1
|
Sishu NK, Selvaraj CI. Phytochemistry, pharmacological applications, and therapeutic effects of green synthesized nanomaterials using Cichorium species-a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8527-8559. [PMID: 38900250 DOI: 10.1007/s00210-024-03221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Cichorium is a genus of potential medicinal herbs that finds widespread cultivation in regions spanning Asia and Europe. Belonging to the Asteraceae family, these plants are typically biennial or perennial in nature. Among the various explored varieties of chicory plants, the most commonly studied ones include Cichorium intybus, Cichorium endivia, and Cichorium pumilum. In Ayurveda, chicory has long been used as a remedy for many health problems. This versatile plant is renowned for its efficacy in managing conditions such as gallstones, gastroenteritis, sinus ailments, and the treatment of skin abrasions and wounds. Numerous bioactives, including polysaccharides, caffeic acid, flavonoids, coumarins, steroids, alkaloids, organic acids, triterpenoids, sesquiterpenoids, and essential oils, are present, according to a thorough phytochemical examination. The phytochemicals isolated from chicory have displayed significant therapeutic activities, including antidiabetic effects, hepatoprotective benefits, anti-obesity properties, and anti-cancer potential, as extensively documented by numerous researchers. The incorporation of these bioactive compounds into one's diet as part of a healthy lifestyle has demonstrated considerable advantages for human well-being. Green synthesis is a recent technology in which plant extracts or phytochemicals are used for synthesizing nanoparticles since plant extracts are generally less toxic and contain capping and reducing agents. This review summarizes current developments in green synthesis employing phytoconstituents from Cichorium species and extracts from various plant parts and their application to scientific problems. In order to preserve lifestyles and cure human diseases, the investigation emphasizes the therapeutic effects of the chemical components and nanoparticles obtained from the extract of Cichorium species.
Collapse
Affiliation(s)
- Nayan Kumar Sishu
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Ononamadu CJ, Seidel V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2892. [PMID: 39458839 PMCID: PMC11510882 DOI: 10.3390/plants13202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
Collapse
Affiliation(s)
- Chimaobi J. Ononamadu
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
3
|
Im ST, Kim HS, Jung WK, Lee SH. Ishophloroglucin A, a potent PTP1B inhibitor isolated from brown alga Ishige okamurae inhibits adipogenesis in 3T3-L1 adipocytes. Fitoterapia 2022; 163:105342. [PMID: 36330897 DOI: 10.1016/j.fitote.2022.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/28/2022]
Abstract
Ishophloroglucin A (IPA) is one of the most abundant and active compounds in Ishige okamurae and is known to be a potential therapeutic candidate for the improvement of metabolic diseases. However, IPA on the inhibitory effects of protein tyrosine phosphatase 1B (PTP1B) and adipogenesis have not been determined. In this study, we investigated the effects of IPA on the inhibition of PTP1B, the effects on adipogenesis, and its mechanisms of action in 3 T3-L1 adipocytes. The IC50 value of IPA against PTP1B was 0.43 μM, which evidenced the higher inhibition activity than that of ursolic acid, a known PTP1B inhibitor. For further insight, we predicted the 3D structure of PTP1B and used a docking algorithm to simulate the binding between PTP1B and IPA. Molecular docking studies revealed a high and stable binding affinity between IPA and PTP1B and indicated that the IPA could interacts with the amino acid residues located in a region to the active site of PTP1B. Further studies showed that IPA concentrations between 6.25 μM and 25 μM dose-dependently attenuated adipogenesis, which was accompanied by a reduction in adipogenesis-related factors, including PPARγ, C/EBPα, SREBP-1c, and FABP4. Our findings suggested that IPA may be a promising natural compound for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Seung Tae Im
- Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Republic of Korea.
