multiple health-promoting effects. However, its antiobesity effects and the potential mechanisms remain unclear. METHODS AND RESULTS High-fat diet (HFD)-fed mice are administered D. officinale dietary fiber (DODF) daily by gavage for 11 weeks. The results show that treatment with DODF alleviates obesity, liver steatosis, inflammation, and oxidant stress in HFD-induced obese mice. Improved glucose homeostasis in obese mice after DODF treatment is achieved by enhancing insulin pathway and hepatic glycogen synthesis. DODF restructures the gut microbiota in obese mice by decreasing the relative abundance of Bilophila and increasing the relative abundances of Akkermansia, Bifidobacterium, and Muribaculum. Also, DODF reshapes the metabolic phenotype of obese mice as indicated by up-regulating energy metabolism, increasing acetate and taurine, and reducing serum low density/very low density lipoproteins (LDL/VLDL). These beneficial effects are partly transferred by FMT, implying the gut microbiota as a target for the protective effect of DODF on obesity-related symptoms. CONCLUSION The results suggest that DODF can be used as a novel prebiotics to maintain the gut microbial homeostasis and improve metabolic health, preventing obesity and related metabolic syndrome.
Collapse
Affiliation(s)
- Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Hui Ji
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kai Fan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hangying Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinli Huang
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
23
|
Arellano-García L, Portillo MP, Martínez JA, Milton-Laskibar I. Usefulness of Probiotics in the Management of NAFLD: Evidence and Involved Mechanisms of Action from Preclinical and Human Models. Int J Mol Sci 2022; 23:3167. [PMID: 35328587 PMCID: PMC8950320 DOI: 10.3390/ijms23063167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023] Open
Abstract
The present review aims at analyzing the current evidence regarding probiotic administration for non-alcoholic fatty liver disease (NAFLD) management. Additionally, the involved mechanisms of action modulated by probiotic administration, as well as the eventual limitations of this therapeutic approach and potential alternatives, are discussed. Preclinical studies have demonstrated that the administration of single-strain probiotics and probiotic mixtures effectively prevents diet-induced NAFLD. In both cases, the magnitude of the described effects, as well as the involved mechanisms of action, are comparable, including reduced liver lipid accumulation (due to lipogenesis downregulation and fatty acid oxidation upregulation), recovery of gut microbiota composition and enhanced intestinal integrity. Similar results have also been reported in clinical trials, where the administration of probiotics proved to be effective in the treatment of NAFLD in patients featuring this liver condition. In this case, information regarding the mechanisms of action underlying probiotics-mediated hepatoprotective effects is scarcer (mainly due to the difficulty of liver sample collection). Since probiotics administration represents an increased risk of infection in vulnerable subjects, much attention has been paid to parabiotics and postbiotics, which seem to be effective in the management of several metabolic diseases, and thus represent a suitable alternative to probiotic usage.
Collapse
Affiliation(s)
- Laura Arellano-García
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain; (J.A.M.); (I.M.-L.)
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - J. Alfredo Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain; (J.A.M.); (I.M.-L.)
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, 28049 Madrid, Spain
| | - Iñaki Milton-Laskibar
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain; (J.A.M.); (I.M.-L.)
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, 28049 Madrid, Spain
| |
Collapse
|
24
|
Sánchez Y Sánchez de la Barquera B, Martínez Carrillo BE, Aguirre Garrido JF, Martínez Méndez R, Benítez Arciniega AD, Valdés Ramos R, Soto Piña AE. Emerging Evidence on the Use of Probiotics and Prebiotics to Improve the Gut Microbiota of Older Adults with Frailty Syndrome: A Narrative Review. J Nutr Health Aging 2022; 26:926-935. [PMID: 36259581 PMCID: PMC9483424 DOI: 10.1007/s12603-022-1842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The gut microbiota can impact older adults' health, especially in patients with frailty syndrome. Understanding the association between the gut microbiota and frailty syndrome will help to explain the etiology of age-related diseases. Low-grade systemic inflammation is a factor leading to geriatric disorders, which is known as "inflammaging". Intestinal dysbiosis has a direct relationship with low-grade systemic inflammation because when the natural gut barrier is altered by age or other factors, some microorganisms or their metabolites can cross this barrier and reach the systemic circulation. OBJECTIVES This review had two general goals: first, to describe the characteristics of the gut microbiota associated with age-related diseases, specifically frailty syndrome. The second aim was to identify potential interventions to improve the composition and function of intestinal microbiota, consequently lessening the burden of patients with frailty syndrome. METHODS A search of scientific evidence was performed in PubMed, Science Direct, and Redalyc using keywords such as "frailty", "elderly", "nutrient interventions", "probiotics", and "prebiotics". We included studies reporting the effects of nutrient supplementation on frailty syndrome and older adults. These studies were analyzed to identify novel therapeutic alternatives to improve gut microbiota characteristics as well as subclinical signs related to this condition. RESULTS The gut microbiota participates in many metabolic processes that have an impact on the brain, muscles, and other organs. These processes integrate feedback mechanisms, comprising their respective axis with the intestine and the gut microbiota. Alterations in these associations can lead to frailty. We report a few interventions that demonstrate that prebiotics and probiotics could modulate the gut microbiota in humans. Furthermore, other nutritional interventions could be used in patients with frailty syndrome. CONCLUSION Probiotics and prebiotics may potentially prevent frailty syndrome or improve the quality of life of patients with this disorder. However, there is not enough information about their appropriate doses and periods of administration. Therefore, further investigations are required to determine these factors and improve their efficacy as therapeutic approaches for frailty syndrome.
Collapse
Affiliation(s)
- B Sánchez Y Sánchez de la Barquera
- Alexandra Estela Soto Piña, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan esq. Jesús Carranza, Z.C. 50180 Toluca de Lerdo, México; Email address:
| | | | | | | | | | | | | |
Collapse
|
25
|
Maioli TU, Borras-Nogues E, Torres L, Barbosa SC, Martins VD, Langella P, Azevedo VA, Chatel JM. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front Pharmacol 2021; 12:740636. [PMID: 34925006 PMCID: PMC8677946 DOI: 10.3389/fphar.2021.740636] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic disorders are an increasing concern in the industrialized world. Current research has shown a direct link between the composition of the gut microbiota and the pathogenesis of obesity and diabetes. In only a few weeks, an obesity-inducing diet can lead to increased gut permeability and microbial dysbiosis, which contributes to chronic inflammation in the gut and adipose tissues, and to the development of insulin resistance. In this review, we examine the interplay between gut inflammation, insulin resistance, and the gut microbiota, and discuss how some probiotic species can be used to modulate gut homeostasis. We focus primarily on Faecalibacterium prausnitzii, a highly abundant butyrate-producing bacterium that has been proposed both as a biomarker for the development of different gut pathologies and as a potential treatment due to its production of anti-inflammatory metabolites.
