1
|
Torricelli M, Felici A, Branciari R, Trabalza-Marinucci M, Galarini R, Biagetti M, Manfrin A, Boriani L, Radicchi E, Sebastiani C, Ciullo M, Ranucci D, Agnetti F. Gene Expression Study in Gilthead Seabream ( Sparus aurata): Effects of Dietary Supplementation with Olive Oil Polyphenols on Immunity, Metabolic, and Oxidative Stress Pathways. Int J Mol Sci 2024; 25:12185. [PMID: 39596252 PMCID: PMC11594698 DOI: 10.3390/ijms252212185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
In an era with an ever-growing population, sustainability and green transition are the main milestones to be considered within the current European Green Deal program, and the recovery of by-products for the integration of feed with bioactive molecules, that are sustainable and with high nutritional value, is an ambitious mission to be explored also in aquaculture. Olive oil extraction produces a range of solid and liquid by-products, in varying proportions depending on the utilized production techniques, all of which are considered as possible pollutants. However, these products are also rich of polyphenols, bioactive molecules with several and well-known beneficial properties (antimicrobic, anti-inflammatory, antioxidant, and immune-modulating). On this basis, this work aimed at evaluating the effects of dietary supplementation with polyphenols derived from olive mill wastewater on growth performance and on gene expression modulation, by means of RT-qPCR assays, in farmed Sparus aurata. Particularly, some target genes of metabolic, immunity, and oxidative stress pathways have been investigated in breeding gilthead seabream. Differential gene expression analysis was carried out, and differences between the control group (n = 9) and the treated one (n = 9) were computed with Student's t test. The results have highlighted that supplemented feed enhanced fish growth, with a significant feed conversion ratio between the two groups. Furthermore, the polyphenol diet had a beneficial impact on gene expression fold with a level of significance for fatty acid binding protein 2, superoxide dismutase 1, and interleukin-12 genes at hepatic or intestinal district. These significant and promising preliminary findings promote, in the future, other investigations on polyphenolic by-products and on their putative or possible re-utilization in fish feeding.
Collapse
Affiliation(s)
- Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - Andrea Felici
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.-M.); (D.R.)
| | - Massimo Trabalza-Marinucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.-M.); (D.R.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - Amedeo Manfrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell’Università, 10, 35020 Legnaro, Italy;
| | - Laura Boriani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - Eleonora Radicchi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.-M.); (D.R.)
| | - Francesco Agnetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (A.F.); (R.G.); (M.B.); (L.B.); (E.R.); (C.S.); (M.C.); (F.A.)
| |
Collapse
|
2
|
Wei B, Li H, Han T, Luo Q, Yang M, Qin Q, Chen Y, Wei S. Effects of dietary salidroside on intestinal health, immune parameters and intestinal microbiota in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109750. [PMID: 38969153 DOI: 10.1016/j.fsi.2024.109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1β/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.
Collapse
Affiliation(s)
- Baocan Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Huang Li
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Tao Han
- GuangDong Kingkey Smart Agri Technology Co., Ltd, Dongguan, 523000, China
| | - Qiulan Luo
- GuangDong Kingkey Smart Agri Technology Co., Ltd, Dongguan, 523000, China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China
| | - Yifang Chen
- GuangDong Kingkey Smart Agri Technology Co., Ltd, Dongguan, 523000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
3
|
Huang H, Lin X, Meng X, Liu Y, Fan J, Zhu L, Chen J, Zhang L, Mi H, Deng J. Effects of replacing wheat bran with palm kernel cake or fermented palm kernel cake on the growth performance, intestinal microbiota and intestinal health of tilapia (GIFT, Oreochromis niloticus). Front Nutr 2024; 11:1368251. [PMID: 38450228 PMCID: PMC10915778 DOI: 10.3389/fnut.2024.1368251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
A nine-week feeding trial was conducted to evaluate the effects of replacing wheat bran (WB) with palm kernel cake (PKC) or fermented palm kernel cake (FPKC) on the growth performance, intestinal microbiota and intestinal health of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) (initial weight 7.00 ± 0.01 g). Eleven isonitrogenous and isolipidic experimental diets were formulated by replacing 0, 20, 40, 60, 80, and 100% of dietary WB with PKC or FPKC. Replacement of WB with PKC concentrations up to 80% had no significant effect on the growth rate of tilapia or feed utilisation (p > 0.05). FPKC improved the growth performance of tilapia, with optimum growth achieved at 40% replacement level (p < 0.05). Complete replacement with PKC significantly decreased the activity of lipase and trypsin, and reduced the height of muscularis and the height of villus (p < 0.05). However, FPKC significantly increased amylase activity and villus height (p < 0.05). The apparent digestibility of dry matter and energy decreased linearly with increasing levels of PKC substitution, while FPKC showed the opposite trend (p < 0.05). PKC replacement of WB by 20% significantly reduced serum diamine oxidase activity and endothelin levels and increased intestinal tight junctions (p < 0.05). However, FPKC significantly decreased diamine oxidase activity and increased intestinal tight junctions (p < 0.05). PKC completely replaced WB, up-regulating the expression of pro-inflammatory factors (il-1β) (p < 0.05). When 40% of WB was replaced with FPKC, the expression of pro-inflammatory factors (il-1β and il-6) was decreased significantly (p < 0.05). Completely replacement of WB with PKC reduced the abundance of Firmicutes and Chloroflexi, while FPKC reduced the abundance of Fusobacteriota and increased the levels of Actinobacteriota. WB can be replaced with PKC up to 80% in tilapia feeds. However, the high percentage of gluten induced intestinal inflammation, impaired gut health, and reduced dietary nutrient utilisation and growth performance. Complete replacement of WB with FPKC promoted intestinal immunity. It also improved dietary nutrient utilisation and growth performance. However, the optimal growth was achieved at a 40% replacement level.
Collapse
Affiliation(s)
- Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiangqin Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiaoxue Meng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiaxian Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Chengdu, Sichuan, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Chengdu, Sichuan, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Castaño-Ángel CC, Tarapues-Cuasapud JA, Bravo-Gómez JE, Solanilla-Duque JF, Roa-Acosta DF. Preliminary study of physicochemical, thermal, rheological, and interfacial properties of quinoa oil. F1000Res 2023; 12:1477. [PMID: 38854700 PMCID: PMC11162528 DOI: 10.12688/f1000research.134134.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 06/11/2024] Open
Abstract
Background: The growing popularity of nutrient-rich foods, among which is quinoa, is due to the increasing demand for healthier choices. Oils and hydrolyzed proteins from these foods may help prevent various health issues. The objective of this work was to perform extraction from the endosperm of the grain from high-protein quinoa flour by physical means via a differential abrasive milling process and extracting the oil using an automatic auger extractor at 160°C, as well as characterizing extracted oil. Methods: Quinoa oil extraction and physicochemical characterization were carried out. Chemical and physical quality indexes of quinoa oil were established, and both characterizations were conducted based on international and Columbian standards. Thermal properties were evaluated by differential scanning calorimetry, and rheological and interfacial properties of the oil were evaluated using hybrid rheometers and Drop Tensiometers, respectively, to determine its potential for obtaining functional foods. Results: The result was 10.5 g of oil/ 100 g of endosperm, with a moisture content of 0.12%, insoluble impurities of 0.017%, peroxide index of 18.5 meq O 2/kg of oil, saponification index of 189.6 mg potassium hydroxide/g of oil, refractive index of 1.401, and a density of 0.9179 g/cm 3 at 20°C. Regarding contaminating metals, it presented 7 mg of iron/kg of oil, a value higher than previously established limits of 5 mg of iron/kg of oil. The oil contained 24.9% oleic acid, 55.3% linoleic acid, and 4% linolenic acid, demonstrating antioxidant capacity. Quinoa oil showed thermal properties similar to other commercial oils. Conclusions: The interfacial and rheological properties were suitable for the stabilization of emulsions, gels, and foams, which are important in various industrial applications and could facilitate the development of new products. The extracted quinoa oil presented similar characteristics to other commercial oils, which could make it a potential product for commercialization and application in different industries.
Collapse
Affiliation(s)
| | | | - Jesús Eduardo Bravo-Gómez
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| | - Jose Fernando Solanilla-Duque
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| | - Diego Fernando Roa-Acosta
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| |
Collapse
|
5
|
Liu Y, Zhou H, Fan J, Huang H, Deng J, Tan B. Potential mechanisms of different methylation degrees of pectin driving intestinal microbiota and their metabolites to modulate intestinal health of Micropterus salmoides. Int J Biol Macromol 2023; 251:126297. [PMID: 37591422 DOI: 10.1016/j.ijbiomac.2023.126297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Four diets containing 8 % cellulose, low methyl-esterified pectin (LMP), high methyl-esterified pectin (HMP) and MMP (half LMP and half HMP) were designed to evaluate the potential mechanisms by which different esterification degrees of pectin drive intestinal microbiota and their metabolites modulating the intestinal health of Micropterus salmoides. The results showed that both dietary LMP and HMP consistently upregulated intestinal zonula occludens protein 1 (Zo-1), Caludin-1, and Caludin-4, and downregulated intestinal tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and interleukin-1 beta (IL-1β) gene expression (P < 0.05). Dietary HMP separately upregulated intestinal Occludin, nuclear factor erythroid2-related factor 2 (Nrf2), B-cell lymphoma-2 (Bcl-2), and Bcl-2 associated agonist of cell death (BAD) gene expression, as well as the digesta propionate content, OTUs, Sobs, Shannon, Chao, and ACE indices (P < 0.05), whereas dietary LMP decreased digesta arginine, 4-aminobutyric, L-tyrosine, and phenylalanine contents (P < 0.05). Moreover, dietary HMP decreased plasma lipopolysaccharide and d-lactic acid contents and increased intestinal superoxide dismutase and glutathione peroxidase activities and immunoglobulin (Ig) receptor and IgM levels (P < 0.05). Collectively, dietary HMP improves intestinal health by increasing intestinal flora α-diversity and enhancing intestinal mechanical barrier, anti-inflammatory, antioxidant, and immune functions. On the contrary, the interference of dietary LMP with butyrate, tyrosine, arginine, and 4-aminobutyric acid metabolism is the main reason for its detrimental effects on intestinal health.
