1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
Shojaei-Zarghani S, Fattahi MR, Mansourabadi Z, Safarpour AR. Intake of dietary branched-chain amino acids reduces odds of metabolic syndrome: a cross-sectional study on the PERSIAN Kavar cohort study. Front Nutr 2024; 11:1403937. [PMID: 39483784 PMCID: PMC11525787 DOI: 10.3389/fnut.2024.1403937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Metabolic syndrome (MetS) is identified by the manifestation of a minimum of three out of five metabolic abnormalities, including insulin resistance, hypertension, hypertriglyceridemia, abdominal obesity, and low levels of high-density lipoprotein cholesterol. The present study aimed to assess the association between dietary branched-chain amino acids (BCAA) intakes and MetS, due to available conflicting evidence. Methods A total of 4,860 individuals who had participated in the baseline phase of the PERSIAN (Prospective Epidemiological Research Studies in IrAN) Kavar cohort study were included in our study. The daily intake of valine, leucine, and isoleucine were evaluated using a semi-quantitative food frequency questionnaire. The association between dietary BCAA intake with MetS and its components was evaluated using logistic regression analysis. Results The mean intake of BCAA among the included subjects was 7.65 (standard deviation [SD]: 2.92), and the prevalence of MetS was found to be 49.2%. Multivariable logistic regression analysis revealed an inverse association between 1-S.D. increment in dietary valine (odds ratio [OR] = 0.85, 95% confidence interval [CI]: 0.78-0.94), leucine (OR = 0.85, 95% CI: 0.77-0.93), isoleucine (OR = 0.84, 95% CI: 0.76-0.93), and total BCAA (OR = 0.85, 95% CI: 0.77-0.93) intake and the odds of MetS. There were also a significant association between BCAA intakes and hyperglycemia and hypertriglyceridemia. Conclusion We observed a significant inverse association between dietary BCAA intake and MetS, hyperglycemia, and hypertriglyceridemia, regardless of confounding factors.
Collapse
Affiliation(s)
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mansourabadi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Del Carmen Fernández-Fígares Jiménez M. Plant foods, healthy plant-based diets, and type 2 diabetes: a review of the evidence. Nutr Rev 2024; 82:929-948. [PMID: 37550262 DOI: 10.1093/nutrit/nuad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic chronic disease in which insulin resistance and insufficient insulin production lead to elevated blood glucose levels. The prevalence of T2D is growing worldwide, mainly due to obesity and the adoption of Western diets. Replacing animal foods with healthy plant foods is associated with a lower risk of T2D in prospective studies. In randomized controlled trials, the consumption of healthy plant foods in place of animal foods led to cardiometabolic improvements in patients with T2D or who were at high risk of the disease. Dietary patterns that limit or exclude animal foods and focus on healthy plant foods (eg, fruits, vegetables, whole grains, nuts, legumes), known as healthy, plant-based diets, are consistently associated with a lower risk of T2D in cohort studies. The aim of this review is to examine the differential effects of plant foods and animal foods on T2D risk and to describe the existing literature about the role of healthy, plant-based diets, particularly healthy vegan diets, in T2D prevention and management. The evidence from cohort studies and randomized controlled trials will be reported, in addition to the potential biological mechanisms that seem to be involved.