| | - Seung-Hong Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea; Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
| |
Collapse
|
4
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
5
|
Nasimi Doost Azgomi R, Karimi A, Tutunchi H, Moini Jazani A. A comprehensive mechanistic and therapeutic insight into the effect of chicory (Cichorium intybus) supplementation in diabetes mellitus: A systematic review of literature. Int J Clin Pract 2021; 75:e14945. [PMID: 34606165 DOI: 10.1111/ijcp.14945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cichorium intybus is a rich source of terpenoids and phenolic compounds, one of the effective methods in managing and reducing the complications of chronic diseases such as diabetes mellitus. The purpose of this systematic review was to evaluate the evidence obtained from animal and human studies on the effects of chicory on metabolic indicators (such as inflammation, oxidative stress, blood sugar and dyslipidaemia) of diabetes mellitus. MATERIALS AND METHODS This systematic search was performed in ProQuest, PubMed, Google Scholar, Scopus, Cochrane Central Register of Controlled Trials, Embase and Science Direct databases and on articles published until August 2021. All of the animal studies and clinical trials included in this systematic review that assessed the effect of chicory on metabolic risk markers in diabetes were published in English language journals. RESULTS Finally, amongst 686 articles, only 23 articles met the needed criteria for further analysis. Out of 23 articles, 3 studies on humans and 20 studies on animals have been carried out. Fifteen of the 19 studies that evaluated the effect of chicory on the glycaemic index showed that Cichorium intybus improved blood glucose index (it had no effect in two human studies and three animal studies). Ten of the 13 studies evaluating the effect of Cichorium intybus on lipid profiles showed that it improved dyslipidaemia. Also, all 12 studies showed that chicory significantly reduces oxidative stress and inflammation. CONCLUSION According to the available evidence, Cichorium intybus might improve the glycaemic status, dyslipidaemia, oxidative stress and inflammation. However, further studies are recommended for a comprehensive conclusion about the exact mechanism of chicory in diabetic patients.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Sunil C, Irudayaraj SS, Duraipandiyan V, Alrashood ST, Alharbi SA, Ignacimuthu S. Friedelin exhibits antidiabetic effect in diabetic rats via modulation of glucose metabolism in liver and muscle. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113659. [PMID: 33271243 DOI: 10.1016/j.jep.2020.113659] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Demand for plant-based medications and therapeutics is increasing worldwide as of its potential effects and no toxic. Traditionally, so many medicinal plants are used to treat diabetes. Subsequently, investigation on medicinal plants was enduring to discover potential antidiabetic drugs. A. tetracantha is used traditionally to cure diabetes mellitus, cough, dropsy, chronic diarrhea, rheumatism, phthisis and smallpox. Scientifically, A. tetracantha has been reported as an antidiabetic agent. Friedelin, the isolated compound has been reported as hypolipidemic, antioxidant, scavenging of free radicals, antiulcer, anti-inflammatory, analgesic and antipyretic agent. AIM OF THE STUDY To scrutinize the mechanism of antidiabetic activity of friedelin isolated from the leaves of A. tetracantha. MATERIALS AND METHODS A. tetracantha leaves powder (5 kg) was soaked in hexane (15 L) to obtain hexane extract. Using column chromatography, the hexane extract was fractionated using a combination of solvents like hexane and ethyl acetate. 25 fractions were obtained and the fractions 13 and 14 yielded the compound, friedelin. Friedelin at the doses of 20 and 40 mg/kg was used to treated STZ -induced diabetic rats for 28 days. Later 28 days of treatment, the bodyweight changes, levels of blood glucose, insulin, SGOT, SGPT, SALP, liver glycogen and total protein were assessed. RESULTS Friedelin significantly brought these altered levels to near normal. Moreover, friedelin also enhanced the translocation as well as activation of GLUT2 and GLUT4 through PI3K/p-Akt signaling cascade in skeletal muscles and liver on diabetic rats. CONCLUSION This finding proved that friedelin has an anti-diabetic effect through insulin-dependent signaling cascade mechanism, thus it may lead to establishing a drug to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Christudas Sunil
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India; Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, 519087, China.
| | - Santiagu Stephen Irudayaraj
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India; St. Xavier's College, Maharo, Dumka, 814110, Jharkhand, India
| | - Veeramuthu Duraipandiyan
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India.
| | - Sara T Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saudi University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Savarimuthu Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India
| |
Collapse
|
7
|
Stalin A, Kandhasamy S, Kannan BS, Verma RS, Ignacimuthu S, Kim Y, Shao Q, Chen Y, Palani P. Synthesis of a 1,2,3-bistriazole derivative of embelin and evaluation of its effect on high-fat diet fed-streptozotocin-induced type 2 diabetes in rats and molecular docking studies. Bioorg Chem 2020; 96:103579. [DOI: 10.1016/j.bioorg.2020.103579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
|
8
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
9
|
SarathKumar B, Lakshmi BS. In silico investigations on the binding efficacy and allosteric mechanism of six different natural product compounds towards PTP1B inhibition through docking and molecular dynamics simulations. J Mol Model 2019; 25:272. [PMID: 31451955 DOI: 10.1007/s00894-019-4172-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of both the insulin and leptin receptor phosphorylation which impacts insulin sensitivity and hence is a major therapeutic target for the treatment of type 2 diabetes and obesity. Identification of PTP1B active site inhibitors has proven to be difficult with none of them clearing the phase II clinical trials. Since the conventional methods of targeting the active site of PTP1B have failed to bring out effective PTP1B inhibitors as potential drugs, recent studies are focussing on identification of potential allosteric inhibitors of PTP1B with better specificity and activity. A complete understanding of the molecular features dynamically involved for allosteric site inhibition is still uncertain, and hence, this study is aimed at evaluating the allosteric effectiveness of six natural compounds isolated from medicinal plants which showed in vitro antidiabetic activity along with PTP1B inhibition. The allosteric binding and inhibition of these compounds are studied using computational methods such as molecular docking, homology modelling and molecular dynamics simulations for a timescale of 100 ns. The molecular dynamics simulations of native PTP1B, along with the modelled allosteric α-7 helix, for a timescale of 100 ns, revealed the spontaneous transition of the native PTP1B from open WPD loop (active) to closed WPD loop (inactive) conformations during the simulations. Similar dynamics was observed in the presence of the active site substrate pTyr (phosphotyrosine), whereas this transition was inhibited in the presence of the compounds at the allosteric site. Results of molecular dynamics simulations and principal component analysis reveal that the hindrance to WPD loop was mediated through structural interactions between the allosteric α-helical triad with Loop11 and WPD loop. The MM-PBSA (Molecular Mechanics - Poisson Boltzmann with Surface Area solvation) binding energy results along with H-bonding analysis show the possible allosteric inhibition of Aloe emodin glycoside (AEG), 3β-taraxerol (3BT), chlorogenic acid (CGA) and cichoric acid (CHA) to be higher in comparison with (3β)-stigmast-5-en-3-ol (SGS) and methyl lignocerate (MLG). The interaction analysis was further validated by scoring the allosteric complexes before and after MD simulations using Glide. These findings on spontaneous PTP1B fluctuations and the allosteric interactions provide a better insight into the role of PTP1B fluctuations in impacting the binding energy of allosteric inhibitors towards optimal drug designing for PTP1B. Graphical abstract.
