1
|
Xu Y, Wu C, Wang P, Han X, Yang J, Zhai S. Effects of Dietary Inclusion of Enzymatically Hydrolyzed Compound Soy Protein on the Growth Performance and Intestinal Health of Juvenile American Eels ( Anguilla rostrata). Animals (Basel) 2024; 14:3096. [PMID: 39518819 PMCID: PMC11545088 DOI: 10.3390/ani14213096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The enzymatic hydrolysis of soybeans could enhance their application as an ingredient and alternative to fishmeal in aquafeeds. Here, a 10-week feeding trial was conducted to evaluate the impacts of different dietary inclusion levels of enzymatically hydrolyzed compound soy protein (EHCS) on the growth performance and intestinal health of juvenile American eels (Anguilla rostrata). Five experimental diets were formulated with graded EHCS inclusion levels at 0% (EHCS0), 8% (EHCS8), 16% (EHCS16), 24% (EHCS24), and 32% (EHCS32). Each diet was randomly assigned to four replicate tanks. The results showed that eels fed the EHCS8 diet exhibited superior growth performance, decreased serum lipid content, and increased immunity compared to those fed the EHCS0 diet. Eels fed the EHCS8 diet also displayed improved intestinal histology, enhanced antioxidant capacity and balance of intestinal microbiota as well as an enhanced proliferation of probiotics compared to those receiving the EHCS0 diet. Compared with eels fed the EHCS0 diet, those fed the EHCS16 diet exhibited comparable growth performance and values for the aforementioned markers. The quadratic regression analysis of weight gain rate and feed efficiency against the dietary EHCS inclusion levels determined the maximum levels of dietary EHCS inclusion for American eels range from 17.59% to 17.77%.
Collapse
Affiliation(s)
- Yichuang Xu
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Chengyao Wu
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Pan Wang
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Xiaozhao Han
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Jinyue Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| |
Collapse
|
2
|
Jiang K, Liu B, Sun C, Zhou Q, Zheng X, Liu M, Xu G, Jin W, Tian H, Hu H. Promotion of improved intestinal barrier health by soybean-derived bioactive peptides in Chinese mitten crab ( Eriocheir sinensis) fed a low fishmeal diet. Br J Nutr 2024; 131:974-986. [PMID: 37886873 DOI: 10.1017/s0007114523002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.
Collapse
Affiliation(s)
- Kemeng Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Xiaochuan Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Wu Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Hongyan Tian
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224000, People's Republic of China
| | - He Hu
- Jiangsu FIELD Technology Co., Ltd, Huaian, 214081, People's Republic of China
| |
Collapse
|
3
|
Li DL, Liu SY, Zhu R, Meng ST, Wang YT, Yang ZY, Li L, Wei XF, Shang GJ, Wang HT, Qu ZH, Quan YN, Wu LF. Potential protective effects of sodium butyrate on glycinin-induced oxidative stress, inflammatory response, and growth inhibition in Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:273-293. [PMID: 38099983 DOI: 10.1007/s10695-023-01276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024]
Abstract
Investigated mitigating effects of sodium butyrate (SB) on the inflammatory response, oxidative stress, and growth inhibition of common carp (Cyprinus carpio) (2.94 ± 0.2 g) are caused by glycinin. Six isonitrogenous and isoenergetic diets were prepared, in which the basal diet was the control diet and the Gly group diet contained 80 g/kg glycinin, while the remaining 4 diets were supplemented with 0.75, 1.50, 2.25, and 3.00 g/kg SB, respectively. The feeding trial lasted for 8 weeks, and the results indicated that supplementing the diet with 1.50-2.25 g/kg of SB significantly improved feed efficiency and alleviated the growth inhibition induced by glycinin. Hepatopancreas and intestinal protease activities and the content of muscle crude protein were significantly decreased by dietary glycinin, but supplement 1.50-2.25 g/kg SB partially reversed this result. SB (1.50-2.25 g/kg) increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the hepatopancreas and reduced the activities of AST and ALT in the serum. Glycinin significantly reduced immune and antioxidant enzyme activities, whereas 1.50-2.25 g/kg SB reversed these adverse effects. Furthermore, compared with the Gly group, supplement 1.50-2.25 g/kg SB eminently up-regulated the TGF-β and IL-10 mRNA, and down-regulated the IL-1β, TNF-α, and NF-κB mRNA in hepatopancreas, mid-intestine (MI), and distal intestine (DI). Meanwhile, supplement 1.50-2.25 g/kg SB activated the Keap1-Nrf2-ARE signaling pathway and upregulate CAT, SOD, and HO-1 mRNA expression in hepatopancreas, MI, and DI. Summarily, glycinin induced inflammatory response, and oxidative stress of common carp ultimately decreased the digestive function and growth performance. SB partially mitigated these adverse effects by activating the Keap1-Nrf2-ARE signaling pathway and inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Deng-Lai Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Si-Ying Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Si-Tong Meng
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yin-Tao Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi-Yong Yang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Liang Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fang Wei
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guo-Jun Shang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hao-Tong Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zi-Hui Qu
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, Jilin, China
| | - Ya-Nan Quan
- Jingyuetan Reservoir Management Office, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China.
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
He Y, Dong X, Yang Q, Liu H, Zhang S, Xie S, Chi S, Tan B. An integrated study of glutamine alleviates enteritis induced by glycinin in hybrid groupers using transcriptomics, proteomics and microRNA analyses. Front Immunol 2023; 14:1301033. [PMID: 38077360 PMCID: PMC10702536 DOI: 10.3389/fimmu.2023.1301033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Glutamine has been used to improve intestinal development and immunity in fish. We previously found that dietary glutamine enhances growth and alleviates enteritis in juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). This study aimed to further reveal the protective role of glutamine on glycinin-induced enteritis by integrating transcriptome, proteome, and microRNA analyses. Three isonitrogenous and isolipidic trial diets were formulated: a diet containing 10% glycinin (11S group), 10% glycinin diet supplemented with 2% alanine-glutamine (Gln group), and a diet containing neither glycinin nor alanine-glutamine (fishmeal, FM group). Each experimental diet was fed to triplicate hybrid grouper groups for 8 weeks. The analysis of intestinal transcriptomic and proteomics revealed a total of 570 differentially expressed genes (DEGs) and 169 differentially expressed proteins (DEPs) in the 11S and FM comparison group. Similarly, a total of 626 DEGs and 165 DEPs were identified in the Gln and 11S comparison group. Integration of transcriptome and proteome showed that 117 DEGs showed consistent expression patterns at both the transcriptional and translational levels in the Gln and 11S comparison group. These DEGs showed significant enrichment in pathways associated with intestinal epithelial barrier function, such as extracellular matrix (ECM)-receptor interaction, tight junction, and cell adhesion molecules (P < 0.05). Further, the expression levels of genes (myosin-11, cortactin, tenascin, major histocompatibility complex class I and II) related to these pathways above were significantly upregulated at both the transcriptional and translational levels (P < 0.05). The microRNA results showed that the expression levels of miR-212 (target genes colla1 and colla2) and miR-18a-5p (target gene colla1) in fish fed Gln group were significantly lower compared to the 11S group fish (P < 0.05). In conclusion, ECM-receptor interaction, tight junction, and cell adhesion molecules pathways play a key role in glutamine alleviation of hybrid grouper enteritis induced by high-dose glycinin, in which miRNAs and target mRNAs/proteins participated cooperatively. Our findings provide valuable insights into the RNAs and protein profiles, contributing to a deeper understanding of the underlying mechanism for fish enteritis.
Collapse
Affiliation(s)
- Yuanfa He
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- College of Fisheries, Southwest University, Chongqing, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, China
| |
Collapse
|
5
|
He Y, Dong X, Yang Q, Liu H, Zhang S, Chi S, Tan B. Glutamine improves growth and intestinal health in juvenile hybrid groupers fed high-dose glycinin. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109003. [PMID: 37604266 DOI: 10.1016/j.fsi.2023.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Glutamine addition can improve immunity and intestinal development in fish. This study examined the protective roles of glutamine on growth suppression and enteritis induced by glycinin in juvenile hybrid groupers (female Epinephelus fuscoguttatus × male Epinephelus lanceolatus). The experiment set four isonitrogenous and isolipidic trial diets: a diet containing 10% glycinin (11S), 10% of 11S diet supplemented with 1% or 2% alanine-glutamine (1% or 2% Ala-Gln), and a diet containing neither 11S nor Ala-Gln (FM). A feeding trial was conducted in hybrid grouper for 8 weeks. Weight gain and specific growth rates in Groups 1% and 2% Ala-Gln were significantly higher than those of the 11S group but were similar to those of the FM group. The intestinal muscular layer thickness, plica height and width of the 2% Ala-Gln group were significantly higher than those of Group 11S. The enterocyte proliferation efficiency of the 11S group was significantly lower compared to other groups. Compared with the 11S group, Groups 1% and 2% Ala-Gln fish had increased intestinal lysozyme activities, complement 3 and immunoglobulin M as well as cathelicidin contents. The mRNA levels of tnf-α, il-1β, ifn-α, and hsp70 genes were more downregulated in Groups 1% and 2% Ala-Gln than in Group 11S. Compared with FM group, fish from the 11S group had significantly lower mRNA levels of myd88, ikkβ, and nf-κb p65 genes. These three values in the 2% Ala-Gln group were significantly lower than those in Group 11S but not significantly different from those of Group FM. The relative abundance of Vibrio in Group 11S was higher than that in Groups FM and 2% Ala-Gln. Intestinal glutamine, glutaminase, glutamic acid, α-ketoglutarate, malate dehydrogenase and ATP contents were higher in Groups 1% and 2% Ala-Gln than in Group 11S. These results suggest that glutamine is a useful feed additive to enhance growth and intestinal immunity, alleviate inflammation, and modulate gut microbiota in hybrid grouper fed high-dose glycinin.
Collapse
Affiliation(s)
- Yuanfa He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing, 400715, China; Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, 524088, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, 524088, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, 524088, China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affair, Zhanjiang, 524088, China.
| |
Collapse
|
6
|
Zhou Z, Zhao J, de Cruz CR, Xu H, Wang L, Xu Q. Alpha-ketoglutaric acid mitigates the detrimental effects of soy antigenic protein on the intestinal health and growth performance of Mirror carp Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:951-965. [PMID: 37665506 DOI: 10.1007/s10695-023-01234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The study investigated the alleviated effects of Alpha-ketoglutaric acid (AKG) on the intestinal health of mirror carp (Cyprinus carpio Songpu) caused by soy antigenic protein. The diets were formulated from fishmeal (CON), 50% soybean meal (SBM), the mixture of glycinin and β-conglycinin (11 + 7S) and adding 1% AKG in the 11 + 7S (AKG). Carp (~ 4 g) in triplicate (30 fish per tank) was fed to apparent satiation thrice a day for six weeks. Compared with CON, SBM treatment resulted in significantly poor growth performance (P < 0.05), whereas 11 + 7S and AKG treatments were not significantly different from CON (P > 0.05). Gene expression of tumor necrosis factor (TNF-α) and interleukin-1 β (IL-1β) in proximal intestines (PI) and distal intestines (DI) were increased (P < 0.05), and transforming growth factor (TGF-β) in PI and middle intestines (MI) was decreased (P < 0.05) in both SBM and 11 + 7S. The caspase-3 in DI increased in SBM (P < 0.05) and the caspase-3 and caspase-9 in DI increased in 11 + 7S (P < 0.05); conversely, TGF-β in PI and MI was increased, TNF-α and IL-1β in the MI, caspase-3, and caspase-9 in DI was decreased in AKG (P < 0.05). The TOR (target of rapamycin) in PI and MI, ACC in PI, MI and DI was decreased in SBM (P < 0.05), the AMPK in the PI and DI, TOR in PI, MI and DI, ACC in PI and DI, 4E-BP in DI was reduced in 11 + 7S (P < 0.05). AMPK in the PI and DI, ACC in the PI and MI, TOR in PI, MI, and DI, 4E-BP in PI and DI was recovered by AKG supplementation (P < 0.05). Lipids and lipid-like metabolism, organic acids and derivatives metabolism increased in AKG dietary treatment. In conclusion, AKG reduces the expression of intestinal inflammation and apoptosis pathway and changes glycerophospholipid metabolism and sphingolipid metabolism in the intestine of fish.