Collapse
Affiliation(s)
- Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | | | - Licia Torres
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Candida Barbosa
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Dantas Martins
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | - Vasco Ariston Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| |
Collapse
|
26
|
Improving the Gut Microbiota with Probiotics and Faecal Microbiota Transplantation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Probiotics are “live strains of strictly selected microorganisms which, when administered in adequate amounts, confer a health benefit on the host”. After birth, our intestine is colonized by microbes like Escherichia coli, Clostridium spp., Streptococcus spp., Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. Our intestine is an extremely complex living system that participates in the protection of host through a strong defence against external aggregations. The microbial ecosystem of the intestine includes many native species of Bacteroides and Firmicutes that permanently colonize the gastrointestinal tract. The composition of flora changes over time depending upon diet and medical emergencies which leads to the diseased condition. Probiotics exert their mode of action by altering the local environment of the gut by competing with the pathogens, bacteriocins production, H2O2 production etc. Obesity is one of the major health problems and is considered as the most prevalent form of inappropriate nutrition. Probiotics like Lactobacillus Sp., Bifidobacterium Sp., Streptococcus Sp. are successfully used in the treatment of obesity proved in clinical trials. Faecal microbiota transplant (FMT), also known as a stool transplant, is the process of transplantation of Faecal bacteria from a healthy donor into a recipient’s gut to restore normal flora in the recipient. The therapeutic principle on which FMT works is microbes and their functions and metabolites produced by them which are used to treat a variety of diseases. The present review focuses on the role of gastrointestinal microbiome, probiotic selection criteria, their applications and FMT to treat diseases.
Collapse
|
27
|
Pontes KSDS, Guedes MR, Cunha MRD, Mattos SDS, Barreto Silva MI, Neves MF, Marques BCAA, Klein MRST. Effects of probiotics on body adiposity and cardiovascular risk markers in individuals with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2021; 40:4915-4931. [PMID: 34358838 DOI: 10.1016/j.clnu.2021.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Evidence suggests that gut microbiota is a potential factor in the pathophysiology of both obesity and related metabolic disorders. While individual randomized controlled trials (RCTs) have evaluated the effects of probiotics on adiposity and cardiovascular disease (CVD) risk factors in subjects with overweight and obesity, the results are inconsistent. Thus, this systematic review and meta-analysis aimed to evaluate the effects of probiotic supplementation on body weight, body adiposity and CVD risk markers in overweight and obese subjects. METHODS A systematic search for RCTs published up to December 2020 was conducted in MEDLINE (via PubMed), EMBASE, Scopus and LILACS. Meta-analysis using a random-effects model was chosen to analyze the impact of combined trials. RESULTS Twenty-six RCTs (n = 1720) were included. Data pooling showed a significant effect of probiotics in reducing body weight (MD:-0.70 kg; 95%CI:-1.04,-0.35 kg; P < 0.0001), body mass index (BMI) (MD:-0.24 kg/m2; 95%CI:-0.35,-0.12 kg/m2; P = 0.0001), waist circumference (WC) (MD:-1.13 cm; 95%CI:-1.54,-0.73 cm; P < 0.0001), fat mass (MD:-0.71 kg; 95%CI:-1.10,-0.32 kg; P = 0.0004), tumor necrosis factor-α (MD:-0.16 pg/ml; 95%CI:-0.24,-0.08 pg/ml; P = 0.0001), insulin (MD:-0.85mcU/ml; 95%CI:-1.50,-0.21mcU/ml; P = 0.010), total cholesterol (MD:-0.16 mmol/l; 95%CI:-0.26,-0.05 mmol/l; P = 0.003) and LDL (MD:-0.09 mmol/l; 95%CI:-0.16,-0.03 mmol/l; P = 0.006) compared with control groups. There was a significant decrease in body weight, BMI and WC in studies using both single and multi-bacterial species. Decreases in body adiposity parameters were only observed in studies using a probiotic dose of ≥ 1010 CFU and for ≥8 weeks duration. CONCLUSIONS The present meta-analysis suggests that probiotics consumption may be helpful for improving body weight, body adiposity and some CVD risk markers in individuals with overweight and obesity. The review was registered on PROSPERO (International prospective register of systematic reviews): CRD42020183136.
Collapse
Affiliation(s)
- Karine Scanci da Silva Pontes
- Post-Graduation Program in Clinical and Experimental Pathophysiology, State University of Rio de Janeiro (UERJ), Av. Professor Manuel de Abreu, 444, Térreo - Rio de Janeiro, RJ, 20550-170, Brazil.
| | - Marcella Rodrigues Guedes
- Post-Graduation Program in Clinical and Experimental Pathophysiology, State University of Rio de Janeiro (UERJ), Av. Professor Manuel de Abreu, 444, Térreo - Rio de Janeiro, RJ, 20550-170, Brazil.
| | - Michelle Rabello da Cunha
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil.
| | - Samanta de Souza Mattos
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil.
| | - Maria Inês Barreto Silva
- Department of Applied Nutrition, Nutrition Institute, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524 - Pavilhão João Lyra Filho, 12º Andar, Bloco D, Rio de Janeiro, RJ, 20559-900, Brazil; Department of Applied Nutrition, Nutrition School, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 296, Botafogo, 3º Andar, Rio de Janeiro, RJ, 22290-250, Brazil.
| | - Mario Fritsch Neves
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil.
| | - Bianca Cristina Antunes Alves Marques
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil; Department of Nutrition and Dietetics, National Cancer Institute (INCA), Av. Binário do Porto, 831, Rio de Janeiro, RJ, 20081-250, Brazil.
| | - Márcia Regina Simas Torres Klein
- Department of Applied Nutrition, Nutrition Institute, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524 - Pavilhão João Lyra Filho, 12º Andar, Bloco D, Rio de Janeiro, RJ, 20559-900, Brazil.