Collapse
|
4
|
Zhang J, Liu Z, Ni Y, Yu Y, Guo F, Lu Y, Wang X, Hao H, Li S, Wei P, Yu W, Hu W. Branched-chain amino acids promote occurrence and development of cardiovascular disease dependent on triglyceride metabolism via activation of the mTOR/SREBP-1/betatrophin pathway. Mol Cell Endocrinol 2024; 584:112164. [PMID: 38262527 DOI: 10.1016/j.mce.2024.112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Branched-chain amino acid (BCAA) metabolism is associated with triglyceride (TG) metabolism and the development of cardiovascular disease (CVD). However, the underlying mechanism remains uncertain. This study included 1302 subjects and followed for 4-5 years. A hyperbranched-chain aminoacidemia rat model was induced by high fructose diet (HFTD). The relationship between BCAAs and TG level and its regulatory mechanism was investigated in vitro. As results, as baseline BCAA percentile increased, subjects had higher prevalence and incidence of T2DM, NAFLD, and CVD risk (P < 0.05). In animal model, the accumulation of BCAAs and TG and betatrophin expression were significantly elevated in the HFTD group when comparing with those in the SD group(P < 0.05). Immunofluorescence and Masson's trichrome staining revealed that the area of interstitial fibrosis was significantly increased in the HFTD group compared with control group. Met treatment significantly decreased TG levels and betatrophin expression and reversed myocardial fibrosis (P < 0.05). In vitro, LO2 cells, stimulated with 0.1-5 mM BCAAs, displayed a significant dose-dependent increase in betatrophin expression (P < 0.05). And 5 mM BCAAs stimulation significantly increased the p-mTOR and SREBP-1 expression (P < 0.05). However, this effect could be reversed by using the corresponding inhibitor or siRNAs. In conclusions, BCAAs promote occurrence and development of cardiovascular disease dependent on TG metabolism via activation of the mTOR/SREBP-1/betatrophin pathway. The study provides a new theory for the pathogenesis of CVD caused by amino acid metabolism disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Ziyu Liu
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Yaojun Ni
- Department of Cardiothoracic Surgery, Hospital Affiliated to Nanjing Medical College and Huai'an First People's Hospital, No. 6, Beijing West Road, Huaiyin District, Huai'an, 223021, China
| | - Yang Yu
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Fei Guo
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Yanwen Lu
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Xiaoqing Wang
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Hairong Hao
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Shayan Li
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Pan Wei
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Weinan Yu
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China
| | - Wen Hu
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai'an, 223002, China.
| |
Collapse
|
5
|
Shi W, Huang X, Schooling CM, Zhao JV. Red meat consumption, cardiovascular diseases, and diabetes: a systematic review and meta-analysis. Eur Heart J 2023; 44:2626-2635. [PMID: 37264855 DOI: 10.1093/eurheartj/ehad336] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/01/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
AIMS Observational studies show inconsistent associations of red meat consumption with cardiovascular disease (CVD) and diabetes. Moreover, red meat consumption varies by sex and setting, however, whether the associations vary by sex and setting remains unclear. METHODS AND RESULTS This systematic review and meta-analysis was conducted to summarize the evidence concerning the associations of unprocessed and processed red meat consumption with CVD and its subtypes [coronary heart disease (CHD), stroke, and heart failure], type two diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM) and to assess differences by sex and setting (western vs. eastern, categorized based on dietary pattern and geographic region). Two researchers independently screened studies from PubMed, Web of Science, Embase, and the Cochrane Library for observational studies and randomized controlled trials (RCTs) published by 30 June 2022. Forty-three observational studies (N = 4 462 810, 61.7% women) for CVD and 27 observational studies (N = 1 760 774, 64.4% women) for diabetes were included. Red meat consumption was positively associated with CVD [hazard ratio (HR) 1.11, 95% confidence interval (CI) 1.05 to 1.16 for unprocessed red meat (per 100 g/day increment); 1.26, 95% CI 1.18 to 1.35 for processed red meat (per 50 g/day increment)], CVD subtypes, T2DM, and GDM. The associations with stroke and T2DM were higher in western settings, with no difference by sex. CONCLUSION Unprocessed and processed red meat consumption are both associated with higher risk of CVD, CVD subtypes, and diabetes, with a stronger association in western settings but no sex difference. Better understanding of the mechanisms is needed to facilitate improving cardiometabolic and planetary health.
