1
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Gonda X, Tarazi FI, Dome P. The emergence of antidepressant drugs targeting GABA A receptors: A concise review. Biochem Pharmacol 2024; 228:116481. [PMID: 39147329 DOI: 10.1016/j.bcp.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Depression is among the most common psychiatric illnesses, which imposes a major socioeconomic burden on patients, caregivers, and the public health system. Treatment with classical antidepressants (e.g. tricyclic antidepressants and selective serotonine reuptake inhibitors), which primarily affect monoaminergic systems has several limitations, such as delayed onset of action and moderate efficacy in a relatively large proportion of depressed patients. Furthermore, depression is highly heterogeneus, and its different subtypes, including post-partum depression, involve distinct neurobiology, warranting a differential approach to pharmacotherapy. Given these shortcomings, the need for novel antidepressants that are superior in efficacy and faster in onset of action is fully justified. The development and market introduction of rapid-acting antidepressants has accelerated in recent years. Some of these new antidepressants act through the GABAergic system. In this review, we discuss the discovery, efficacy, and limitations of treatment with classic antidepressants. We provide a detailed discussion of GABAergic neurotransmission, with a special focus on GABAA receptors, and possible explanations for the mood-enhancing effects of GABAergic medications (in particular neurosteroids acting at GABAA receptors), and, ultimately, we present the most promising molecules belonging to this family which are currently used in clinical practice or are in late phases of clinical development.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Boston, MA, USA
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Nyiro Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| |
Collapse
|
3
|
Gurguis CI, Duckworth RA, Bucaro NM, Walss-Bass C. Fitness consequences of depressive symptoms vary between generations: Evidence from a large cohort of women across the 20th century. PLoS One 2024; 19:e0310598. [PMID: 39348394 PMCID: PMC11441685 DOI: 10.1371/journal.pone.0310598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/02/2024] [Indexed: 10/02/2024] Open
Abstract
Depression has strong negative impacts on how individuals function, leading to the assumption that there is strong negative selection on this trait that should deplete genetic variation and decrease its prevalence in human populations. Yet, depressive symptoms remain common. While there has been a large body of work trying to resolve this paradox by mapping genetic variation of this complex trait, there have been few direct empirical tests of the core assumption that there is consistent negative selection on depression in human populations. Here, we use a unique long-term dataset from the National Health and Nutrition Examination Survey that spans four generational cohorts (Silent Generation: 1928-1945, Baby Boomers: 1946-1964, Generation X: 1965-1980, and Millenials: 1981-1996) to measure both depression scores and fitness components (lifetime sexual partners, pregnancies, and live births) of women from the United States born between 1938-1994. We not only assess fitness consequences of depression across multiple generations to determine whether the strength and direction of selection on depression has changed over time, but we also pair these fitness measurements with mixed models to assess how several important covariates, including age, body mass, education, race/ethnicity, and income might influence this relationship. We found that, overall, selection on depression was positive and the strength of selection changed over time-women reporting higher depression had relatively more sexual partners, pregnancies, and births except during the Silent Generation when selection coefficients neared zero. We also found that depression scores and fitness components differed among generations-Baby Boomers showed the highest severity of depression and the most sexual partners. These results were not changed by the inclusion of covariates in our models. A limitation of this study is that for the Millenials, reproduction has not completed and data for this generation is interrupted by right censoring. Most importantly, our results undermine the common belief that there is consistent negative selection on depression and demonstrate that the relationship between depression and fitness changes between generations, which may explain its maintenance in human populations.
Collapse
Affiliation(s)
- Christopher I. Gurguis
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School at UTHealth, Houston, TX, United States of America
| | - Renée A. Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States of America
| | - Nicole M. Bucaro
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School at UTHealth, Houston, TX, United States of America
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School at UTHealth, Houston, TX, United States of America
| |
Collapse
|
4
|
Rahman MF, Islam A, Islam MM, Mamun MA, Xu L, Sakamoto T, Sato T, Takahashi Y, Kahyo T, Aoyagi S, Kaibuchi K, Setou M. Mass Spectrometry Imaging Combined with Sparse Autoencoder Method Reveals Altered Phosphorylcholine Distribution in Imipramine Treated Wild-Type Mice Brains. Int J Mol Sci 2024; 25:7969. [PMID: 39063212 PMCID: PMC11276679 DOI: 10.3390/ijms25147969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mass spectrometry imaging (MSI) is essential for visualizing drug distribution, metabolites, and significant biomolecules in pharmacokinetic studies. This study mainly focuses on imipramine, a tricyclic antidepressant that affects endogenous metabolite concentrations. The aim was to use atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-MSI combined with different dimensionality reduction methods to examine the distribution and impact of imipramine on endogenous metabolites in the brains of treated wild-type mice. Brain sections from both control and imipramine-treated mice underwent AP-MALDI-MSI. Dimensionality reduction methods, including principal component analysis, multivariate curve resolution, and sparse autoencoder (SAE), were employed to extract valuable information from the MSI data. Only the SAE method identified phosphorylcholine (ChoP) as a potential marker distinguishing between the control and treated mice brains. Additionally, a significant decrease in ChoP accumulation was observed in the cerebellum, hypothalamus, thalamus, midbrain, caudate putamen, and striatum ventral regions of the treated mice brains. The application of dimensionality reduction methods, particularly the SAE method, to the AP-MALDI-MSI data is a novel approach for peak selection in AP-MALDI-MSI data analysis. This study revealed a significant decrease in ChoP in imipramine-treated mice brains.
Collapse
Affiliation(s)
- Md Foyzur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Md. Monirul Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Preppers Co., Ltd., 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Preppers Co., Ltd., 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Preppers Co., Ltd., 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology/International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Satoka Aoyagi
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi 180-8633, Tokyo, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| |
Collapse
|
5
|
Guldager MB, Chaves Filho AM, Biojone C, Joca S. Therapeutic potential of cannabidiol in depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:251-293. [PMID: 39029987 DOI: 10.1016/bs.irn.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Major depressive disorder (MDD) is a widespread and debilitating condition affecting a significant portion of the global population. Traditional treatment for MDD has primarily involved drugs that increase brain monoamines by inhibiting their uptake or metabolism, which is the basis for the monoaminergic hypothesis of depression. However, these treatments are only partially effective, with many patients experiencing delayed responses, residual symptoms, or complete non-response, rendering the current view of the hypothesis as reductionist. Cannabidiol (CBD) has shown promising results in preclinical models and human studies. Its mechanism is not well-understood, but may involve monoamine and endocannabinoid signaling, control of neuroinflammation and enhanced neuroplasticity. This chapter will explore CBD's effects in preclinical and clinical studies, its molecular mechanisms, and its potential as a treatment for MDD.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | | | - Caroline Biojone
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Verma C, Jain K, Saini A, Mani I, Singh V. Exploring the potential of drug repurposing for treating depression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:79-105. [PMID: 38942546 DOI: 10.1016/bs.pmbts.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Researchers are interested in drug repurposing or drug repositioning of existing pharmaceuticals because of rising costs and slower rates of new medication development. Other investigations that authorized these treatments used data from experimental research and off-label drug use. More research into the causes of depression could lead to more effective pharmaceutical repurposing efforts. In addition to the loss of neurotransmitters like serotonin and adrenaline, inflammation, inadequate blood flow, and neurotoxins are now thought to be plausible mechanisms. Because of these other mechanisms, repurposing drugs has resulted for treatment-resistant depression. This chapter focuses on therapeutic alternatives and their effectiveness in drug repositioning. Atypical antipsychotics, central nervous system stimulants, and neurotransmitter antagonists have investigated for possible repurposing. Nonetheless, extensive research is required to ensure their formulation, effectiveness, and regulatory compliance.