Collapse
Affiliation(s)
- Baskaran SarathKumar
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu, 600 025, India
| | | |
Collapse
|
10
|
Eleftheriou P, Therianou E, Lazari D, Dirnali S, Micha A. Docking Assisted Prediction and Biological Evaluation of Sideritis L. Components with PTP1b Inhibitory Action and Probable Anti-Diabetic Properties. Curr Top Med Chem 2019; 19:383-392. [DOI: 10.2174/1568026619666190219104430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Background:
The main characteristic of Diabetes type II is the impaired activation of intracellular
mechanisms triggered by the action of insulin. PTP1b is a Protein Tyrosine Phosphatase that
dephosphorylates insulin receptor causing its desensitization. Since inhibition of PTP1b may prolong
insulin receptor activity, PTP1b has become a drug target for the treatment of Diabetes II. Although a
number of inhibitors have been synthesized during the last decades, the research still continues for the
development of more effective and selective compounds. Moreover, several constituents of plants and
edible algae with PTP1b inhibitory action have been found, adding this extra activity at the pallet of
properties of the specific natural products.
Objective:
Sideritis L. (Lamiaceae) is a herbal plant growing around the Mediterranean sea which is included
in the Mediterranean diet for centuries. The present study is the continuation of a previous work
where the antioxidant and anti-inflammatory activities of the components of Sideritis L. were evaluated
and aimed to investigate the potential of some sideritis’s components to act as PTP1b inhibitors, thus
exhibiting the beneficial effect in the treatment of diabetes II.
Methods:
Docking analysis was done to predict PTP1b inhibitory action. Human recombinant PTP1b
enzyme was used for the evaluation of the PTP1b inhibitory action, while inhibition of the human LAR
and human T-cell PTP was tested for the estimation of the selectivity of the compounds.
Conclusion:
Docking analysis effectively predicted inhibition and mode of inhibitory action. According
to the experimental results, four of the components exhibited PTP1b inhibitory action. The most active
ones were acetoside, which acted as a competitive inhibitor, with an IC50 of 4 µM and lavandufolioside,
which acted as an uncompetitive inhibitor, with an IC50 of 9.3 µM. All four compounds exhibited increased
selectivity against PTP1b.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| | - Ekaterini Therianou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Division of Pharmacognosy-Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Stavroula Dirnali
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| | - Anna Micha
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| |
Collapse
|
11
|
Boudreau A, Poulev A, Ribnicky DM, Raskin I, Rathinasabapathy T, Richard AJ, Stephens JM. Distinct Fractions of an Artemisia scoparia Extract Contain Compounds With Novel Adipogenic Bioactivity. Front Nutr 2019; 6:18. [PMID: 30906741 PMCID: PMC6418310 DOI: 10.3389/fnut.2019.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
Abstract
Adipocytes are important players in metabolic health and disease, and disruption of adipocyte development or function contributes to metabolic dysregulation. Hence, adipocytes are significant targets for therapeutic intervention in obesity and metabolic syndrome. Plants have long been sources for bioactive compounds and drugs. In previous studies, we screened botanical extracts for effects on adipogenesis in vitro and discovered that an ethanolic extract of Artemisia scoparia (SCO) could promote adipocyte differentiation. To follow up on these studies, we have used various separation methods to identify the compound(s) responsible for SCO's adipogenic properties. Fractions and subfractions of SCO were tested for effects on lipid accumulation and adipogenic gene expression in differentiating 3T3-L1 adipocytes. Fractions were also analyzed by Ultra Performance Liquid Chromatography- Mass Spectrometry (UPLC-MS), and resulting peaks were putatively identified through high resolution, high mass accuracy mass spectrometry, literature data, and available natural products databases. The inactive fractions contained mostly quercetin derivatives and chlorogenates, including chlorogenic acid and 3,5-dicaffeoylquinic acid, which had no effects on adipogenesis when tested individually, thus ruling them out as pro-adipogenic bioactives in SCO. Based on these studies we have putatively identified the principal constituents in SCO fractions and subfractions that promoted adipocyte development and fat cell gene expression as prenylated coumaric acids, coumarin monoterpene ethers, 6-demethoxycapillarisin and two polymethoxyflavones.