Collapse
Affiliation(s)
- Zuliang Zhou
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China
- Guangdong HAID Group Co., Ltd, Guangzhou, 511400, China
| | - Jianhua Zhao
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China
| | - Clement R de Cruz
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hong Xu
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China
| | - Liansheng Wang
- Animal Nutrition Laboratory, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Qiyou Xu
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China.
| |
Collapse
|
7
|
Yin Y, Zhao X, Yang L, Wang K, Sun Y, Ye J. Dietary High Glycinin Reduces Growth Performance and Impairs Liver and Intestinal Health Status of Orange-Spotted Grouper ( Epinephelus coioides). Animals (Basel) 2023; 13:2605. [PMID: 37627396 PMCID: PMC10452031 DOI: 10.3390/ani13162605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of the study was to investigate whether the negative effects of dietary glycinin are linked to the structural integrity damage, apoptosis promotion and microbiota alteration in the intestine of orange-spotted grouper (Epinephelus coioides). The basal diet (FM diet) was formulated to contain 48% protein and 11% lipid. Fish meal was replaced by soybean meal (SBM) in FM diets to prepare the SBM diet. Two experimental diets were prepared, containing 4.5% and 10% glycinin in the FM diets (G-4.5 and G-10, respectively). Triplicate groups of 20 fish in each tank (initial weight: 8.01 ± 0.10 g) were fed the four diets across an 8 week growth trial period. Fish fed SBM diets had reduced growth rate, hepatosomatic index, liver total antioxidant capacity and GSH-Px activity, but elevated liver MDA content vs. FM diets. The G-4.5 exhibited maximum growth and the G-10 exhibited a comparable growth with that of the FM diet group. The SBM and G-10 diets down-regulated intestinal tight junction function genes (occludin, claudin-3 and ZO-1) and intestinal apoptosis genes (caspase-3, caspase-8, caspase-9, bcl-2 and bcl-xL), but elevated blood diamine oxidase activity, D-lactic acid and endotoxin contents related to intestinal mucosal permeability, as well as the number of intestinal apoptosis vs FM diets. The intestinal abundance of phylum Proteobacteria and genus Vibrio in SBM diets were higher than those in groups receiving other diets. As for the expression of intestinal inflammatory factor genes, in SBM and G-10 diets vs. FM diets, pro-inflammatory genes (TNF-α, IL-1β and IL-8) were up-regulated, but anti-inflammatory genes (TGF-β1 and IL-10) were down-regulated. The results indicate that dietary 10% glycinin rather than 4.5% glycinin could decrease hepatic antioxidant ability and destroy both the intestinal microbiota profile and morphological integrity through disrupting the tight junction structure of the intestine, increasing intestinal mucosal permeability and apoptosis. These results further trigger intestinal inflammatory reactions and even enteritis, ultimately leading to the poor growth of fish.
Collapse
Affiliation(s)
- Yanxia Yin
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
| | - Xingqiao Zhao
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
| | - Lulu Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
| | - Kun Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
8
|
Zhang Q, Guo M, Li F, Qin M, Yang Q, Yu H, Xu J, Liu Y, Tong T. Evaluation of Fermented Soybean Meal to Replace a Portion Fish Meal on Growth Performance, Antioxidant Capacity, Immunity, and mTOR Signaling Pathway of Coho Salmon ( Oncorhynchus kisutch). AQUACULTURE NUTRITION 2023; 2023:2558173. [PMID: 37533794 PMCID: PMC10393523 DOI: 10.1155/2023/2558173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
In this study, we evaluated the effects of fermented soybean meal (FSBM) or/and unfermented SBM replacing a portion of fish meal (FM) on the growth performance, antioxidant capacity, immunity, and mechanistic target of rapamycin (mTOR) signaling pathway of juvenile coho salmon (Oncorhynchus kisutch). Four groups of juvenile coho salmon (initial weight 152.23 ± 3.21 g) in triplicate were fed for 12 weeks on four different iso-nitrogen and iso-lipid experimental diets: G0 diet (28% FM protein, control group), G1 diet (18% FM protein and 10% SBM protein), G2 diet (18% FM protein, 5% SBM protein, and 5% FSBM protein), and G3 diet (18% FM protein and 10% FSBM protein). The main results were compared with the G0 diet; the weight gain rate, specific growth rate, and condition factor of juveniles in G3 were increased significantly (p < 0.05). The content of muscle crude protein, the total protein, glucose, albumin, total cholesterol in serum, and the total antioxidant capacity in the liver of juveniles in G3 was increased significantly (p < 0.05). The activities of pepsin, trypsin, α-amylase, and lipase in the intestine, the superoxide dismutase, catalase, and alkaline phosphatase in the liver of juveniles in G3 were increased significantly (p < 0.05). The expression levels of phosphatidylinositide 3-kinases, serine/threonine kinase, mTOR, and ribosomal protein S6 kinase 1 genes in the liver of juveniles in G3 were upregulated significantly (p < 0.05). The feed coefficient ratio, viscerosomatic index, the contents of muscle moisture, and malondialdehyde in the liver of juveniles in G3 were decreased significantly (p < 0.05). The expression levels of tumor necrosis factor α, interleukin 1β, and interleukin 6 genes in the liver of juveniles in G3 were downregulated significantly (p < 0.05). However, there was no significant effect (p > 0.05) on the survival rate, food intake, and muscle crude lipid and ash of juveniles among the experimental groups. In conclusion, FSBM to replace a portion FM had a positive effect on the growth performance, protein deposition, antioxidant enzyme activity, digestive enzyme activity, protein synthesis, and immune-related genes of juvenile coho salmon.
Collapse
Affiliation(s)
- Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Mengjie Guo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Fanghui Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Meilan Qin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Qiuyue Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Hairui Yu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, Weifang University, Weifang 261061, China
| | - Jian Xu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Yongqiang Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Tong Tong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| |
Collapse
|
9
|
Assar DH, Ragab AE, Abdelsatar E, Salah AS, Salem SMR, Hendam BM, Al Jaouni S, Al Wakeel RA, AbdEl-Kader MF, Elbialy ZI. Dietary Olive Leaf Extract Differentially Modulates Antioxidant Defense of Normal and Aeromonas hydrophila-Infected Common Carp ( Cyprinus carpio) via Keap1/Nrf2 Pathway Signaling: A Phytochemical and Biological Link. Animals (Basel) 2023; 13:2229. [PMID: 37444027 DOI: 10.3390/ani13132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Olive leaves are an immense source of antioxidant and antimicrobial bioactive constituents. This study investigated the effects of dietary incorporation of olive leaf extract (OLE) on the growth performance, hematobiochemical parameters, immune response, antioxidant defense, histopathological changes, and some growth- and immune-related genes in the common carp (Cyprinus carpio). A total of 180 fish were allocated into four groups with triplicate each. The control group received the basal diet without OLE, while the other three groups were fed a basal diet with the OLE at 0.1, 0.2, and 0.3%, respectively. The feeding study lasted for 8 weeks, then fish were challenged with Aeromonas hydrophila. The results revealed that the group supplied with the 0.1% OLE significantly exhibited a higher final body weight (FBW), weight gain (WG%), and specific growth rate (SGR) with a decreased feed conversion ratio (FCR) compared to the other groups (p < 0.05). An increase in immune response was also observed in the fish from this group, with higher lysosome activity, immunoglobulin (IgM), and respiratory burst than nonsupplemented fish, both before and after the A. hydrophila challenge (p < 0.05). Similarly, the supplementation of the 0.1% OLE also promoted the C. carpio's digestive capacity pre- and post-challenge, presenting the highest activity of protease and alkaline phosphatase (p < 0.05). In addition, this dose of the OLE enhanced fish antioxidant capacity through an increase in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) and decreased hepatic lipid peroxidation end products (malondialdehyde-MDA), when compared to the control group, both pre- and post-infection (p < 0.05). Concomitantly with the superior immune response and antioxidant capacity, the fish fed the 0.1% OLE revealed the highest survival rate after the challenge with A. hydrophila (p < 0.05). A significant remarkable upregulation of the hepatic sod, nrf2, and protein kinase C transcription levels was detected as a vital approach for the prevention of both oxidative stress and inflammation compared to the infected unsupplied control group (p < 0.05). Interestingly, HPLC and UPLC-ESI-MS/MS analyses recognized that oleuropein is the main constituent (20.4%) with other 45 compounds in addition to tentative identification of two new compounds, namely oleuroside-10-carboxylic acid (I) and demethyl oleuroside-10-carboxylic acid (II). These constituents may be responsible for the OLE exerted potential effects. To conclude, the OLE at a dose range of 0.66-0.83 g/kg w/w can be included in the C. carpio diet to improve the growth, antioxidant capacity, and immune response under normal health conditions along with regulating the infection-associated pro-inflammatory gene expressions, thus enhancing resistance against A. hydrophila.
Collapse
Affiliation(s)
- Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 32527, Egypt
| | - Essam Abdelsatar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Shimaa M R Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Marwa F AbdEl-Kader
- Department of Fish Health and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C., Kafrelsheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
10
|
Zhao J, Yang X, Qiu Z, Zhang R, Xu H, Wang T. Effects of tributyrin and alanyl-glutamine dipeptide on intestinal health of largemouth bass ( Micropterus salmoides) fed with high soybean meal diet. Front Immunol 2023; 14:1140678. [PMID: 37266423 PMCID: PMC10230952 DOI: 10.3389/fimmu.2023.1140678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
To investigate the effects of dietary tributyrin (TB) and alanyl-glutamine (AGn) on the intestinal health of largemouth bass (Micropterus salmoides) fed with high-level soybean meal (SM) diet, six isonitrogenous (41.36%) and isolipidic (10.25%) diets were formulated and fed to largemouth bass (initial body weight 25.5 ± 0.5g) for 8 weeks. The two control diets contained 34.8% peanut meal (PM) and 41.3% SM, while the other four experimental diets supplemented TB at 0.1% (TB0.1), 0.2% (TB0.2) and AGn at 1% (AGn1), 2% (AGn2) in SM, respectively. The results showed that there were no significant differences in weight gain, survival rate, and hepatosomatic index among all groups (P>0.05), while feed coefficient rate in AGn1, AGn2 and TB0.2 groups was significantly lower than that in SM group (P< 0.05). Compared with the PM group, the intestinal inflammation of largemouth bass in SM group were obvious, accompanied by the damage of intestinal structure, the decrease of digestive enzyme activity, and the up-regulation of proinflammatory cytokines. Compared with the SM group, the activities of intestinal trypsin, lipase and foregut amylase in TB and AGn groups increased significantly (P<0.05), and the gene expression levels of acetyl-CoA carboxylase (ACC), caspase-3, caspase-8, caspase-9, tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β) were down-regulated, while the gene expression levels of target of rapamycin (TOR) and eIF4E-binding protein (4E-BP) were up-regulated in all experimental groups (P<0.05). It can be concluded that supplementation of 1%-2% AGn and 0.1%-0.2% TB can alleviate enteritis caused by high-level soybean meal, and the recommend level is 2% AGn and 0.2% TB.