Collapse
Affiliation(s)
- Wenming Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Southern District, Hong Kong SAR, China
| | - Xin Huang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Southern District, Hong Kong SAR, China
| | - C Mary Schooling
- School of Public Health and Health Policy, City University of New York, 55 W 125th St, New York, NY 10027, USA
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Southern District, Hong Kong SAR, China
| |
Collapse
|
6
|
Okekunle AP, Lee H, Provido SMP, Chung GH, Hong S, Yu SH, Lee CB, Lee JE. Dietary intakes of branched-chain amino acids and plasma lipid profiles among filipino women in Korea: the Filipino Women's Diet and Health Study (FiLWHEL). Nutr J 2023; 22:34. [PMID: 37430285 DOI: 10.1186/s12937-023-00861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/24/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The potential role of dietary branched-chain amino acids (BCAA) in metabolic health, including cardiovascular disease and diabetes, is evolving, and it is yet to be understood if dietary BCAA intakes are associated with plasma lipid profiles or dyslipidaemia. This study tested the association of dietary BCAA intakes with plasma lipid profiles and dyslipidaemia among Filipino women in Korea. METHODS Energy-adjusted dietary BCAA intakes (isoleucine, leucine, valine, and total BCAA) and fasting blood profiles of triglycerides (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) were determined in a sample of 423 women enrolled in the Filipino Women's Diet and Health Study (FiLWHEL). The generalized linear model was applied to estimate least-square (LS) means and 95% confidence intervals (CIs) and compare plasma TG, TC, HDL-C, and LDL-C across tertile distribution of energy-adjusted dietary BCAA intakes at P < 0.05. RESULTS Mean of energy-adjusted dietary total BCAA intake was 8.3 ± 3.9 g/d. Average plasma lipid profiles were 88.5 ± 47.4 mg/dl for TG, 179.7 ± 34.5 mg/dl for TC, 58.0 ± 13.7 mg/dl for HDL-C, and 104.0 ± 30.5 mg/dl for LDL-C. LS means, and 95% CIs across tertiles of energy-adjusted total BCAA intakes were 89.9 mg/dl, 88.8 mg/dl and 85.8 mg/dl (P-trend = 0.45) for TG, 179.1 mg/dl, 183.6 mg/dl and 176.5 mg/dl (P-trend = 0.48) for TC, 57.5 mg/dl, 59.6 mg/dl and 57.1 mg/dl (P-trend = 0.75) for HDL-C and 103.6 mg/dl, 106.2 mg/dl and 102.3 mg/dl (P-trend = 0.68) for LDL-C. Furthermore, the multivariable-adjusted prevalence ratios and 95% confidence intervals for dyslipidaemia across increasing tertile distribution of energy-adjusted total BCAA intake were; 1.00, 0.67 (0.40, 1.13) and 0.45 (0.16, 1.27; P-trend = 0.03) for the first, second and third tertile, respectively. CONCLUSIONS Higher dietary intakes of BCAA presented a statistically significant inverse trend with the prevalence of dyslipidaemia among Filipino women in this study and testing these associations in longitudinal studies may be necessary to confirm these findings.
Collapse
Grants
- 2020H1D3A1A04081265 National Research Foundation of Korea
- 2020H1D3A1A04081265 National Research Foundation of Korea
- 0448A-2021077 Seoul National University Asia Center
- 201300000001270 Hanmi Pharmaceutical Co., Ltd. Korea
- 201300000001270 Hanmi Pharmaceutical Co., Ltd. Korea
- 201300000001270 Hanmi Pharmaceutical Co., Ltd. Korea
- 201300000001270 Hanmi Pharmaceutical Co., Ltd. Korea
- 201600000000225 Chong Kun Dang Pharm., Seoul, Korea
- 201600000000225 Chong Kun Dang Pharm., Seoul, Korea
- 201600000000225 Chong Kun Dang Pharm., Seoul, Korea
- 201600000000225 Chong Kun Dang Pharm., Seoul, Korea
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak- ro, Gwanak-gu, Seoul, 08826, Korea
- Research Institute of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Heejin Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak- ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sherlyn Mae P Provido
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak- ro, Gwanak-gu, Seoul, 08826, Korea
| | - Grace H Chung
- Department of Child Development & Family Studies, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sangmo Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153 Gyeongchun-ro, Guri, 11923, Korea
| | - Sung Hoon Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153 Gyeongchun-ro, Guri, 11923, Korea
| | - Chang Beom Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153 Gyeongchun-ro, Guri, 11923, Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak- ro, Gwanak-gu, Seoul, 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Heath H, Degreef K, Rosario R, Smith M, Mitchell I, Pilolla K, Phelan S, Brito A, La Frano MR. Identification of potential biomarkers and metabolic insights for gestational diabetes prevention: A review of evidence contrasting gestational diabetes versus weight loss studies that may direct future nutritional metabolomics studies. Nutrition 2023; 107:111898. [PMID: 36525799 DOI: 10.1016/j.nut.2022.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Gestational diabetes mellitus (GDM) significantly increases maternal health risks and adverse effects for the offspring. Observational studies suggest that weight loss before pregnancy may be a promising GDM prevention method. Still, biochemical pathways linking preconception weight changes with subsequent development of GDM among women who are overweight or obese remain unclear. Metabolomic assessment is a powerful approach for understanding the global biochemical pathways linking preconception weight changes and subsequent GDM. We hypothesize that many of the alterations of metabolite levels associated with GDM will change in one direction in GDM studies but will change in the opposite direction in studies focusing on lifestyle interventions for weight loss. The present review summarizes available evidence from 21 studies comparing women with GDM with healthy participants and 12 intervention studies that investigated metabolite changes that occurred during weight loss using caloric restriction and behavioral interventions. We discuss 15 metabolites, including amino acids, lipids, amines, carbohydrates, and carbohydrate derivatives. Of particular note are the altered levels of branched-chain amino acids, alanine, palmitoleic acid, lysophosphatidylcholine 18:1, and hypoxanthine because of their mechanistic links to insulin resistance and weight change. Mechanisms that may explain how these metabolite modifications contribute to GDM development in those who are overweight or obese are proposed, including insulin resistance pathways. Future nutritional metabolomics preconception intervention studies in overweight or obese are necessary to investigate whether weight loss through lifestyle intervention can reduce GDM occurrence in association with these metabolite alterations and to test the value of these metabolites as potential diagnostic biomarkers of GDM development.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Kelsey Degreef