Collapse
Affiliation(s)
- Anik Boudreau
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Alexander Poulev
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - David M Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | | | - Allison J Richard
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA, United States.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
12
|
Ding S, Jiang J, Wang Z, Zhang G, Yin J, Wang X, Wang S, Yu Z. Resveratrol reduces the inflammatory response in adipose tissue and improves adipose insulin signaling in high-fat diet-fed mice. PeerJ 2018; 6:e5173. [PMID: 29967759 PMCID: PMC6027658 DOI: 10.7717/peerj.5173] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Background Obesity-induced glucose metabolism disorder is associated with chronic, low-grade, systemic inflammation and is considered a risk factor for diabetes and metabolic syndrome. Resveratrol (RES), a natural anti-inflammatory compound, is observed to improve glucose tolerance and insulin sensitivity in obese rodents and humans. This study aimed to test the effects of RES administration on insulin signaling and the inflammatory response in visceral white adipose tissue (WAT) caused by a high-fat diet (HFD) in mice. Methods A total of 40 wild-type C57BL/6 male mice were divided into four groups (10 in each group): the standard chow diet (STD) group was fed a STD; the HFD group was fed a HFD; and the HFD-RES/L and HFD-RES/H groups were fed a HFD plus RES (200 and 400 mg/kg/day, respectively). The L and H in RES/L and RES/H stand for low and high, respectively. Glucose tolerance, insulin sensitivity, circulating inflammatory biomarkers and lipid profile were determined. Quantitative PCR and Western blot were used to determine the expression of CC-chemokine receptor 2 (CCR2), other inflammation markers, glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS-1) and pAkt/Akt and to assess targets of interest involving glucose metabolism and inflammation in visceral WAT. Results HFD increased the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and proinflammatory cytokines in serum, decreased the high-density lipoprotein cholesterol level in serum, and induced insulin resistance and WAT inflammation in mice. However, RES treatment alleviated insulin resistance, increased the expressions of pAkt, GLUT4 and IRS-1 in WAT, and decreased serum proinflammatory cytokine levels, macrophage infiltration and CCR2 expression in WAT. Conclusion Our results indicated that WAT CCR2 may play a vital role in macrophage infiltration and the inflammatory response during the development of insulin resistance in HFD-induced obesity. These data suggested that administration of RES offers protection against abnormal glucose metabolism and inflammatory adaptations in visceral WAT in mice with HFD-induced obesity.
Collapse
Affiliation(s)
- Shibin Ding
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jinjin Jiang
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jianli Yin
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xiaoya Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sui Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
13
|
Ormazabal P, Scazzocchio B, Varì R, Santangelo C, D'Archivio M, Silecchia G, Iacovelli A, Giovannini C, Masella R. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B. Int J Obes (Lond) 2018; 42:2012-2021. [PMID: 29769704 DOI: 10.1038/s41366-018-0075-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/24/2018] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES The occurrence of chronic inflammation in visceral adipose tissue (VAT) in obese subjects precipitates the development of insulin resistance and type 2 diabetes (T2D). Anthocyanins and their main metabolite protocatechuic acid (PCA) have been demonstrated to stimulate insulin signaling in human adipocytes. The aim of this study was to investigate whether PCA is able to modulate insulin responsiveness and inflammation in VAT from obese (OB) and normal weight (NW) subjects. SUBJECTS/METHODS VATs obtained from NW and OB subjects were incubated or not (control) with 100 μM PCA for 24 h. After incubation, tissues untreated and treated with PCA were acutely stimulated with insulin (20 nM, 20 min). PTP1B, p65 NF-κB, phospho-p65 NF-κB, IRS-1, IRβ, Akt, GLUT4 as well as basal and insulin-stimulated Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting in NW- and OB-VAT. Samples were assessed for PTP1B activity and adipocytokine secretion. RESULTS PCA restored insulin-induced phosphorylation in OB-VAT by increasing phospho-Tyr-IRS-1 and phospho-Ser-Akt after insulin stimulation as observed in NW-VAT (p < 0.05). PTP1B activity was lower in OB-VAT treated with PCA with respect to untreated (p < 0.05). Compared to non-treated tissues, PCA reduced phospho-p65 NF-κB and IL-6 in OB-VAT, and IL-1β in NW-VAT (p < 0.05); and increased adiponectin secretion in NW-VAT (p < 0.05). CONCLUSION PCA restores the insulin responsiveness of OB-VAT by increasing IRS-1 and Akt phosphorylation which could be related with the lower PTP1B activity found in PCA-treated OB-VAT. Furthermore, PCA diminishes inflammation in VAT. These results support the beneficial role of an anthocyanin-rich diet against inflammation and insulin resistance in obesity.
Collapse
Affiliation(s)
- Paulina Ormazabal
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy.,Center of Studies of Health, Society and Chronic non-Communicable Diseases, Institute of Health Sciences, University of O'Higgins, Alameda 611, Rancagua, Region of O'Higgins, Chile
| | - Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy
| | - Rosaria Varì
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy
| | - Carmela Santangelo
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy
| | - Massimo D'Archivio
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy
| | - Gianfranco Silecchia
- Department Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Claudio Giovannini
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy
| | - Roberta Masella
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy.