Collapse
Affiliation(s)
- Chaitenya Verma
- Department of Pathology, Ohio State University, Columbus, OH, United States
| | - Kritika Jain
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India.
| |
Collapse
|
7
|
Stecher C, Cloonan S, Domino ME. The Economics of Treatment for Depression. Annu Rev Public Health 2024; 45:527-551. [PMID: 38100648 DOI: 10.1146/annurev-publhealth-061022-040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The global prevalence of depression has risen over the past three decades across all socioeconomic groups and geographic regions, with a particularly rapid increase in prevalence among adolescents (aged 12-17 years) in the United States. Depression imposes large health, economic, and societal costs, including reduced life span and quality of life, medical costs, and reduced educational attainment and workplace productivity. A wide range of treatment modalities for depression are available, but socioeconomic disparities in treatment access are driven by treatment costs, lack of culturally tailored options, stigma, and provider shortages, among other barriers. This review highlights the need for comparative research to better understand treatments' relative efficacy, cost-effectiveness, scalability, and potential heterogeneity in efficacy across socioeconomic groups and country and cultural contexts. To address the growing burden of depression, mental health policy could consider reducing restrictions on the supply of providers, implementing digital interventions, reducing stigma, and promoting healthy lifestyles.
Collapse
Affiliation(s)
- Chad Stecher
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA;
- The Center for Health Information and Research, Arizona State University, Phoenix, Arizona, USA
| | - Sara Cloonan
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Marisa Elena Domino
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA;
- The Center for Health Information and Research, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024:AD.2024.0328. [PMID: 39254383 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Rohr
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Razelle Alvir
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jasbir Bisht
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mst Anika Bushra
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer Luong
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Aananya P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
9
|
Staal L, Plösch T, Kunovac Kallak T, Sundström Poromaa I, Wertheim B, Olivier JDA. Sex-Specific Transcriptomic Changes in the Villous Tissue of Placentas of Pregnant Women Using a Selective Serotonin Reuptake Inhibitor. ACS Chem Neurosci 2024; 15:1074-1083. [PMID: 38421943 PMCID: PMC10958514 DOI: 10.1021/acschemneuro.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
About 5% of pregnant women are treated with selective serotonin reuptake inhibitor (SSRI) antidepressants to treat their depression. SSRIs influence serotonin levels, a key factor in neural embryonic development, and their use during pregnancy has been associated with adverse effects on the developing embryo. However, the role of the placenta in transmitting these negative effects is not well understood. In this study, we aim to elucidate how disturbances in the maternal serotonergic system affect the villous tissue of the placenta by assessing whole transcriptomes in the placentas of women with healthy pregnancies and women with depression and treated with the SSRI fluoxetine during pregnancy. Twelve placentas of the Biology, Affect, Stress, Imaging and Cognition in Pregnancy and the Puerperium (BASIC) project were selected for RNA sequencing to examine differentially expressed genes: six male infants and six female infants, equally distributed over women treated with SSRI and without SSRI treatment. Our results show that more genes in the placenta of male infants show changed expression associated with fluoxetine treatment than in placentas of female infants, stressing the importance of sex-specific analyses. In addition, we identified genes related to extracellular matrix organization to be significantly enriched in placentas of male infants born to women treated with fluoxetine. It remains to be established whether the differentially expressed genes that we found to be associated with SSRI treatment are the result of the SSRI treatment itself, the underlying depression, or a combination of the two.
Collapse
Affiliation(s)
- Laura Staal
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
- Department
of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Torsten Plösch
- Departments
of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Perinatal
Neurobiology, Department of Human Medicine, School of Medicine and
Health Sciences, Carl von Ossietzky University
Oldenburg, 26129 Oldenburg, Germany
| | | | | | - Bregje Wertheim
- Evolutionary
Genetics, Development & Behaviour, Groningen Institute for Evolutionary
Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jocelien D. A. Olivier
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| |
Collapse
|
10
|
Elmarasi M, Fuehrlein B. US Medicaid program: An analysis of the spending and utilization patterns for antidepressants from 2017 to 2021. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2024; 13:100392. [PMID: 38149102 PMCID: PMC10750172 DOI: 10.1016/j.rcsop.2023.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
Background Major depressive disorder (MDD) is a serious mental health condition that contributes to health complications, financial burden and death. In 2020, about one in five US adults had a lifetime diagnosis of MDD. With Major Depressive Disorder (MDD) being a common mental health concern, it is important to understand treatment patterns within public health systems like Medicaid, as they play a crucial role in providing care to diverse populations. Objective The study investigated antidepressant usage and market distribution in the Medicaid Program. By doing so, the study aimed to provide insights into how these trends reflect broader changes in mental health treatment practices and policy implications within the Medicaid system during the study period. Methods Public Medicaid data from 2017 to 2021 were analyzed, focusing on 30 FDA-approved antidepressants. Spending and prescription data were aggregated using Excel and Python. Results The total US Medicaid expenditure on antidepressants increased from about $1 billion dollars in 2017 to $1.12 billion dollars in 2021, an increase of about 10%. Consistently, SSRIs were the class of antidepressants that Medicaid spent the most on. The highest Medicaid spending on a single antidepressant in 2017 and 2018 was bupropion. During the remaining years of the study (2019, 2020, 2021) Medicaid appropriated most funds toward Vortioxetine. The total number of antidepressant prescriptions increased from 52 million scripts to 59 million scripts (an increase of about 14%). Conclusions The increase in Medicaid spending on antidepressants during the study period can be explained by an increase in utilization (a 14% increase in antidepressant prescriptions from 2017 to 2021), and a shift toward prescribing newer more costly antidepressants (like SSRIs and others) and away from prescribing older, less costly antidepressants like monoamine oxidase inhibitors (MAOIs) and tricyclic antidepressants (TCAs)."
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of psychiatry, Nassau University Medical Center, United States
| | | |
Collapse
|
11
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
12
|
Wu JJ, Zhang L, Liu D, Xia J, Yang Y, Tang F, Chen L, Ao H, Peng C. Ginsenoside Rg1, lights up the way for the potential prevention of Alzheimer's disease due to its therapeutic effects on the drug-controllable risk factors of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116955. [PMID: 37536646 DOI: 10.1016/j.jep.2023.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Shen Nong, BenCao Jing, and Compendium of Materia Medica (Bencao Gangmu), Panax ginseng, and its prescriptions have been used for the treatment of dementia, depression, weight loss, Xiaoke disease (similar to diabetes), and vertigo. All these diseases are associated with the drug-controllable risk factors for Alzheimer's disease (AD), including depression, obesity, diabetes, and hypertension. Ginsenoside Rg1, one of the main active ingredients of P. ginseng and its congener Panax notoginseng, possesses therapeutic potentials against AD and associated diseases. This suggests that ginsenoside Rg1 might have the potential for AD prevention and treatment. Although the anti-AD effects of ginsenoside Rg1 have received more attention, a systematic review of its effects on depression, obesity, diabetes, and hypertension is not available. AIM OF THE REVIEW This systematic literature review comprehensively summarized existing literature on the therapeutic potentials of ginsenoside Rg1 in AD prevention for the propose of providing a foundation of future research aimed at enabling the use of such drugs in clinical practice. METHODS Information on ginsenoside Rg1 was collected from relevant published articles identified through a literature search in electronic scientific databases (PubMed, Science Direct, and Google Scholar). The keywords used were "Ginsenoside Rg1," "Panax ginseng," "Source," "Alzheimer's disease," "Brain disorders," "Depression," "Obesity," "Diabetes," and "Hypertension." RESULTS The monomer ginsenoside Rg1 can be relatively easily obtained and has therapeutic potentials against AD. In vitro and in vivo experiments have demonstrated the therapeutic potentials of ginsenoside Rg1 against the drug-controllable risk factors of AD including depression, obesity, diabetes, and hypertension. Thus, ginsenoside Rg1 alleviates diseases resulting from AD risk factors by regulating multiple targets and pathways. CONCLUSIONS Ginsenoside Rg1 has the potentials to prevent AD by alleviating depression, obesity, diabetes, and hypertension.
Collapse
Affiliation(s)
- Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Ge JB, Jiang B, Shi TS, Li WY, Chen WJ, Zhu BL, Qin ZH. Cucurbitacin B Exerts Significant Antidepressant-Like Effects in a Chronic Unpredictable Mild Stress Model of Depression: Involvement of the Hippocampal BDNF-TrkB System. Int J Neuropsychopharmacol 2023; 26:680-691. [PMID: 37603290 PMCID: PMC10586053 DOI: 10.1093/ijnp/pyad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS Cucurbitacin B has the potential to be a novel antidepressant candidate.