Collapse
Affiliation(s)
- Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China.
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Fan Z, Wang L, Li J, Wu D, Li C, Zheng X, Zhang H, Miao L, Ge X. Momordica charantia saponins administration in low-protein-high-carbohydrate diet improves growth, blood biochemical, intestinal health and microflora composition of juvenile common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108980. [PMID: 37532068 DOI: 10.1016/j.fsi.2023.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
An 8-week feeding trial was conducted to explore the feasibility of Momordica charantia saponins (MCS) administration to facilitate the protein-sparing action of high carbohydrate in diets for juvenile common carp (Cyprinus carpio) with initial mass of 5.41 ± 0.02 g. Based on our previous study, four diets with different the ratio of protein and carbohydrate (P/C ratio) were designed: 32%P/40%C, 30%P/43%C, 28%P/46%C, 28%P/46%C supplemented with 0.16% MCS (28%P/46%C + MCS). Each diet treatment was divided into 3 replicates. Results revealed that 30%P/43%C group increased growth performance and intestinal digestion, decreased intestinal inflammation, and optimized the intestinal microbiota compared to 32%P/40%C group, which presented the stronger protein-sparing action of high carbohydrate. But if the P/C ratio reduced to 28%P/46%C or less, the saving action would be restrained. However, compared to the 30%P/43%C and 28%P/46%C groups, 28%P/46%C + MCS group significantly elevated growth performance and activities of digestive enzymes and antioxidative enzymes, whilst the opposite trend occurred in the contents of glucose, triglyceride, total cholesterol, low density lipoprotein cholesterol, blood urea nitrogen, glutamic oxalacetic transaminase, glutamic-pyruvic transaminase and malondialdehyde. In addition, 28%P/46%C + MCS group markedly upregulated the expressions of GH/IGF axis genes, genes involved in protein synthesis, antioxidant genes and anti-inflammatory cytokine, whilst the opposite trend occurred in the expressions of pro-inflammatory cytokines. Moreover, 28%P/46%C + MCS group obtained the remarkably higher Enterococcus proportion and lower Lactococcus proportion compared to the 30%P/43%C and 28%P/46%C groups, whereas the opposite occurred in 30%P/43%C group, which indicated that there existed differences in the improvement mechanism on intestinal microflora composition between MCS and appropriate P/C ratio. Combined with the above mentioned changes in our research, we concluded that 0.16% MCS administration in a 28%P/46%C diet could facilitate the protein-sparing action of high carbohydrate in diets for common carp, which could decrease the 5% dosage of soybean meal and synchronously reduce the 4% crude protein of diets without affecting the growth and immune ability for common carp.
Collapse
Affiliation(s)
- Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Chenhui Li
- Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xianhu Zheng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Guangdong Evergreen Feed Industry Co., Ltd., Zhanjiang, China.
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xianping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
7
|
Assar DH, Ragab AE, Abdelsatar E, Salah AS, Salem SMR, Hendam BM, Al Jaouni S, Al Wakeel RA, AbdEl-Kader MF, Elbialy ZI. Dietary Olive Leaf Extract Differentially Modulates Antioxidant Defense of Normal and Aeromonas hydrophila-Infected Common Carp ( Cyprinus carpio) via Keap1/Nrf2 Pathway Signaling: A Phytochemical and Biological Link. Animals (Basel) 2023; 13:2229. [PMID: 37444027 DOI: 10.3390/ani13132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Olive leaves are an immense source of antioxidant and antimicrobial bioactive constituents. This study investigated the effects of dietary incorporation of olive leaf extract (OLE) on the growth performance, hematobiochemical parameters, immune response, antioxidant defense, histopathological changes, and some growth- and immune-related genes in the common carp (Cyprinus carpio). A total of 180 fish were allocated into four groups with triplicate each. The control group received the basal diet without OLE, while the other three groups were fed a basal diet with the OLE at 0.1, 0.2, and 0.3%, respectively. The feeding study lasted for 8 weeks, then fish were challenged with Aeromonas hydrophila. The results revealed that the group supplied with the 0.1% OLE significantly exhibited a higher final body weight (FBW), weight gain (WG%), and specific growth rate (SGR) with a decreased feed conversion ratio (FCR) compared to the other groups (p < 0.05). An increase in immune response was also observed in the fish from this group, with higher lysosome activity, immunoglobulin (IgM), and respiratory burst than nonsupplemented fish, both before and after the A. hydrophila challenge (p < 0.05). Similarly, the supplementation of the 0.1% OLE also promoted the C. carpio's digestive capacity pre- and post-challenge, presenting the highest activity of protease and alkaline phosphatase (p < 0.05). In addition, this dose of the OLE enhanced fish antioxidant capacity through an increase in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) and decreased hepatic lipid peroxidation end products (malondialdehyde-MDA), when compared to the control group, both pre- and post-infection (p < 0.05). Concomitantly with the superior immune response and antioxidant capacity, the fish fed the 0.1% OLE revealed the highest survival rate after the challenge with A. hydrophila (p < 0.05). A significant remarkable upregulation of the hepatic sod, nrf2, and protein kinase C transcription levels was detected as a vital approach for the prevention of both oxidative stress and inflammation compared to the infected unsupplied control group (p < 0.05). Interestingly, HPLC and UPLC-ESI-MS/MS analyses recognized that oleuropein is the main constituent (20.4%) with other 45 compounds in addition to tentative identification of two new compounds, namely oleuroside-10-carboxylic acid (I) and demethyl oleuroside-10-carboxylic acid (II). These constituents may be responsible for the OLE exerted potential effects. To conclude, the OLE at a dose range of 0.66-0.83 g/kg w/w can be included in the C. carpio diet to improve the growth, antioxidant capacity, and immune response under normal health conditions along with regulating the infection-associated pro-inflammatory gene expressions, thus enhancing resistance against A. hydrophila.
Collapse
Affiliation(s)
- Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 32527, Egypt
| | - Essam Abdelsatar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Shimaa M R Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Marwa F AbdEl-Kader
- Department of Fish Health and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C., Kafrelsheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
8
|
Ortiz-Arrabal O, Bermejo-Casares F, Garzón I, Mesa-García MD, Gómez-Llorente C, Alaminos M. Optimization of human skin keratinocyte culture protocols using bioactive molecules derived from olive oil. Biomed Pharmacother 2023; 164:115000. [PMID: 37301136 DOI: 10.1016/j.biopha.2023.115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Skin damage due to severe burns can compromise patient life. Current tissue engineering methods allow the generation of human skin substitutes for clinical use. However, this process is time-consuming, as the keratinocytes required to generate artificial skin have a low proliferation rate in culture. In this study, we evaluated the pro-proliferative effects of three natural biomolecules isolated from olive oil: phenolic extract (PE), DL-3,4-dihydroxyphenyl glycol (DHFG), and oleuropein (OLP), on cultured human skin keratinocytes. The results showed that PE and OLP increased the proliferation of immortalized human skin keratinocytes, especially at concentrations of 10 and 5 µg/mL, respectively, without altering cell viability. In contrast, DHFG did not produce a significant improvement in keratinocyte proliferation. In normal human skin keratinocytes obtained from skin biopsies, we found that PE, but not OLP, could increase the number of keratinocyte colonies and the area occupied by these cells. Furthermore, this effect was associated with increased KI-67 and Proliferating cell nuclear antigen (PCNA) gene expression. Thus, we propose that PE positively affects keratinocyte proliferation and could be used in culture protocols to improve bioartificial skin generation by tissue engineering.
Collapse
Affiliation(s)
- Olimpia Ortiz-Arrabal
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada E18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada E18012, Spain; Doctoral Program in Biochemistry and Molecular Biology, University of Granada, Granada E18071, Spain
| | - Fabiola Bermejo-Casares
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada E18016, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada E18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada E18012, Spain
| | - María-Dolores Mesa-García
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada E18012, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus Universitario de Cartuja, Granada 18071, Spain; Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avenida del Conocimiento s/n, Granada 18100, Spain.
| | - Carolina Gómez-Llorente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada E18012, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus Universitario de Cartuja, Granada 18071, Spain; Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avenida del Conocimiento s/n, Granada 18100, Spain.