| |
Collapse
|
28
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
29
|
Solito A, Bozzi Cionci N, Calgaro M, Caputo M, Vannini L, Hasballa I, Archero F, Giglione E, Ricotti R, Walker GE, Petri A, Agosti E, Bellomo G, Aimaretti G, Bona G, Bellone S, Amoruso A, Pane M, Di Gioia D, Vitulo N, Prodam F. Supplementation with Bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial. Clin Nutr 2021; 40:4585-4594. [PMID: 34229263 DOI: 10.1016/j.clnu.2021.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Variations in gut microbiota might impact metabolism leading to body weight excess. We assessed the impact of a probiotic supplementation in pediatric obesity on weight, metabolic alterations, selected gut microbial groups, and functionality. METHODS Cross-over, double-blind, randomized control trial (BIFI-OBESE trial; NCT03261466). 101 youths (6-18 years, Tanner stage ≥2) with obesity and insulin-resistance on diet were randomized to 2 × 109 CFU/AFU/day of Bifidobacterium breve BR03 (DSM 16604) and B. breve B632 (DSM 24706) (51) or placebo (50) for 8 weeks with a 4-weeks wash-out period. RESULTS All subjects (M/F 54/47) completed the first 8 weeks, and 82 (M/F 43/39) the last part without adverse events. Mixed-effects models revealed a carry-over effect on many variables in the entire study, narrowing the analysis to the first 8 weeks before the wash-out periods. All subjects improved metabolic parameters, and decreased weight and Escherichia coli counts. Probiotics improved insulin sensitivity at fasting (QUICKI, 0.013 CI95%0.0-0.03) and during OGTT (ISI, 0.654 CI95%-0.11-1.41). Cytokines, GLP1, and target microbial counts did not vary. Of 25 SCFAs, acetic acid and acetic acid pentyl-ester relative abundance remained stable in the probiotics, while increased in the placebo (p < 0.02). A signature of five butanoic esters identified three clusters, one of them had better glucose responses during probiotics. CONCLUSION An 8 weeks treatment with B. breve BR03 and B632 had beneficial effects on insulin sensitivity in youths with obesity. Microbiota functionality could influence metabolic answers to probiotics. Long-term studies to confirm and enrich our findings are justified. Tailored probiotic treatments could be an additional strategy for obesity. TRIAL REGISTRATION NCT03261466.
Collapse
Affiliation(s)
- Arianna Solito
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy
| | | | - Matteo Calgaro
- Department of Biotechnology, University of Verona, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Italy; SCDU Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Italy
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Iderina Hasballa
- SCDU Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Italy
| | - Francesca Archero
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy
| | - Enza Giglione
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy
| | - Roberta Ricotti
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy
| | | | - Antonella Petri
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy
| | - Emanuela Agosti
- Department of Health Sciences, University of Piemonte Orientale, Italy
| | - Giorgio Bellomo
- Clinical Biochemistry, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- SCDU Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Italy
| | - Gianni Bona
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy
| | | | | | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Italy.
| | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Italy; Department of Health Sciences, University of Piemonte Orientale, Italy; SCDU Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Italy.
| |
Collapse
|
30
|
Obesity and gut microbiome: review of potential role of probiotics. Porto Biomed J 2021; 6:e111. [PMID: 33490703 PMCID: PMC7817278 DOI: 10.1097/j.pbj.0000000000000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity prevalence has increased worldwide over the years, with pandemic levels being already reached, besides to its huge economic and health impacts. The multifactorial pathogenesis of obesity partly explains the important challenge posed to health policy regarding its clinical treatment, with increasing evidences have shown that obesity and metabolic disturbances are closely linked to variations in gut microbiota (GM) function and composition. Indeed, GM play a key contribution in energy metabolism, with GM modulation being increasingly linked to changes in body weight and body mass index. In such matter, probiotics have been proposed as a promising new therapeutic strategy to treat/prevent obesity. Thus, this review aims to provide an overview on the clinical impact and effectiveness of probiotics in obese individuals.
Collapse
|
31
|
Daily supplementation with the Lab4P probiotic consortium induces significant weight loss in overweight adults. Sci Rep 2021; 11:5. [PMID: 33408364 PMCID: PMC7788077 DOI: 10.1038/s41598-020-78285-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
This 9-month randomised, parallel, double-blind, single-centre, placebo-controlled study (PROBE, ISRCTN18030882) assessed the impact of probiotic supplementation on bodyweight. Seventy overweight Bulgarian participants aged 45-65 years with BMI 25-29.9 kg/m2 received a daily dose of the Lab4P probiotic comprising lactobacilli and bifidobacteria (50 billion cfu/day). Participants maintained their normal diet and lifestyle over the duration of the study. The primary outcome was change from baseline in body weight and secondary outcomes included changes in waist circumference, hip circumference and blood pressure. A significant between group decrease in body weight (3.16 kg, 95% CI 3.94, 2.38, p < 0.0001) was detected favouring the probiotic group. Supplementation also resulted in significant between group decreases in waist circumference (2.58 cm, 95% CI 3.23, 1.94, p < 0.0001) and hip circumference (2.66 cm, 95% CI 3.28, 2.05, p < 0.0001) but no changes in blood pressure were observed. These findings support the outcomes of a previous shorter-term Lab4P intervention study in overweight and obese participants (PROMAGEN, ISRCTN12562026). We conclude that Lab4P has consistent weight modulation capability in free-living overweight adults.