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Rodrigo Rosario
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - MaryKate Smith
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Isabel Mitchell
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Kari Pilolla
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Suzanne Phelan
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Health Care," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|
8
|
Gadgil MD, Ingram KH, Appiah D, Rudd J, Whitaker KM, Bennett WL, Shikany JM, Jacobs DR, Lewis CE, Gunderson EP. Prepregnancy Protein Source and BCAA Intake Are Associated with Gestational Diabetes Mellitus in the CARDIA Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114142. [PMID: 36361016 PMCID: PMC9658365 DOI: 10.3390/ijerph192114142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/03/2023]
Abstract
Diet quality and protein source are associated with type 2 diabetes, however relationships with GDM are less clear. This study aimed to determine whether prepregnancy diet quality and protein source are associated with gestational diabetes mellitus (GDM). Participants were 1314 Black and White women without diabetes, who had at least one birth during 25 years of follow-up in the Coronary Artery Risk Development in Young Adults (CARDIA) cohort study. The CARDIA A Priori Diet Quality Score (APDQS) was assessed in the overall cohort at enrollment and again at Year 7. Protein source and branched-chain amino acid (BCAA) intake were assessed only at the Year 7 exam (n = 565). Logistic regression analysis was used to determine associations between prepregnancy dietary factors and GDM. Women who developed GDM (n = 161) were more likely to have prepregnancy obesity and a family history of diabetes (p < 0.05). GDM was not associated with prepregnancy diet quality at enrollment (Year 0) (odds ratio [OR]: 1.01; 95% confidence interval [CI] 0.99, 1.02) or Year 7 (odds ratio [OR]: 0.97; 95% confidence interval [CI] 0.94, 1.00) in an adjusted model. Conversely, BCAA intake (OR:1.59, 95% CI 1.03, 2.43) and animal protein intake (OR: 1.06, 95% CI 1.02, 1.10) as a proportion of total protein intake, were associated with increased odds of GDM, while proportion of plant protein was associated with decreased odds of GDM (OR: 0.95, 95% CI 0.91, 0.99). In conclusion, GDM is strongly associated with source of prepregnancy dietary protein intake but not APDQS in the CARDIA study.
Collapse
Affiliation(s)
- Meghana D. Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Katherine H. Ingram
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Duke Appiah
- Department of Public Health, Texas Tech University Health Sciences Center of Statistics and Analytical Sciences, Lubbock, TX 79409, USA
| | - Jessica Rudd
- Department of Statistics and Analytical Sciences, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Kara M. Whitaker
- Department of Health and Human Physiology, Department of Epidemiology, University of Iowa, Iowa City, IA 52242, USA
| | - Wendy L. Bennett
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - James M. Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David R. Jacobs
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cora E. Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erica P. Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| |
Collapse
|
9
|
Ramzan I, Ardavani A, Vanweert F, Mellett A, Atherton PJ, Idris I. The Association between Circulating Branched Chain Amino Acids and the Temporal Risk of Developing Type 2 Diabetes Mellitus: A Systematic Review & Meta-Analysis. Nutrients 2022; 14:4411. [PMID: 36297095 PMCID: PMC9610746 DOI: 10.3390/nu14204411] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Recent studies have concluded that elevated circulating branched chain amino acids (BCAA) are associated with the pathogenesis of type 2 diabetes mellitus (T2DM) and obesity. However, the development of this association over time and the quantification of the strength of this association for individual BCAAs prior to T2DM diagnosis remains unexplored. Methods: A systematic search was conducted using the Healthcare Databases Advance Search (HDAS) via the National Institute for Health and Care Excellence (NICE) website. The data sources included EMBASE, MEDLINE and PubMed for all papers from inception until November 2021. Nine studies were identified in this systematic review and meta-analysis. Stratification was based on follow-up times (0−6, 6−12 and 12 or more years) and controlling of body mass index (BMI) through the specific assessment of overweight cohorts was also undertaken. Results: The meta-analysis revealed a statistically significant positive association between BCAA concentrations and the development of T2DM, with valine OR = 2.08 (95% CI = 2.04−2.12, p < 0.00001), leucine OR = 2.25 (95% CI = 1.76−2.87, p < 0.00001) and isoleucine OR = 2.12, 95% CI = 2.00−2.25, p < 0.00001. In addition, we demonstrated a positive consistent temporal association between circulating BCAA levels and the risk of developing T2DM with differentials in the respective follow-up times of 0−6 years, 6−12 years and ≥12 years follow-up for valine (OR = 2.08, 1.86 and 2.14, p < 0.05 each), leucine (OR = 2.10, 2.25 and 2.16, p < 0.05 each) and isoleucine (OR = 2.12, 1.90 and 2.16, p < 0.05 each) demonstrated. Conclusion: Plasma BCAA concentrations are associated with T2DM incidence across all temporal subgroups. We suggest the potential utility of BCAAs as an early biomarker for T2DM irrespective of follow-up time.