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada E18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada E18012, Spain.
| |
Collapse
|
9
|
Abdalla Salem MO, Taştan Y, Bilen S, Terzi E, Sönmez AY. Dietary flaxseed (Linum usitatissimum) oil supplementation affects growth, oxidative stress, immune response, and diseases resistance in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108798. [PMID: 37150237 DOI: 10.1016/j.fsi.2023.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
This paper describes the effects of flaxseed (Linum usitatissimum) oil (FSO) as a feed additive on growth performance, oxidative stress, immunity, and disease resistance in rainbow trout (Oncorhynchus mykiss). Four-hundred-and-twenty rainbow trout individuals (mean weight: 25.66 ± 1.33 g) were fed with different doses of FSO (0.5, 1, and 1.5%) ad libitum two times a day for 9 weeks. At the end of the feeding, growth performance was evaluated and the fish were challenged with two different bacteria (Yersinia ruckeri and Aeromonas hydrophila). At the end of the 3rd, 6th, and 9th weeks, blood and tissue samples were collected from 9 fish per treatment to evaluate innate immune response, cytokine gene expression levels, antioxidant enzyme activities and lipid peroxidation levels, and digestive enzyme activities. Determination of haematological parameters and histological examination was also carried out to evaluate the general health status of the fish. Results showed that the final weight and specific growth rate of fish supplemented with FSO increased significantly (p < 0.05). FSO-supplemented fish showed higher resistance to Y. ruckeri infection than the control group (p < 0.05). However, survival rates of all groups in A. hydrophila challenge test were similar (p > 0.05). Among the investigated innate immune response parameters, the potential killing activity of phagocytes, myeloperoxidase activity, and lysozyme activity increased in the FSO-supplemented groups (p < 0.05). Almost all cytokine gene expression levels in the experimental groups up-regulated especially after 9 weeks of feeding in the head kidney and intestine (p < 0.05). Similarly, superoxide dismutase and catalase activities were found to be significantly higher in the FSO group than in the control (p < 0.05) whereas, the lipid peroxidation levels drastically declined as a result of the FSO supplementation (p < 0.05). These results suggest that FSO can improve growth, enhance immune response, and lower oxidative damage in rainbow trout when supplemented at the rates of 0.5-1.5% for 9 weeks.
Collapse
Affiliation(s)
- Mohamed Omar Abdalla Salem
- Kastamonu University, Institute of Science, Department of Aquaculture, Kastamonu, Turkiye; Bani Waleed University, Faculty of Education, Department of Biology, Bani Waleed, Libya
| | - Yiğit Taştan
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkiye
| | - Soner Bilen
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkiye
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkiye
| | - Adem Yavuz Sönmez
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkiye.
| |
Collapse
|
10
|
Heras NDL, Galiana A, Ballesteros S, Quintela JC, Bonilauri I, Lahera V, Martín-Fernández B. Polyphenols and Triterpenes Combination in an In Vitro Model of Cardiac Damage: Protective Effects. Int J Mol Sci 2023; 24:7977. [PMID: 37175685 PMCID: PMC10178477 DOI: 10.3390/ijms24097977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Olive products contain high levels of monounsaturated fatty acids as well as other minor components such as triterpenic alcohols and other pentacyclic triterpenes, which together form the main triterpenes of virgin olive oil. Olive fruits and leaves contain significant amounts of hydrophilic and lipophilic bioactives including flavones, phenolic acids and phenolic alcohols, amongst others. Several studies have shown the benefits of these substances on the cardiovascular system. Regardless, little is known about the specific combination of bioactive compounds in cardiovascular health. Thus, we aimed to test the combination of a triterpenes (TT70) and a polyphenols (HT60) olive oil bioactive extract in H9c2 cells under stress conditions: LPS and H2O2 stimulation. To evaluate the effectiveness of the combination, we measured cell viability, superoxide production and protein expression of caspase 3, eNOS, peNOS, TNF-α and Il-6. Overall, cells stimulated with LPS or H2O2 and co-incubated with the combination of triterpenes and polyphenols had increased cell survival, lower levels of superoxide anion, lower protein expression of eNOS and higher expression of peNOS, increased protein expression of SOD-1 and lower protein expression of TNF-α and Il-6. The specific combination of HT60+TT70 is of great interest for further study as a possible treatment for cardiovascular damage.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Adrián Galiana
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | | | - Ileana Bonilauri
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
- Scientific Department, Natac Biotech, 28923 Madrid, Spain;
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
11
|
Ruiz A, Andree KB, Furones D, Holhorea PG, Calduch-Giner JÀ, Viñas M, Pérez-Sánchez J, Gisbert E. Modulation of gut microbiota and intestinal immune response in gilthead seabream ( Sparus aurata) by dietary bile salt supplementation. Front Microbiol 2023; 14:1123716. [PMID: 37168118 PMCID: PMC10166234 DOI: 10.3389/fmicb.2023.1123716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Given their role in lipid digestion, feed supplementation with bile salts could be an economic and sustainable solution to alterations in adiposity and intestinal inflammation generated by some strategies currently used in aquaculture. An important part of the metabolism of bile salts takes place in the intestine, where the microbiota transforms them into more toxic forms. Consequently, we aimed to evaluate the gut immune response and microbial populations in gilthead seabream (Sparus aurata) fed a diet supplemented with a blend of bile salts with proven background as a regulator of lipid metabolism and fat content. After the 90-day feeding trial, a differential modulation of the microbiota between the anterior and posterior intestine was observed. While in the anterior intestine the relative abundance of Desulfobacterota doubled, in the posterior intestine, the levels of Firmicutes increased and Proteobacteria, Actinobacteriota, and Campylobacterota were reduced when supplementing the diet with bile salts. Even so, only in the anterior intestine, there was a decrease in estimated richness (Chao1 and ACE indices) in presence of dietary bile salts. No significant differences were displayed in alpha (Shannon and Simpson indices) nor beta-diversity, showing that bile sales did not have a great impact on the intestinal microbiota. Regarding the gene expression profile in 2 h postprandial-fish, several changes were observed in the analyzed biomarkers of epithelial integrity, nutrient transport, mucus production, interleukins, cell markers, immunoglobulin production and pathogen recognition receptors. These results may indicate the development of an intestinal immune-protective status to tackle future threats. This work also suggests that this immune response is not only regulated by the presence of the dietary bile salts in the intestine, but also by the microbial populations that are in turn modulated by bile salts. After a fasting period of 2 days, the overall gene expression profile was stabilized with respect to fish fed the unsupplemented diet, indicating that the effect of bile salts was transient after short periods of fasting. On the balance, bile salts can be used as a dietary supplement to enhance S. aurata farming and production without compromising their intestinal health.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
- Ph.D. Program in Aquaculture, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Alberto Ruiz,
| | - Karl B. Andree
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Dolors Furones
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Paul G. Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Josep À. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Marc Viñas
- Sustainability in Biosystems, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Torre Marimon, Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| |
Collapse
|
12
|
Salem MOA, Taştan Y, Bilen S, Terzi E, Sönmez AY. Effects of white mustard (Sinapis alba) oil on growth performance, immune response, blood parameters, digestive and antioxidant enzyme activities in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:283-299. [PMID: 36210002 DOI: 10.1016/j.fsi.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
A study was conducted to evaluate the effects of dietary supplementation of white mustard (Sinapis alba) oil (WMO) on growth performance, immune responses, digestive and antioxidant enzyme activities in juvenile rainbow trout (Oncorhynchus mykiss). For this purpose, fish (initial weight: 25.77 ± 0.13 g) were divided into four experimental groups in triplicate and fed ad libitum twice a day with diets containing WMO at 0 (control), 0.5, 1, and 1.5% of diet for 9 weeks. Three fish from each tank (n:9 per treatment) were sampled on 21st, 42nd, and 63rd days for further analyses. At the end of the feeding period, fish were challenged with Aeromonas hydrophila and Yersinia ruckeri in two separate experimental setups. Results showed that final weight, weight gain, and specific growth rate were significantly increased in all experimental groups compared to the control. Feed conversion ratio was similar among treatments. Respiratory burst and potential killing activity decreased in all experimental groups compared to the control (P < 0.05). Lysozyme and myeloperoxidase activities were elevated in all experimental groups at the end of the experiment compared to the control (P < 0.05). Cytokine gene expressions in the head kidney and intestine were elevated in all experimental groups compared to that of the control in general (P < 0.05). Hematological responses of the experimental fish groups were similar to that of the control (P > 0.05). Pepsin and trypsin levels decreased in all experimental groups (P < 0.05). In terms of antioxidant enzyme activities, significant improvement in liver superoxide dismutase, catalase, and glutathione s-transferase activities in all treatment groups were determined (P < 0.05). In addition, a significant decline in liver lipid peroxidation levels was recorded in all treated groups at all sampling times compared to the control (P < 0.05). At the end of this feeding trial, no significant differences (P > 0.05) were observed in survival against A. hydrophila among experimental groups compared to the control (P > 0.05). However, increased survival against Y. ruckeri was determined in experimental fish groups (P < 0.05). This study suggests that white mustard oil had a favorable effect on the overall health and growth of rainbow trout.