| |
Collapse
|
14
|
Zhang J, Sasaki T, Li W, Nagata K, Higai K, Feng F, Wang J, Cheng M, Koike K. Identification of caffeoylquinic acid derivatives as natural protein tyrosine phosphatase 1B inhibitors from Artemisia princeps. Bioorg Med Chem Lett 2018. [PMID: 29525218 DOI: 10.1016/j.bmcl.2018.02.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (1-10) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC50 11.1 μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Tatsunori Sasaki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kazuya Nagata
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Koji Higai
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Feng Feng
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
15
|
Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Shilpa K, kumari PJ, Sarathkumar B, Thiyagarajan G, Lakshmi BS. Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity. Bioinformation 2017; 13:394-399. [PMID: 29379255 PMCID: PMC5767913 DOI: 10.6026/97320630013394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022] Open
Abstract
Non-insulin dependent diabetes mellitus, also known as Type 2 diabetes is a polygenic disorder leading to abnormalities in the carbohydrate and lipid metabolism. The major contributors in the pathophysiology of type 2 diabetes (T2D) include resistance to insulin action, β cell dysfunction, an abnormality in glucose metabolism and storage, visceral obesity and to some extent inflammation and oxidative stress. Insulin resistance, along with a defect in insulin secretion by the pancreatic β cells is instrumental towards progression to hyperglycemia. Increased incidence of obesity is also a major contributing factor in the escalating rates of type 2 diabetes. Drug discovery efforts are therefore crucially dependent on identifying individual molecular targets and validating their relevance to human disease. The current review discusses bioactive compounds from medicinal plants offering enhanced therapeutic potential for the combined patho-physiology of diabetes and obesity. We have demonstrated that 3β-taraxerol a pentacyclic triterpenoid (14-taraxeren-3-ol) isolated from the ethyl acetate extract of Mangifera indica, chlorogenic acid isolated from the methanol extract of Cichorium intybus, methyl tetracosanoate from the methanol extract of Costus pictus and vitalboside A derived from methanolic extract of Syzygium cumini exhibited significant effects on insulin stimulated glucose uptake causing insulin sensitizing effects on 3T3L1 adipocytes (an in vitro model mimicking adipocytes). Whereas, (3β)-stigmast-5-en-3-ol isolated from Adathoda vasica and Aloe emodin isolated from Cassia fistula showed significant insulin mimetic effects favoring glucose uptake in L6 myotubes (an in vitro model mimicking skeletal muscle cells). These extracts and molecules showed glucose uptake through activation of PI3K, an important insulin signaling intermediate. Interestingly, cinnamic acid isolated from the hydro-alcohol extract of Cinnamomum cassia was found to activate glucose transport in L6 myotubes through the involvement of GLUT4 via the PI3K-independent pathway. However, the activation of glucose storage was effective in the presence of 3β-taraxerol and aloe emodin though inhibition of GSK3β activity. Therefore, the mechanism of improvement of glucose and lipid metabolism exhibited by the small molecules isolated from our lab is discussed. However, Obesity is a major risk factor for type-2 diabetes leading to destruction of insulin receptors causing insulin resistance. Identification of compounds with dual activity (anti-diabetic and antiadipogenic activity) is of current interest. The protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of the insulin and leptin-signaling pathway is of significance in target definition and discovery.
Collapse
Affiliation(s)
| | - Sundaresan Sujatha
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | | | - Singaravel Anand
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Kusampudi Shilpa
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Posa Jyothi kumari
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Baskaran Sarathkumar
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Gopal Thiyagarajan
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Baddireddi Subhadra Lakshmi
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| |
Collapse
|
16
|
Antony PJ, Gandhi GR, Stalin A, Balakrishna K, Toppo E, Sivasankaran K, Ignacimuthu S, Al-Dhabi NA. Myoinositol ameliorates high-fat diet and streptozotocin-induced diabetes in rats through promoting insulin receptor signaling. Biomed Pharmacother 2017; 88:1098-1113. [PMID: 28192884 DOI: 10.1016/j.biopha.2017.01.170] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022] Open
|
17
|
Buscemi S, Marventano S, Antoci M, Cagnetti A, Castorina G, Galvano F, Marranzano M, Mistretta A. Coffee and metabolic impairment: An updated review of epidemiological studies. NFS JOURNAL 2016. [DOI: 10.1016/j.nfs.2016.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Stalin A, Irudayaraj SS, Gandhi GR, Balakrishna K, Ignacimuthu S, Al-Dhabi NA. Hypoglycemic activity of 6-bromoembelin and vilangin in high-fat diet fed-streptozotocin-induced type 2 diabetic rats and molecular docking studies. Life Sci 2016; 153:100-17. [PMID: 27091376 DOI: 10.1016/j.lfs.2016.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
AIMS This paper investigates the hypoglycemic activity of two derivatives of embelin (1) viz. 6-bromoembelin (2) and vilangin (3), in high-fat diet - STZ induced diabetic rats. MAIN METHODS The effects of 6-bromoembelin (2) and vilangin (3) on insulin resistance, β-cell dysfunction and glucose transport in high-fat diet (HFD) fed-streptozotocin (STZ) (40mg/kg) induced type 2 diabetic rats were evaluated. The binding modes of 6-bromoembelin (2) and vilangin (3) into PPARγ, PI3K, Akt, and GLUT4 were also studied using Autodock 4.2 and ADT 1.5.6 programs. KEY FINDINGS At the dose of 30mg/kg, the plasma glucose, plasma insulin and body weight were reduced by both embelin derivatives in diabetic rats. Additionally the altered lipid profiles and hexokinase, glucose-6-phosphatase and fructose-1,6-bisphosphatase levels were brought to normal. Compared to diabetic control group, there was a significant increase in the expression of PPARγ in epididymal adipose tissue. Inhibition of adipogenic activity and mild activation of PPARγ levels in the skeletal muscle and liver were observed. In epididymal adipose tissue, the compounds increased the insulin-mediated glucose uptake through the activation and translocation of GLUT4 in PI3K/p-Akt signaling cascade. SIGNIFICANCE The derivatives of embelin such as 6-bromoembelin (2) and vilangin (3) may be useful in the prevention and treatment of obesity-linked type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Antony Stalin