Collapse
Affiliation(s)
- Imran Ramzan
- Clinical, Metabolic and Molecular Physiology Research Group, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 6DT, UK
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
| | - Arash Ardavani
- Clinical, Metabolic and Molecular Physiology Research Group, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 6DT, UK
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
| | - Froukje Vanweert
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aisling Mellett
- Clinical, Metabolic and Molecular Physiology Research Group, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 6DT, UK
- School of Agriculture and Food Science, Agriculture and Food Science Centre, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Philip J. Atherton
- Clinical, Metabolic and Molecular Physiology Research Group, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 6DT, UK
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
| | - Iskandar Idris
- Clinical, Metabolic and Molecular Physiology Research Group, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 6DT, UK
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Normalization of Vitamin D Serum Levels in Patients with Type Two Diabetes Mellitus Reduces Levels of Branched Chain Amino Acids. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091267. [PMID: 36143944 PMCID: PMC9505541 DOI: 10.3390/medicina58091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Vitamin D is involved in pancreatic beta-cell function, insulin sensitivity, and inflammation. Further, elevation in branched-chain amino acids (BCAAs) has been implicated in type 2 diabetes (T2DM) pathology. However, the relationship between vitamin D and BCAAs in T2DM remains unclear. The current study aimed to investigate the relationship between vitamin D and BCAAs in T2DM. Materials and Methods: In total, 230 participants (137 with T2DM and 93 healthy controls) were recruited in a cross-sectional study. Furthermore, an additional follow-up study was performed, including 20 T2DM patients with vitamin D deficiency. These patients were prescribed weekly vitamin D tablets (50,000 IU) for three months. The levels of several biochemical parameters were examined at the end of the vitamin D supplementation. Results: The results showed that patients with T2DM had higher serum levels of BCAAs and lower serum levels of 25-hydroxyvitamin D (25(OH)D) compared with those of the healthy controls (p < 0.01). The serum levels of vitamin D were negatively correlated with BCAA levels in T2DM patients (r = −0.1731, p < 0.05). In the follow-up study, 25(OH)D levels were significantly improved (p < 0.001) following vitamin D supplementation. Vitamin D supplementation significantly reduced the levels of BCAAs, HbA1c, total cholesterol, triglycerides, and fasting glucose (p < 0.01). Conclusion: Overall, these results suggest a role for BCAAs and vitamin D in the etiology and progression of T2DM. Thus, managing vitamin D deficiency in patients with T2DM may improve glycemic control and lower BCAA levels.