Collapse
Affiliation(s)
- Mohamed Omar Abdalla Salem
- Kastamonu University Institute of Science, Department of Aquaculture, Kastamonu, Turkey; Bani Waleed University, Faculty of Education, Department of Biology, Bani Walid, Libya
| | - Yiğit Taştan
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Soner Bilen
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Adem Yavuz Sönmez
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey.
| |
Collapse
|
13
|
Balbuena-Pecino S, Montblanch M, García-Meilán I, Fontanillas R, Gallardo Á, Gutiérrez J, Navarro I, Capilla E. Hydroxytyrosol-rich extract from olive juice as an additive in gilthead sea bream juveniles fed a high-fat diet: Regulation of somatic growth. Front Physiol 2022; 13:966175. [PMID: 36277183 PMCID: PMC9584614 DOI: 10.3389/fphys.2022.966175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The dietary inclusion of plant-based products in fish feeds formulation is required for the sustainable development of aquaculture. Moreover, considering functional diets, hydroxytyrosol, one of the major phenolic compounds found in olives (Olea europaea), has been identified as a potential candidate to be used in the aquafeeds industry due to its health promoting abilities. The aim of this study was to evaluate the effects of the inclusion of an olive juice extract rich in hydroxytyrosol as an additive (0.52 g HT/kg feed) in a high-fat (24% lipids) diet in gilthead sea bream (Sparus aurata) juveniles. Moreover, the experimental diets, with or without the extract, were administered daily at a standard (3% of total biomass in the tank) or restricted ration (40% reduction) for 8–9 weeks. Growth and biometric parameters, insulin-like growth factor 1 (IGF-1) plasma levels and growth hormone/IGF axis-, myogenic- and osteogenic-related genes expression in liver, white muscle and/or bone were analyzed. Moreover, in vitro cultures of vertebra bone-derived cells from fish fed the diets at a standard ration were performed at weeks 3 and 9 to explore the effects of hydroxytyrosol on osteoblasts development. Although neither body weight or any other biometric parameter were affected by diet composition after 4 or 8 weeks, the addition of the hydroxytyrosol-rich extract to the diet increased IGF-1 plasma levels, regardless of the ration regime, suggesting an anabolic condition. In muscle, the higher mRNA levels of the binding protein igfbp-5b and the myoblast fusion marker dock5 in fish fed with the hydroxytyrosol-rich diet suggested that this compound may have a role in muscle, inducing development and a better muscular condition. Furthermore in bone, increased osteogenic potential while delayed matrix mineralization after addition to the diet of the olive juice extract was supported by the upregulated expression of igf-1 and bmp4 and reduced transcript levels of osteopontin. Overall, this study provides new insights into the beneficial use of hydroxytyrosol as a dietary additive in gilthead sea bream functional diets to improve muscle-skeletal condition and, the aquaculture industry.
Collapse
Affiliation(s)
- Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Manel Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Ángeles Gallardo
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Encarnación Capilla,
| |
Collapse
|
14
|
Assessing effects of guar gum viscosity on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Int J Biol Macromol 2022; 222:1037-1047. [PMID: 36181882 DOI: 10.1016/j.ijbiomac.2022.09.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022]
Abstract
A 56-day feeding trial was conducted to assess the effects of different viscous guar gum on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Four practical diets with 42.5 % crude protein and 13.7 % crude lipid were formulated to contain 8 % cellulose and three different viscosities (2500, 5200, and 6000 mPa·s) of guar gum. Dietary guar gum inhibits fish growth and feed utilization, decreases the α-diversity of the intestinal flora, and negatively alters the intestinal flora structure and metabolite composition. High viscous guar gum down-regulated the intestinal tight junction, anti-inflammatory, and anti-apoptotic related gene's expression, decreased digesta butyrate/histamine ratio; and increased the abundance of Plesiomonas shigelloides. These results suggest that dietary guar gum adversely affects intestinal health by disrupting intestinal flora structure and metabolite composition, and that viscosity should be considered when using guar gum as a binder in aquafeeds.
Collapse
|
15
|
Liu Y, Cao Y, Zhang Y, Fan J, Zhou H, Huang H, Jiang W, Zhang W, Deng J, Tan B. Intestinal flora and immunity response to different viscous diets in juvenile largemouth bass, Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1012-1023. [PMID: 35863540 DOI: 10.1016/j.fsi.2022.06.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
An 8-weeks feeding trial was conducted to estimate the effects of different viscous cellulose on the intestinal flora and health in juvenile largemouth bass (Micropterus salmoides). Four isoproteic and isolipidic experimental diets were formulated (crude protein 42.50%, crude lipid 13.70%) to contain 8% cellulose (control group; 5.14 mPa s), 8% low viscous carboxymethyl cellulose (CMC) with 800 mPa s (Lvs-CMC group; 182.15 mPa s), 8% middle viscous CMC with 2000 mPa s (Mvs-CMC group; 320.48 mPa s) and 8% high viscous CMC with 5000 mPa s (Hvs-CMC group; 440.65 mPa s), respectively. The weight gain rate, specific growth rate, protein efficiency ratio, protein and lipid deposition rate in the CMC groups were dramatically lower than those in the control group, while feed conversion rate showed an opposite result. Plasma diamine oxidase activity, endothelin-1 and lipopolysaccharide concentrations in the Mvs-CMC and Hvs-CMC groups were significantly higher than in the control group, accompanied by a significant down-regulation of Occludin, Caludin-1 and Caludin-4. Intestinal glutathione concentration, superoxide dismutase and catalase activities in the CMC groups were significantly lower than in the control group, accompanied by a significant up-regulation of Keap1 and down-regulation of Nrf2. Moreover, CMC diets dramatically down-regulated the expression levels of IL-10 and TGF-β1. Digesta total short chain fatty acid and acetate concentrations in the CMC groups were dramatically higher than in the control group, while butyrate concentration showed an opposite result. The OTU, Sobs, Shannon and Simpson indices of intestinal flora in the CMC groups were dramatically lower than in the control group. Notably, structural analysis showed that dietary CMC dramatically increased the abundance of C. somerae and P. shigelloides, but reduced the abundance of C. colicanis and C. perfringens. In summary, increasing dietary viscosity adversely affects the intestinal flora structure and diversity, increases acetate/butyrate-producing bacterial ratio and the abundance of pathogenic microorganisms, disrupting intestinal flora homeostasis, impairs mucosa barrier function, induces intestinal inflammation and epithelial cell apoptosis in juvenile largemouth bass. Our findings demonstrate that soluble cellulose is more detrimental to intestinal health and growth in juvenile largemouth bass compared to insoluble cellulose, and the adverse effects of soluble cellulose are mainly caused by its viscosity. Importantly, this study demonstrate that viscosity is the main characteristic of non-starch polysaccharides that are detrimental to the intestinal health of fish.
Collapse
Affiliation(s)
- Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Yixiong Cao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Yumeng Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Wen Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Wei Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China.
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, China.
| |
Collapse
|
16
|
Wang S, Han Z, Turchini GM, Wang X, Fang Z, Chen N, Xie R, Zhang H, Li S. Effects of Dietary Phospholipids on Growth Performance, Digestive Enzymes Activity and Intestinal Health of Largemouth Bass ( Micropterus salmoides) Larvae. Front Immunol 2022; 12:827946. [PMID: 35087540 PMCID: PMC8789246 DOI: 10.3389/fimmu.2021.827946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
While the beneficial roles of dietary phospholipids on health status and overall performances of fish larvae have been well demonstrated, the underlying mechanisms remain unclear. To address this gap, the present study was conducted to investigate the effects of dietary phospholipids on growth performance, intestinal development, immune response and microbiota of larval largemouth bass (Micropterus salmoides). Five isonitrogenous and isolipidic micro-diets were formulated to contain graded inclusion levels of phospholipids (1.69, 3.11, 5.23, 7.43 and 9.29%). Results showed that the supplementation of dietary phospholipids linearly improved the growth performance of largemouth bass larvae. The inclusion of dietary phospholipids increased the activity of digestive enzymes, such as lipase, trypsin and alkaline phosphatase, and promoted the expression of tight junction proteins including ZO-1, claudin-4 and claudin-5. Additionally, dietary phospholipids inclusion alleviated the accumulation of intestinal triacylglycerols, and further elevated the activity of lysozyme. Dietary phospholipids inhibited the transcription of some pro-inflammatory cytokines, including il-1β, and tnf-α, but promoted the expression of anti-inflammatory cytokines tgf-β, with these modifications being suggested to be mediated by the p38MAPK/Nf-κB pathway. The analysis of bacterial 16S rRNA V3-4 region indicated that the intestinal microbiota profile was significantly altered at the genus level with dietary phospholipids inclusion, including a decreased richness of pathogenic bacteria genera Klebsiella in larval intestine. In summary, it was showed that largemouth bass larvae have a specific requirement for dietary phospholipids, and this study provided novel insights on how dietary phospholipids supplementation contributes to improving the growth performance, digestive tract development and intestinal health.