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India
| | | | - Gopalsamy Rajiv Gandhi
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Kedike Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Savarimuthu Ignacimuthu
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India; Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India; Visiting professor program, Deanship of Scientific Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Post box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Thiyagarajan G, Muthukumaran P, Sarath Kumar B, Muthusamy VS, Lakshmi BS. Selective Inhibition of PTP1B by Vitalboside A from Syzygium cumini Enhances Insulin Sensitivity and Attenuates Lipid Accumulation Via Partial Agonism to PPARγ: In Vitro and In Silico Investigation. Chem Biol Drug Des 2016; 88:302-12. [PMID: 26989847 DOI: 10.1111/cbdd.12757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 12/23/2022]
Abstract
Although antidiabetic drugs show good insulin-sensitizing property for T2DM, they also exhibit undesirable side-effects. Partial peroxisome proliferator-activated receptor γ agonism with protein tyrosine phosphatase 1B inhibition is considered as an alternative therapeutic approach toward the development of a safe insulin sensitizer. Bioactivity-based fractionation and purification of Syzygium cumini seeds led to the isolation and identification of bifunctional Vitalboside A, which showed antidiabetic and anti-adipogenic activities, as measured by glucose uptake in L6 and 3T3-L1 adipocytes and Nile red assay. A non-competitive allosteric inhibition of protein tyrosine phosphatase 1B by Vitalboside A was observed, which was confirmed by docking studies. Inhibitor studies with wortmannin and genistein showed an IRTK- and PI3K-dependent glucose uptake. A PI3K/AKT-dependent activation of GLUT4 translocation and an inactivation of GSK3β were observed, confirming its insulin-sensitizing potential. Vitalboside A exhibited partial transactivation of peroxisome proliferator-activated receptor γ with an increase in adiponectin secretion, which was confirmed using docking analysis. Vitalboside A is a bifunctional molecule derived from edible plant showing inhibition of PTP1B and partial agonism to peroxisome proliferator-activated receptor γ which could be a promising therapeutic agent in the management of obesity and diabetes.
Collapse
Affiliation(s)
- Gopal Thiyagarajan
- Tissue culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai-600 025, India
| | - Padmanaban Muthukumaran
- Tissue culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai-600 025, India
| | - Baskaran Sarath Kumar
- Tissue culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai-600 025, India
| | - Velusamy Shanmuganathan Muthusamy
- Tissue culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai-600 025, India
| | - Baddireddi Subhadra Lakshmi
- Tissue culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai-600 025, India
| |
Collapse
|
20
|
Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
21
|
Zhu D, Wang Y, Du Q, Liu Z, Liu X. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10903-10913. [PMID: 26592089 DOI: 10.1021/acs.jafc.5b04533] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects.
Collapse
Affiliation(s)
- Di Zhu
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| | - Qingwei Du
- Functional Food Engineering and Technology Research Center of Shaanxi Province , Xi'an 710054, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| |
Collapse
|
22
|
Keshk WA, Noeman SA. Impact of Chicory-Supplemented Diet on HMG-CoA Reductase, Acetyl-CoA Carboxylase, Visfatin and Anti-Oxidant Status in Triton WR-1339-Induced Hyperlipidemia. J Food Biochem 2015. [DOI: 10.1111/jfbc.12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Walaa A. Keshk
- Medical Biochemistry Department; Faculty of Medicine; Tanta University; El-Geish Street Tanta El-Gharbia Egypt
| | - Saad A. Noeman
- Medical Biochemistry Department; Faculty of Medicine; Tanta University; El-Geish Street Tanta El-Gharbia Egypt
| |
Collapse
|
23
|
Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol 2014; 745:201-16. [DOI: 10.1016/j.ejphar.2014.10.044] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
|
24
|
Silva T, Oliveira C, Borges F. Caffeic acid derivatives, analogs and applications: a patent review (2009-2013). Expert Opin Ther Pat 2014; 24:1257-70. [PMID: 25284760 DOI: 10.1517/13543776.2014.959492] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Caffeic acid (CA) is broadly distributed in several species of the plant kingdom and is widely consumed in human diet. CA and derivatives have been extensively studied in the past years, which unveiled a broad spectrum of biological activities and potential therapeutic applications. As a result, there has been an upsurge in the development of new chemical entities based on the CA scaffold. AREAS COVERED The scope of this review is to revisit the therapeutic potential of CA and derivatives. It provides an overview of patented processes and applications thereof between 2009 and 2013. EXPERT OPINION The phenylpropanoid framework is currently considered a valid structure for drug discovery programs. Actually, CA has been widely used as a template for the development of new chemical entities with potential therapeutic interest in human diseases associated with oxidative stress. Additionally, the applicability of CA derivatives expands to the realms of cosmetic industry due to its stabilizing properties. The synthesis of esters, amides and hybrids with currently marketed drugs is a trending strategy for the development of derivatives with therapeutic application. It is our opinion that the innovative artwork currently being developed involving this chemical scaffold will yield new and effective therapeutic agents in a foreseeable future.