Collapse
Affiliation(s)
- Jian-Bin Ge
- Department of Pharmacology and Laboratory of Aging and Nervous Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
15
|
Uselman TW, Jacobs RE, Bearer EL. Reconfiguration of brain-wide neural activity after early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557058. [PMID: 38328213 PMCID: PMC10849645 DOI: 10.1101/2023.09.10.557058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Early life adversity (ELA) predisposes individuals to both physical and mental disorders lifelong. How ELA affects brain function leading to this vulnerability is under intense investigation. Research has begun to shed light on ELA effects on localized brain regions within defined circuits. However, investigations into brain-wide neural activity that includes multiple localized regions, determines relationships of activity between regions and identifies shifts of activity in response to experiential conditions is necessary. Here, we performed longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to image the brain in normally reared or ELA-exposed adults. Images were captured in the freely moving home cage condition, and short- and long-term after naturalistic threat. Images were analyzed with new computational methods, including automated segmentation and fractional activation or difference volumes. We found that neural activity was increased after ELA compared to normal rearing in multiple brain regions, some of which are involved in defensive and/or reward circuitry. Widely distributed patterns of neural activity, "brain states", and their dynamics after threat were altered with ELA. Upon acute threat, ELA-mice retained heightened neural activity within many of these regions, and new hyperactive responses emerged in monoaminergic centers of the mid- and hindbrain. Nine days after acute threat, heightened neural activity remained within locus coeruleus and increased within posterior amygdala, ventral hippocampus, and dorso- and ventromedial hypothalamus, while reduced activity emerged within medial prefrontal cortical regions (prelimbic, infralimbic, anterior cingulate). These results reveal that functional imbalances arise between multiple brain-systems which are dependent upon context and cumulative experiences after ELA.
Collapse
Affiliation(s)
- Taylor W Uselman
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
- California Institute of Technology, Pasadena, CA 91125
| | - Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
16
|
Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100102. [PMID: 37638344 PMCID: PMC10458724 DOI: 10.1016/j.crneur.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 08/29/2023] Open
Abstract
Brain serotonin (5-hydroxytryptamine, 5-HT) is a key molecule for the mediation of depression-related brain states, but the neural mechanisms underlying 5-HT mediation need further investigation. A possible mechanism of the therapeutic antidepressant effects is neurogenic cell production, as stimulated by 5-HT signaling. Neurogenesis, the proliferation of neural stem cells (NSCs), and cell differentiation and maturation occur across brain regions, particularly the hippocampal dentate gyrus and the subventricular zone, throughout one's lifespan. 5-HT plays a major role in the mediation of neurogenic processes, which in turn leads to the therapeutic effect on depression-related states. In this review article, we aim to identify how the neuronal 5-HT system mediates the process of neurogenesis, including cell proliferation, cell-type differentiation and maturation. First, we will provide an overview of the neurogenic cell transformation that occurs in brain regions containing or lacking NSCs. Second, we will review brain region-specific mechanisms of 5-HT-mediated neurogenesis by comparing regions localized to NSCs, i.e., the hippocampus and subventricular zone, with those not containing NSCs. Highlighting these 5-HT mechanisms that mediate neurogenic cell production processes in a brain-region-specific manner would provide unique insights into the role of 5-HT in neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
17
|
Pereira CDS, Cruz JN, Ferreira MKM, Baia-da-Silva DC, Fontes-Junior EA, Lima RR. Global Research Trends and Hotspots Analysis of the Scientific Production of Amitriptyline: A Bibliometric Approach. Pharmaceuticals (Basel) 2023; 16:1047. [PMID: 37513958 PMCID: PMC10386017 DOI: 10.3390/ph16071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Amitriptyline was first introduced as a medication to treat depression. Over time, this substance has been used to treat other conditions, such as gastrointestinal disorders, fibromyalgia, neuropathic pain, and analgesia, among others. However, there are no published studies that provide a broad view of the possible motivations that have led to changes in the use of amitriptyline. In this study, we have identified the landscape of use for amitriptyline based on knowledge mapping of the 100 most-cited articles about this drug. We searched Web of Science Core Collection without time and language restrictions. We obtained 14,446 results, but we only used the 100 most-cited articles that had amitriptyline as the object of study. We collected the following information from each article: authors, country of the corresponding authors, year of publication, citation count, citation density (number of citations per year), and keywords. In addition, we seek to map in the chosen articles study design and research findings. We found that since 1980, the use of amitriptyline has expanded beyond depression, moving to off-label use to treat a variety of diseases and conditions, including post-herpetic neuralgia, neuropathic pain, primary fibrosis, fibromyalgia, and migraine, can be considered a drug with more clinical applicability than its original clinical indication.
Collapse
Affiliation(s)
- Cristian Dos Santos Pereira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Eneas Andrade Fontes-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Federal University of Pará, Belém 66075-110, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| |
Collapse
|
18
|
Starowicz G, Siodłak D, Nowak G, Mlyniec K. The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission. Pharmacol Rep 2023; 75:609-622. [PMID: 36997827 DOI: 10.1007/s43440-023-00478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Despite our poor understanding of the pathophysiology of depression, a growing body of evidence indicates the role of both glutamate and gamma-aminobutyric acid (GABA) signaling behind the effects of rapid-acting antidepressants (RAADs). GPR39 is a zinc-sensing receptor whose activation leads to a prolonged antidepressant-like response in mice. Both GPR39 and zinc can modulate glutamatergic and GABAergic neurotransmission, however, exact molecular mechanisms are still elusive. In this study, we aimed to research the role of glutamatergic and GABAergic system activation in TC-G 1008 antidepressant-like effects and the disruptions in this effect caused by a low-zinc diet. METHODS In the first part of our study, we investigated the role of joint administration of the GPR39 agonist (TC-G 1008) and ligands of the glutamatergic or GABAergic systems, in antidepressant-like response. To evaluate animal behaviour we used the forced swim test in mice. In the second part of the study, we assessed the effectiveness of TC-G 1008-induced antidepressant-like response in conditions of decreased dietary zinc intake and its molecular underpinning by conducting a Western Blot analysis of selected proteins involved in glutamatergic and GABAergic neurotransmission. RESULTS The TC-G 1008-induced effect was blocked by the administration of NMDA or picrotoxin. The joint administration of TC-G 1008 along with muscimol or SCH50911 showed a trend toward decreased immobility time. Zinc-deficient diet resulted in dysregulation of GluN1, PSD95, and KCC2 protein expression. CONCLUSIONS Our findings indicate the important role of glutamate/GABA signaling in the antidepressant-like effect of TC-G 1008 and imply that GPR39 regulates the balance between excitatory and inhibitory activity in the brain. Thus, we suggest the zinc-sensing receptor be considered an interesting new target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
19
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
20
|
Hughes FM, Odom MR, Cervantes A, Livingston AJ, Purves JT. Why Are Some People with Lower Urinary Tract Symptoms (LUTS) Depressed? New Evidence That Peripheral Inflammation in the Bladder Causes Central Inflammation and Mood Disorders. Int J Mol Sci 2023; 24:2821. [PMID: 36769140 PMCID: PMC9917564 DOI: 10.3390/ijms24032821] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Anecdotal evidence has long suggested that patients with lower urinary tract symptoms (LUTS) develop mood disorders, such as depression and anxiety, at a higher rate than the general population and recent prospective studies have confirmed this link. Breakthroughs in our understanding of the diseases underlying LUTS have shown that many have a substantial inflammatory component and great strides have been made recently in our understanding of how this inflammation is triggered. Meanwhile, studies on mood disorders have found that many are associated with central neuroinflammation, most notably in the hippocampus. Excitingly, work on other diseases characterized by peripheral inflammation has shown that they can trigger central neuroinflammation and mood disorders. In this review, we discuss the current evidence tying LUTS to mood disorders, its possible bidirectionally, and inflammation as a common mechanism. We also review modern theories of inflammation and depression. Finally, we discuss exciting new animal studies that directly tie two bladder conditions characterized by extensive bladder inflammation (cyclophosphamide-induced hemorrhagic cystitis and bladder outlet obstruction) to neuroinflammation and depression. We conclude with a discussion of possible mechanisms by which peripheral inflammation is translated into central neuroinflammation with the resulting psychiatric concerns.