Collapse
Affiliation(s)
- Shilin Wang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
| | - Zhihao Han
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
| | - Giovanni M Turchini
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Xiaoyuan Wang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
| | - Zishuo Fang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
17
|
Salomón R, Furones MD, Reyes-López FE, Tort L, Firmino JP, Esteban MA, Espinosa Ruíz C, Quintela JC, Pinilla-Rosas JM, Vallejos-Vidal E, Gisbert E. A Bioactive Extract Rich in Triterpenic Acid and Polyphenols from Olea europaea Promotes Systemic Immunity and Protects Atlantic Salmon Smolts Against Furunculosis. Front Immunol 2021; 12:737601. [PMID: 34867959 PMCID: PMC8633542 DOI: 10.3389/fimmu.2021.737601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
In the present study, the modulation of the transcriptional immune response (microarray analysis) in the head kidney (HK) of the anadromous fish Atlantic salmon (Salmo salar) fed a diet supplemented with an olive fruit extract (AQUOLIVE®) was evaluated. At the end of the trial (133 days), in order to investigate the immunomodulatory properties of the phytogenic tested against a bacterial infection, an in vivo challenge with Aeromonas salmonicida was performed. A total number of 1,027 differentially expressed genes (DEGs) (805 up- and 222 downregulated) were found when comparing the transcriptomic profiling of the HK from fish fed the control and AQUOLIVE® diets. The HK transcripteractome revealed an expression profile that mainly favored biological processes related to immunity. Particularly, the signaling of i-kappa B kinase/NF-kappa and the activation of leukocytes, such as granulocytes and neutrophils degranulation, were suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the HK. Moreover, the bacterial challenge with A. salmonicida that lasted 12 days showed that the cumulative survival was higher in fish fed the AQUOLIVE® diet (96.9 ± 6.4%) than the control group (60.7 ± 13.5%). These results indicate that the dietary supplementation of AQUOLIVE® at the level of 0.15% enhanced the systemic immune response and reduced the A. salmonicida cumulative mortality in Atlantic salmon smolts.
Collapse
Affiliation(s)
- Ricardo Salomón
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain.,PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Dolors Furones
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana P Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| | - M Angeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Cristóbal Espinosa Ruíz
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José C Quintela
- Scientific Department, Natac Biotech, Alcorcón, Madrid, Spain
| | | | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
18
|
Immunomodulatory and antioxidant effects of hydroxytyrosol in cyclophosphamide-induced immunosuppressed broilers. Poult Sci 2021; 101:101516. [PMID: 34784517 PMCID: PMC8591503 DOI: 10.1016/j.psj.2021.101516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
As an important olive component, hydroxytyrosol (HT) has good medicinal and health effects. However, its importance in alleviating immune suppression in broilers has not been established. Therefore, we aimed at evaluating the immunomodulatory and antioxidant effects of HT in immune suppressed broilers. Immune suppressed broiler models were established via intraperitoneal injection of 80 mg/kg cyclophosphamide (Cy). Thirty two Cobb 500 male broilers were randomly allocated into 4 groups of 8 each. Broilers in the model (Cy) and HT treatment (Cy+HT) groups were intraperitoneally administered with Cy (80 mg/kg BW) once a day for 3 d. From the 4th d, broilers in the Cy+HT and HT groups were treated with 0.5 mL of 200 mg/L HT solution, once a day, for 7 d. The Cy and Con groups were orally administered with normal saline. On the 14th and 28th d, serum and duodenal samples were obtained for testing. It was found that HT increased villi height (VH)/crypt depth (CD) ratio in the duodenum and suppressed serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. Moreover, it elevated the expressions of CD4+ and CD8+ T lymphocytes. HT upregulated the mRNA expression levels of interleukin-2 (IL-2), interleukin-4 (IL-4), and interleukin-10 (IL-10), enhanced the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and downregulated malondialdehyde (MDA) levels in Cy-induced immune-suppressed broilers. In conclusion, HT can alleviate immune-suppression as well as enhance immunity and antioxidant activities in the local mucosa of small intestines in broilers. Therefore, it can be used as an immune stimulant. More studies should be performed to confirm our findings and to elucidate on the mechanisms of HT.
Collapse
|
19
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
20
|
Microbiota composition and intestinal integrity remain unaltered after the inclusion of hydrolysed Nannochloropsis gaditana in Sparus aurata diet. Sci Rep 2021; 11:18779. [PMID: 34548549 PMCID: PMC8455595 DOI: 10.1038/s41598-021-98087-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
The use of lysed microalgae in the diet of carnivorous fish can increase the bioavailability of proteins and bioactive compounds, such as unsaturated fatty acids or vitamins in the digestive tract. These are essential molecules for the proper physiological development of fish in aquaculture. However, some antinutritional components and other undesirable molecules can be released from an excess of microalgae supplied, compromising the integrity of the intestine. The inclusion of small amounts of hydrolized microalgae in the fish diet can be a good strategy to avoid negative effects, improving the availability of beneficial compounds. Nannochloropsis gaditana is an interesting microalgae as it contains nutraceuticals. Previous studies reported beneficial effects after its inclusion in the diet of Sparus aurata, a widely cultured species in Europe and in all Mediterranean countries. However, administration of raw microalgae can produce intestinal inflammation, increased intestinal permeability, bacterial translocation and disturbance of digestion and absorption processes. The aim of this study was to evaluate changes in the intestinal microbiota and barrier stability of S. aurata fed with low inclusion (5%) hydrolysed N. gaditana. Intestinal microbiota was analyzed using Illumina MiSeq technology and libraries were constructed using variable regions V3–V4 of 16S rDNA molecules. Analysis were based in the identification, quantification and comparison of sequences. The predictive intestinal microbial functionality was analyzed with PICRUSt software. The results determined that the intestinal microbiota bacterial composition and the predictive intestinal microbiota functionality did not change statistically after the inclusion of N. gaditana on the diet. The study of gene expression showed that genes involved in intestinal permeability and integrity were not altered in fish treated with the experimental diet. The potential functionality and bacterial taxonomic composition of the intestinal microbiota, and the expression of integrity and permeability genes in the intestine of the carnivorous fish S. aurata were not affected by the inclusion of hydrolysed 5% N. gaditana microalgae.
Collapse
|
21
|
Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021; 10:foods10061236. [PMID: 34072297 PMCID: PMC8227576 DOI: 10.3390/foods10061236] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, a remarkable increase in olive oil consumption has occurred worldwide, favoured by its organoleptic properties and the growing awareness of its health benefits. Currently, olive oil production represents an important economic income for Mediterranean countries, where roughly 98% of the world production is located. Both the cultivation of olive trees and the production of industrial and table olive oil generate huge amounts of solid wastes and dark liquid effluents, including olive leaves and pomace and olive oil mill wastewaters. Besides representing an economic problem for producers, these by-products also pose serious environmental concerns, thus their partial reuse, like that of all agronomical production residues, represents a goal to pursue. This aspect is particularly important since the cited by-products are rich in bioactive compounds, which, once extracted, may represent ingredients with remarkable added value for food, cosmetic and nutraceutical industries. Indeed, they contain considerable amounts of valuable organic acids, carbohydrates, proteins, fibers, and above all, phenolic compounds, that are variably distributed among the different wastes, depending on the employed production process of olive oils and table olives and agronomical practices. Yet, extraction and recovery of bioactive components from selected by-products constitute a critical issue for their rational valorization and detailed identification and quantification are mandatory. The most used analytical methods adopted to identify and quantify bioactive compounds in olive oil by-products are based on the coupling between gas- (GC) or liquid chromatography (LC) and mass spectrometry (MS), with MS being the most useful and successful detection tool for providing structural information. Without derivatization, LC-MS with electrospray (ESI) or atmospheric pressure chemical (APCI) ionization sources has become one of the most relevant and versatile instrumental platforms for identifying phenolic bioactive compounds. In this review, the major LC-MS accomplishments reported in the literature over the last two decades to investigate olive oil processing by-products, specifically olive leaves and pomace and olive oil mill wastewaters, are described, focusing on phenolics and related compounds.
Collapse
|
22
|
Salomón R, Reyes-López FE, Tort L, Firmino JP, Sarasquete C, Ortiz-Delgado JB, Quintela JC, Pinilla-Rosas JM, Vallejos-Vidal E, Gisbert E. Medicinal Plant Leaf Extract From Sage and Lemon Verbena Promotes Intestinal Immunity and Barrier Function in Gilthead Seabream ( Sparus aurata). Front Immunol 2021; 12:670279. [PMID: 34054843 PMCID: PMC8160519 DOI: 10.3389/fimmu.2021.670279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.