Collapse
|
32
|
Mojsak P, Rey-Stolle F, Parfieniuk E, Kretowski A, Ciborowski M. The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites' derivatization step. J Pharm Biomed Anal 2020; 191:113617. [PMID: 32971497 DOI: 10.1016/j.jpba.2020.113617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Disruption of gut microbiota (GM) composition is increasingly related to the pathogenesis of various metabolic diseases. Additionally, GM is responsible for the production and transformation of metabolites involved in the development of metabolic disorders, such as obesity and type 2 diabetes mellitus (T2DM). The current state of knowledge regarding the composition of GM and GM-related metabolites in relation to the progress and development of obesity and T2DM is presented in this review. To understand the relationships between GM-related metabolites and the development of metabolic disorders, their accurate qualitative and quantitative measurement in biological samples is needed. Feces represent a valuable biological matrix which composition may reflect the health status of the lower gastrointestinal tract and the whole organism. Mass spectrometry (MS), mainly in combination with gas chromatography (GC) or liquid chromatography (LC), is commonly used to measure fecal metabolites. However, profiling metabolites in such a complex matrix as feces is challenging from both analytical chemistry and biochemistry standpoints. Chemical derivatization is one of the most effective methods used to overcome these problems. In this review, we provide a comprehensive summary of the derivatization methods of GM-related metabolites prior to GC-MS or LC-MS analysis, which have been published in the last five years (2015-2020). Additionally, analytical methods used for the analysis of GM-related metabolites without the derivatization step are also presented.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ewa Parfieniuk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
33
|
Valent D, Arroyo L, Fàbrega E, Font-i-Furnols M, Rodríguez-Palmero M, Moreno-Muñoz J, Tibau J, Bassols A. Effects of a high-fat-diet supplemented with probiotics and ω3-fatty acids on appetite regulatory neuropeptides and neurotransmitters in a pig model. Benef Microbes 2020; 11:347-359. [DOI: 10.3920/bm2019.0197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pig is a valuable animal model to study obesity in humans due to the physiological similarity between humans and pigs in terms of digestive and associated metabolic processes. The dietary use of vegetal protein, probiotics and omega-3 fatty acids is recommended to control weight gain and to fight obesity-associated metabolic disorders. Likewise, there are recent reports on their beneficial effects on brain functions. The hypothalamus is the central part of the brain that regulates food intake by means of the production of food intake-regulatory hypothalamic neuropeptides, as neuropeptide Y (NPY), orexin A and pro-opiomelanocortin (POMC), and neurotransmitters, such as dopamine and serotonin. Other mesolimbic areas, such as the hippocampus, are also involved in the control of food intake. In this study, the effect of a high fat diet (HFD) alone or supplemented with these additives on brain neuropeptides and neurotransmitters was assessed in forty-three young pigs fed for 10 weeks with a control diet (T1), a high fat diet (HFD, T2), and HFD with vegetal protein supplemented with Bifidobacterium breve CECT8242 alone (T3) or in combination with omega-3 fatty acids (T4). A HFD provoked changes in regulatory neuropeptides and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hypothalamus and alterations mostly in the dopaminergic system in the ventral hippocampus. Supplementation of the HFD with B. breve CECT8242, especially in combination with omega-3 fatty acids, was able to partially reverse the effects of HFD. Correlations between productive and neurochemical parameters supported these findings. These results confirm that pigs are an appropriate animal model alternative to rodents for the study of the effects of HFD on weight gain and obesity. Furthermore, they indicate the potential benefits of probiotics and omega-3 fatty acids on brain function.
Collapse
Affiliation(s)
- D. Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L. Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E. Fàbrega
- Food Science – Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Monells, Girona, Spain
| | - M. Font-i-Furnols
- Animal Science – Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Monells, Girona, Spain
| | | | | | - J. Tibau
- Animal Science – Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Monells, Girona, Spain
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària. Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the Treatment of Overweight and Obesity in Humans-A Review of Clinical Trials. Microorganisms 2020; 8:microorganisms8081148. [PMID: 32751306 PMCID: PMC7465252 DOI: 10.3390/microorganisms8081148] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The World Health Organization (WHO) reports that 400 million people are obese, and over 1.6 billion adults are overweight worldwide. Annually, over 2.8 million people die from obesity-related diseases. The incidence of overweight and obesity is steadily increasing, and this phenomenon is referred to as a 21st-century pandemic. The main reason for this phenomenon is an easy access to high-energy, processed foods, and a low-activity lifestyle. These changes lead to an energy imbalance and, as a consequence, to the development of body fat. Weight gain contributes to the development of heart diseases, skeletal system disorders, metabolic disorders such as diabetes, and certain types of cancer. In recent years, there have been many works linking obesity with intestinal microbiota. Experiments on germ-free animals (GFs) have provided much evidence for the contribution of bacteria to obesity. The composition of the gut microbiota (GM) changes in obese people. These changes affect the degree of energy obtained from food, the composition and secretory functions of adipose tissue, carbohydrate, and lipid metabolism in the liver, and the activity of centers in the brain. The study aimed to present the current state of knowledge about the role of intestinal microbiota in the development of obesity and the impact of supplementation with probiotic bacteria on the health of overweight and obese patients.
Collapse
|
35
|
Yang J, Yang Y, Ishii M, Nagata M, Aw W, Obana N, Tomita M, Nomura N, Fukuda S. Does the Gut Microbiota Modulate Host Physiology through Polymicrobial Biofilms? Microbes Environ 2020; 35. [PMID: 32624527 PMCID: PMC7511787 DOI: 10.1264/jsme2.me20037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microbes inhabit various environments, such as soil, water environments, plants, and animals. Humans harbor a complex commensal microbial community in the gastrointestinal tract, which is known as the gut microbiota. The gut microbiota participates not only in various metabolic processes in the human body, it also plays a critical role in host immune responses. Gut microbes that inhabit the intestinal epithelial surface form polymicrobial biofilms. In the last decade, it has been widely reported that gut microbial biofilms and gut microbiota-derived products, such as metabolites and bacterial membrane vesicles, not only directly affect the host intestinal environment, but also indirectly influence the health of the host. In this review, we discuss the most recent findings from human and animal studies on the interactions between the gut microbiota and hosts, and their associations with various disorders, including inflammatory diseases, atopic dermatitis, metabolic disorders, and psychiatric and neurological diseases. The integrated approach of metabologenomics together with biofilm imaging may provide valuable insights into the gut microbiota and suggest remedies that may lead to a healthier society.