Collapse
Affiliation(s)
- Francis M. Hughes
- Department Urology, Duke University Medical Center, P.O. Box 3831, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Patel S, Keating BA, Dale RC. Anti-inflammatory properties of commonly used psychiatric drugs. Front Neurosci 2023; 16:1039379. [PMID: 36704001 PMCID: PMC9871790 DOI: 10.3389/fnins.2022.1039379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Mental health and neurodevelopmental disorders are extremely common across the lifespan and are characterized by a complicated range of symptoms that affect wellbeing. There are relatively few drugs available that target disease mechanisms for any of these disorders. Instead, therapeutics are focused on symptoms and syndromes, largely driven by neurotransmitter hypotheses, such as serotonin or dopamine hypotheses of depression. Emerging evidence suggests that maternal inflammation during pregnancy plays a key role in neurodevelopmental disorders, and inflammation can influence mental health expression across the lifespan. It is now recognized that commonly used psychiatric drugs (anti-depressants, anti-psychotics, and mood stabilizers) have anti-inflammatory properties. In this review, we bring together the human evidence regarding the anti-inflammatory mechanisms for these main classes of psychiatric drugs across a broad range of mental health disorders. All three classes of drugs showed evidence of decreasing levels of pro-inflammatory cytokines, particularly IL-6 and TNF-α, while increasing the levels of the anti-inflammatory cytokine, IL-10. Some studies also showed evidence of reduced inflammatory signaling via nuclear factor- (NF-)κB and signal transducer and activator of transcription (STAT) pathways. As researchers, clinicians, and patients become increasingly aware of the role of inflammation in brain health, it is reassuring that these psychiatric drugs may also abrogate this inflammation, in addition to their effects on neurotransmission. Further studies are required to determine whether inflammation is a driver of disease pathogenesis, and therefore should be a therapeutic target in future clinical trials.
Collapse
Affiliation(s)
- Shrujna Patel
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Clinical School, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Brooke A. Keating
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Russell C. Dale
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Clinical School, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,*Correspondence: Russell C. Dale ✉
| |
Collapse
|
22
|
Serotonergic drugs modulate the phase behavior of complex lipid bilayers. Biochimie 2022; 203:40-50. [PMID: 35447219 DOI: 10.1016/j.biochi.2022.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Serotonin is an endogenous neurotransmitter involved in both physiological and pathophysiological processes. Traditionally, serotonin acts as a ligand for G protein-coupled receptors (GPCRs) leading to subsequent cell signaling. However, serotonin can also bind to lipid membranes with high affinity and modulate the phase behavior in 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/N-palmitoyl-D-erythro-sphingosylphosphorylcholine (PSM)/cholesterol model membranes mimicking the outer leaflet of the plasma membrane. Here, we investigated if serotonergic drugs containing the pharmacophore from serotonin would also modulate phase behavior in lipid membranes in a similar fashion. We used 2H NMR spectroscopy to explore the phase behavior of POPC/PSM/cholesterol (4/4/2 molar ratio) mixtures in the presence of the serotonergic drugs aripiprazole, BRL-54443, BW-723C86, and CP-135807 at a lipid to drug molar ratio of 10:1. POPC and PSM were perdeuterated in the palmitoyl chain, respectively, and prepared in individual samples. Numerical lineshape simulations of the 2H NMR spectra were used to calculate the order parameter profiles and projected lengths of the saturated acyl chains. All serotonergic drugs induce two components in 2H NMR spectra, indicating that they increased the hydrophobic mismatch between the thickness of the coexisting lipid phases leading to larger domain sizes, relatively similarly to serotonin. AFM force indentation and Raman spectral studies, which interrogate membrane mechanical properties, also indicate changes in membrane order in the presence of these drugs. These findings highlight how serotonergic drugs alter membrane phase behavior and could modulate both target and other membrane proteins, possibly explaining the side effects observed for serotonergic and other clinically relevant drugs.
Collapse
|
23
|
Ding P, Lu J, Wang Y, Schembri MA, Guo J. Antidepressants promote the spread of antibiotic resistance via horizontally conjugative gene transfer. Environ Microbiol 2022; 24:5261-5276. [PMID: 36054646 DOI: 10.1111/1462-2920.16165] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/07/2022] [Indexed: 01/07/2023]
Abstract
Antibiotic resistance is a global concern threatening public health. Horizontal gene transfer (HGT) between bacterial species contributes greatly to the dissemination of antibiotic resistance. Conjugation is one of the major HGT pathways responsible for the spread of antibiotic resistance genes (ARGs). Antidepressant drugs are commonly prescribed antipsychotics for major depressive disorders and are frequently detected in aquatic environments. However, little is known about how antidepressants stress bacteria and whether such effect can promote conjugation. Here, we report that commonly prescribed antidepressants, sertraline, duloxetine, fluoxetine, and bupropion, can promote the conjugative transfer of plasmid-borne multidrug resistance genes carried by environmentally and clinically relevant plasmids. Noteworthy, the transfer of plasmids across bacterial genera is significantly enhanced by antidepressants at clinically relevant concentrations. We also reveal the underlying mechanisms of enhanced conjugative transfer by employing flow cytometric analysis, genome-wide RNA sequencing and proteomic analysis. Antidepressants induce the production of reactive oxygen species and the SOS response, increase cell membrane permeability, and upregulate the expression of conjugation relevant genes. Given the contribution of HGT in the dissemination of ARGs, our findings highlight the importance of prudent prescription of antidepressants and to the potential connection between antidepressants and increasing antibiotic resistance.
Collapse
Affiliation(s)
- Pengbo Ding
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, Australia
| | - Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, Australia
| | - Yue Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
24
|
A Study on the Preventive Effect of Esketamine on Postpartum Depression (PPD) after Cesarean Section. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1524198. [PMID: 35979054 PMCID: PMC9377947 DOI: 10.1155/2022/1524198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective The purpose of this study is to explore and analyze the preventive effect of esketamine on postpartum depression (PPD) after cesarean section. Methods A total of 138 puerperae who underwent cesarean section in our hospital from February 2020 to January 2022 were selected as the research subjects. The control group was given intravenous injection of 2 ml of normal saline after the fetus was delivered. Meanwhile, the observation group was given intravenous injection of a small dose of esketamine (esketamine 0.5 mg/kg+ 2 ml of normal saline) after the delivery of the fetus. The changes of blood pressure and heart rate, the Edinburgh Postnatal Depression Scale (EPDS) questionnaire scores and the incidence of postpartum depression were compared between the two groups. At the same time, the incidence of postoperative adverse events in the two groups was observed. Results There was no significant difference in systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) between the two groups at T1-T3 (P > 0.05). Compared with the control group, the SBP, DBP, and HR at T4 and T5 in the observation group were higher (P < 0.05). There was no significant difference in SBP, DBP, and HR at T3, T4, and T5 in the observation group (P > 0.05). Compared with T3, SBP, DBP, and HR were lower in control group T4 and T5, respectively. There was no significant difference in the EPDS scores between the two groups on the 1st day before delivery (P > 0.05). The EPDS scores of the two groups were higher at 3d postpartum and 42d postpartum, respectively, than at 1d before delivery. The EPDS scores of the observation group at 3d and 42d after delivery were lower than those in the control group (P < 0.05). Compared with the control group, the incidence of postpartum depression was higher in the observation group at 3 days postpartum and 1 month postpartum, respectively (P < 0.05). There was no significant difference in the incidence of postpartum adverse reactions between the two groups (P > 0.05). Conclusion The application of esketamine after cesarean section can effectively reduce depression-related scores and the risk of postpartum depression without increasing adverse reactions and has high safety.