Collapse
|
11
|
Nouri-Majd S, Salari-Moghaddam A, Benisi-Kohansal S, Azadbakht L, Esmaillzadeh A. Dietary intake of branched-chain amino acids in relation to the risk of breast cancer. Breast Cancer 2022; 29:993-1000. [PMID: 35794412 DOI: 10.1007/s12282-022-01379-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Given that, studies on the association of dietary intake of branched-chain amino acids (BCAAs) with risk of cancers, especially breast cancer, are limited, we aimed to examine the association between dietary intake of BCAAs and risk of breast cancer. METHODS This case-control study was performed on Iranian women aged ≥ 30 years from July 2013 to July 2015. Overall 1050 women including 350 patients and 700 controls were included. Breast cancer was diagnosed by physical examination, mammography and pathological confirmation. We assessed dietary intakes using the validated 106-item Willett-format semi-quantitative dish-based food frequency questionnaire. The total intake of valine, leucine, and isoleucine from all food items in the questionnaire was used to calculate BCAAs intake. To estimate odds ratios (ORs) and 95% confidence intervals (95% CI), we used logistic regression analysis. RESULTS After controlling for potential confounders, we found that women in the highest quartile of BCAAs had lower odds of breast cancer compared with the first quartile (OR: 0.50; 95% CI 0.34-0.72). When we stratified the analysis based on menopausal status, a significant inverse association between BCAAs intake and odds of postmenopausal breast cancer was observed (OR: 0.22; 95% CI 0.13-0.39), although this significant relationship was not found in premenopausal breast cancer (OR: 2.57; 95% CI 0.51-12.73). Also, this significant association was also observed for valine, leucine, and isoleucine separately. CONCLUSION We found that higher dietary intake of BCAAs was significantly associated with a reduced risk of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Asma Salari-Moghaddam
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Sanaz Benisi-Kohansal
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Liu Y, Zhang C, Zhang Y, Jiang X, Liang Y, Wang H, Li Y, Sun G. Association between Excessive Dietary Branched-Chain Amino Acids Intake and Hypertension Risk in Chinese Population. Nutrients 2022; 14:nu14132582. [PMID: 35807761 PMCID: PMC9268479 DOI: 10.3390/nu14132582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The dietary intake of branched-chain amino acids (BCAAs) has been reported to be associated with both elevated blood pressure (BP) and hypertension risk, while published findings were inconsistent, and the causality has never been well disclosed. We performed this prospective study aiming to find out the relationship between dietary BCAAs intake and hypertension risk in the Chinese population. A total of 8491 participants (40,285 person-years) were selected. The levels of dietary BCAAs intake were estimated using the 24-h Food Frequency Questionnaire. Associations of both BP values and hypertension risk with per standard deviation increase of BCAAs were estimated using linear and COX regression analysis, respectively. The hazard ratios and 95% confidence interval were given. Restricted cubic spline analysis (RCS) was used to estimate the nonlinearity. Both systolic and diastolic BP values at the end points of follow-up were positively associated with dietary BCAAs intake. Positive associations between BCAAs intake and hypertension risk were shown in both men and women. By performing a RCS analysis, the nonlinear relationship between BCAAs intake and hypertension was shown. As the intake levels of Ile, Leu, and Val, respectively, exceeded 2.49 g/day, 4.91 g/day, and 2.88 g/day in men (2.16 g/day, 3.84 g/day, and 2.56 g/day in women), the hypertension risk increased. Our findings could provide some concrete evidence in the primary prevention of hypertension based on dietary interventions.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China;
| | - Chengwen Zhang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yuan Zhang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Xuheng Jiang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yuanhong Liang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Huan Wang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yongfang Li
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
- Correspondence:
| | - Guifan Sun
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| |
Collapse
|
13
|
Seah JYH, Hong Y, Cichońska A, Sabanayagam C, Nusinovici S, Wong TY, Cheng CY, Jousilahti P, Lundqvist A, Perola M, Salomaa V, Tai ES, Würtz P, van Dam RM, Sim X. Circulating Metabolic Biomarkers Are Consistently Associated With Type 2 Diabetes Risk in Asian and European Populations. J Clin Endocrinol Metab 2022; 107:e2751-e2761. [PMID: 35390150 DOI: 10.1210/clinem/dgac212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT While Asians have a higher risk of type 2 diabetes (T2D) than Europeans for a given body mass index (BMI), it remains unclear whether the same markers of metabolic pathways are associated with diabetes. OBJECTIVE We evaluated associations between metabolic biomarkers and incidence of T2D in 3 major Asian ethnic groups (Chinese, Malay, and Indian) and a European population. METHODS We analyzed data from adult males and females of 2 cohorts from Singapore (n = 6393) consisting of Chinese, Malays, and Indians and 3 cohorts of European-origin participants from Finland (n = 14 558). We used nuclear magnetic resonance to quantify 154 circulating metabolic biomarkers at baseline and performed logistic regression to assess associations with T2D risk adjusted for age, sex, BMI and glycemic markers. RESULTS Of the 154 metabolic biomarkers, 59 were associated with higher risk of T2D in both Asians and Europeans (P < 0.0003, Bonferroni-corrected). These included branched chain and aromatic amino acids, the inflammatory marker glycoprotein acetyls, total fatty acids, monounsaturated fatty acids, apolipoprotein B, larger very low-density lipoprotein particle sizes, and triglycerides. In addition, 13 metabolites were associated with a lower T2D risk in both populations, including omega-6 polyunsaturated fatty acids and larger high-density lipoprotein particle sizes. Associations were consistent within the Asian ethnic groups (all Phet ≥ 0.05) and largely consistent for the Asian and European populations (Phet ≥ 0.05 for 128 of 154 metabolic biomarkers). CONCLUSION Metabolic biomarkers across several biological pathways were consistently associated with T2D risk in Asians and Europeans.