Collapse
Affiliation(s)
- Jiayue Yang
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University
| | | | - Manami Ishii
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University
| | - Mayuko Nagata
- Institute for Advanced Biosciences, Keio University.,Faculty of Environment and Information Studies, Keio University
| | - Wanping Aw
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University
| | - Nozomu Obana
- Transborder Medical Research Center, University of Tsukuba
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University.,Faculty of Environment and Information Studies, Keio University
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability, University of Tsukuba.,Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University.,Transborder Medical Research Center, University of Tsukuba.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology.,Metabologenomics, Inc
| |
Collapse
|
36
|
Companys J, Pla-Pagà L, Calderón-Pérez L, Llauradó E, Solà R, Pedret A, Valls RM. Fermented Dairy Products, Probiotic Supplementation, and Cardiometabolic Diseases: A Systematic Review and Meta-analysis. Adv Nutr 2020; 11:834-863. [PMID: 32277831 PMCID: PMC7360468 DOI: 10.1093/advances/nmaa030] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/27/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Fermented dairy foods (FDFs) and probiotics are promising tools for the prevention and management of cardiometabolic diseases (CMDs), respectively. The relation between the regular consumption of FDFs and CMD risk factors was assessed by prospective cohort studies (PCSs), and the effect of probiotic supplementation added into a dairy matrix on CMD parameters was evaluated by randomized controlled trials (RCTs). Moreover, the effects of probiotic supplementation added into a dairy matrix were compared with those administered in capsule/powder form. Twenty PCSs and 52 RCTs met the inclusion criteria for the systematic review and meta-analysis. In PCSs, fermented milk was associated with a 4% reduction in risk of stroke, ischemic heart disease, and cardiovascular mortality [RR (95% CI); 0.96 (0.94, 0.98)]; yogurt intake was associated with a risk reduction of 27% [RR (95% CI); 0.73 (0.70, 0.76)] for type 2 diabetes (T2D) and 20% [RR (95% CI); 0.80 (0.74, 0.87)] for metabolic syndrome development. In RCTs, probiotic supplementation added into dairy matrices produced a greater reduction in lipid biomarkers than when added into capsules/powder in hypercholesterolemic subjects, and probiotic supplementation by capsules/powder produced a greater reduction in T2D biomarkers than when added into dairy matrices in diabetic subjects. Both treatments (dairy matrix and capsules/powder) resulted in a significant reduction in anthropometric parameters in obese subjects. In summary, fermented milk consumption is associated with reduced cardiovascular risk, while yogurt intake is associated with a reduced risk of T2D and metabolic syndrome development in the general population. Furthermore, probiotic supplementation added into dairy matrices could be considered beneficial for lowering lipid concentrations and reducing anthropometric parameters. Additionally, probiotic capsule/powder supplementation could contribute to T2D management and reduce anthropometric parameters. However, these results should be interpreted with caution due to the heterogeneity of the studies and the different probiotic strains used in the studies. This trial is registered with PROSPERO (CRD42018091791) and the protocol can be accessed at http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018091791.
Collapse
Affiliation(s)
- Judit Companys
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - Laura Pla-Pagà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - Lorena Calderón-Pérez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain,Universitat Rovira i Virgili Foundation, Universitat Rovira i Virgili, Reus and Tarragona, Spain
| | - Elisabet Llauradó
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - Rosa Solà
- Address correspondence to RS (e-mail: )
| | | | - Rosa M Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| |
Collapse
|
37
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
38
|
Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients 2019; 11:E1468. [PMID: 31252674 PMCID: PMC6683087 DOI: 10.3390/nu11071468] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as 'non-responders' and scientists are beginning to unravel what differentiates these from 'responders;' and it is now clear that an individual's baseline microbiota can influence an individual's response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. In Part I of this two-part review, we reviewed the current state of the science in terms of the gut microbiota and the role of diet and dietary components in shaping it and subsequent consequences for human health. In Part II, we examine the efficacy of gut-microbiota modulating therapies at different life stages and their potential to aid in the management of undernutrition and overnutrition. Given the significance of an individual's gut microbiota, we investigate the feasibility of microbiome testing and we discuss guidelines for evaluating the scientific validity of evidence for providing personalised microbiome-based dietary advice. Overall, this review highlights the potential value of the microbiome to prevent disease and maintain or promote health and in doing so, paves the pathway towards commercialisation.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| |
Collapse
|
39
|
A Review on Role of Microbiome in Obesity and Antiobesity Properties of Probiotic Supplements. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3291367. [PMID: 31211135 PMCID: PMC6532319 DOI: 10.1155/2019/3291367] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Probiotics are now recognized for several health benefits and they have been recommended as a complementary therapeutic agent for metabolic disorders. Obesity is an altered health condition, which is a resultant of irregular energy intake and energy balance, changes in gut microbiota, and improper diet with the influence of genetic makeup and environmental factors. Several studies revealed the influence of probiotic supplementation on obesity-associated consequences in vitro, in vivo, and in human clinical studies. The current manuscript discussed the factors influencing the occurrence of obesity, the interplay between microbiome and obesity, the effect of the probiotic intervention on the health status of obese people, and possible mechanism of antiobesity activity of probiotics. The literature survey revealed that the antiobese activity of probiotics might be associated with their ability to alter the intestinal microbiota, remodeling of energy metabolism, alter the expression of genes related to thermogenesis, glucose metabolism, and lipid metabolism, and change the parasympathetic nerve activity. Further intense research is necessary to figure out the best probiotic or synbiotic mixture and optimum dosage and duration of the intervention to reduce obesity and prevent the recurring of obese condition.
Collapse
|
40
|
Effect of probiotic and synbiotic supplementation on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials. Clin Nutr 2019; 39:789-819. [PMID: 31060892 DOI: 10.1016/j.clnu.2019.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The current systematic review and meta-analysis investigated the effect of probiotic/synbiotic on a wide range of inflammatory and anti-inflammatory markers in healthy and various disease conditions. PubMed, SCOPUS and Web of Science databases were searched. All clinical trials which investigated the effect of oral administration of probiotic or synbiotic on inflammatory markers (C-reactive protein (CRP), interleukin (IL) 1β, IL-4, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor (TNF) α, interferon (IFN) γ and transforming growth factor (TGF) β) for more than one week with concurrent control groups were included. One-hundred sixty seven publications was analysed. Results were as follows: CRP decreased in healthy, metabolic disorders, inflammatory bowel disease (IBD), arthritis and critically ill condition but not in renal failure. IL-1B: no change in healthy subjects and arthritis. TNF-α: decreased in healthy, fatty liver, IBD and hepatic cirrhosis, no change in diabetes, metabolic syndrome (MS) + PCOS (polycystic ovary syndrome) and arthritis. IL-6: no change in healthy, metabolic disorders and arthritis, increased in cirrhosis and renal failure, decreased in PCOS + MS. IL-10: no change in healthy, IBD and metabolic disorders, increased in arthritis. IL-4, IL-8, IL-12, IFN-g and TGF-b: no change in healthy subjects. In conclusion, probiotic/synbiotic decreased some of the inflammatory markers. The intervention was most effective in CRP and TNF-α reduction in healthy or disease state. Moreover, the intervention decreased inflammation most effectively in the following disease conditions, respectively: IBD, arthritis, fatty liver. PROSPERO REGISTRATION NUMBER: CRD42018088688.