Collapse
Affiliation(s)
- Jianhua Zhao
- College of Life Science, Huzhou University, Huzhou, China
- National Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou, China
| | - Xin Yang
- College of Life Science, Huzhou University, Huzhou, China
- National Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou, China
| | - Zongsheng Qiu
- College of Life Science, Huzhou University, Huzhou, China
- National Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou, China
| | - Rongfei Zhang
- College of Life Science, Huzhou University, Huzhou, China
- National Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou, China
| | - Hong Xu
- College of Life Science, Huzhou University, Huzhou, China
- National Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou, China
| | - Ting Wang
- School of Foreign Languages, Huzhou University, Huzhou, China
| |
Collapse
|
11
|
Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon ( Oncorhynchus kisutch). Animals (Basel) 2023; 13:ani13050945. [PMID: 36899803 PMCID: PMC10000117 DOI: 10.3390/ani13050945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
This study aims to investigate the effects of partial dietary replacement of fish meal with unfermented and/or fermented soybean meal (fermented by Bacillus cereus) supplemented on the growth performance, whole-body composition, antioxidant and immunity capacity, and their related gene expression of juvenile coho salmon (Oncorhynchus kisutch). Four groups of juveniles (initial weight 159.63 ± 9.54 g) at 6 months of age in triplicate were fed for 12 weeks on four different iso-nitrogen (about 41% dietary protein) and iso-lipid (about 15% dietary lipid) experimental diets. The main results were: Compared with the control diet, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation can significantly (p < 0.05) influence the expression of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, nuclear factor erythroid 2-related factor 2, tumor necrosis factor α and interleukin-6 genes, the growth performance, the serum biochemical indices, and the activity of antioxidant and immunity enzymes. However, there was no significant effect (p > 0.05) on the survival rate (SR) and whole-body composition in the juveniles among the experimental groups. In conclusion, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation could significantly increase the growth performance, antioxidant and immunity capacity, and their related gene expression of juveniles.
Collapse
|
12
|
Zhu R, Liu Z, Lu M, Wu X, Zhao X, Wang HH, Quan YN, Wu LF. The protective role of vitamin C on intestinal damage induced by high-dose glycinin in juvenile Rhynchocypris lagowskii Dybowski. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108589. [PMID: 36773713 DOI: 10.1016/j.fsi.2023.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
This study was to evaluate the mitigative effects of vitamin C (VC) on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. 270 healthy juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.04 g) were randomly divided into 3 treatments, and fed with control diet, 80 g/kg glycinin diet and 80 g/kg glycinin+200 mg/kg VC diet respectively for 8 weeks. The results showed that glycinin significantly decreased the weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05), while VC supplementation improved the growth performance and feed utilization efficiency, and reached a level similar to the control group. Similarly, VC significantly increased the crude protein content of muscle and whole-body, and hepatopancreas and intestinal protease activities of fish fed with glycinin diet (P < 0.05). The distal intestine of fish in glycinin group showed typical damage characteristics, including breakage and atrophy of intestinal mucosal fold, and increased intestinal mucosal permeability. However, fish fed the glycinin + VC diet showed an unimpaired normal intestinal morphology. Usefully, VC supplementation could also restore impaired immune function and antioxidant capacity. VC down-regulated the mRNA levels of pro-inflammatory cytokines TNF-α and IL-1β, and up-regulated the mRNA levels of anti-inflammatory cytokines IL-10 and TGF-β in the distal intestine of fish fed with glycinin. Furthermore, glycinin exposure could reduce the mRNA levels of HO-1, CAT and GPx by inhibiting the activation of Nrf2-Keap1 signaling pathway, while VC supplementation reversed this phenomenon and maintained the homeostasis of antioxidant defense system. Concluded, glycinin causes growth inhibition, digestive dysfunction and intestinal damage of Rhynchocypris lagowskii Dybowski, while sufficient VC intake is beneficial for fish to resist the adverse effects of glycinin.
Collapse
Affiliation(s)
- Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zongyu Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Minghui Lu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xueqin Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xueyuan Zhao
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Hong-He Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Ya-Nan Quan
- Jingyuetan Reservoir Management Office, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
13
|
Luo Q, Qian R, Qiu Z, Yamamoto FY, Du Y, Lin X, Zhao J, Xu Q. Dietary α-ketoglutarate alleviates glycinin and β-conglycinin induced damage in the intestine of mirror carp ( Cyprinus carpio). Front Immunol 2023; 14:1140012. [PMID: 37187750 PMCID: PMC10179059 DOI: 10.3389/fimmu.2023.1140012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated the glycinin and β-conglycinin induced intestinal damage and α-ketoglutarate alleviating the damage of glycinin and β-conglycinin in intestine. Carp were randomly divided into six dietary groups: containing fish meal (FM) as the protein source, soybean meal (SM), glycinin (FMG), β-conglycinin (FMc), glycinin+1.0% α-ketoglutarate (AKG) (FMGA), β-conglycinin+1.0% AKG (FMcA). The intestines were collected on 7th, and the hepatopancreas and intestines were collected on 56th. Fish treated with SM and FMc displayed reduced weight gain, specific growth rate, and protein efficiency. On 56th day, Fish fed on SM, FMG and FMc presented lower superoxide dismutase (SOD) activities. FMGA and FMcA had higher SOD activity than those fed on the FMG and FMc, respectively. In intestine, fish fed on the SM diets collected on 7th presented upregulated the expression of transforming growth factor beta (TGFβ1), AMP-activated protein kinase beta (AMPKβ), AMPKγ, and acetyl-CoA carboxylase (ACC). Fish fed FMG presented upregulated expression of tumor necrosis factor alpha (TNF-α), caspase9, and AMPKγ, while downregulated the expression of claudin7 and AMPKα. FMc group presented upregulated expression of TGFβ1, caspase3, caspase8, and ACC. Fish fed FMGA showed upregulated expression of TGFβ1, claudin3c, claudin7, while downregulating the expression of TNF-α and AMPKγ when compared to fish fed FMG diet. FMcA upregulated the expression of TGFβ1, claudin3c than fed on the FMc. In intestine, the villus height and mucosal thickness of the proximal intestine (PI) and the distal intestine (DI) were decreased and crypt depth of the PI and mid intestine (MI) were increased in SM, FMG and FMc. In addition, fish fed on SM, FMG and FMc presented lower citrate synthase (CS), isocitrate dehydrogenase (ICD), α-ketoglutarate dehydrogenase complex (α-KGDHC) Na+/K+-ATPase activity in DI. FMGA had higher CS, ICD, α-KGDHC, and Na+/K+-ATPase activity in PI and MI than those fed on the FMG. FMcA had higher Na+/K+-ATPase activity in MI. In conclusion, dietary soybean meal destroys the intestine's health, the adverse effects are related to the presence of β-conglycinin and glycinin, especially glycinin. AKG may regulate intestinal energy via tricarboxylic acid cycle, thereby alleviating the damage intestinal morphology caused by the dietary soybean antigen proteins.
Collapse
Affiliation(s)
- Qiaohua Luo
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Rendong Qian
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Zongsheng Qiu
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Fernando Y. Yamamoto
- Thad Cochran National Warmwater Aquaculture Center Agriculture and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS, United States
| | - Yingying Du
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Xiaowen Lin
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Jianhua Zhao
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Qiyou Xu
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
- *Correspondence: Qiyou Xu,
| |
Collapse
|
14
|
Zhu R, Wu XQ, Zhao XY, Qu ZH, Quan YN, Lu MH, Liu ZY, Wu LF. Taurine can improve intestinal function and integrity in juvenile Rhynchocypris lagowskii Dybowski fed high-dose glycinin. FISH & SHELLFISH IMMUNOLOGY 2022; 129:127-136. [PMID: 36055559 DOI: 10.1016/j.fsi.2022.08.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The present study evaluated the protective effect and the regulatory mechanism of taurine on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. The control diets had no glycinin and taurine, the glycinin diets contained only 80 g/kg glycinin, and the glycinin + taurine diets contained 80 g/kg glycinin+10 g/kg taurine. Juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.03 g/tail) were respectively fed with these 3 diets for 8 weeks. The results showed that glycinin significantly decreased the final body weight, weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05). While taurine supplementation improved the growth performance and feed efficiency, but final body weight, weight gain rate, specific growth rate of the glycinin + taurine group were still significantly lower than the control group (P < 0.05). Compared with the glycinin group, taurine supplementation significantly increased whole-body and muscle crude protein content, and hepatopancreas and intestinal protease activities (P < 0.05). Distal intestinal villous dysplasia and mucosal damage, and increased intestinal mucosal permeability were observed in the glycinin group, while taurine supplementation alleviated these adverse effects. Usefully, taurine supplementation could also partially restore the impaired immune function and antioxidant capacity of fish fed glycinin diets. Compared with the glycinin group, taurine supplementation down-regulated pro-inflammatory cytokines TNF-α and IL-1β mRNA levels, and up-regulated anti-inflammatory cytokines IL-10 and TGF-β mRNA levels. Furthermore, taurine partially reversed the reduction of antioxidant genes Nrf2、HO-1, CAT and GPx mRNA levels in distal intestine induced by glycinin. Concluded, 80 g/kg glycinin led to intestinal damage, digestive dysfunction and increased intestinal mucosal permeability in juvenile Rhynchocypris lagowskii Dybowski, and these adverse effects were ultimately manifested in growth inhibition. But taurine supplementation could partially mitigate the negative effects induced by glycinin.
Collapse
Affiliation(s)
- Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xue-Qin Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xue-Yuan Zhao
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Zi-Hui Qu
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, 130119, China
| | - Ya-Nan Quan
- Jingyuetan Reservoir Management Office, Changchun, 130118, China
| | - Ming-Hui Lu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Zong-Yu Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
15
|
Yi L, Liu J, Yang H, Mo A, Zhai Y, Wang S, Yuan Y. Effects of Dietary Glycinin on Oxidative Damage, Apoptosis and Tight Junction in the Intestine of Juvenile Hybrid Yellow Catfish, Pelteobagrus fulvidraco ♀ × Pelteobaggrus vachelli ♂. Int J Mol Sci 2022; 23:ijms231911198. [PMID: 36232502 PMCID: PMC9570327 DOI: 10.3390/ijms231911198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to examine the influences of glycinin for growth and intestinal structural integrity related to oxidative damage, apoptosis and tight junction of juvenile hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobaggrus vachelli ♂). Fish (initial weight, 1.02 ± 0.01 g) were fed diets containing five different levels of glycinin at 0%, 2%, 4%, 6%, and 8% for 8 weeks. The results demonstrated that dietary glycinin levels had a negative correlation with final weight, feed intake, protein efficiency ratio and survival rate of the experiment fish. When the level of dietary glycinin exceeded 4%, the structural integrity of the posterior intestine was observably impaired, characterized by disordered and exfoliated margin of intestinal villi, blurred and broken boundaries of tight junctions, damaged organelles and cell vacuolation. Levels of 4–8% dietary glycinin depressed the total antioxidant capacity and total superoxide dismutase activities of posterior intestine. Furthermore, a high level of dietary glycinin linearly and quadratically down-regulated the mRNA expressions of Claudin-1, Occludin and ZO-1, while it linearly and significantly up-regulated the mRNA expressions of Bax, Cyt C, Caspase 3, Caspase 9 and p53 in the posterior intestine. In conclusion, dietary 4–8% glycinin impaired the morphological structure of the posterior intestine by inducing oxidative stress and cell apoptosis, and eventually impeded the growth performance of juvenile hybrid yellow catfish.