Collapse
Affiliation(s)
- Jowy Yi Hoong Seah
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yueheng Hong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Annamari Lundqvist
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| |
Collapse
|
14
|
Yu L, Song P, Zhu Q, Li Y, Jia S, Zhang S, Wang Z, Zhang J. The Dietary Branched-Chain Amino Acids Transition and Risk of Type 2 Diabetes Among Chinese Adults From 1997 to 2015: Based on Seven Cross-Sectional Studies and a Prospective Cohort Study. Front Nutr 2022; 9:881847. [PMID: 35677550 PMCID: PMC9168595 DOI: 10.3389/fnut.2022.881847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background The situation is grim for the prevention and control of type 2 diabetes (T2D) and prediabetes in China. Serum and dietary branched-chain amino acids (BCAAs) were risk factors for T2D. However, there is a lack of information on trends in consumption of BCAAs and the risk of T2D associated with BCAAs intake, based on nationally representative data in China. Thus, we aimed to comprehensively describe the dietary BCAAs transition and risk of T2D, at a national level among Chinese adults from 1997 to 2015. Methods The data sources were the China Health and Nutrition Survey (CHNS) and China Nutrition and Health Survey (CNHS). Cross-sectional data on intake were obtained from CHNS (1997, n = 9,404), CHNS (2000, n = 10,291), CHNS (2004, n = 9,682), CHNS (2006, n = 9,553), CHNS (2009, n = 9,811), CHNS (2011, n = 12,686) and CNHS (2015, n = 71,695). Prospective cohort data were obtained CHNS (1997-2015, n = 15,508). Results From 1997 to 2015, there was a significant decreasing trend in the BCAAs intake of Chinese adults in all subgroups (P < 0.0001) except for Leu in 80 or older, and a decreasing trend in the consumption of BCAAs after 40 years old (P < 0.05). The mean intake of BCAAs in the population of cohort study was 11.83 ± 3.77g/day. The 95% CI was above the HR of 1.0, when the consumptions were higher than 14.01, 3.75, 6.07, 4.21 g/day in BCAAs, Ile, Leu and Val, based on RCS curves. According to the Cox proportional hazards models, Compared with individuals with BCAAs consumption of 10.65-12.37 g/day, the multivariable-adjusted HR for diabetes was 2.26 (95% CI 1.45 to 3.51) for individuals with consumption of BCAAs more than 18.52 g/day. A statistically significant positive association between BCAAs intake and risk of T2D was observed in males or participants aged 45 years and older, but not in females or participants younger than 45 years. Conclusion Our results reveal a trend toward decreased BCAAs intake in Chinese from 1997 to 2015. After 40 years of age, consumption of BCAAs declined with increasing age. Higher BCAAs intake was associated with higher risk of T2D. This relationship is more stable among men and middle-aged and elderly people.
Collapse
Affiliation(s)
- Lianlong Yu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pengkun Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China.,NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianrang Zhu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuqian Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanshan Jia
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihong Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
15
|
Cuomo P, Capparelli R, Iannelli A, Iannelli D. Role of Branched-Chain Amino Acid Metabolism in Type 2 Diabetes, Obesity, Cardiovascular Disease and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23084325. [PMID: 35457142 PMCID: PMC9030262 DOI: 10.3390/ijms23084325] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Branched-chain amino acids (BCAAs) include leucine, isoleucine, and valine. Mammalians cannot synthesize these amino acids de novo and must acquire them through their diet. High levels of BCAAs are associated with insulin resistance; type 2 diabetes; obesity; and non-metabolic diseases, including several forms of cancer. BCAAs—in particular leucine—activate the rapamycin complex1 mTORC1, which regulates cell growth and metabolism, glucose metabolism and several more essential physiological processes. Diets rich in BCAAs are associated with metabolic diseases (listed above), while diets low in BCAAs are generally reported to promote metabolic health. As for the dysregulation of the metabolism caused by high levels of BCAAs, recent studies propose that the accumulation of acyl-carnitine and diacyl-CoA in muscles alters lipid metabolism. However, this suggestion is not broadly accepted. On clinical grounds, pre- and post-operative metabolic profiles of candidate patients for bariatric surgery are being used to select the optimal procedure for each individual patient.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy;
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy;
- Correspondence: (R.C.); (D.I.)