Collapse
|
41
|
Santos-Marcos JA, Perez-Jimenez F, Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J Nutr Biochem 2019; 70:1-27. [PMID: 31082615 DOI: 10.1016/j.jnutbio.2019.03.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 02/09/2023]
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic factors that increase the risk of cardiovascular disease and type 2 diabetes mellitus (T2DM), which is in itself a major cardiovascular disease risk factor. The aim of this review is to summarize the data related to the influence of the gut microbiota on the development of obesity and the MetS, highlighting the role of diet in controlling the MetS by modifying the gut microbiota. The main alterations in the gut microbiota of individuals with MetS consist of an increased Firmicutes/Bacteriodetes ratio and a reduced capacity to degrade carbohydrates to short-chain fatty acids, which in turn is related with the metabolic dysfunction of the host organism rather than with obesity itself. In addition to a low-fat, high-carbohydrate diet, with its high fiber intake, a diet with 30% fat content but with a high content in fruit and vegetables, such as the Mediterranean diet, is beneficial and partially restores the dysbiosis found in individuals with MetS. Overall, the shaping of the gut microbiota through the administration of prebiotics or probiotics increases the short-chain fatty acid production and is therefore a valid alternative in MetS treatment.
Collapse
Affiliation(s)
- Jose A Santos-Marcos
- Lipids and Atherosclerosis Research Unit, GC9 Nutrigenomic-Metabolic Syndrome, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Francisco Perez-Jimenez
- Lipids and Atherosclerosis Research Unit, GC9 Nutrigenomic-Metabolic Syndrome, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Antonio Camargo
- Lipids and Atherosclerosis Research Unit, GC9 Nutrigenomic-Metabolic Syndrome, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain.
| |
Collapse
|
42
|
Koutnikova H, Genser B, Monteiro-Sepulveda M, Faurie JM, Rizkalla S, Schrezenmeir J, Clément K. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2019; 9:e017995. [PMID: 30928918 PMCID: PMC6475231 DOI: 10.1136/bmjopen-2017-017995] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To systematically review the effect of oral intake of bacterial probiotics on 15 variables related to obesity, diabetes and non-alcoholic fatty liver disease. DESIGN Systematic review and meta-analysis. DATA SOURCES Medline, EMBASE and COCHRANE from 1990 to June 2018. ELIGIBILITY CRITERIA Randomised controlled trials (≥14 days) excluding hypercholesterolaemia, alcoholic liver disease, polycystic ovary syndrome and children <3 years. RESULTS One hundred and five articles met inclusion criteria, representing 6826 subjects. In overweight but not obese subjects, probiotics induced improvements in: body weight (k=25 trials, d=-0.94 kg mean difference, 95% CI -1.17 to -0.70, I²=0.0%), body mass index (k=32, d=-0.55 kg/m², 95% CI -0.86 to -0.23, I²=91.9%), waist circumference (k=13, d=-1.31 cm, 95% CI -1.79 to -0.83, I²=14.5%), body fat mass (k=11, d=-0.96 kg, 95% CI -1.21 to -0.71, I²=0.0%) and visceral adipose tissue mass (k=5, d=-6.30 cm², 95% CI -9.05 to -3.56, I²=0.0%). In type 2 diabetics, probiotics reduced fasting glucose (k=19, d=-0.66 mmol/L, 95% CI -1.00 to -0.31, I²=27.7%), glycated haemoglobin (k=13, d=-0.28 pp, 95% CI -0.46 to -0.11, I²=54.1%), insulin (k=13, d=-1.66 mU/L, 95% CI -2.70 to -0.61, I²=37.8%) and homeostatic model of insulin resistance (k=10, d=-1.05 pp, 95% CI -1.48 to -0.61, I²=18.2%). In subjects with fatty liver diseases, probiotics reduced alanine (k=12, d=-10.2 U/L, 95% CI -14.3 to -6.0, I²=93.50%) and aspartate aminotransferases (k=10, d=-9.9 U/L, 95% CI -14.1 to -5.8, I²=96.1%). These improvements were mostly observed with bifidobacteria (Bifidobacterium breve, B. longum), Streptococcus salivarius subsp. thermophilus and lactobacilli (Lactobacillus acidophilus, L. casei, L. delbrueckii) containing mixtures and influenced by trials conducted in one country. CONCLUSIONS The intake of probiotics resulted in minor but consistent improvements in several metabolic risk factors in subjects with metabolic diseases. TRIAL REGISTRATION NUMBER CRD42016033273.