Collapse
|
25
|
Wu ZH, Fan H, Gao SY, Jin YF, Cheng chen, Jiang B, Shen J. Antidepressant-like activity of oroxylin A in mice models of depression: A behavioral and neurobiological characterization. Front Pharmacol 2022; 13:921553. [PMID: 35959431 PMCID: PMC9360618 DOI: 10.3389/fphar.2022.921553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Depression is a mood disorder which causes a huge economic burden to both families and societies. However, those monoamine-based antidepressants used in clinical practice have been found to have various limitations. Therefore, currently it is very necessary to explore novel antidepressant targets and medications. As a main active component extracted from Scutellariae radix, oroxylin A possesses many pharmacological functions such as anti-cancer, anti-inflammation and neuroprotection. Here, the present study aims to investigate whether oroxylin A possess antidepressant-like actions using the chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS) models of depression, forced swim test, tail suspension test, open field test, sucrose preference test, western blotting, immunofluorescence and viral-mediated gene interference. Our results revealed that treatment of oroxylin A fully prevented both the CUMS-induced and CRS-induced depressive-like behaviors in mice. Moreover, the protecting effects of oroxylin A against CUMS and CRS on mice behaviors were accompanied with a significant enhancement on the levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase B (pTrkB), phosphorylated cAMP-response element binding protein (pCREB) and neurogenesis in the hippocampus. Furthermore, genetic knockdown of BDNF and TrkB in the hippocampus remarkably abolished the antidepressant-like efficacy of oroxylin A in both the CUMS and CRS models of depression, proving that the hippocampal BDNF-TrkB system participates in the antidepressant mechanism of oroxylin A. In summary, our findings are the first evidence showing that oroxylin A possesses potential of being an antidepressant candidate.
Collapse
|
26
|
Thompson WA, Vijayan MM. Antidepressants as Endocrine Disrupting Compounds in Fish. Front Endocrinol (Lausanne) 2022; 13:895064. [PMID: 35784526 PMCID: PMC9245512 DOI: 10.3389/fendo.2022.895064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
As antidepressant usage by the global population continues to increase, their persistent detection in aquatic habitats from municipal wastewater effluent release has led to concerns of possible impacts on non-target organisms, including fish. These pharmaceuticals have been marketed as mood-altering drugs, specifically targeting the monoaminergic signaling in the brain of humans. However, the monoaminergic systems are highly conserved and involved in the modulation of a multitude of endocrine functions in vertebrates. While most studies exploring possible impact of antidepressants on fish have focused on behavioural perturbations, a smaller spotlight has been placed on the endocrine functions, especially related to reproduction, growth, and the stress response. The purpose of this review is to highlight the possible role of antidepressants as endocrine disruptors in fish. While studies linking the effects of environmentally relevant levels of antidepressant on the endocrine system in fish are sparse, the emerging evidence suggests that early-life exposure to these compounds have the potential to alter the developmental programming of the endocrine system, which could persist as long-term and multigenerational effects in teleosts.
Collapse
|
27
|
López-Muñoz F, D’Ocón P, Romero A, Guerra JA, Álamo C. Role of serendipity in the discovery of classical antidepressant drugs: Applying operational criteria and patterns of discovery. World J Psychiatry 2022; 12:588-602. [PMID: 35582332 PMCID: PMC9048453 DOI: 10.5498/wjp.v12.i4.588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The role played by serendipity in the origin of modern psychopharmacology has proven to be controversial in scientific literature. In its original meaning (Walpole), serendipity refers to discoveries made through a combination of accidents and sagacity. We have implemented an operational definition of serendipity based on finding something unexpected or unintended, regardless of the systematic process that led to the accidental observation, and we have established four different patterns of serendipitous attributability. In this paper, we have analyzed the role of serendipity in the discovery and development of classical antidepressant drugs, tricyclic antidepressants and monoamine oxidase inhibitors as well as heterocyclic, “atypical” or “second generation” antidepressants. The discovery of the antidepressant properties of imipramine and iproniazid, the prototypes of tricyclic antidepressants and monoamine oxidase inhibitors, respectively, fits the mixed type II pattern; initial serendipitous discoveries (imipramine was an antipsychotic and iproniazid was an anti-tuberculosis agent) led secondarily to non-serendipitous discoveries. But the other components of these two families of drugs were developed specifically as antidepressants, modifying the chemical structure of the series leaders, thereby allowing all of them to be included in the type IV pattern, characterized by the complete absence of serendipity. Among the heterocyclic drugs, mianserin (originally developed as an antihistamine) also falls into the type II pattern.
Collapse
Affiliation(s)
- Francisco López-Muñoz
- Faculty of Health, University Camilo José Cela, Villanueva de la Cañada 28692, Madrid, Spain
- “Hospital 12 de Octubre” Research Institute (i+12), Avda. de Córdoba, s/n, Madrid 28041, Spain
| | - Pilar D’Ocón
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andres Estelles, s/n, Valencia 46100, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University, Avda. Puerta de Hierro, s/n, Madrid 28040, Spain
| | - José A Guerra
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Complutense University, Pl. de Ramón y Cajal, s/n, Madrid 28040, Spain
| | - Cecilio Álamo
- Department of Biomedical Sciences (Pharmacology Area), Faculty of Medicine and Health Sciences, University of Alcalá, Campus Científico-Tecnológico, Crta. de Madrid-Barcelona, Alcalá de Henares 28871, Madrid, Spain
| |
Collapse
|
28
|
Vashistha VK, Sethi S, Tyagi I, Das DK. Chirality of antidepressive drugs: an overview of stereoselectivity. ASIAN BIOMED 2022; 16:55-69. [PMID: 37551287 PMCID: PMC10321182 DOI: 10.2478/abm-2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stereochemistry plays an important role in drug design because the enantiomers of a drug frequently vary in their biological action and pharmacokinetic profiles. Racemates of a drug with either an inactive or an unsafe enantiomer can lead to detrimental effects. The manufacturing industry may still produce racemates, but such decisions must pass through rigorous analyses of the pharmacological and pharmacokinetic characteristics of the particular enantiomer related to the racemates. The pharmacokinetics of antidepressants or antidepressive agents is stereoselective and predominantly favors one enantiomer. The use of pure enantiomers offers (i) better specificity than the racemates in terms of certain pharmacological actions, (ii) enhanced clinical indications, and (iii) optimized pharmacokinetics. Therefore, controlling the stereoselectivity in the pharmacokinetics of antidepressive drugs is of critical importance in dealing with depression and psychiatric conditions. The objective of this review is to highlight the importance of the stereochemistry of antidepressants in the context of the design and development of new chirally pure pharmaceuticals, the potential complications caused by using racemates, and the benefits of using pure enantiomers.
Collapse
Affiliation(s)
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurgaon, Haryana122103, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Ministry of Environment, Forest and Climate Change, Government of India, Kolkata700053, India
| | - Dipak Kumar Das
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh281406, India
| |
Collapse
|
29
|
Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2022; 47:805-816. [PMID: 34837078 PMCID: PMC8626287 DOI: 10.1038/s41386-021-01241-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
A growing number of epidemiological and experimental studies has established that circadian disruption is strongly associated with psychiatric disorders, including major depressive disorder (MDD). This association is becoming increasingly relevant considering that modern lifestyles, social zeitgebers (time cues) and genetic variants contribute to disrupting circadian rhythms that may lead to psychiatric disorders. Circadian abnormalities associated with MDD include dysregulated rhythms of sleep, temperature, hormonal secretions, and mood which are modulated by the molecular clock. Rapid-acting antidepressants such as subanesthetic ketamine and sleep deprivation therapy can improve symptoms within 24 h in a subset of depressed patients, in striking contrast to conventional treatments, which generally require weeks for a full clinical response. Importantly, animal data show that sleep deprivation and ketamine have overlapping effects on clock gene expression. Furthermore, emerging data implicate the circadian system as a critical component involved in rapid antidepressant responses via several intracellular signaling pathways such as GSK3β, mTOR, MAPK, and NOTCH to initiate synaptic plasticity. Future research on the relationship between depression and the circadian clock may contribute to the development of novel therapeutic strategies for depression-like symptoms. In this review we summarize recent evidence describing: (1) how the circadian clock is implicated in depression, (2) how clock genes may contribute to fast-acting antidepressants, and (3) the mechanistic links between the clock genes driving circadian rhythms and neuroplasticity.