Collapse
Affiliation(s)
- Linyuan Yi
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Liu
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Huijun Yang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Aijie Mo
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxiang Zhai
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Siru Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchao Yuan
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2113
| |
Collapse
|
16
|
Ma S, Wang H, Dou Y, Liang X, Zheng Y, Wu X, Xue M. Anti-Nutritional Factors and Protein Dispersibility Index as Principal Quality Indicators for Soybean Meal in Diet of Nile Tilapia ( Oreochromis niloticus GIFT), a Meta-Analysis. Animals (Basel) 2022; 12:ani12141831. [PMID: 35883378 PMCID: PMC9312040 DOI: 10.3390/ani12141831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Soybean meal (SBM) is the most important plant protein source in animal feed. This study investigated the characteristics of different SBMs, produced by soybeans from America and Brazil (SBM-A and SBM-B) in 2017−2021 under the same controlled conditions. The effects of different SBMs on the growth performance of Nile tilapia (Oreochromis niloticus, GIFT) and apparent digestibility coefficients (ADCs) of nutrients and energy were studied. The results showed that protein dispersibility index (PDI), urease activity (UA), glycinin and fiber were the four primary key indicators for distinguishing the characteristics of the tested SBMs. The meta-analysis results suggested that UA, glycinin, and fiber showed a negative effect on the survival rate (SR) and weight gain rate (WGR) of the Nile tilapia, whereas β-conglycinin, PDI, and nitrogen solubility index (NSI) had a positive effect on the SR and WGR of the fish. The ADCs of dry matter, the gross energy, phosphorus, crude protein, valine (Val), lysine (Lys), histidine (His), serine (Ser), and glutamate (Glu) of the Diet-A group (SBM-A inclusion) were significantly higher than those in the Diet-B group (SBM-B inclusion) (p < 0.05). However, no significant difference was found in ADCs of macro-nutrients between the two SBMs (p > 0.05). Overall, PDI, UA, glycinin, and fiber were the main indicators reflecting the characteristics of the tested SBMs, and UA, glycinin, β-conglycinin, and PDI had the greatest impact on the growth performance of Nile tilapia in this study. PDI was a more sensitive indicator than NSI for representing the protein quality of SBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Xue
- Correspondence: ; Tel./Fax: +86-10-8210-9753
| |
Collapse
|
17
|
He Y, Liang J, Dong X, Liu H, Yang Q, Zhang S, Chi S, Tan B. Soybean β-conglycinin and glycinin reduced growth performance and the intestinal immune defense and altered microbiome in juvenile pearl gentian groupers Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:193-203. [PMID: 35600546 PMCID: PMC9092876 DOI: 10.1016/j.aninu.2021.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
The utilization efficiency of soy protein is affected by its 2 anti-nutritional substances-the antigens β-conglycinin and glycinin. This study investigated their effects on the growth performance, intestinal immune defense, and microbiome in juvenile pearl gentian groupers (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Three isonitrogenous and isolipidic diets were formulated containing fishmeal supplemented with 70 g/kg β-conglycinin or 100 g/kg glycinin, or no supplementation (control). Each experimental diet was fed to quadruplicate groups with 30 fish in each tank for 8 weeks. Dietary inclusion of either β-conglycinin or glycinin significantly reduced weight gain and specific growth rates, and cell proliferation of the distal intestine. Histological evaluation of the intestine tract revealed the inflammation signs, characterized by reducing of plica height and width as well as the number of the goblet cells, and widening of the lamina propria. The group fed the β-conglycinin diet had reduced lysozyme activity, contents of immunoglobulin M and complements 3 and 4. Increased activities of caspase-3 and -9 were observed in the group fed the β-conglycinin diet compared to the other 2 groups. In the intestinal microbiota, the relative abundances of the potentially pathogenic genera Photobacterium and Vibrio were significantly higher in the glycinin group than those in others. Therefore, the existence of soybean antigens (β-conglycinin or glycinin) could damage the structural integrity of the intestine, reduce immune defense, reshape the intestinal microbiome and, ultimately, impair growth in fish.
Collapse
Affiliation(s)
- Yuanfa He
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Jinfang Liang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| |
Collapse
|
18
|
Key Performance Indicators of Common Carp (Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes. SUSTAINABILITY 2022. [DOI: 10.3390/su14073724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overwintering impacts common carp performance, yet the nature of changes is not known. The aim of the study was to compare the zootechnical and key performance indicators (KPI) of Cyprinus carpio wintering in a pond with no supplementary feeding (MCF), in a Recirculating Aquaculture System (RAS) fed typical (30% of protein and 8% of fat) carp diet (AFC), and in a RAS fed high protein (42%) and fat (12%) diet (ABF). The analysis showed that ABF fish had the highest final body weight and the Fulton’s condition factor, as well as the lowest food conversion rate compared with AFC and MCF fish. Histomorphological assessment revealed that MCF fish had thinner skin layers, a depleted population of mucous cells in skin, an excessive interlamellar mass in the gills, and no supranuclear vacuoles in the intestine compared to fish from RAS. At the molecular level, higher transcript levels of il-1β and il-6 transcripts were found in the gills of MCF than in fish from RAS. The transcript level of the intestinal muc5b was the highest in ABF fish. Relative expression of il-1β and il-6 in gills were presumably the highest due to lamellar fusions in MCF fish. Described KPIs may assist carp production to ensure sustainability and food security in the European Union.
Collapse
|
19
|
Li C, Li K, Li K, Ai K, Zhang Y, Zhang J, Li J, Wei X, Yang J. Essential role of 4E-BP1 for lymphocyte activation and proliferation in the adaptive immune response of Nile tilapia. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100006. [DOI: 10.1016/j.fsirep.2021.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
|
20
|
Gu M, Pan S, Li Q, Qi Z, Deng W, Bai N. Protective effects of glutamine against soy saponins-induced enteritis, tight junction disruption, oxidative damage and autophagy in the intestine of Scophthalmus maximus L. FISH & SHELLFISH IMMUNOLOGY 2021; 114:49-57. [PMID: 33887442 DOI: 10.1016/j.fsi.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Soy saponins, as thermo-stable anti-nutrients in soybean meal (SBM), are the primary causal agents of SBM-induced enteritis, which represents a well-documented pathologic alternation involving the distal intestines of various farmed fish. Our previous work showed that soy saponins might lead to SBM-induced enteritis, destroy tight junction structure and induce oxidative damage in juvenile turbot. Glutamine, as a conditionally essential amino acid, is an important substrate utilized for the growth of intestinal epithelial cells. An 8-week feeding trial was carried out to determine whether glutamine can attenuate the detrimental effects of soy saponins. Three isonitrogenous-isolipidic experimental diets were formulated as follows: (i) fish meal-based diet (FM), considered as control; (ii) FM + 10 g/kg soy saponins, SAP; and (iii) SAP + 15 g/kg glutamine, GLN. The results showed that dietary soy saponins significantly increased the gene expression levels of inflammatory markers (IL-1β, IL-8 and TNF-α) and related signaling factors (NF-кB, AP-1, p38, JNK and ERK), which were remarkably attenuated by dietary glutamine. Compared to SAP group, GLN-fed fish exhibited significantly higher expression levels of tight junction genes (CLDN3, CLDN4, OCLN, Tricellulin and ZO-1). Glutamine supplementation in SAP diet markedly suppressed the production of reactive oxygen species, malondialdehyde and protein carbonyl, and enhanced the activities of antioxidant enzymes as well as the mRNA levels of HO-1, SOD, GPX and Nrf2. Furthermore, GLN-fed fish had a remarkably lower number of autophagosomes compared to SAP-fed fish. In conclusion, our study indicated that glutamine could reverse the harmful effects of soy saponins on intestinal inflammation, tight junction disruption and oxidative damage, via attenuation of NF-кB, AP-1 and MAPK pathways and activation of Nrf2 pathway. Glutamine may have the function of controlling autophaghic process within an appropriate level of encountering inflammation.
Collapse
Affiliation(s)
- Min Gu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shihui Pan
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Qing Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zezheng Qi
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wanzhen Deng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Nan Bai
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
21
|
Debnath S, Saikia SK. Absorption of protein in teleosts: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:313-326. [PMID: 33405061 DOI: 10.1007/s10695-020-00913-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Teleost is a widely diverse group of fishes and so do their feeding habits. From aquaculture points of view, there have been un-interrupted efforts to optimize feeding rates with protein as the chief ingredients in the supplementary diet. However, knowledge on its protein absorption is incomplete so far, to acquire absolute feeding design to mobilize enhanced production of animal-source protein as fish biomass. In this review, the variable protein absorption across digestive tract (DT) in this group of fish has been highlighted. Emphasis is given to outline how DT components, like enterocyte specific absorptive mechanisms, are different in anterior and posterior regions of DT or from the absorptive transporter system. The existence of a transporter-based absorption mechanism brings more variability in the protein absorption in teleosts. At least two such transport systems (Na+-dependent and Na+-independent) with within-system differences impart more variability to protein absorption. Further, shifting from one stage to another stage of development involves considerable modification of the protein absorptive mechanism in teleosts. Gut microbes may also indirectly facilitate protein absorption in teleosts. Overall, the present review projects a comprehensive understanding of the protein absorption in teleosts that will help to strategize the modulation of feeding technology in fish culture.
Collapse
Affiliation(s)
- Sanjeet Debnath
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Surjya Kumar Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
22
|
Yin B, Liu H, Tan B, Dong X, Chi S, Yang Q, Zhang S. MHC II-PI 3K/Akt/mTOR Signaling Pathway Regulates Intestinal Immune Response Induced by Soy Glycinin in Hybrid Grouper: Protective Effects of Sodium Butyrate. Front Immunol 2021; 11:615980. [PMID: 33537033 PMCID: PMC7849651 DOI: 10.3389/fimmu.2020.615980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Soy glycinin (11S) is involved in immune regulation. As an additive, sodium butyrate (SB) can relieve inflammation caused by 11S. To further delve into the mechanisms. A diet containing 50% fishmeal was the control group (FM group), and the experimental groups consisted of the FM group baseline plus 2% glycinin (GL group), 8% glycinin (GH group), and 8% glycinin + 0.13% sodium butyrate (GH-SB group). The specific growth ratio (SGR), feed utilization, and density of distal intestinal (DI) type II mucous cells were increased in the GL group. In the serum, IFN-γ was significantly upregulated in the GL group, and IgG and IL-1β were upregulated in the GH group. IgG, IL-1β, and TNF-α in the GH-SB group were significantly downregulated compared to those in the GH group. The mRNA levels of mTOR C1, mTOR C2, and Deptor were upregulated in the GL, GH, and GH-SB groups in the DI compared with those in the FM group, while the mRNA levels of mTOR C1 and Deptor in the GH group were higher than those in the GL and GH-SB groups. 4E-BP1, RICTOR, PRR5, MHC II, and CD4 were upregulated in the GH group. TSC1, mLST8, and NFY mRNA levels in the GL and GH-SB groups were upregulated compared with those in the FM and GH groups. Western blotting showed P-PI3KSer294/T-PI3K, P-AktSer473/T-Akt, and P-mTORSer2448/T-mTOR were upregulated in the GH group. Collectively, our results demonstrate that low-dose 11S could improve serum immune by secreting IFN-γ. The overexpression of IgG and IL-1β is the reason that high-dose 11S reduces serum immune function, and supplementing SB can suppress this overexpression. Low-dose 11S can block the relationship between PI3K and mTOR C2. It can also inhibit the expression of 4E-BP1 through mTOR C1. High-dose 11S upregulates 4E-BP2 through mTOR C1, aggravating intestinal inflammation. SB could relieve inflammation by blocking PI3K/mTOR C2 and inhibiting 4E-BP2. Generally speaking, the hybrid grouper obtained different serum and DI immune responses under different doses of 11S, and these responses were ultimately manifested in growth performance. SB can effectively enhance serum immunity and relieve intestinal inflammation caused by high dose 11S.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
23
|
Liu X, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ, Feng L. Effects of Dietary Ochratoxin A on Growth Performance and Intestinal Apical Junctional Complex of Juvenile Grass Carp ( Ctenopharyngodon idella). Toxins (Basel) 2020; 13:11. [PMID: 33374276 PMCID: PMC7823973 DOI: 10.3390/toxins13010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Ochratoxin A (OTA) contamination widely occurs in various feed ingredients and food crops, potentially posing a serious health threat to animals. In this research, 1260 juvenile grass carp were separately fed with seven distinct experimental diets (0, 406, 795, 1209, 1612, 2003 and 2406 µg of OTA/kg of diet) for 60 consecutive days to evaluate OTA's toxic effect on the intestinal apical junctional complex (including the tight junction (TJ) and the adherents junction (AJ)) and the underlying action mechanisms. Our experiment firstly confirmed that OTA caused fish growth retardation and disrupted the intestinal structural integrity. The detailed results show that OTA (1) depressed the feed efficiency, percentage weight gain and specific growth rate; (2) accumulated in the intestine; (3) caused oxidative damage and increased intestinal permeability; and (4) induced the RhoA/ROCK signaling pathway, destroying intestinal apical junctional complexes. Notably, OTA intervention did not result in changes in the gene expression of claudin-3c (in the proximal intestine (PI)), claudin-b and ZO-2b (in the mid intestine (MI) and distal intestine (DI)) in the fish intestine.