Collapse
Affiliation(s)
| | - Bernd Genser
- BGStats Consulting, Vienna, Austria
- Mannheimer Institut fur Public Health, Ruprecht Karls Universitat Heidelberg, Mannheim, Baden-Württemberg, Germany
| | - Milena Monteiro-Sepulveda
- Nutrition Department, Pitie-Salpêtrière hospital, Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Salwa Rizkalla
- Nutrition Department, Pitie-Salpêtrière hospital, Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jürgen Schrezenmeir
- Clinical Research Center Kiel, Johannes Gutenberg Universitat Universitatsmedizin, Mainz, Rheinland-Pfalz, Germany
| | - Karine Clément
- Nutrition Department, Pitie-Salpêtrière hospital, Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), NutriOmiCs team, UMR S 1269, Paris, France
| |
Collapse
|
43
|
Suzumura EA, Bersch-Ferreira ÂC, Torreglosa CR, da Silva JT, Coqueiro AY, Kuntz MGF, Chrispim PP, Weber B, Cavalcanti AB. Effects of oral supplementation with probiotics or synbiotics in overweight and obese adults: a systematic review and meta-analyses of randomized trials. Nutr Rev 2019; 77:430-450. [DOI: 10.1093/nutrit/nuz001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Erica A Suzumura
- Research Institute at Hospital do Coração, São Paulo, Brazil
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Audrey Y Coqueiro
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
44
|
Ji Y, Chung YM, Park S, Jeong D, Kim B, Holzapfel WH. Dose-dependent and strain-dependent anti-obesity effects of Lactobacillus sakei in a diet induced obese murine model. PeerJ 2019; 7:e6651. [PMID: 30923658 PMCID: PMC6431538 DOI: 10.7717/peerj.6651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Overweight and abdominal obesity, in addition to medical conditions such as high blood pressure, high blood sugar and triglyceride levels, are typical risk factors associated with metabolic syndrome. Yet, considering the complexity of factors and underlying mechanisms leading to these inflammatory conditions, a deeper understanding of this area is still lacking. Some probiotics have a reputation of a relatively-long history of safe use, and an increasing number of studies are confirming benefits including anti-obesity effects when administered in adequate amounts. Recent reports demonstrate that probiotic functions may widely differ with reference to either intra-species or inter-species related data. Such differences do not necessarily reflect or explain strain-specific functions of a probiotic, and thus require further assessment at the intra-species level. Various anti-obesity clinical trials with probiotics have shown discrepant results and require additional consolidated studies in order to clarify the correct dose of application for reliable and constant efficacy over a long period. METHODS Three different strains of Lactobacillus sakei were administered in a high-fat diet induced obese murine model using three different doses, 1 × 1010, 1 × 109 and 1 × 108 CFUs, respectively, per day. Changes in body and organ weight were monitored, and serum chemistry analysis was performed for monitoring obesity associated biomarkers. RESULTS Only one strain of L. sakei (CJLS03) induced a dose-dependent anti-obesity effect, while no correlation with either dose or body or adipose tissue weight loss could be detected for the other two L. sakei strains (L338 and L446). The body weight reduction primarily correlated with adipose tissue and obesity-associated serum biomarkers such as triglycerides and aspartate transaminase. DISCUSSION This study shows intraspecies diversity of L. sakei and suggests that anti-obesity effects of probiotics may vary in a strain- and dose-specific manner.
Collapse
Affiliation(s)
- Yosep Ji
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| | - Young Mee Chung
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Soyoung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| | - Dahye Jeong
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Bongjoon Kim
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Wilhelm Heinrich Holzapfel
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| |
Collapse
|
45
|
The effect of probiotics on inflammatory biomarkers: a meta-analysis of randomized clinical trials. Eur J Nutr 2019; 59:633-649. [PMID: 30854594 DOI: 10.1007/s00394-019-01931-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/16/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE No study has summarized earlier findings on the effect of probiotic supplementation on inflammatory biomarkers. This systematic review and meta-analysis was conducted to systematically review the available placebo-controlled clinical trials about the effect of probiotic supplementation on several inflammatory biomarkers in adults. METHODS Relevant papers published up to March 2018 were searched up through PubMed, MEDLINE, SCOPUS, EMBASE, and Google Scholar, using following suitable keywords. Clinical trials that examined the effect of probiotic supplementation on inflammation in adults were included. RESULTS Overall, 42 randomized clinical trials (1138 participants in intervention and 1120 participants in control groups) were included. Combining findings from included studies, we found a significant reduction in serum hs-CRP [standardized mean difference (SMD) - 0.46; 95% CI - 0.73, - 0.19], TNF-a (- 0.21; - 0.34, - 0.08), IL-6 (- 0.37; - 0.51, - 0.24), IL-12 (- 0.47; - 0.67, - 0.27), and IL-4 concentrations (- 0.48; - 0.76, - 0.20) after probiotic supplementation. Pooling effect sizes from 11 studies with 12 effect sizes, a significant increase in IL-10 concentrations was seen (0.21; 0.04, 0.38). We failed to find a significant effect of probiotic supplementation on serum IL-1B (- 0.17; - 0.37, 0.02), IL-8 (- 0.01; - 0.30, 0.28), and IFN-g (- 0.08; - 0.31, 0.15) and IL-17 concentrations (0.06; - 0.34, 0.46). CONCLUSIONS Probiotic supplementation significantly reduced serum concentrations of pro-inflammatory cytokines including, hs-CRP, TNF-a, IL-6, IL-12, and IL-4, but it did not influence IL-1B, IL-8, IFN-g, and IL-17 concentrations. A significant increase in serum concentrations of IL-10, as a anti-inflammatory cytokine was also documented after probiotic supplementation.
Collapse
|
46
|
Kurose Y, Minami J, Sen A, Iwabuchi N, Abe F, Xiao J, Suzuki T. Bioactive factors secreted by Bifidobacterium breve B-3 enhance barrier function in human intestinal Caco-2 cells. Benef Microbes 2019; 10:89-100. [PMID: 30353739 DOI: 10.3920/bm2018.0062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Intestinal barrier function is closely related to intestinal health and diseases. Recent studies demonstrate that some probiotic and commensal bacteria secrete metabolites that are capable of affecting the intestinal functions. The present study examined an enhancing effect of bioactive factors secreted by Bifidobacterium breve strain B-3 on the intestinal tight junction (TJ) barrier integrity in human intestinal Caco-2 cells. Administration of conditioned medium obtained from B. breve strain B-3 (B3CM) to Caco-2 cells for 24 h increased trans-epithelial electrical resistance (TER), a TJ barrier indicator, across their monolayers. Immunoblot, immunofluorescence, and qPCR analyses demonstrated that B3CM increased an integral TJ protein, claudin-4 expression. In luciferase reporter assay, the administration of B3CM enhanced the claudin-4 promoter activity, indicating the transcriptional upregulation of claudin-4. Site-directed mutation of specificity protein 1 (Sp1) binding sites in the claudin-4 promoter sequence and suppression of Sp1 expression by siRNA technology clearly reduced the enhancing effect of B3CM on claudin-4 promoter activity. Liquid chromatography/mass spectrometry detected a significant amount of acetic acid in B3CM (28.3 mM). The administration of acetic acid to Caco-2 cells partially mimicked a B3CM-mediated increase in TER, but failed to increase claudin-4 expression. Taken together, bioactive factors secreted by B. breve B-3 enhanced the TJ barrier integrity in intestinal Caco-2 cells. Transcriptional regulation of claudin-4 through Sp1 is at least in part one of the underlying molecular mechanisms. In addition, acetic acid contributes to the B3CM-mediated barrier effect independently of claudin-4 expression.