Collapse
Affiliation(s)
- Tiago Silva
- University of Porto, CIQ/Department of Chemistry and Biochemistry, Faculty of Sciences , Rua do Campo Alegre s/n, Porto , Portugal
| | | | | |
Collapse
|
25
|
Vinha AF, Barreira SVP, Costa ASG, Alves RC, Oliveira MBPP. Pre-meal tomato (Lycopersicon esculentum) intake can have anti-obesity effects in young women? Int J Food Sci Nutr 2014; 65:1019-26. [PMID: 25156566 DOI: 10.3109/09637486.2014.950206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of pre-meal tomato intake in the anthropometric indices and blood levels of triglycerides, cholesterol, glucose, and uric acid of a young women population (n = 35, 19.6 ± 1.3 years) was evaluated. During 4 weeks, daily, participants ingested a raw ripe tomato (∼90 g) before lunch. Their anthropometric and biochemical parameters were measured repeatedly during the follow-up time. At the end of the 4 weeks, significant reductions were observed on body weight (-1.09 ± 0.12 kg on average), % fat (-1.54 ± 0.52%), fasting blood glucose (-5.29 ± 0.80 mg/dl), triglycerides (-8.31 ± 1.34 mg/dl), cholesterol (-10.17 ± 1.21 mg/dl), and uric acid (-0.16 ± 0.04 mg/dl) of the participants. The tomato pre-meal ingestion seemed to interfere positively in body weight, fat percentage, and blood levels of glucose, triglycerides, cholesterol, and uric acid of the young adult women that participated in this study.
Collapse
Affiliation(s)
- Ana F Vinha
- FCS-UFP/Faculdade de Ciências da Saúde, Universidade Fernando Pessoa , Porto , Portugal
| | | | | | | | | |
Collapse
|
26
|
Asl ZS, Malekirad AA, Abdollahi M, Bakhshipour A, Dastjerdi HA, Mostafalou S, Poor RY. Effects of the Mixture of <i>Cichorium intybus</i> L. and <i>Cinnamomum zeylanicum</i> on Hepatic Enzymes Activity and Biochemical Parameters in Patients with Nonalcoholic Fatty Liver Disease. Health (London) 2014. [DOI: 10.4236/health.2014.611148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ziamajidi N, Khaghani S, Hassanzadeh G, Vardasbi S, Ahmadian S, Nowrouzi A, Ghaffari SM, Abdirad A. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food Chem Toxicol 2013; 58:198-209. [PMID: 23603006 DOI: 10.1016/j.fct.2013.04.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/30/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022]
Abstract
We evaluated the effect of chicory (Cichorium intybus L.) seed extract (CI) on hepatic steatosis caused by early and late stage diabetes in rats (in vivo), and induced in HepG2 cells (in vitro) by BSA-oleic acid complex (OA). Different dosages of CI (1.25, 2.5 and 5 mg/ml) were applied along with OA (1 mM) to HepG2 cells, simultaneously and non-simultaneously; and without OA to ordinary non-steatotic cells. Cellular lipid accumulation and glycerol release, and hepatic triglyceride (TG) content were measured. The expression levels of sterol regulatory element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor alpha (PPARα) were determined. Liver samples were stained with hematoxylin and eosin (H&E). Significant histological damage (steatosis-inflammation-fibrosis) to the cells and tissues and down-regulation of SREBP-1c and PPARα genes that followed steatosis induction were prevented by CI in simultaneous treatment. In non-simultaneous treatment, CI up-regulated the expression of both genes and restored the normal levels of the corresponding proteins; with a greater stimulating effect on PPARα, CI acted as a PPARα agonist. CI released glycerol from HepG2 cells, and targeted the first and the second hit phases of hepatic steatosis. A preliminary attempt to characterize CI showed caffeic acid, chlorogenic acid, and chicoric acid, among the constituents.