Collapse
Affiliation(s)
- Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (L.T.)
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (L.T.)
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-resistance Nutrition, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-resistance Nutrition, Chengdu 611130, China
| |
Collapse
|
24
|
Zhang YL, Duan XD, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Zhou XQ. Soybean glycinin impaired immune function and caused inflammation associated with PKC-ζ/NF-κb and mTORC1 signaling in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 106:393-403. [PMID: 32800984 DOI: 10.1016/j.fsi.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Glycinin is a major protein and antinutritional factor of soybean. However, how dietary glycinin affect intestinal immune function of fish were largely unknown. In this study, we used juvenile grass carp as a model to investigate the impacts of glycinin on intestinal immune function of fish and involved mechanisms. We set three treatments including control, glycinin and glycinin + glutamine in this trial. For immune components, results revealed that compared with control group, glycinin group had lower acid phosphatase activities in the foregut, midgut and hindgut, lower C3 and C4 content, and lower mRNA abundances of IgM, IgZ, hepcidin, LEAP-2A, LEAP-2B and β-defensin-1 in the midgut and hindgut rather than foregut of grass carp. For pro-inflammatory cytokines and relevant signaling, glycinin elevated mRNA abundances of IL-1β, IL-8, IL-12p35, IL-12p40 and IL-17D in the midgut and IL-1β, IFN-γ2, IL-6, IL-8, IL-12p35, IL-12p40 and IL-17D in the hindgut, and increased protein abundances of PKC-ζ and nuclear NF-κB p65 in the midgut and hindgut in comparison to control. For anti-inflammatory cytokines and relevant signaling, glycinin reduced mRNA abundances of TGF-β1, TGF-β2, IL-4/13B (rather than IL-4/13A), IL-10 and IL-11 in the midgut and hindgut, and reduced p-mTOR (Ser 2448), p-S6K1 (Thr 389) and p-4EBP1 (Thr 37/46) protein abundances in the midgut and hindgut rather than foregut. Co-administration of glutamine with glycinin could partially enhance intestinal function and reduce intestinal inflammation compared with glycinin treatment. Concluded, glycinin decreased intestinal immune components and caused intestinal inflammation associated with PKC-ζ/NF-κB and mTORC1 signaling.
Collapse
Affiliation(s)
- Ya-Lin Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xu-Dong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
25
|
Wang L, Wu D, Fan Z, Li H, Li J, Zhang Y, Xu Q, Wang G, Zhu Z. Effect of Yucca schidigera extract on the growth performance, intestinal antioxidant status, immune response, and tight junctions of mirror carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2020; 103:211-219. [PMID: 32422190 DOI: 10.1016/j.fsi.2020.05.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 05/26/2023]
Abstract
The current study was designed to evaluate the effect of Yucca schidigera extract (YSE) on the growth performance, intestinal antioxidant status, immune response, and tight junctions of mirror carp (Cyprinus carpio). A total of 450 mirror carp (45.21 ± 0.43 g) were fed diets supplemented with 0, 200, or 400 mg/kg YSE for 8 weeks. Compared with the control (0 mg/kg), the final body weight and weight gain rate were significantly higher in the 400 mg/kg YSE group (P < 0.05), and the serum ammonia concentration was significantly lower in both YSE groups (P < 0.05). Additionally, the total antioxidant capacity was significantly higher in the 400 mg/kg YSE group (P < 0.05), and the malondialdehyde content was significantly lower in both YSE groups (P < 0.05). Complement 3 and 4 contents were significantly higher in the 400 mg/kg YSE group (P < 0.05), and lysozyme was significantly higher in both YSE groups compared to the control group (P < 0.05). The relative mRNA levels of copper zinc superoxide dismutase, catalase, glutathione peroxidase1a, and nuclear factor erythroid 2-related factor 2 as well as transforming growth factor β were significantly higher in both YSE supplemented groups compared to the control (P < 0.05), whereas the relative mRNA level of Kelch-like ECH-associated protein 1 was significantly lower in both YSE supplemented groups (P < 0.05). The relative mRNA levels of interleukin 1β and interleukin 6 were significantly lower in the 400 mg/kg YSE supplemented group compared to the control (P < 0.05). Additionally, both YSE levels decreased the relative mRNA expression of tumour necrosis factor-α (P < 0.05). The relative mRNA levels of ZO-1 and claudin 11 were significantly higher in both YSE supplemented groups (P < 0.05), and the relative mRNA level of occludin was significantly higher in the 200 mg/kg YSE group than the control and 400 mg/kg YSE groups (P < 0.05). In conclusion, dietary supplementation with 400 mg/kg YSE improved the growth, intestinal antioxidant status, immune response, and tight junctions of mirror carp.
Collapse
Affiliation(s)
- Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Hongqin Li
- Animal Feed Science Research Institute, New Hope Liuhe Co., Ltd, Chengdu, 610101, PR China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Qiyou Xu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; School of Life Science, Huzhou University, Huzhou, 313000, PR China
| | - Guanghua Wang
- Animal Feed Science Research Institute, New Hope Liuhe Co., Ltd, Chengdu, 610101, PR China
| | - Zhengpeng Zhu
- Sichuan Tequ Agriculture and Animal Husbandry Technology Group Co., Ltd, Chengdu, 610207, PR China.
| |
Collapse
|
26
|
Han F, Xu C, Qi C, Lin Z, Li E, Wang C, Wang X, Qin JG, Chen L. Sodium butyrate can improve intestinal integrity and immunity in juvenile Chinese mitten crab (Eriocheir sinensis) fed glycinin. FISH & SHELLFISH IMMUNOLOGY 2020; 102:400-411. [PMID: 32371256 DOI: 10.1016/j.fsi.2020.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Butyrate is a fermentation byproduct of gut microbiota and is susceptible to chronic oxidative stress. This study investigates the mitigative effects of sodium butyrate (SBT) on growth inhibition and intestinal damage induced by glycinin in juvenile Chinese mitten crab (Eriocheir sinensis). All four experimental diets containing 80 g/kg glycinin were formulated with 0, 10, 20 and 40 g/kg SBT respectively. There was no glycinin or SBT in the control diet. Juvenile crabs (0.33 ± 0.01g) were respectively fed with these five diets for eight weeks. The diets with 10 and 20 g/kg SBT significantly improved the survival and weight gain of the crabs compared with those in the 0 g/kg SBT group, and showed no difference with the control group. The crabs fed diets containing glycinin without SBT had lower glutathione and glutathione peroxidase activities but higher malondialdehyde in the intestine than those in the control group. Moreover, dietary glycinin decreased the lysozyme and phenoloxidase activities and improved the level of histamine in the intestine compared with the control group, while the supplementation of SBT counteracted these negative effects. The addition of SBT could also restore the impaired immunity and morphological structure of the intestine. Dietary SBT could increase the mRNA expression of antimicrobial peptides genes (anti-lipopolysaccharide factor 1 and 2) and decrease the content of pro-inflammatory factor TNF-α. The SBT could restore the intestinal microbial community disorganized by glycinin. The abundance of pathogenic bacteria (Aeromonas, Vibrio and Pseudomonas) decreased significantly and the potential probiotic bacteria (Bacillus, Lactobacillus, Chitinibacter and Dysgonomonas) increased significantly in the 10 g/kg SBT group. This study suggests that sodium butyrate supplementation can mitigate the negative effects induced by glycinin such as growth inhibition, intestinal inflammation and reduction of beneficial flora in the gut.
Collapse
Affiliation(s)
- Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Zhideng Lin
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chunling Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
27
|
Li C, Zhang B, Liu C, Zhou H, Wang X, Mai K, He G. Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 100:261-271. [PMID: 32135340 DOI: 10.1016/j.fsi.2020.02.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Fermentation has been reported to improve the utilization of plant ingredients including soybean meal (SBM) by fish, but the detailed mechanism is still poorly understood. This study compared the effects of partial replacement of fish meal (FM) protein with SBM or Enterococcus faecium fermented SBM (EFSM) on the growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). The FM-based diet was used as the control (CONT). Two experimental diets were formulated in which 45% of the FM protein was replaced with SBM or EFSM. Each diet was fed to triplicate groups of fish (7.57 ± 0.01 g) twice daily for 79 d. Inferior growth performance was observed in SBM group, however, no significant depression was observed in EFSM group compared to the CONT group. The CONT group had the highest values of lysozyme, complement component 3, total antioxidant capacity, superoxide dismutase and catalase, followed by the EFSM group, and the lowest in SBM group. The malondialdehyde content was lowest in the CONT group, followed by the EFSM group, and was highest in the SBM group. Gut morphology showed that SBM diet induced alterations typical for intestinal inflammation including decreased villus and microvillus height, and increased width and inflammatory cell infiltration of the lamina propria. However, the EFSM group alleviated such SBM-induced intestinal pathological disruption. Paralleled with the morphological symptoms, the inflammatory gene expression levels of tumor necrosis factor alpha, interleukin-1 beta and interleukin-8 were highest in the SBM group, followed by the EFSM group, and were lowest in the CONT group. Furthermore, the intestinal microbiota analysis revealed that EFSM group had an overall more similar microbiota with CONT group than SBM group. Specifically, compared with the SBM group, EFSM group significantly enhanced the probiotics Lactobacillus and anti-inflammatory bacterium Faecalibaculum, and inhibited the Vibrio. Collectively, this study indicated that Enterococcus faecium fermentation effectively counteracted the negative effects of SBM by enhancing antioxidant capacity, suppressing inflammatory responses, and modulating gut microbiota in turbot.
Collapse
Affiliation(s)
- Chaoqun Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Beili Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Chengdong Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Xuan Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
28
|
Wu N, Xu X, Wang B, Li XM, Cheng YY, Li M, Xia XQ, Zhang YA. Anti-foodborne enteritis effect of galantamine potentially via acetylcholine anti-inflammatory pathway in fish. FISH & SHELLFISH IMMUNOLOGY 2020; 97:204-215. [PMID: 31843701 DOI: 10.1016/j.fsi.2019.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Foodborne enteritis has become a limiting factor in aquaculture. Plant protein sources have already caused enteritic inflammation and inhibition in growth performance. Attempts have been made to find an effective solution to foodborne enteritis. Based on the previously suggested fish cholinergic anti-inflammatory pathway, galantamine, a typical cholinesterase inhibitor, was tested for the repression of pro-inflammatory cytokines for soybean meal induced enteritis by injection into grass carp. Both the phylogenetic analysis of cholinesterase, AchR and bioinformatic prediction, indicated galantamine's potential use as an enteritis drug. The result highlighted galantamine's potential effect for anti-enteritis in fish, especially in carps. Subsequently, a 4-week feeding trail using galantamine as an additive, in a zebrafish soybean meal induced enteritis model, demonstrated the prevention of enteritis. The results demonstrated that galantamine could prevent intestinal pathology, both histologically and molecularly, and also maintain growth performance. Reflected by gene expressional analysis, all mechanical, chemical and immune functions of the intestinal barrier could be protected by galantamine supplementation, which aided molecularly in the control of fish foodborne enteritis, through down-regulating Th17 type proinflammatory factors, meanwhile resuming the level of Treg type anti-inflammatory factors. Therefore, the current results shed light on fish intestinal acetylcholine anti-inflammation, by the dietary addition of galantamine, which could give rise to protection from foodborne enteritis.