Collapse
Affiliation(s)
- Y Kurose
- 1 Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - J Minami
- 2 Food Ingredients & Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa 252-8583, Japan
| | - A Sen
- 2 Food Ingredients & Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa 252-8583, Japan
| | - N Iwabuchi
- 2 Food Ingredients & Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa 252-8583, Japan
| | - F Abe
- 2 Food Ingredients & Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa 252-8583, Japan
| | - J Xiao
- 3 Next Generation Science Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa 252-8583, Japan
| | - T Suzuki
- 1 Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
47
|
Li Y, Liu T, Zhao M, Zhong H, Luo W, Feng F. In vitro and in vivo investigations of probiotic properties of lactic acid bacteria isolated from Chinese traditional sourdough. Appl Microbiol Biotechnol 2019; 103:1893-1903. [DOI: 10.1007/s00253-018-9554-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
|
48
|
Venkatakrishnan K, Chiu HF, Wang CK. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct 2019; 10:2313-2329. [DOI: 10.1039/c9fo00293f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Weight management (anti-obesity) by popular functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Kamesh Venkatakrishnan
- School of Nutrition
- Chung Shan Medical University
- Taichung City-40201
- Taiwan
- Republic of China
| | - Hui-Fang Chiu
- Department of Chinese Medicine
- Taichung Hospital Ministry of Health and Welfare
- Taichung-40301
- Taiwan
- Republic of China
| | - Chin-Kun Wang
- School of Nutrition
- Chung Shan Medical University
- Taichung City-40201
- Taiwan
- Republic of China
| |
Collapse
|
49
|
Le Barz M, Daniel N, Varin TV, Naimi S, Demers-Mathieu V, Pilon G, Audy J, Laurin É, Roy D, Urdaci MC, St-Gelais D, Fliss I, Marette A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity. FASEB J 2018; 33:4921-4935. [PMID: 30596521 DOI: 10.1096/fj.201801672r] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given the growing evidence that gut dysfunction, including changes in gut microbiota composition, plays a critical role in the development of inflammation and metabolic diseases, the identification of novel probiotic bacteria with immunometabolic properties has recently attracted more attention. Herein, bacterial strains were first isolated from dairy products and human feces and then screened in vitro for their immunomodulatory activity. Five selected strains were further analyzed in vivo, using a mouse model of diet-induced obesity. C57BL/6 mice were fed a high-fat high-sucrose diet, in combination with 1 of 3 Lactobacillus strains (Lb38, L. plantarum; L79, L. paracasei/casei; Lb102, L. rhamnosus) or Bifidobacterium strains (Bf26, Bf141, 2 different strains of B. animalis ssp. lactis species) administered for 8 wk at 109 colony-forming units/d. Whereas 3 strains showed only modest (Lb38, Bf26) or no (L79) effects, Lb102 and Bf141 reduced diet-induced obesity, visceral fat accretion, and inflammation, concomitant with improvement of glucose tolerance and insulin sensitivity. Further analysis revealed that Lb102 and Bf141 enhanced intestinal integrity markers in association with selective changes in gut microbiota composition. We have thus identified 2 new potential probiotic bacterial strains with immunometabolic properties to alleviate obesity development and associated metabolic disturbances.-Le Barz, M., Daniel, N., Varin, T. V., Naimi, S., Demers-Mathieu, V., Pilon, G., Audy, J., Laurin, E., Roy, D., Urdaci, M. C., St-Gelais, D., Fliss, I, Marette, A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity.
Collapse
Affiliation(s)
- Mélanie Le Barz
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Unité Mixte de Recherche 5248, Laboratory of Microbiology and Applied Biochemistry, University of Bordeaux, Gradignan, France
| | - Noëmie Daniel
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Thibault V Varin
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Sabrine Naimi
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada
| | - Véronique Demers-Mathieu
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada.,Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Julie Audy
- Agropur Cooperative, Saint-Hubert, Quebec, Canada; and
| | | | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Maria C Urdaci
- Unité Mixte de Recherche 5248, Laboratory of Microbiology and Applied Biochemistry, University of Bordeaux, Gradignan, France
| | - Daniel St-Gelais
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada.,Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Canada
| | - Ismaïl Fliss
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| |
Collapse
|
50
|
Smith-Ryan AE, Mock MG, Trexler ET, Hirsch KR, Blue MNM. Influence of a multistrain probiotic on body composition and mood in female occupational shift workers. Appl Physiol Nutr Metab 2018; 44:765-773. [PMID: 30566363 DOI: 10.1139/apnm-2018-0645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study sought to investigate the effects of a multistrain probiotic on body composition, regional adiposity, and a series of associated metabolic health outcomes. Female health care workers employed on a rotating-shift schedule (n = 41) completed baseline anthropometric assessments; a fasted blood draw; questionnaires to assess anxiety, depression (Hospital Anxiety and Depression Scale), and fatigue (Chalder Fatigue Survey); and an exercise fatigue test. Identical post-tests occurred following 6 weeks of daily supplementation with placebo (PLA) or probiotics (2.5 × 109 CFU/g) containing 9 bacterial strains (PRO; Ecologic Barrier) combined with a prebiotic carrier matrix. PRO attenuated fat mass increases (change (Δ), 0.14 kg; confidence interval (CI) -0.46 to 0.75 kg) compared with PLA (Δ, 0.79 kg; CI 0.03-1.54 kg), whereas modest reductions in visceral adiposity resulted for both PRO and PLA. Metabolic biomarkers (total cholesterol, high-density lipoprotein, glucose, adiponectin, C-reactive protein, interleukin-6, leptin) were not influenced by either treatment (p > 0.05). Nonsignificant, but potentially clinically relevant, improvements in anxiety (Δ, -2.3 ± 2.63) and fatigue (Δ, -4.8 ± 5.5) were observed with PRO; exercise performance was unaffected. Results indicate a potential protective effect of probiotics against fat mass gain. Probiotics may alleviate anxiety and fatigue in shift-working females.
Collapse
Affiliation(s)
- Abbie E Smith-Ryan
- a Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC 27599, USA.,b Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Meredith G Mock
- a Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric T Trexler
- a Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC 27599, USA.,b Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katie R Hirsch
- a Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC 27599, USA.,b Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Malia N M Blue
- a Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC 27599, USA.,b Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|