Collapse
|
30
|
López-Arnau R, Camarasa J, Carbó ML, Nadal-Gratacós N, Puigseslloses P, Espinosa-Velasco M, Urquizu E, Escubedo E, Pubill D. 3,4-Methylenedioxy methamphetamine, synthetic cathinones and psychedelics: From recreational to novel psychotherapeutic drugs. Front Psychiatry 2022; 13:990405. [PMID: 36262632 PMCID: PMC9574023 DOI: 10.3389/fpsyt.2022.990405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The utility of classical drugs used to treat psychiatric disorders (e.g., antidepressants, anxiolytics) is often limited by issues of lack of efficacy, delayed onset of action or side effects. Psychoactive substances have a long history of being used as tools to alter consciousness and as a gateway to approach the unknown and the divinities. These substances were initially obtained from plants and animals and more recently by chemical synthesis, and its consumption evolved toward a more recreational use, leading to drug abuse-related disorders, trafficking, and subsequent banning by the authorities. However, these substances, by modulation of certain neurochemical pathways, have been proven to have a beneficial effect on some psychiatric disorders. This evidence obtained under medically controlled conditions and often associated with psychotherapy, makes these substances an alternative to conventional medicines, to which in many cases the patient does not respond properly. Such disorders include post-traumatic stress disease and treatment-resistant depression, for which classical drugs such as MDMA, ketamine, psilocybin and LSD, among others, have already been clinically tested, reporting successful outcomes. The irruption of new psychoactive substances (NPS), especially during the last decade and despite their recreational and illicit uses, has enlarged the library of substances with potential utility on these disorders. In fact, many of them were synthetized with therapeutic purposes and were withdrawn for concrete reasons (e.g., adverse effects, improper pharmacological profile). In this review we focus on the basis, existing evidence and possible use of synthetic cathinones and psychedelics (specially tryptamines) for the treatment of mental illnesses and the properties that should be found in NPS to obtain new therapeutic compounds.
Collapse
Affiliation(s)
- Raúl López-Arnau
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jordi Camarasa
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Marcel Lí Carbó
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Pol Puigseslloses
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - María Espinosa-Velasco
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Edurne Urquizu
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - David Pubill
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
31
|
Grech J, Chan MV, Ochin C, Lachapelle A, Thibord F, Schneider Z, Nkambule BB, Armstrong PCJ, de Melendez CW, Tucker KL, Garelnabi M, Warner TD, Chen M, Johnson AD. Serotonin‐affecting antidepressant use in relation to platelet reactivity. Clin Pharmacol Ther 2021; 111:909-918. [PMID: 34939182 PMCID: PMC9305794 DOI: 10.1002/cpt.2517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Joseph Grech
- National Heart, Lung and Blood Institute Population Sciences Branch, Framingham, MA
| | - Melissa Victoria Chan
- National Heart, Lung and Blood Institute Population Sciences Branch, Framingham, MA
- The Blizard Institute London UK
| | - Chinedu Ochin
- Department of Biomedical and Nutritional Sciences University of Massachusetts Lowell, Lowell, MA
- Center for Population Health University of Massachusetts Lowell, Lowell, MA
| | - Amber Lachapelle
- National Heart, Lung and Blood Institute Population Sciences Branch, Framingham, MA
| | - Florian Thibord
- National Heart, Lung and Blood Institute Population Sciences Branch, Framingham, MA
| | - Zoe Schneider
- National Heart, Lung and Blood Institute Population Sciences Branch, Framingham, MA
| | | | | | | | - Katherine L. Tucker
- Department of Biomedical and Nutritional Sciences University of Massachusetts Lowell, Lowell, MA
- Center for Population Health University of Massachusetts Lowell, Lowell, MA
| | - Mahdi Garelnabi
- Department of Biomedical and Nutritional Sciences University of Massachusetts Lowell, Lowell, MA
- Center for Population Health University of Massachusetts Lowell, Lowell, MA
| | | | - Ming‐Huei Chen
- National Heart, Lung and Blood Institute Population Sciences Branch, Framingham, MA
| | | |
Collapse
|
32
|
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Ansan Hospital, Ansan city, Republic of Korea.
| |
Collapse
|
33
|
Karrouri R, Hammani Z, Benjelloun R, Otheman Y. Major depressive disorder: Validated treatments and future challenges. World J Clin Cases 2021; 9:9350-9367. [PMID: 34877271 PMCID: PMC8610877 DOI: 10.12998/wjcc.v9.i31.9350] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Depression is a prevalent psychiatric disorder that often leads to poor quality of life and impaired functioning. Treatment during the acute phase of a major depressive episode aims to help the patient reach a remission state and eventually return to their baseline level of functioning. Pharmacotherapy, especially selective serotonin reuptake inhibitors antidepressants, remains the most frequent option for treating depression during the acute phase, while other promising pharmacological options are still competing for the attention of practitioners. Depression-focused psychotherapy is the second most common option for helping patients overcome the acute phase, maintain remission, and prevent relapses. Electroconvulsive therapy is the most effective somatic therapy for depression in some specific situations; meanwhile, other methods have limits, and their specific indications are still being studied. Combining medications, psychotherapy, and somatic therapies remains the most effective way to manage resistant forms of depression.
Collapse
Affiliation(s)
- Rabie Karrouri
- Department of Psychiatry, Moulay Ismaïl Military Hospital, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco
| | - Zakaria Hammani
- Department of Psychiatry, Moulay Ismaïl Military Hospital, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco
| | - Roukaya Benjelloun
- Department of Psychiatry, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca 20000, Morocco
| | - Yassine Otheman
- Department of Psychiatry, Moulay Ismaïl Military Hospital, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco
| |
Collapse
|
34
|
Almohaimeed HM, Albadawi EA, Mohammedsaleh ZM, Alghabban HM, Seleem HS, Ramadan OI, Ayuob NN. Brain-derived Neurotropic factor (BDNF) mediates the protective effect of Cucurbita pepo L. on salivary glands of rats exposed to chronic stress evident by structural, biochemical and molecular study. J Appl Oral Sci 2021; 29:e20201080. [PMID: 34614119 PMCID: PMC8523095 DOI: 10.1590/1678-7757-2020-1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Acute and chronic stresses affect the salivary glands, representing the source of plasma BDNF during stressful conditions. Pumpkin is a medicinal plant with an evident antioxidant, anti-inflammatory and potential antidepressant effects. OBJECTIVE To assess the structural and biochemical effects induced by exposure to chronic unpredictable mild stress (CUMS) on salivary glands of albino rats, and to evaluate the role of pumpkin extract (Pump) in ameliorating this effect. METHODOLOGY Four groups (n=10 each) of male albino rats were included in this study: the control, CUMS, Fluoxetine-treated and Pump-treated. The corticosterone, the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the oxidant/antioxidant profile were all assessed in the serum. The level of BDNF mRNA was measured in the salivary glands using qRT-PCR. Histopathological changes of the salivary glands were also assessed. RESULTS The depressive-like status was confirmed behaviorally and biochemically. Exposure to CUMS significantly up-regulated (p<0.001) the level of serum corticosterone. CUMS induced degenerative changes in the secretory and ductal elements of the salivary glands evident by increased apoptosis. Both Fluoxetine and Pumpkin significantly up-regulated (p<0.001) BDNF expression in the salivary glands and ameliorated the CUMS-induced histopathological and biochemical alterations in the salivary glands. Pumpkin significantly (p<0.001) increased the serum levels of antioxidant enzymes SOD, GPX and CAT, and reduced the serum levels of the pro-inflammatory cytokines TNF-α, IL-6. CONCLUSION Pumpkin ameliorates the depressive-like status induced in rats following exposure to chronic stress through exerting a promising anti-inflammatory, antioxidant and anti-depressant-like effects. The pumpkin, subsequently, improved stress-induced structural changes in the salivary glands that might be due to up-regulation of BDNF expression in the glands.