Collapse
Affiliation(s)
- Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Xuan Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Biao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Mei Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Yin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
29
|
Li C, Zhang B, Wang X, Pi X, Wang X, Zhou H, Mai K, He G. Improved utilization of soybean meal through fermentation with commensal Shewanella sp. MR-7 in turbot (Scophthalmus maximus L.). Microb Cell Fact 2019; 18:214. [PMID: 31842889 PMCID: PMC6913000 DOI: 10.1186/s12934-019-1265-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Increased inclusion of plant proteins in aquafeeds has become a common practice due to the high cost and limited supply of fish meal but generally leads to inferior growth performance and health problems of fish. Effective method is needed to improve the plant proteins utilization and eliminate their negative effects on fish. This study took a unique approach to improve the utilization of soybean meal (SBM) by fish through autochthonous plant-degrading microbe isolation and subsequent fermentation. RESULTS A strain of Shewanella sp. MR-7 was isolated and identified as the leading microbe that could utilize SBM in the intestine of turbot. It was further optimized for SBM fermentation and able to improve the protein availability and degrade multiple anti-nutritional factors of SBM. The fishmeal was able to be replaced up to 45% by Shewanella sp. MR-7 fermented SBM compared to only up to 30% by SBM in experimental diets without adverse effects on growth and feed utilization of turbot after feeding trials. Further analyses showed that Shewanella sp. MR-7 fermentation significantly counteracted the SBM-induced adverse effects by increasing digestive enzymes activities, suppressing inflammatory responses, and alleviating microbiota dysbiosis in the intestine of turbot. CONCLUSIONS This study demonstrated that plant protein utilization by fish could be significantly improved through pre-digestion with isolated plant-degrading host microbes. Further exploitation of autochthonous bacterial activities should be valuable for better performances of plant-based diets in aquaculture.
Collapse
Affiliation(s)
- Chaoqun Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Beili Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Xuan Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China.
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
30
|
Condensed tannins decreased the growth performance and impaired intestinal immune function in on-growing grass carp ( Ctenopharyngodon idella). Br J Nutr 2019; 123:737-755. [PMID: 31831090 DOI: 10.1017/s0007114519003295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study investigated the effects of condensed tannins (CT) on intestinal immune function in on-growing grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp were fed six diets containing different levels of CT (0, 10·00, 20·00, 30·00, 40·00 and 50·00 g/kg diet) for 70 d and then challenged with Aeromonas hydrophila for 14 d. The results showed that, compared with the control group, dietary CT (1) induced intestinal histopathological lesions and aggravated enteritis; (2) decreased lysozyme and acid phosphatase activities, complement 3 (C3), C4 and IgM contents and down-regulated the Hepcidin, liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, Mucin2 and β-defensin-1 mRNA levels in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) (P < 0·05); (3) down-regulated the mRNA levels of anti-inflammatory cytokines transforming growth factor (TGF)-β1, TGF-β2 (not in MI and DI), IL-4/13A (not IL-4/13B), IL-10 and IL-11 partly correlated with target of rapamycin (TOR) signalling; and (4) up-regulated the mRNA levels of pro-inflammatory cytokines interferon-γ2, IL-1β, IL-6, IL-8 (not in PI), IL-12p35, IL-12p40, IL-15 and IL-17D partly related to NF-κB signalling in the intestine of on-growing grass carp. Overall, the results indicated that CT could impair the intestinal immune function, and its potential regulation mechanisms were partly associated with the TOR and NF-κB signalling pathways. Finally, based on the percentage weight gain and enteritis morbidity, the maximum allowable levels of CT for on-growing grass carp (232·22-890·11 g) were estimated to be 18·6 and 17·4 g/kg diet, respectively.
Collapse
|
31
|
Duan XD, Jiang WD, Wu P, Liu Y, Jiang J, Tan BP, Yang QH, Kuang SY, Tang L, Zhou XQ, Feng L. Soybean β-conglycinin caused intestinal inflammation and oxidative damage in association with NF-κB, TOR and Nrf2 in juvenile grass carp (Ctenopharyngodon idella): varying among different intestinal segments. FISH & SHELLFISH IMMUNOLOGY 2019; 95:105-116. [PMID: 31610288 DOI: 10.1016/j.fsi.2019.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The current study aimed to investigate the effects and mechanisms of dietary soybean β-conglycinin in immune function and oxidative damage among different intestinal segments of juvenile grass carp (Ctenopharyngodon idella). 240 fish (13.77 ± 0.10 g) were fed control or 8% β-conglycinin diet for 7 weeks. Dietary β-conglycinin caused inconsistent suppression effects on the innate immune by decreasing complement component, lysozyme, antimicrobial peptide and acid phosphatase among different intestinal segments. Meanwhile, dietary β-conglycinin caused inflammation in the mid and distal intestine by raising pro-inflammatory cytokines and declining anti-inflammatory cytokines mRNA levels, while more serious in the distal intestine than in the mid intestine. Furthermore, dietary β-conglycinin regulating inflammatory cytokines might be associated with transcription factors nuclear factor-κB P65 (NF-κB P65) nucleus translocation and target of rapamycin (TOR) phosphorylation in the distal intestine but only related to TOR phosphorylation in the mid intestine. Interestingly, in the proximal intestine, dietary β-conglycinin decreased both pro-inflammatory and anti-inflammatory cytokines mRNA level, and did not affect NF-κB P65 nucleus translocation and TOR phosphorylation. For oxidative damage, dietary β-conglycinin exposure elevated both malondialdehyde (MDA) and protein carbonyl (PC) contents in the distal intestine, which might be attributed to the suppression of the Mn-SOD, catalase (CAT) and glutathione peroxidase (GPx) activities. In the mid intestine, dietary β-conglycinin only increased PC content in association with the low activities of CAT, GPx and glutathione peroxidase (GR). Unexpectedly, in the proximal intestine, dietary β-conglycinin did not significantly change MDA and PC contents while decreased antioxidant enzyme activities. Furtherly, dietary β-conglycinin affect the antioxidant enzyme activity might be regulated by the varying pattern of nuclear factor-erythroid 2-related factor 2 (Nrf2) nucleus translocation among these three intestinal segments. In summary, dietary β-conglycinin caused intestinal inflammation and oxidative damage in association with NF-κB, TOR and Nrf2 signaling molecules, which were varying among the three intestinal segments of grass carp.
Collapse
Affiliation(s)
- Xu-Dong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi-Hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
32
|
Zhang YL, Duan XD, Jiang WD, Feng L, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ. Soybean glycinin decreased growth performance, impaired intestinal health, and amino acid absorption capacity of juvenile grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1589-1602. [PMID: 31256306 DOI: 10.1007/s10695-019-00648-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the influence of dietary soybean glycinin on growth performance, intestinal morphology, free intestinal amino acid (AA) content, and intestinal AA transporter (AAT) mRNA levels in juvenile grass carp (Ctenopharyngodon idella). Results were displayed as follows: (1) 8% dietary glycinin decreased growth performance, inhibited intestinal growth, and caused intestinal histology damage of grass carp; (2) dietary glycinin decreased the content of free neutral AAs including Val, Ser, Tyr, Ala, Pro, and Gln in all intestinal segments, and Thr, Ile, Leu, Phe, and Gly in the MI and DI while downregulated the mRNA levels of corresponding transporters including SLC38A2, SLC6A19b, and SLC6A14 in all intestinal segments, and SLC7A5, SLC7A8, and SLC1A5 in the MI and DI. Dietary glycinin decreased the content of free basic AAs including Arg in the MI and DI and His in all intestinal segments while downregulated cationic AAT SLC7A1 mRNA levels in the MI and DI. Dietary glycinin decreased the content of free acidic AAs including Glu in all intestinal segments and Asp in the MI and DI while decreased mRNA levels of corresponding transporters including SLC1A2a in all intestinal segments and SLC1A3 in the MI and DI; (3) the digestion trial showed that basic subunits of glycinin was hard to digest in the intestine of grass carp; (4) co-administration of glutamine with glycinin partially alleviated the negative effects. Overall, glycinin decreased intestinal AA absorption capacity partly contributed by decreased AATs' mRNA levels and the indigestibility of glycinin.
Collapse
Affiliation(s)
- Ya-Lin Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xu-Dong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
33
|
Li C, Zhang B, Zhou H, Wang X, Pi X, Wang X, Mai K, He G. Beneficial influences of dietary Aspergillus awamori fermented soybean meal on oxidative homoeostasis and inflammatory response in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 93:8-16. [PMID: 31319205 DOI: 10.1016/j.fsi.2019.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
High levels of soybean meal (SBM) in aquafeed leads to detrimental inflammatory response and oxidative stress in fish. In the present study, fermentation with Aspergillus awamori was conducted to explore the potential effects on improving the nutritional quality of soybean meal and the health status of turbot. A 63-day feeding trial (initial weight 8.53 ± 0.11 g) was carried out to evaluate the utilization of fermented soybean meal (FSM) by juvenile turbot. 0% (FM, control), 30% (S30, F30), 45% (S45, F45), and 60% (S60, F60) of fish meal were replaced with SBM or FSM, respectively. As the results showed, fermentation significantly reduced the contents of anti-nutritional factors in SBM, including raffinose (-98.8%), glycinin (-98.5%), β-conglycinin (-97.4%), trypsin inhibitors (-80%) and stachyose (-80%). A depression of fish growth performance and activities of superoxide dismutase and lysozyme were observed in S45 and S60 groups, while these inferiorities were only observed in F60 group. Meanwhile, fermentation also improved the heights of enterocytes and microvillus significantly in the F45 and F60 groups compared with those in SBM. An induced expression of anti-inflammatory cytokine transforming growth factor-β and depression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β in the distal intestine were observed in the F45 and F60 groups. Taken together, this study indicated that fermentation with Aspergillus awamori could improve the replacement level with soybean meal from 30% to 45% in turbot.
Collapse
Affiliation(s)
- Chaoqun Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Beili Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Xuan Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China.
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
34
|
Zhong JR, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Phytic acid disrupted intestinal immune status and suppressed growth performance in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 92:536-551. [PMID: 31247320 DOI: 10.1016/j.fsi.2019.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Phytic acid (PA) is one of the most common anti-nutritional factors in plant-derived protein feeds, and it poses considerable threats to aquaculture production. However, little is known about the effects of PA on fish intestinal health. This study aimed to investigate the impacts of PA on intestinal immune function in on-growing grass carp. To achieve this goal, a growth trial was conducted for 60 days by feeding 540 fish (120.56 ± 0.51 g) with six semi-purified diets containing graded levels of PA (0, 0.8, 1.6, 2.4, 3.2 and 4.0%). Then fish were challenged with Aeromonas hydrophila for 6 days. The results indicated that, compared with the control group (0% PA), PA did the following: (1) suppressed fish growth performance (percentage weight gain and feed efficiency) and reduced their ability to resist enteritis; (2) decreased fish intestinal antimicrobial ability by reducing intestinal lysozyme (LZ) activities, the contents of complement 3 (C3), C4 and immunoglobulin M (IgM), and downregulating the mRNA levels of hepcidin, liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, and β-defensin-1; and (3) aggravated fish intestinal inflammation responses by upregulating the mRNA levels of pro-inflammatory cytokines including tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) (except in the DI), interferon γ2 (IFN-γ2), IL-8, IL-12p40, IL-15 (except in the DI) and IL-17D, which is partly related to the nuclear factor kappa B (NF-κB) signalling pathway, whereas downregulating the mRNA levels of anti-inflammatory cytokines including transforming growth factor β1 (TGF-β1), IL-4/13A, IL-4/13B, IL-10 and IL-11, which is partially associated with the target of rapamycin (TOR) signalling pathway. The possible reasons for some distinctive gene expression patterns in fish three intestinal segments were discussed. Finally, based on the percent weight gain, enteritis morbidity, IgM content and LZ activity in the PI, the maximum tolerance levels of PA for on-growing grass carp were estimated to be 2.17, 1.68, 1.47 and 1.18% of the diet, respectively.