Collapse
Affiliation(s)
- Ricardo Salomón
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | - Juan B. Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | | | | | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
23
|
Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of Gilthead Sea Bream ( Sparus aurata) Juveniles. BIOLOGY 2021; 10:biology10050416. [PMID: 34066667 PMCID: PMC8151949 DOI: 10.3390/biology10050416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Reduced oxygen availability generates a number of adaptive features across all the animal kingdom, and the goal of this study was targeting the mild-hypoxia driving force for metabolic and muscle transcriptional reprogramming of gilthead sea bream juveniles. Attention was focused on blood metabolic and muscle transcriptomic landmarks before and after exhaustive exercise. Our results after mild-hypoxia conditioning highlighted an increased contribution of lipid metabolism to whole energy supply to preserve the aerobic energy production, a better swimming performance regardless of changes in feed intake, as well as reduced protein turnover and improved anaerobic fitness with the restoration of normoxia. Abstract On-growing juveniles of gilthead sea bream were acclimated for 45 days to mild-hypoxia (M-HYP, 40–60% O2 saturation), whereas normoxic fish (85–90% O2 saturation) constituted two different groups, depending on if they were fed to visual satiety (control fish) or pair-fed to M-HYP fish. Following the hypoxia conditioning period, all fish were maintained in normoxia and continued to be fed until visual satiation for 3 weeks. The time course of hypoxia-induced changes was assessed by changes in blood metabolic landmarks and muscle transcriptomics before and after exhaustive exercise in a swim tunnel respirometer. In M-HYP fish, our results highlighted a higher contribution of aerobic metabolism to whole energy supply, shifting towards a higher anaerobic fitness following normoxia restoration. Despite these changes in substrate preference, M-HYP fish shared a persistent improvement in swimming performance with a higher critical speed at exercise exhaustion. The machinery of muscle contraction and protein synthesis and breakdown was also largely altered by mild-hypoxia conditioning, contributing this metabolic re-adjustment to the positive regulation of locomotion and to the catch-up growth response during the normoxia recovery period. Altogether, these results reinforce the presence of large phenotypic plasticity in gilthead sea bream, and highlights mild-hypoxia as a promising prophylactic measure to prepare these fish for predictable stressful events.
Collapse
|
24
|
Poli CHEC, Thornton-Kurth KJ, Legako JF, Bremm C, Hampel VS, Hall J, Ipharraguerre IR, Villalba JJ. The effect of plant bioactive compounds on lamb performance, intake, gastrointestinal parasite burdens, and lipid peroxidation in muscle. J Anim Sci 2021; 99:6102878. [PMID: 33454733 DOI: 10.1093/jas/skab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023] Open
Abstract
Plant extracts have been widely used in animal production systems due to the benefits promoted by their bioactive components, mainly through their antioxidant effects and positive effects on animal growth, health, and meat quality. We determined whether bioactive compounds (BC) from grape (Vitis vinifera), olive (Olea europaea), and pomegranate (Punica granatum) have beneficial effects on lamb growth while controlling gastrointestinal parasitism and reducing skeletal lipid peroxidation in muscle. Fourteen lambs (4 to 5 mo of age) were housed in individual pens and assigned to two treatment groups (seven animals/group), where they received: 1) a basal diet of beet pulp:soybean meal (90:10) (CONTROL) and 2) the same diet, but containing 0.3% of BC extracted from grape, olive, and pomegranate (BNP). After 21 d of consuming their respective rations (period 1), all lambs were dosed with 10,000 L3 stage larvae of Haemonchus contortus. Intake, production, and physiological parameters were determined before infection (period 1), after oral dosage with L3 (period 2), and during early (period 3) and later (period 4) developmental stages of infection. Groups of animals did not differ in their ration intake or average daily gain, either before or after the infection, or in their parasitic burdens estimated through fecal egg counts (P > 0.05). Lambs under BNP showed greater feed efficiency before infection (P < 0.001), but the pattern reversed after infection. In addition, the inclusion of plant bioactives to the diet did not have an effect (P > 0.05) on blood or lipid peroxidation in muscle or on hemogram, serum concentration of haptoglobin, and immunoglobulin E. These results could be explained by low dietary doses and constrained absorption or ruminal inactivation of these compounds. Changes in feed efficiencies suggest a negative interaction between BC in the diet and parasitism, which warrants further research.
Collapse
Affiliation(s)
- Cesar H E C Poli
- Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Carolina Bremm
- Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viviane S Hampel
- Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Ignacio R Ipharraguerre
- Institute of Human Nutrition and Food Science, Christian-Albrechts University, Kiel, Germany
| | | |
Collapse
|
25
|
Herrero-Encinas J, Menoyo D, Blanch M, Pastor JJ, Rochell SJ. Response of broiler chickens fed diets supplemented with a bioactive olive pomace extract from Olea europaea to an experimental coccidial vaccine challenge. Poult Sci 2020; 100:575-584. [PMID: 33518110 PMCID: PMC7858167 DOI: 10.1016/j.psj.2020.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 11/04/2022] Open
Abstract
This study aimed to investigate an experimental procedure of coccidial challenge in battery cages and the anticoccidial effect of a bioactive olive pomace extract from Olea europaea (OE) in broiler chickens. To this end, four hundred 1-day-old male chicks were randomly assigned to 5 experimental treatments (10 cages/treatment; 8 birds/cage). One group was fed the control diet without any additives and not challenged (NCU). The other 4 groups were challenged and fed the control diet with no additives (NCC) or supplemented with 500 ppm of coccidiostat or with 500 or 1,500 ppm of OE. At 0, 7, and 14 d, all challenged birds, except the NCC group, were orally gavaged with a live Eimeria spp. oocyst vaccine at 1x, 4x, and 16x of the manufacturer's recommended dose, respectively. Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were determined at 7, 14, 20, and 28 d. At 20 d of age, 1 bird per cage was euthanized to analyze duodenum and jejunum morphology, ileal mucosa gene expression, and plasma cytokine, alpha-1-acid glycoprotein, and carotenoid (CAR) concentrations. Coccidial vaccine challenge lowered BW (P < 0.05) throughout the trial, and reduced FI and BWG, except from 20 to 28d, and increased FCR from 0 to 7, 0 to 14, and 0 to 20 d. Birds in the NCC group had higher (P < 0.05) oocyst counts and lower (P < 0.05) CAR and villus height to crypt depth ratios compared with NCU birds. Overall, coccidia challenge caused the expected reductions in growth performance and gut integrity. While the coccidiostat reduced oocysts excretion, dietary OE or coccidiostat had no effects on performance or gut integrity. The attenuated inflammatory response observed for all the treatments following the third infection can be attributed to the adaptation or immunization to the repetitive exposure to Eimeria spp.
Collapse
Affiliation(s)
- J Herrero-Encinas
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, ETS Ingeniería Agronómica Alimentaria y de Biosistemas, 28040 Madrid, Spain
| | - D Menoyo
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, ETS Ingeniería Agronómica Alimentaria y de Biosistemas, 28040 Madrid, Spain.
| | - M Blanch
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Spain
| | - J J Pastor
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Spain
| | - S J Rochell
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
26
|
Hoseinifar SH, Shakouri M, Yousefi S, Van Doan H, Shafiei S, Yousefi M, Mazandarani M, Torfi Mozanzadeh M, Tulino MG, Faggio C. Humoral and skin mucosal immune parameters, intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste. FISH & SHELLFISH IMMUNOLOGY 2020; 100:171-178. [PMID: 32135345 DOI: 10.1016/j.fsi.2020.02.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
A six-week feeding trial was carried out to evaluate the effects of inclusion of dietary olive waste cake (OWC, 0, 0.5, 2.5 and 5 g kg-1 diet) on performance, antioxidant condition and immune responses of rainbow trout (Oncorhynchus mykiss) (2.5 ± 0.1 g). Supplementing diet with 2.5 and 5 g OWC kg-1 diet significantly enhanced serum and mucosal lysozyme activity in fish. Regarding mucosal immunity, fish fed 2.5 and 5 g OWC kg-1 diets had higher skin mucus total Ig concentrations than other groups. In relation to antioxidant status, those in 2.5 g OWC kg-1 and the control groups exhibited the highest and the least liver superoxide dismutase and glutathione peroxidase activities, respectively. Furthermore, the activity of liver glutathione S transferase in fish fed 2.5 and 5 g OWC kg-1 diets was higher than the other treatments. In respect to gut cytokines gene expression, our findings demonstrated dietary OWC did not influence interlukines-1β and 10 genes expression, but relative expression of IL8 gene gradually up-regulated with increasing dietary OWC level. Moreover, fish fed 0.5 g OWC kg-1 and the control diets had the highest and the lowest gut tumor necrosis factor-α gene expression values, respectively. The relative expression of transforming growth factor-β significantly down-regulated in gut of fish fed 2.5 and 5 g OWC kg-1 diets compared to other groups. Supplementing diet with OWC pronouncedly improved growth and feed conversion ratio in fish compared to the control. Overall, the findings of this study suggested that inclusion of 2.5 g OWC kg-1 diet can improve growth rate, oxidative stress status, humoral and skin mucosal immune responses in O. mykiss fingerlings and it can be considered as a functional feed additive for this species.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Meysam Shakouri
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Samira Yousefi
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Shafigh Shafiei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Mohammad Mazandarani
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Maria Grazia Tulino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, Messina, Italy
| | - Caterina Faggio
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| |
Collapse
|
27
|
Ronza P, Estensoro I, Bermúdez R, Losada AP, Pérez-Cordón G, Pardo BG, Sitjà-Bobadilla A, Quiroga MI. Effects of Enteromyxum spp. (Myxozoa) infection in the regulation of intestinal E-cadherin: Turbot against gilthead sea bream. JOURNAL OF FISH DISEASES 2020; 43:337-346. [PMID: 31984535 DOI: 10.1111/jfd.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Enteromyxoses are relevant diseases for turbot and gilthead sea bream aquaculture. The myxozoan parasites invade the intestinal mucosa, causing a cachectic syndrome associated with intestinal barrier alteration; nonetheless, their pathological impact is different. Turbot infected by Enteromyxum scophthalmi develop more severe intestinal lesions, reaching mortality rates of 100%, whereas in E. leei-infected gilthead sea bream, the disease progresses slowly, and mortality rates are lower. The mechanisms underlying the different pathogenesis are still unclear. We studied the distribution and expression changes of E-cadherin, a highly conserved protein of the adherens junctions, in the intestine of both species by immunohistochemistry and quantitative PCR, using the same immunohistochemical protocol and common primers. The regular immunostaining pattern observed in control fish turned into markedly irregular in parasitized turbot, showing an intense immunoreaction at the host-parasite interface. Nevertheless, E-cadherin gene expression was not significantly modulated in this species. On the contrary, no evident changes in the protein distribution were noticed in gilthead sea bream, whereas a significant gene downregulation occurred in advanced infection. The results contribute to the understanding of the different host-parasite interactions in enteromyxoses. Host and parasite cells appear to establish diverse relationships in these species, which could underlie the different pathological picture.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gregorio Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
- Cryptosporidium Reference Unit, Public Health Wales, Singleton Hospital, Swansea, UK
| | - Belén G Pardo
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Mª Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Diet Supplementation with a Bioactive Pomace Extract from Olea europaea Partially Mitigates Negative Effects on Gut Health Arising from a Short-Term Fasting Period in Broiler Chickens. Animals (Basel) 2020; 10:ani10020349. [PMID: 32098336 PMCID: PMC7070366 DOI: 10.3390/ani10020349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
The effects of supplementing chicken diets with an olive pomace extract (OE) from Olea europaea on performance and gut health after a challenge of intestinal permeability (IP) increase were studied. Treatments included a control diet with no additives (CF), and diets supplemented with 100 ppm of monensin (MF) or with 500 (OE500F) and 1500 ppm (OE1500F) of an OE. At 14 d, all birds, except those allocated in a control group (CNF), were submitted to a 15.5 h short-term fasting period to induce IP increase. Fasting increased (p < 0.05) lactulose/mannitol ratio and Alpha 1 Acid Glycoprotein concentration, and reduced (p < 0.001) villus/crypt ratio. Moreover, a down-regulation of Claudin-1 (p < 0.05), an up-regulation of TLR4 and IL-8 (p < 0.05) ileal gene expression was observed in CF birds compared to CNF. OE500F treatment reduced duodenal crypt depth compared to CF (p < 0.05; OE linear effect). Mannitol concentration and ileal IL-8 expression were reduced in OE500F compared to CF and OE1500F (p = 0.05). Fasting challenge induced an increase in IP triggering an inflammatory response. Supplementation of OE up to 1500 ppm did not affect growth performance and alleviated some of the negative effects of the fasting challenge.