Collapse
Affiliation(s)
- Nasrin Ziamajidi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mubarak A, Hodgson JM, Considine MJ, Croft KD, Matthews VB. Supplementation of a high-fat diet with chlorogenic acid is associated with insulin resistance and hepatic lipid accumulation in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4371-4378. [PMID: 23586419 DOI: 10.1021/jf400920x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The increasing prevalence of the metabolic syndrome requires a greater need for therapeutic and prevention strategies. Higher coffee consumption is consistently associated with a lower risk of type 2 diabetes in population studies. Dietary polyphenols have been linked to benefits on several features of the metabolic syndrome. Chlorogenic acid (CGA), a major component of coffee, is one of the most consumed polyphenols in the diet. In our study, we conducted a controlled dietary intervention over 12 weeks in male mice. There were three dietary groups: (i) normal diet, (ii) high-fat diet, and (iii) high-fat diet + CGA. We assessed the effect of CGA at a physiologically obtainable dose (1 g/kg of diet) on high-fat-diet-induced obesity, glucose intolerance, insulin resistance, and also fatty acid oxidation and insulin signaling in C57BL/6 male mice. Supplementation of CGA in the high-fat diet did not reduce body weight compared to mice fed the high-fat diet alone (p = 0.32). CGA resulted in increased insulin resistance compared to mice fed a high-fat diet only (p < 0.05). CGA resulted in decreased phosphorylation of AMP-activated protein kinase (AMPK) (p < 0.001) and acetyl carboxylase β (ACCβ), a downstream target of AMPK (p < 0.05), in liver. The liver of mice fed a high-fat diet supplemented with CGA had a higher lipid content (p < 0.05) and more steatosis relative to mice fed a high-fat diet only, indicating impaired fatty acid oxidation. This study suggests that CGA supplementation in a high-fat diet does not protect against features of the metabolic syndrome in diet-induced obese mice.
Collapse
Affiliation(s)
- Aidilla Mubarak
- School of Plant Biology, and the Institute of Agriculture, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | |
Collapse
|
29
|
Lee YH, Kim DH, Kim YS, Kim TJ. Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract. Biosci Biotechnol Biochem 2013; 77:375-7. [PMID: 23391909 DOI: 10.1271/bbb.120465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell injury associated with reactive oxygen species (ROS) has been reported in various muscular disorders. We found that a Cichorium intybus (Cii) extract reduced H(2)O(2)-induced viability loss in C2C12 myoblasts, inhibited oxidative stress-induced apoptosis and increased intracellular heat shock protein 70 (Hsp 70) expression. Cii also inhibited the level of intracellular ceramide. These results indicate that Cii may prevent skeletal muscle atrophy by inducing the expression of Hsp 70 and inhibiting the level of ceramide.
Collapse
Affiliation(s)
- Yong-Hyeon Lee
- Division of Biological Science and Technology and Yonsei-Fraunhofer Medical Device Lab, College of Science and Technology, Yonsei University, Wonju, Korea
| | | | | | | |
Collapse
|
30
|
Gandhi GR, Stalin A, Balakrishna K, Ignacimuthu S, Paulraj MG, Vishal R. Insulin sensitization via partial agonism of PPARγ and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway by embelin in type 2 diabetic rats. Biochim Biophys Acta Gen Subj 2012; 1830:2243-55. [PMID: 23104384 DOI: 10.1016/j.bbagen.2012.10.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND The present study was aimed at isolating an antidiabetic molecule from a herbal source and assessing its mechanism of action. METHODS Embelin, isolated from Embelia ribes Burm. (Myrsinaceae) fruit, was evaluated for its potential to regulate insulin resistance, alter β-cell dysfunction and modulate key markers involved in insulin sensitivity and glucose transport using high-fat diet (HFD) fed-streptozotocin (STZ) (40mg/kg)-induced type 2 diabetic rats. Molecular-dockings were performed to investigate the binding modes of embelin into PPARγ, PI3K, p-Akt and GLUT4 active sites. RESULTS Embelin (50mg/kg b wt.) reduced body weight gain, blood glucose and plasma insulin in treated diabetic rats. It further modulated the altered lipid profiles and antioxidant enzymes with cytoprotective action on β-cell. Embelin significantly increased the PPARγ expression in epididymal adipose tissue compared to diabetic control group; it also inhibited adipogenic activity; it mildly activated PPARγ levels in the liver and skeletal muscle. It also regulated insulin mediated glucose uptake in epididymal adipose tissue through translocation and activation of GLUT4 in PI3K/p-Akt signaling cascade. Embelin bound to PPARγ; it disclosed stable binding affinities to the active sites of PI3K, p-Akt and GLUT4. CONCLUSIONS These findings show that embelin could improve adipose tissue insulin sensitivity without increasing weight gain, enhance glycemic control, protect β-cell from damage and maintain glucose homeostasis in adipose tissue. GENERAL SIGNIFICANCE Embelin can be used in the prevention and treatment of type 2 diabetes mellitus caused due to obesity.
Collapse
|
31
|
Baskaran SK, Goswami N, Selvaraj S, Muthusamy VS, Lakshmi BS. Molecular Dynamics Approach to Probe the Allosteric Inhibition of PTP1B by Chlorogenic and Cichoric Acid. J Chem Inf Model 2012; 52:2004-12. [DOI: 10.1021/ci200581g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Farrell TL, Dew TP, Poquet L, Hanson P, Williamson G. Absorption and Metabolism of Chlorogenic Acids in Cultured Gastric Epithelial Monolayers. Drug Metab Dispos 2011; 39:2338-46. [DOI: 10.1124/dmd.111.040147] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
33
|
Popov D. Novel protein tyrosine phosphatase 1B inhibitors: interaction requirements for improved intracellular efficacy in type 2 diabetes mellitus and obesity control. Biochem Biophys Res Commun 2011; 410:377-81. [DOI: 10.1016/j.bbrc.2011.06.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/01/2011] [Indexed: 12/28/2022]
|