Collapse
Affiliation(s)
- Jing-Ren Zhong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
35
|
Foysal MJ, Fotedar R, Tay CY, Gupta SK. Dietary supplementation of black soldier fly ( Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron ( Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ 2019; 7:e6891. [PMID: 31149398 PMCID: PMC6534111 DOI: 10.7717/peerj.6891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to evaluate the dietary supplementary effects of black soldier fly (Hermetia illucens) (BSF) meal on the bacterial communities in the distal gut, immune response and growth of freshwater crayfish, marron (Cherax cainii) fed poultry-by-product meal (PBM) as an alternative protein source to fish meal (FM). A total of 64 marron were randomly distributed into 16 different tanks with a density of four marron per tank. After acclimation, a 60-days feeding trial was conducted on marron fed isonitrogenouts and isocalorific diets containing protein source from FM, PBM, and a combination of FM + BSF and PBM + BSF. At the end of the trial, weight gain and growth of marron were found independent of any dietary treatment, however, the two diets supplemented with BSF significantly (P < 0.05) enhanced haemolymph osmolality, lysozyme activity, total haemocyte counts, and protein and energy contents in the tail muscle. In addition, the analysis of microbiota and its predicted metabolic pathways via 16s rRNA revealed a significantly (P < 0.05) higher bacterial activity and gene function correlated to biosynthesis of protein, energy and secondary metabolites in PBM + BSF than other dietary groups. Diets FM + BSF and PBM + BSF were seen to be associated with an up-regulation of cytokine genes in the intestinal tissue of marron. Overall, PBM + BSF diet proved to be a superior diet in terms of improved health status, gut microbiota and up-regulated expression of cytokine genes for marron culture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sanjay Kumar Gupta
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
36
|
Han F, Wang X, Guo J, Qi C, Xu C, Luo Y, Li E, Qin JG, Chen L. Effects of glycinin and β-conglycinin on growth performance and intestinal health in juvenile Chinese mitten crabs (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:269-279. [PMID: 30300740 DOI: 10.1016/j.fsi.2018.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the effects of two soybean antigens (glycinin and β-conglycinin) as an antinutritional substance in the diet on the growth, digestive ability, intestinal health and microbiota of juvenile Chinese mitten crabs (Eriocheir sinensis). The isonitrogenous and isolipidic diets contained two soybean antigens at two levels each (70 and 140 g/kg β-conglycinin, 80 and 160 g/kg glycinin) and a control diet without β-conglycinin or glycinin supplementation, and were used respectively to feed juvenile E. sinensis for seven weeks. Dietary inclusion of either glycinin or β-conglycinin significantly reduced crab survival and weight gain. The crabs fed diets containing soybean antigens had higher malondialdehyde concentrations and lower catalase activities in the intestine than those in the control. The activities of trypsin and amylase in the intestine were suppressed by dietary β-conglycinin and glycinin. Dietary glycinin or β-conglycinin impaired the immunity and morphological structure of intestine, especially the peritrophic membrane. The mRNA expression of constitutive and inducible immune responsive genes (lipopolysaccharide-induced TNF-α factor and interleukin-2 enhancer-binding factor 2) increased while the mRNA expression of the main genes related to the structural integrity peritrophic membrane (peritrophin-like gene and peritrophic 2) significantly decreased in the groups with soybean antigen addition. Soybean antigen could also change the intestinal microbial community. The abundance of pathogenic bacteria (Ochrobactrum, Burkholderia and Pseudomonas) increased significantly in both soybean antigen groups. Although pathogenic bacteria Vibrio were up-regulated in the glycinin group, the abundance of Dysgonomonas that degraded lignocellulose and ameliorated the gut environment decreased in the glycinin group. This study indicates that existence of soybean antigens (glycinin or β-conglycinin) could induce gut inflammation, reshape the community of gut microbiota, and cause digestive dysfunction, ultimately leading to impaired growth in crabs.
Collapse
Affiliation(s)
- Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Jianlin Guo
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
37
|
Su YN, Wu P, Feng L, Jiang WD, Jiang J, Zhang YA, Figueiredo-Silva C, Zhou XQ, Liu Y. The improved growth performance and enhanced immune function by DL-methionyl-DL-methionine are associated with NF-κB and TOR signalling in intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:101-118. [PMID: 29292200 DOI: 10.1016/j.fsi.2017.12.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of dietary DL-methionyl-DL-methionine (Met-Met) on growth performance, intestinal immune function and the underlying signalling molecules in juvenile grass carp (Ctenopharyngodon idella). Fish were fed one DL-methionine (DL-Met) group (2.50 g/kg diet) and six graded levels of Met-Met groups (0, 0.79, 1.44, 1.84, 2.22 and 2.85 g/kg diet) for 10 weeks, and then challenged with Aeromonas hydrophila for 14 days. Results indicated that the optimal Met-Met supplementation: (1) increased fish growth performance, intestinal lysozyme (LZ) and acid phosphatase (ACP) activities, complement (C3 and C4) and immunoglobulin M (IgM) contents, up-regulated hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, β-defensin-1 and Mucin2 mRNA levels; (2) down-regulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-8 [only in the distal intestine (DI)], IL-12p35, IL-12p40 and IL-15 (not IL-17D) mRNA levels partially related to the down-regulation of IκB kinase β (IKKβ) and IKKγ (rather than IKKα), nuclear factor kappa B (NF-κB) p65 and c-Rel (rather than NF-κB p52) mRNA levels and the up-regulation of inhibitor of κBα (IκBα) mRNA levels; (3) up-regulated IL-4/13A, IL-4/13B, IL-6, IL-10, IL-11 and transforming growth factor (TGF)-β1 (not TGF-β2) mRNA levels partially associated with the target of rapamycin (TOR) signalling pathway [TOR/ribosomal protein S6 kinases 1 (S6K1), eIF4E-binding proteins (4E-BP)] in three intestinal segments of juvenile grass carp. These results suggest that Met-Met supplementation improves growth and intestinal immune function in fish. Furthermore, according to a positive effect, the optimal Met-Met supplementation was superior to the optimal DL-Met supplementation at improving the growth performance and enhancing the intestinal immune function in fish. Finally, based on percent weight gain (PWG), protection against enteritis morbidity and immune index (LZ activity), the optimal Met-Met supplementation for juvenile grass carp was estimated as 1.61, 1.64 and 1.68 g/kg diet, respectively, as the basal diet contains 8.03 g/kg total sulfur amino acids (TSAA) (4.26 g methionine/kg and 3.77 g cysteine/kg).
Collapse
Affiliation(s)
- Yue-Ning Su
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Figueiredo-Silva
- Evonik Nutrition & Care GmbH, NC, 10-B531, Postfach 1345, Rodenbacher Chausse 4, 63404 Hanau, Germany
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
38
|
Jiang J, Xu S, Feng L, Liu Y, Jiang W, Wu P, Wang Y, Zhao Y, Zhou X. Lysine and methionine supplementation ameliorates high inclusion of soybean meal inducing intestinal oxidative injury and digestive and antioxidant capacity decrease of yellow catfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:319-328. [PMID: 29098470 DOI: 10.1007/s10695-017-0437-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The yellow catfish Pelteobagrus fulvidraco with initial average weight 16.6 ± 0.17 g were fed three extruded diets for 56 days. Fish meal (FM) diet was formulated as the normal control with 380 g FM and 200 g soybean meal (SBM) kg-1 diet. The SBM diet was prepared with 220 g FM and 360 g SBM kg-1 diet without Lys or Met supplementation. The SBM supplement (SBMS) diet was similar to SBM diet and supplemented with Lys and Met to ensure their levels similar to FM diet. The results showed fish fed SBM diet had lower percent weight gain and specific growth rate than the other two groups (P < 0.05). Whole body protein content of fish fed FM and SBMS diets were higher than that of fish fed SBM diet (P < 0.05). The hepatosomatic and intestosomatic indexes of fish fed SBM diet were significantly lower than that of fish fed FM and SBMS diets (P < 0.05). The activities of pepsin in stomach, trypsin, and chymotrypsin in intestine, alkaline phosphatase and creatine kinase in proximal intestine, Na+, K+-ATPase, and gamma-glutamyl transpeptidase in distal intestine were significantly higher in fish fed FM and SBMS diets compared to SBM diet. The activities of catalase, glutathione-S-transferase, reduced glutathione, superoxide anion scavenging, and hydroxyl radical scavenging in the intestine showed the same changes (P < 0.05). Malondialdehyde and protein carbonyl contents in intestine were significantly decreased in fish fed SBMS diet compared to SBM diet. These results indicated high inclusion of SBM induced intestinal oxidative injury and digestive and antioxidant capacity decrease. The Lys and Met supplementation could ameliorate these adverse effects on yellow catfish.
Collapse
Affiliation(s)
- Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangxiao Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
39
|
Bravo-Tello K, Ehrenfeld N, Solís CJ, Ulloa PE, Hedrera M, Pizarro-Guajardo M, Paredes-Sabja D, Feijóo CG. Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish. PLoS One 2017; 12:e0187696. [PMID: 29117213 PMCID: PMC5678869 DOI: 10.1371/journal.pone.0187696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022] Open
Abstract
Soybean meal has been used in many commercial diets for farm fish; despite this component inducing intestinal inflammation. On the other hand, microalgae have increasingly been used as dietary supplements in fish feed. Nevertheless, the vast quantity of microalgae species means that many remain under- or unstudied, thus limiting wide scale commercial application. In this work, we evaluated the effects to zebrafish (Danio rerio) of including Tetraselmis sp (Ts); Phaeodactylum tricornutum (Pt); Chlorella sp (Ch); Nannochloropsis oculata (No); or Nannochloropsis gaditana (Ng) as additives in a soybean meal-based diet on intestinal inflammation and survival after Edwardsiella tarda infection. In larvae fed a soybean meal diet supplemented with Ts, Pt, Ch, or Ng, the quantity of neutrophils present in the intestine drastically decreased as compared to larvae fed only the soybean meal diet. Likewise, Ts or Ch supplements in soybean meal or fishmeal increased zebrafish survival by more than 20% after being challenged. In the case of Ts, the observed effect correlated with an increased number of neutrophils present at the infection site. These results suggest that the inclusion of Ts or Ch in fish diets could allow the use of SBM and at the same time improve performance against pathogen.
Collapse
Affiliation(s)
- Karina Bravo-Tello
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Nicole Ehrenfeld
- Centro de Investigación Austral Biotech, Escuela de Biotecnología, Universidad Santo Tomás, Santiago, Chile
| | - Camila J. Solís
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Pilar E. Ulloa
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomia, Escuela de Agronomia, Universidad de Las Américas, Santiago, Chile
| | - Manuel Hedrera
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| |
Collapse
|
40
|
Moine L, Díaz de Barboza G, Pérez A, Benedetto M, Tolosa de Talamoni N. Glutamine protects intestinal calcium absorption against oxidative stress and apoptosis. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:64-71. [PMID: 28732794 DOI: 10.1016/j.cbpa.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate whether glutamine (GLN) could block the inhibition of the intestinal Ca2+ absorption caused by menadione (MEN), and elucidate the underlying mechanisms. To do this, one-month old chicks were divided in four groups: 1) controls, 2) MEN treated, 3) GLN treated and 4) GLN treated before or after MEN treatment. Intestinal Ca2+ absorption as well as protein expression of molecules involved in the transcellular Ca2+ pathway were determined. Glutathione (GSH) and superoxide anion and activity of enzymes of the antioxidant system were evaluated. Apoptosis was measured by the TUNEL technique, the expression of FAS and FASL and the caspase-3 activity. A previous dose of 0.5gGLN/kg of b.w. was necessary to show its protector effect and a dose of 1g/kg of b.w. could restore the intestinal Ca2+ absorption after MEN treatment. GLN alone did not modify the protein expression of calbindin D28k and plasma membrane Ca2+-ATPase, but blocked the inhibitory effect of the quinone. GLN avoided changes in the intestinal redox state provoked by MEN such as a decrease in the GSH content, and increases in the superoxide anion and in the SOD and CAT activities. GLN abrogated apoptotic effects caused by MEN in intestinal mucosa, as indicated by the reduction of TUNEL (+) cells and the FAS/FASL/caspase-3 pathway. In conclusion, GLN could be an oral nutritional supplement to normalize the redox state and the proliferation/cell death ratio in the small intestine improving the intestinal Ca2+ absorption altered by oxidative stress.