Collapse
Affiliation(s)
- Hailah M Almohaimeed
- Princess Nourah bint Abdulrahman University (PNU), College of Medicine, Department of Basic Science, Riyadh, Saudi Arabia
| | - Emad A Albadawi
- Taibah University, College of Medicine, Department of Anatomy, Kingdom of Saudi Arabia
| | - Zuhair M Mohammedsaleh
- University of Tabuk, Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, Tabuk 71491, Saudi Arabia
| | - Hadel M Alghabban
- University of Taibah, Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, Saudi Arabia
| | - Hanan S Seleem
- Menoufia University, Faculty of Medicine, Department of Histology, Shebin ElKoum, Menofia, Egypt.,Qassim University, Unaizah College of Medicine and Medical Sciences, Department of Basic Medical Sciences, Saudi Arabia
| | - Osama I Ramadan
- Al Azhar University, Damietta Faculty of Medicine, Histology Department, Cairo, Egypt
| | - Nasra N Ayuob
- Damietta University, Faculty of Medicine, Department of Medical Histology, Damietta, Egypt
| |
Collapse
|
35
|
Gut Hormones as Potential Therapeutic Targets or Biomarkers of Response in Depression: The Case of Motilin. Life (Basel) 2021; 11:life11090892. [PMID: 34575041 PMCID: PMC8465535 DOI: 10.3390/life11090892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Recent research has identified the gut–brain axis as a key mechanistic pathway and potential therapeutic target in depression. In this paper, the potential role of gut hormones as potential treatments or predictors of response in depression is examined, with specific reference to the peptide hormone motilin. This possibility is explored through two methods: (1) a conceptual review of the possible links between motilin and depression, including evidence from animal and human research as well as clinical trials, based on a literature search of three scientific databases, and (2) an analysis of the relationship between a functional polymorphism (rs2281820) of the motilin (MLN) gene and cross-national variations in the prevalence of depression based on allele frequency data after correction for potential confounders. It was observed that (1) there are several plausible mechanisms, including interactions with diet, monoamine, and neuroendocrine pathways, to suggest that motilin may be relevant to the pathophysiology and treatment of depression, and (2) there was a significant correlation between rs2281820 allele frequencies and the prevalence of depression after correcting for multiple confounding factors. These results suggest that further evaluation of the utility of motilin and related gut peptides as markers of antidepressant response is required and that these molecular pathways represent potential future mechanisms for antidepressant drug development.
Collapse
|
36
|
Wang Y, Gu JH, Liu L, Liu Y, Tang WQ, Ji CH, Guan W, Zhao XY, Sun YF, Xu DW, Jiang B. Hippocampal PPARα Plays a Role in the Pharmacological Mechanism of Vortioxetine, a Multimodal-Acting Antidepressant. Front Pharmacol 2021; 12:673221. [PMID: 34211395 PMCID: PMC8239178 DOI: 10.3389/fphar.2021.673221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
As a well-known multimodal-acting antidepressant, vortioxetine is thought to aim at several serotonin (5-HT) receptors and the 5-HT transporter. However, recently more and more proteins besides 5-HT are being reported to participate in the antidepressant mechanism of vortioxetine. As a widely known nuclear hormone receptor, peroxisome proliferator activated receptor α (PPARα) possesses transcriptional activity and is very important in the brain. Several reports have suggested that hippocampal PPARα is implicated in antidepressant responses. Here we speculate that hippocampal PPARα may participate in the antidepressant mechanism of vortioxetine. In this study, chronic unpredictable mild stress (CUMS), chronic social defeat stress (CSDS), behavioral tests, the western blotting and adenovirus associated virus (AAV)-mediated gene knockdown methods were used together. It was found that vortioxetine administration significantly reversed the inhibitory actions of both CUMS and CSDS on the hippocampal PPARα expression. Pharmacological blockade of PPARα notably prevented the antidepressant actions of vortioxetine in the CUMS and CSDS models. Moreover, genetic knockdown of PPARα in the hippocampus also significantly blocked the protecting effects of vortioxetine against both CUMS and CSDS. Therefore, the antidepressant effects of vortioxetine in mice require hippocampal PPARα.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Xin-Yi Zhao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Ying-Fang Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Da-Wei Xu
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| |
Collapse
|
37
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
38
|
Almeida RF, Ferreira TP, David CVC, Abreu E Silva PC, Dos Santos SA, Rodrigues ALS, Elisabetsky E. Guanine-Based Purines as an Innovative Target to Treat Major Depressive Disorder. Front Pharmacol 2021; 12:652130. [PMID: 33927625 PMCID: PMC8076783 DOI: 10.3389/fphar.2021.652130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Roberto F Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.,Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago P Ferreira
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Camila V C David
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Paulo C Abreu E Silva
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sulamita A Dos Santos
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana L S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elaine Elisabetsky
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
39
|
Du Preez A, Eum J, Eiben I, Eiben P, Zunszain PA, Pariante CM, Thuret S, Fernandes C. Do different types of stress differentially alter behavioural and neurobiological outcomes associated with depression in rodent models? A systematic review. Front Neuroendocrinol 2021; 61:100896. [PMID: 33359461 DOI: 10.1016/j.yfrne.2020.100896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Cataloguing the effects of different types of stress on behaviour and physiology in rodent models has not been comprehensively attempted. Here, we systematically review whether chronic exposure to physical stress, psychosocial stress, or both types of stress can induce different behavioural and neurobiological outcomes in male and female rodents. We found that physical stress consistently increased depressive-like behaviour, impaired social interaction and decreased body weight, while psychosocial stress consistently increased both anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity, peripheral inflammation and microglial activation, and decreased hippocampal neurogenesis in male rodents. Moreover, we found that the combined effect of both stress types resulted in a more severe pathological state defined by increased anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity and central inflammation, and reduced hippocampal neurogenesis and neural plasticity in male rodents. Phenotypes for females were less consistent, irrespective of the type of stress exposure, on account of the limited number of studies using females. This review highlights that the type of stress may indeed matter and will help animal researchers to more appropriately choose a stress/depression model that fits their research purposes.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Josephine Eum
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Paola Eiben
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK
| |
Collapse
|
40
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
41
|
Desfossés CY, Blier P. [A review of the antidepressant properties of ketamine]. Med Sci (Paris) 2021; 37:27-34. [PMID: 33492215 DOI: 10.1051/medsci/2020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Major depression is a frequent and disabling disorder. Despite great developments in the field of psychopharmacology since the 1950's, delayed onset of action and treatment resistance to current pharmacological options, such as serotonin reuptake inhibitors, remain a therapeutic challenge. The recent discovery of the rapid antidepressant action of ketamine, an NMDA (N-methyl-D-aspartate) receptor antagonist, has brought a revolution to this field. This paper presents a comprehensive review of the clinical research on the antidepressant properties of ketamine as well as its presumed mechanisms of action.