Collapse
|
29
|
Herrero-Encinas J, Blanch M, Pastor JJ, Mereu A, Ipharraguerre IR, Menoyo D. Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult Sci 2020; 99:2-10. [PMID: 32416802 PMCID: PMC7587805 DOI: 10.3382/ps/pez467] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023] Open
Abstract
The present study aims to investigate the effects of supplementing broiler diets with a bioactive olive pomace extract (OE) from Olea europaea on growth performance, digestibility, gut microbiota, bile acid composition, and immune response. To this end, three hundred and six 1-day-old broiler chickens (Ross 308) were housed in floor pens (6 pens/treatment, with 17 birds/pen). Animals were fed with a standard non-medicated starter diet for 21 D, and from 22 to 42 D of age with their respective experimental diet: a negative control with no additives (Control), a positive control with 100 ppm of monensin (Monensin) and the basal diet supplemented with 750 ppm of an OE (Lucta S.A., Spain). Feed intake and growth rate were monitored weekly throughout the trial. From 21 to 42 D of age, no significant differences in feed intake were observed among dietary treatments; however, lower average daily gain and higher feed conversion ratio (P < 0.05) was observed in birds fed the Control compared to Monensin and OE groups. Performance of birds fed OE or Monensin was similar throughout the trial. The apparent ileal digestibility of crude protein was higher in birds fed Monensin than Control treatment (P < 0.05). No significant changes on bacterial composition at a family level were observed in the caeca of birds fed the experimental diets. Moreover, no significant differences on plasma and intestinal bile acid composition were observed among treatments. Birds fed the OE showed a significant decrease of IL-8 expression in the ileum (P < 0.05). Additionally, the expression of TGF-β4, and Bu-1 was significantly upregulated (P < 0.01) in broilers fed the OE and Monensin diets compared to those fed the Control. In conclusion, the inclusion of 750 ppm of a bioactive olive pomace extract from Olea europaea in broiler chicken diets improved animal growth likely as result of its anti-inflammatory properties.
Collapse
Affiliation(s)
- J Herrero-Encinas
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, ETS Ingeniería Agronómica Alimentaria y de Biosistemas, 28040 Madrid, Barcelona, Spain
| | - M Blanch
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - J J Pastor
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - A Mereu
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - I R Ipharraguerre
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - D Menoyo
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, ETS Ingeniería Agronómica Alimentaria y de Biosistemas, 28040 Madrid, Barcelona, Spain.
| |
Collapse
|
30
|
Condensed tannins decreased the growth performance and impaired intestinal immune function in on-growing grass carp ( Ctenopharyngodon idella). Br J Nutr 2019; 123:737-755. [PMID: 31831090 DOI: 10.1017/s0007114519003295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study investigated the effects of condensed tannins (CT) on intestinal immune function in on-growing grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp were fed six diets containing different levels of CT (0, 10·00, 20·00, 30·00, 40·00 and 50·00 g/kg diet) for 70 d and then challenged with Aeromonas hydrophila for 14 d. The results showed that, compared with the control group, dietary CT (1) induced intestinal histopathological lesions and aggravated enteritis; (2) decreased lysozyme and acid phosphatase activities, complement 3 (C3), C4 and IgM contents and down-regulated the Hepcidin, liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, Mucin2 and β-defensin-1 mRNA levels in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) (P < 0·05); (3) down-regulated the mRNA levels of anti-inflammatory cytokines transforming growth factor (TGF)-β1, TGF-β2 (not in MI and DI), IL-4/13A (not IL-4/13B), IL-10 and IL-11 partly correlated with target of rapamycin (TOR) signalling; and (4) up-regulated the mRNA levels of pro-inflammatory cytokines interferon-γ2, IL-1β, IL-6, IL-8 (not in PI), IL-12p35, IL-12p40, IL-15 and IL-17D partly related to NF-κB signalling in the intestine of on-growing grass carp. Overall, the results indicated that CT could impair the intestinal immune function, and its potential regulation mechanisms were partly associated with the TOR and NF-κB signalling pathways. Finally, based on the percentage weight gain and enteritis morbidity, the maximum allowable levels of CT for on-growing grass carp (232·22-890·11 g) were estimated to be 18·6 and 17·4 g/kg diet, respectively.
Collapse
|
31
|
Sitjà-Bobadilla A, Gil-Solsona R, Estensoro I, Piazzon MC, Martos-Sitcha JA, Picard-Sánchez A, Fuentes J, Sancho JV, Calduch-Giner JA, Hernández F, Pérez-Sánchez J. Disruption of gut integrity and permeability contributes to enteritis in a fish-parasite model: a story told from serum metabolomics. Parasit Vectors 2019; 12:486. [PMID: 31619276 PMCID: PMC6796429 DOI: 10.1186/s13071-019-3746-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background In the animal production sector, enteritis is responsible for serious economic losses, and intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and animal production efficiency. The effect of enteric parasites on the gut function of teleost fish, which represent the most ancient bony vertebrates, is far from being understood. The intestinal myxozoan parasite Enteromyxum leei dwells between gut epithelial cells and causes severe enteritis in gilthead sea bream (Sparus aurata), anorexia, cachexia, growth impairment, reduced marketability and increased mortality. Methods This study aimed to outline the gut failure in this fish-parasite model using a multifaceted approach and to find and validate non-lethal serum markers of gut barrier dysfunction. Intestinal integrity was studied in parasitized and non-parasitized fish by immunohistochemistry with specific markers for cellular adhesion (E-cadherin) and tight junctions (Tjp1 and Cldn3) and by functional studies of permeability (oral administration of FITC-dextran) and electrophysiology (Ussing chambers). Serum samples from parasitized and non-parasitized fish were analyzed using non-targeted metabolomics and some significantly altered metabolites were selected to be validated using commercial kits. Results The immunodetection of Tjp1 and Cldn3 was significantly lower in the intestine of parasitized fish, while no strong differences were found in E-cadherin. Parasitized fish showed a significant increase in paracellular uptake measured by FITC-dextran detection in serum. Electrophysiology showed a decrease in transepithelial resistance in infected animals, which showed a diarrheic profile. Serum metabolomics revealed 3702 ions, from which the differential expression of 20 identified compounds significantly separated control from infected groups in multivariate analyses. Of these compounds, serum inosine (decreased) and creatine (increased) were identified as relevant and validated with commercial kits. Conclusions The results demonstrate the disruption of tight junctions and the loss of gut barrier function, a metabolomic profile of absorption dysfunction and anorexia, which further outline the pathophysiological effects of E. leei.![]()
Collapse
Affiliation(s)
- Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain. .,Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.