Collapse
Affiliation(s)
- Luciana Moine
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA, CONICET-Universidad Nacional de Córdoba, Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA, CONICET-Universidad Nacional de Córdoba, Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Adriana Pérez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA, CONICET-Universidad Nacional de Córdoba, Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mercedes Benedetto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA, CONICET-Universidad Nacional de Córdoba, Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA, CONICET-Universidad Nacional de Córdoba, Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
41
|
Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:497-523. [PMID: 28549941 DOI: 10.1016/j.fsi.2017.05.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively.
Collapse
Affiliation(s)
- Zheng-Xing Song
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
42
|
Pan FY, Wu P, Feng L, Jiang WD, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue improves intestinal immunological and physical barrier function in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 64:122-136. [PMID: 28279791 DOI: 10.1016/j.fsi.2017.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
This study was conducted to test the hypothesis that methionine hydroxy analogue (MHA) enhances the defense against enteritis occurrence via improving intestinal barrier function in fish. After 630 young grass carp (Ctenopharyngodon idella) (259.70 ± 0.47 g) fed six graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine group (6.4 g/kg diet) for 8 weeks. At the end of feeding trial, 15 fish from each treatment were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA enhanced the capacity of fish against enteritis emergence, which might be related to the positive effects of MHA on intestinal immunological and physical barrier function in fish. Dietary MHA supplementation enhanced intestinal immunological barrier function via (1) lysozyme (LZM) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1; (2) repressing p38MAPK/IKKβ/IκBα/NF-κB signaling pathway to down-regulate pro-inflammatory cytokines mRNA levels except IL-8 mRNA level only in mid and distal intestine; (3) potentiating TOR-signal cascades to up-regulate anti-inflammatory cytokines. Meanwhile, dietary MHA supplementation improved intestinal physical barrier via (1) down-regulating c-Jun N-terminal kinase mRNA levels to inhibit death receptor and mitochondria pathways induced apoptosis; (2) modulating Keap1a/Nrf2 system to elevate antioxidant enzymes genes isoforms mRNA levels and corresponding enzymes activities, subsequently alleviate oxidative damage; (3) down-regulating MCLK gene expression to up-regulating occludin, zonula occluden 1 and claudins mRNA levels except claudin-7a and claudin-7b only in the proximal intestine. In conclusion, bases on the capacity defense against enteritis, proximal intestinal malondialdehyde content and lysozyme activity, the optimal MHA supplementation levels were 5.83, 5.59 and 6.07 g/kg diet (4.01 g/kg methionine basal), respectively. This study indicates that MHA exerts a positive effect on fish intestinal health status and a superior efficacy to dl-methionine based on the positive effects.
Collapse
Affiliation(s)
- Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
43
|
Vitamin A deficiency suppresses fish immune function with differences in different intestinal segments: the role of transcriptional factorNF-κBandp38 mitogen-activated protein kinasesignalling pathways. Br J Nutr 2017; 117:67-82. [DOI: 10.1017/s0007114516003342] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe present study investigated the effects of dietary vitamin A on immune function in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary vitamin A for 10 weeks, and then a challenge test using an injection ofAeromonas hydrophilawas conducted for 14 d. The results showed that, compared with the optimum vitamin A level, vitamin A deficiency significantly decreased fish growth performance, increased enteritis morbidity, decreased intestinal innate humoral immune response and aggravated intestinal inflammation. However, liver-expressed antimicrobial peptide 2A/B mRNA in the DI andIL-6,IL-17D,IL-10, transforming growth factor (TGF)-β1andTGF-β2mRNA in the PI were not affected by vitamin A levels. Meanwhile, vitamin A deficiency disturbed inflammatory cytokines in the PI, MI and DI, which might be partly linked to p38 mitogen-activated protein kinase (p38MAPK) signalling andNF-κBcanonical signalling pathway (IκB kinaseβ(IKKβ),IKKγ, inhibitor ofκBα,NF-κB p65andc-Rel) rather thanNF-κBnon-canonical signalling pathway (NF-κB p52andIKKα). However, the signalling moleculesNF-κB p65andp38MAPKdid not participate in regulating cytokines in the PI. These results suggested that vitamin A deficiency decreased fish growth and impaired intestinal immune function, and that different immune responses in the PI, MI and DI were mediated partly byNF-κBcanonical signalling andp38MAPKsignalling pathways. On the basis of percentage of weight gain, to protect fish against enteritis morbidity and acid phosphatase activity, the optimum dietary vitamin A levels were estimated to be 0·664, 0·707 and 0·722 mg /kg, respectively.
Collapse
|
44
|
Wu X, Cao W, Jia G, Zhao H, Chen X, Wu C, Tang J, Wang J, Liu G. New insights into the role of spermine in enhancing the antioxidant capacity of rat spleen and liver under oxidative stress. ACTA ACUST UNITED AC 2016; 3:85-90. [PMID: 29767047 PMCID: PMC5941080 DOI: 10.1016/j.aninu.2016.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
Oxidative stress can damage cellular antioxidant defense and reduce livestock production efficiency. Spermine is a ubiquitous cellular component that plays important roles in stabilizing nucleic acids, modulating cell growth and differentiation, and regulating ion channel activities. Spermine has the potential to alleviate the effects of oxidative stress. However, to date no information is available about the effect of spermine administration on antioxidant property of the liver and spleen in any mammalian in vivo system. This study aims to investigate the protective effect of spermine on rat liver and spleen under oxidative stress. Rats received intragastric administration of either 0.4 μmol/g body weight of spermine or saline once a day for 3 days. The rats in each treatment were then injected with either diquat or sterile saline at 12 mg/kg body weight. Liver and spleen samples were collected 48 h after the last spermine ingestion. Results showed that regardless of diquat treatment, spermine administration significantly reduced the malondialdehyde (MDA) content by 23.78% in the liver and by 5.75% in the spleen, respectively (P < 0.05). Spermine administration also enhanced the catalase (CAT) activity, anti-hydroxyl radical (AHR) capacity and glutathione (GSH) content by 38.68%, 15.53% and 1.32% in the spleen, respectively (P < 0.05). There were interactions between spermine administration and diquat injection about anti-superoxide anion (ASA), AHR capacity, CAT activity, GSH content, and total antioxidant capacity (T-AOC) in the liver and about ASA capacity and T-AOC in the spleen of weaned rats (P < 0.05). Compared with the control group, spermine administration significantly increased the AHR capacity, CAT activity, GSH content, and T-AOC by 40.23%, 31.15%, 30.25%, 35.37% in the liver, respectively (P < 0.05) and increased the T-AOC by 8% in the spleen of weaned rats (P < 0.05). Compared with the diquat group, spermine + diquat group significantly increased ASA capacity by 15.63% in the liver and by 73.41% in the spleen of weaned rats, respectively (P < 0.05). Results demonstrate that spermine administration can increase the antioxidant capacity in the liver and spleen and can enhance the antioxidant status in the spleen and liver under oxidative stress.
Collapse
Affiliation(s)
- Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
- Corresponding author.
| |
Collapse
|
45
|
Xu J, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Effects of dietary protein levels on the disease resistance, immune function and physical barrier function in the gill of grass carp (Ctenopharyngodon idella) after challenged with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2016; 57:1-16. [PMID: 27539702 DOI: 10.1016/j.fsi.2016.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
The effects of dietary protein levels on the disease resistance, gill immune function and physical barrier function of grass carp (Ctenopharyngodon idella) were investigated in this study. A total of 540 grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg(-1) diet) for 8 weeks. After the growth trial, fish were challenged with Flavobacterium columnare for 3 days. The results indicated that optimal levels of dietary protein had the following effects: (1) the production of antibacterial components increased, and anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels were up-regulated, whereas mRNA levels of pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, NF-κB P52, IκB kinase (IKK) α, IKKβ, IKKγ, eIF4E-binding proteins (4E-BP) 1 and 4E-BP2 were down-regulated in the gills of grass carp (P < 0.05), indicating that fish gill immune function was enhanced at an optimal level of dietary protein; (2) the activities and mRNA levels of antioxidant enzymes and glutathione content increased, the contents of reactive oxygen species, malondialdehyde and protein carbonyl (PC) decreased, and NF-E2-related factor 2, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and tight junction complexes mRNA levels were up-regulated, whereas Kelch-like-ECH-associated protein (Keap) 1a, Keap1b, cysteinyl aspartic acid-protease 3, 8, 9, fatty acid synthetase ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein, c-Jun N-terminal protein kinase, myosin light chain kinase and p38 mitogen-activated protein kinase mRNA levels were down-regulated in the gills of grass carp (P < 0.05), indicating that the fish gill physical barrier function improved at an optimal level of dietary protein. Finally, based on the gill rot morbidity, ACP activity and PC content, the optimal levels of dietary protein for grass carp were estimated to be 286.65 g kg(-1) diet (253.73 g digestible protein kg(-1) diet), 290.46 g kg(-1) diet (257.76 g digestible protein kg(-1) diet) and 296.25 g kg(-1) diet (260.69 g digestible protein kg(-1) diet), respectively.
Collapse
Affiliation(s)
- Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
46
|
Ni PJ, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Dietary low or excess levels of lipids reduced growth performance, and impaired immune function and structure of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella) under the infection of Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2016; 55:28-47. [PMID: 27157598 DOI: 10.1016/j.fsi.2016.03.163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Our study explored the effect of dietary lipids on growth and immunity and structure (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp with an average initial weight of 261.41 ± 0.53 g were fed diets containing six graded levels of lipids at 5.9-80.1 g/kg diet for 8 weeks. After that, a challenge trial was conducted by injection of Aeromonas hydrophila over 2 weeks. The results indicated that compared with optimal lipids supplementation, low and excess levels of lipids down-regulated the mRNA levels of antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα) and ribosomal p70S6 kinase (S6K1), and up-regulated pro-inflammatory cytokines, nuclear factor κB p65 (NF-κB p65), NF-κB c-Rel (not p52), IκB kinase α (IKKα), IKKβ, IKKγ, and eIF4E-binding protein (4EBP) mRNA levels in the head kidney and spleen of young grass carp (P < 0.05). Low or excess levels of lipids also increased reactive oxygen species (ROS) production and malondialdehyde (MDA) and protein carbonyl (PC) contents, reduced the activities of antioxidant enzymes (P < 0.05), down-regulate the relative mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2), and up-regulated the expression levels of Kelch-like ECH-associating protein 1a (Keap1a) and Keap1b in the head kidney and spleen. In addition, low or excess levels of lipids down-regulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and inhibitor of apoptosis protein (IAP) in the head kidney and spleen, whereas up-regulated the mRNA levels of apoptotic protease activating factor-1 (Apaf-1), caspase 3, 7, 8 and 9 mRNA levels in the head kidney and spleen and Fas ligand (FasL) mRNA levels in the spleen of young grass carp, suggesting that low or excess levels of lipids could decrease the head kidney and spleen immune function, induce oxidative damage and apoptosis and impair antioxidant system of young grass carp. At last, low or excess levels of lipids also impaired the immune function and structure in the skin of young grass carp. Based on the quadratic regression analysis for PWG, skin haemorrhage and lesions morbidity and IgM content, the dietary lipids requirements for young grass carp were estimated to be 43.7, 60.2, 55.0 and 52.1 g/kg diet, respectively.
Collapse
Affiliation(s)
- Pei-Jun Ni
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|