Collapse
Affiliation(s)
- Charles Y Desfossés
- The Royal's Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Pierre Blier
- The Royal's Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada - Department of Psychiatry, University of Ottawa, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada - Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
42
|
Liu Y, Tang W, Ji C, Gu J, Chen Y, Huang J, Zhao X, Sun Y, Wang C, Guan W, Liu J, Jiang B. The Selective SIK2 Inhibitor ARN-3236 Produces Strong Antidepressant-Like Efficacy in Mice via the Hippocampal CRTC1-CREB-BDNF Pathway. Front Pharmacol 2021; 11:624429. [PMID: 33519490 PMCID: PMC7840484 DOI: 10.3389/fphar.2020.624429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Depression is a widespread chronic medical illness affecting thoughts, mood, and physical health. However, the limited and delayed therapeutic efficacy of monoaminergic drugs has led to intensive research efforts to develop novel antidepressants. ARN-3236 is the first potent and selective inhibitor of salt-inducible kinase 2 (SIK2). In this study, a multidisciplinary approach was used to explore the antidepressant-like actions of ARN-3236 in mice. Chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression, various behavioral tests, high performance liquid chromatography-tandem mass spectrometry, stereotactic infusion, viral-mediated gene transfer, western blotting, co-immunoprecipitation and immunofluorescence were used together. It was found that ARN-3236 could penetrate the blood-brain barrier. Repeated ARN-3236 administration induced significant antidepressant-like effects in both the CSDS and CUMS models of depression, accompanied with fully preventing the stress-enhanced SIK2 expression and cytoplasmic translocation of cyclic adenosine monophosphate response element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) in the hippocampus. ARN-3236 treatment also completely reversed the down-regulating effects of CSDS and CUMS on the hippocampal brain-derived neurotrophic factor (BDNF) system and neurogenesis. Moreover, we demonstrated that the hippocampal CRTC1-CREB-BDNF pathway mediated the antidepressant-like efficacy of ARN-3236. Collectively, ARN-3236 possesses strong protecting effects against chronic stress, and could be a novel antidepressant beyond monoaminergic drugs.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Wenqian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Chunhui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Jianghong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Yanmei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Xinyi Zhao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yingfang Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Jianfeng Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| |
Collapse
|
43
|
Powers B, Joyce C, Kleinman JE, Hyde TM, Ajilore O, Leow A, Sodhi MS. Sex differences in the transcription of glutamate transporters in major depression and suicide. J Affect Disord 2020; 277:244-252. [PMID: 32836031 DOI: 10.1016/j.jad.2020.07.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 05/29/2020] [Accepted: 07/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Accumulating evidence indicates that the glutamate system contributes to the pathophysiology of major depressive disorder (MDD) and suicide. We previously reported higher mRNA expression of glutamate receptors in the dorsolateral prefrontal cortex (DLPFC) of females with MDD. METHODS In the current study, we measured the expression of mRNAs encoding glutamate transporters in the DLPFC of MDD subjects who died by suicide (MDD-S, n = 51), MDD non-suicide subjects (MDD-NS, n = 28), and individuals who did not have a history of neurological illness (CTRL, n = 32). RESULTS Females but not males with MDD showed higher expression of EAATs and VGLUTs relative to CTRLs. VGLUT expression was significantly higher in the female MDD-S group, relative to the other groups. EAAT expression was lower in the male violent suicides. LIMITATIONS This study has limitations common to most human studies, including medication history and demographic differences between the diagnostic groups. We mitigated the effects of confounders by including them as covariates in our analyses. CONCLUSIONS We report sex differences in the expression of glutamate transporter genes in the DLPFC in MDD. Increased neuronal glutamate transporter expression may increase synaptic glutamate, leading to neuronal and glial loss in the DLPFC in MDD. These deficits may lower DLPFC activity, impair problem solving and impair executive function in depression, perhaps increasing vulnerability to suicidal behavior. These data add to accumulating support for the hypothesis that glutamatergic transmission is dysregulated in MDD and suicide. Glutamate transporters may be novel targets for the development of rapidly acting antidepressant therapies.
Collapse
Affiliation(s)
- Brian Powers
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Cara Joyce
- Biostatistics Collaborative Core, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Joel E Kleinman
- Lieber Institute for Brain Development and Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas M Hyde
- Lieber Institute for Brain Development and Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, United States
| | - Olusola Ajilore
- Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Leow
- Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Monsheel S Sodhi
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
44
|
Low-hanging fruit for getting back on your feet: A critical review of diet and exercise interventions for depression. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2020. [DOI: 10.1016/j.jadr.2020.100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Gill H, Gill B, El-Halabi S, Chen-Li D, Lipsitz O, Rosenblat JD, Van Rheenen TE, Rodrigues NB, Mansur RB, Majeed A, Lui LMW, Nasri F, Lee Y, Mcintyre RS. Antidepressant Medications and Weight Change: A Narrative Review. Obesity (Silver Spring) 2020; 28:2064-2072. [PMID: 33022115 DOI: 10.1002/oby.22969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Antidepressant medications are the first-line treatment option for moderate to severe major depressive disorder. However, most antidepressants have numerous documented adverse events, including cardiometabolic effects and weight gain, which are major public health concerns. Antidepressant agents provide varying risk of associated weight gain, including significant within-class differences. Some agents, such as mirtazapine, show significant levels of weight gain, while others, such as bupropion, demonstrate weight-loss effects. Current findings suggest the role of histamine and serotonin off-target appetite-promoting pathways in adverse weight-gain effects. Therefore, controlling for undesired weight effects is an important consideration for the selection of antidepressants.
Collapse
Affiliation(s)
- Hartej Gill
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Barjot Gill
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - Sabine El-Halabi
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - David Chen-Li
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - Orly Lipsitz
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - Joshua Daniel Rosenblat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia
| | - Nelson B Rodrigues
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Amna Majeed
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - Flora Nasri
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Roger S Mcintyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Wang J, Wu X. Traditional Chinese Medicine Jiuwei Zhenxin Granules in Treating Depression: An Overview. Neuropsychiatr Dis Treat 2020; 16:2237-2255. [PMID: 33116523 PMCID: PMC7541918 DOI: 10.2147/ndt.s273324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is known as "Yu Zheng" in traditional Chinese medicine (TCM). Jiuwei Zhenxin granules (JZG) is a type of TCM. According to TCM theory, it nourishes the heart and spleen, tonifies Qi, and tranquilizes the spirit, and may also has effects in the treatment of depression. Here, we systematically reviewed recent basic and clinical experimental studies of JZG and depression, including studies of the pharmacological mechanisms, active ingredients, and clinical applications of JZG in depression treatment. This review will deepen our understanding of the pharmacological mechanisms, drug interactions, and clinical applications of TCM prescriptions and provide a basis for the development of new drugs in the treatment of depression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
47
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Pharmacological depletion of serotonin and norepinephrine with para-chlorophenylalanine and alpha-methyl-p-tyrosine reverses the antidepressant-like effects of adolescent caffeine exposure in the male rat. Behav Pharmacol 2020; 31:768-775. [PMID: 32897889 DOI: 10.1097/fbp.0000000000000588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adolescent exposure to caffeine has been shown to decrease immobility in the forced swim test, suggesting and antidepressant-like effect of caffeine; however, studies have produced different results with regard to caffeine-induced active behaviors. The present study attempted to clarify the possible neurochemical mechanisms of caffeine's action by selectively depleting norepinephrine with alpha-methyl-p-tyrosine or serotonin with para-chlorophenylalanine in two separate experiments and assessing the ability for caffeine to alter anxiety-like and depressive-like behavior. Caffeine-treated adolescent male rats were exposed to caffeine (0.25 g/L) in their drinking water beginning on P28. A-methyl-p-tyrosine, para-chlorophenylalanine, or saline were administered prior to light-dark, open field, and forced swim testing beginning on P45. Caffeine-induced reductions in immobility and increases in swimming in the forced swim test were reversed by both a-methyl-p-tyrosine and para-chlorophenylalanine. Caffeine-induced increases in crosses and rears were reversed by para-chlorophenylalanine but not alpha-methyl-p-tyrosine, whereas caffeine-induced increases in transitions in the LD test were reversed by alpha-methyl-p-tyrosine but not para-chlorophenylalanine. Taken together, these results suggest that caffeine-induced decreases in immobility in male rats requires both norepinephrine and serotonin as depletion of either prevents the induction of immobility by chronic caffeine.
Collapse
|
49
|
A Mechanistic Study of p11 Reveals a Promising New Rapid-Action Antidepressant Target. Biol Psychiatry 2020; 88:e23-e24. [PMID: 32792054 DOI: 10.1016/j.biopsych.2020.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
|
50
|
Ribaudo G, Bortoli M, Pavan C, Zagotto G, Orian L. Antioxidant Potential of Psychotropic Drugs: From Clinical Evidence to In Vitro and In Vivo Assessment and toward a New Challenge for in Silico Molecular Design. Antioxidants (Basel) 2020; 9:E714. [PMID: 32781750 PMCID: PMC7465375 DOI: 10.3390/antiox9080714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Due to high oxygen consumption, the brain is particularly vulnerable to oxidative stress, which is considered an important element in the etiopathogenesis of several mental disorders, including schizophrenia, depression and dependencies. Despite the fact that it is not established yet whether oxidative stress is a cause or a consequence of clinic manifestations, the intake of antioxidant supplements in combination with the psychotropic therapy constitutes a valuable solution in patients' treatment. Anyway, some drugs possess antioxidant capacity themselves and this aspect is discussed in this review, focusing on antipsychotics and antidepressants. In the context of a collection of clinical observations, in vitro and in vivo results are critically reported, often highlighting controversial aspects. Finally, a new challenge is discussed, i.e., the possibility of assessing in silico the antioxidant potential of these drugs, exploiting computational chemistry methodologies and machine learning. Despite the physiological environment being incredibly complex and the detection of meaningful oxidative stress biomarkers being all but an easy task, a rigorous and systematic analysis of the structural and reactivity properties of antioxidant drugs seems to be a promising route to better interpret therapeutic outcomes and provide elements for the rational design of novel drugs.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|