| | - Rubén Gil-Solsona
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.,Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus Universitario de Puerto Real, University of Cádiz, 11510, Cádiz, Spain
| | - Amparo Picard-Sánchez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology, CCMar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Juan Vicente Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Josep A Calduch-Giner
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Félix Hernández
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
32
|
Villalba JJ, Beauchemin KA, Gregorini P, MacAdam JW. Pasture chemoscapes and their ecological services. Transl Anim Sci 2019; 3:829-841. [PMID: 32704849 PMCID: PMC7200557 DOI: 10.1093/tas/txz003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Ruminant livestock-production systems are between a rock and a hard place; they are experiencing increasing societal pressure to reduce environmental impacts in a world that demands increased food supply. Recent improvements in the understanding of the nutritional ecology of livestock by scientists may help livestock producers respond to these seemingly contradictory demands. Forages are nutrition and pharmacy centers with primary (nutrients) and plant secondary compounds (PSC; pharmaceuticals, nutraceuticals), which can provide multiple services for the proper functioning of agroecosystems. Legumes with lower contents of fiber and higher contents of nonstructural carbohydrates, coupled with different types and concentrations of PSC (e.g., condensed tannins, terpenes), create a diverse array of chemicals in the landscape (i.e., the "chemoscape") with the potential to enhance livestock nutrition, health and welfare relative to foodscapes dominated by grasses and other conventional feeds. These PSC-containing plants may reduce methane emissions and nitrogen (N) excretion from animals while increasing animal growth rate compared with swards dominated by grasses, and provide meat quality that appeals to consumers. Condensed tannins from sainfoin and saponins from alfalfa and manure of cattle consuming these forages also reduce N mobilization in soils, reduce nutrient leaching, and increase plant-available N stores for future use. The challenge for future pastoral production systems is to design multifunctional spatiotemporal arrangements of forages with "ideal" chemical diversity for specific ecoregions, aiming to achieve sustainability while increasing production goals and improving ecosystem services. Thus, the objective of this review is to stimulate the quest for chemically and taxonomically diverse pastoral feeding systems that optimize overall productivity; reduce environmental impacts; and enhance livestock, soil, and human health.
Collapse
Affiliation(s)
- Juan J Villalba
- Department of Wildland Resources, Utah State University, Logan, UT
| | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Pablo Gregorini
- Department of Agricultural Sciences, Lincoln University, Lincoln, New Zealand
| | - Jennifer W MacAdam
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT
| |
Collapse
|
33
|
Dietary magnesium deficiency impaired intestinal structural integrity in grass carp (Ctenopharyngodon idella). Sci Rep 2018; 8:12705. [PMID: 30139942 PMCID: PMC6107577 DOI: 10.1038/s41598-018-30485-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Grass carp (223.85–757.33 g) were fed diets supplemented with magnesium (73.54–1054.53 mg/kg) for 60 days to explore the impacts of magnesium deficiency on the growth and intestinal structural integrity of the fish. The results demonstrated that magnesium deficiency suppressed the growth and damaged the intestinal structural integrity of the fish. We first demonstrated that magnesium is partly involved in (1) attenuating antioxidant ability by suppressing Nrf2 signalling to decrease antioxidant enzyme mRNA levels and activities (except CuZnSOD mRNA levels and activities); (2) aggravating apoptosis by activating JNK (not p38MAPK) signalling to upregulate proapoptotic protein (Apaf-1, Bax and FasL) and caspase-2, -3, -7, -8 and -9 gene expression but downregulate antiapoptotic protein (Bcl-2, IAP and Mcl-1b) gene expression; (3) weakening the function of tight junctional complexes (TJs) by promoting myosin light chain kinase (MLCK) signalling to downregulate TJ gene expression [except claudin-7, ZO-2b and claudin-15 gene expression]. Additionally, based on percent weight gain (PWG), against reactive oxygen species (ROS), against caspase-9 and claudin-3c in grass carp, the optimal dietary magnesium levels were calculated to be 770.38, 839.86, 856.79 and 811.49 mg/kg, respectively.
Collapse
|
34
|
Self-selection of plant bioactive compounds by sheep in response to challenge infection with Haemonchus contortus. Physiol Behav 2018; 194:302-310. [PMID: 29906471 DOI: 10.1016/j.physbeh.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Plant bioactives can potentially benefit herbivores through their effects on health and nutrition. The objective of this study was to determine the importance of polyphenols and terpenes on the ability of lambs to self-select these compounds when challenged by a parasitic infection and the subsequent impact on their health and productivity. Thirty-five lambs were housed in individual pens and assigned to five treatment groups (7 animals/group), where they received: 1) A basal diet of beet pulp:soybean meal (90:10) (CONTROL); 2) The same diet, but containing 0.3% of bioactive natural plant compounds extracted from grape, olive and pomegranate (BNP); 3) A simultaneous offer of the diets offered to the Control and BNP groups (Choice-Parasitized; CHP-1); 4) The Control diet, and when lambs developed a parasitic infection, the choice described for CHP-1 (CHP-2); and 5) The same choice as CHP-1, but animals did not experience a parasitic burden (Choice-Non-Parasitized; CHNP). Lambs, except CHNP, were dosed with 10,000 L3 stage larvae of Haemonchus contortus. Infected lambs under choice treatments (CHP-1 and CHP-2) modified their feeding behavior in relation to the CHNP group as they increased their preference for the feed containing polyphenols and terpenes, interpreted as a behavior aimed at increasing the likelihood of encountering medicinal compounds and nutrients in the environment that restore health. This change in behavior corresponded with an improvement in feed conversion efficiency. However, an increased preference for the diet with added plant bioactives did not have an effect on parasitic burdens, hematological parameters, blood oxidation, or serum concentration of IgE.
Collapse
|
35
|
Leduc A, Zatylny-Gaudin C, Robert M, Corre E, Corguille GL, Castel H, Lefevre-Scelles A, Fournier V, Gisbert E, Andree KB, Henry J. Dietary aquaculture by-product hydrolysates: impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets. BMC Genomics 2018; 19:396. [PMID: 29793421 PMCID: PMC5968468 DOI: 10.1186/s12864-018-4780-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
Background Aquaculture production is expected to double by 2030, and demands for aquafeeds and raw materials are expected to increase accordingly. Sustainable growth of aquaculture will require the development of highly nutritive and functional raw materials to efficiently replace fish meal. Enzymatic hydrolysis of marine and aquaculture raw materials could bring new functionalities to finished products. The aim of this study was to determine the zootechnical and transcriptomic performances of protein hydrolysates of different origins (tilapia, shrimp, and a combination of the two) in European seabass (Dicentrarchux labrax) fed a low fish meal diet (5%), for 65 days. Results Results were compared to a positive control fed with 20% of fish meal. Growth performances, anterior intestine histological organization and transcriptomic responses were monitored and analyzed. Dietary inclusion of protein hydrolysates in the low fish meal diet restored similar growth performances to those of the positive control. Inclusion of dietary shrimp hydrolysate resulted in larger villi and more goblet cells, even better than the positive control. Transcriptomic analysis of the anterior intestine showed that dietary hydrolysate inclusion restored a pattern of intestinal gene expression very close to the pattern of the positive control. However, as compared to the low fish meal diet and depending on their origin, the different hydrolysates did not modulate metabolic pathways in the same way. Dietary shrimp hydrolysate inclusion modulated more metabolic pathways related to immunity, while nutritional metabolism was more impacted by dietary tilapia hydrolysate. Interestingly, the combination of the two hydrolysates enhanced the benefits of hydrolysate inclusion in diets: more genes and metabolic pathways were regulated by the combined hydrolysates than by each hydrolysate tested independently. Conclusions Protein hydrolysates manufactured from aquaculture by-products are promising candidates to help replace fish meal in aquaculture feeds without disrupting animal metabolism and performances. Electronic supplementary material The online version of this article (10.1186/s12864-018-4780-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandre Leduc
- Normandie University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, Caen, 14032, France.,Aquativ (DianaAqua, Symrise Group), Elven, France
| | - Céline Zatylny-Gaudin
- Normandie University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, Caen, 14032, France
| | - Marie Robert
- Normandie University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, Caen, 14032, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, Roscoff, France
| | | | - Hélène Castel
- Normandie University, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Antoine Lefevre-Scelles
- Normandie University, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | | | - Enric Gisbert
- Institute of Agriculture and Food Research and Technology (IRTA), Sant Carles de la Ràpita, Spain
| | - Karl B Andree
- Institute of Agriculture and Food Research and Technology (IRTA), Sant Carles de la Ràpita, Spain
| | - Joël Henry
- Normandie University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, Caen, 14032, France.
| |
Collapse
|
36
|
Medina E, Romero C, Brenes M. Residual Olive Paste as a Source of Phenolic Compounds and Triterpenic Acids. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eduardo Medina
- Food Biotechnology Department; Instituto de la Grasa (IG-CSIC); Building 46, Ctra. Utrera km 1 41013-Seville Spain
| | - Concepción Romero
- Food Biotechnology Department; Instituto de la Grasa (IG-CSIC); Building 46, Ctra. Utrera km 1 41013-Seville Spain
| | - Manuel Brenes
- Food Biotechnology Department; Instituto de la Grasa (IG-CSIC); Building 46, Ctra. Utrera km 1 41013-Seville Spain
| |
Collapse
|