| | - Antonio Iannelli
- Department of Digestive Surgery, Université Côte d’ Azur, F-06108 Nice, France;
- Centre Hospitalier Universitaire de Nice-Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, 151 Route de Saint Antoine de Ginestiere, F-062024 Nice, France
- Inserm, U1065, Team 8 “Hepatic Complications of Obesity and Alcohol”, F-062024 Nice, France
| | - Domenico Iannelli
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy;
- Correspondence: (R.C.); (D.I.)
| |
Collapse
|
16
|
Okekunle AP, Lee H, Provido SMP, Chung GH, Hong S, Yu SH, Lee CB, Lee JE. Dietary branched-chain amino acids and odds of obesity among immigrant Filipino women: the Filipino women's diet and health study (FiLWHEL). BMC Public Health 2022; 22:654. [PMID: 35382800 PMCID: PMC8985351 DOI: 10.1186/s12889-022-12863-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background The dietary environment promoting adiposity keeps evolving and of interest is the significance of dietary branched-chain amino acids (BCAA). This study assessed the association between dietary BCAA intakes and odds of obesity among immigrant Filipino women in Korea. Method We included 423 immigrant Filipino women enrolled in the Filipino Women’s diet and health study in the Republic of Korea. Dietary BCAA intakes were estimated from 24 hour recalls and adjusted for energy intake using the residual method. General obesity was derived from direct anthropometric measurements (height, weight and waist circumference – WC) and defined as body mass index (BMI) ≥25 kg/m2 and abdominal obesity as WC ≥80 cm. Odds ratios (OR) and 95% confidence intervals (CI) by tertile distribution of energy-adjusted BCAA intakes were estimated using multivariable logistic regression with a two-sided P < 0.05. Results Median (interquartile range) for BCAA intakes in g/day were; 7.9 (5.8, 10.3) g/day for total BCAA; 2.0 (1.5, 2.6) g/day for isoleucine, 3.5(2.5, 4.6) g/day for leucine and 2.4 (1.8, 3.1) g/day for valine. Mean BMI and WC were 23.6 ± 3.8 kg/m2 and 79.8 ± 9.3 cm, respectively. Also, 30.2% (128) had BMI ≥25 kg/m2 and 42.0% (178) had WC ≥80 cm. ORs (95%CIs) of general obesity across tertile distribution of energy-adjusted total BCAA intakes were 1.00, 0.81 (0.47, 1.37) and 0.62 (0.36, 1.07; P for trend = 0.08). A similar trend was observed across tertile distribution of energy-adjusted isoleucine, leucine and valine intakes. However, there was a statistically significant inverse association between total BCAA intake and odds of general obesity in a subset of non-smokers; 1.00, 0.68 (0.39, 1.20) and 0.55 (0.31, 0.98; P for trend = 0.04). Conclusion We found a suggestive inverse association between higher dietary BCAA intake and odds of obesity in this sample of immigrant Filipino women, particularly among non-smokers. Prospective cohort studies among the immigrant population will be necessary to verity these findings.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.,Research Institute of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Heejin Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sherlyn Mae P Provido
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Grace H Chung
- Department of Child Development & Family Studies Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sangmo Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153 Gyeongchun-ro, Guri, Guri-si, 11923, South Korea
| | - Sung Hoon Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153 Gyeongchun-ro, Guri, Guri-si, 11923, South Korea
| | - Chang Beom Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153 Gyeongchun-ro, Guri, Guri-si, 11923, South Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,Research Institute of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Association between dietary intake of branched-chain amino acids and sarcopenia and its components: a cross-sectional study. Sci Rep 2022; 12:5666. [PMID: 35383191 PMCID: PMC8983668 DOI: 10.1038/s41598-022-07605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
There is no previous study that investigated the association between dietary intake of total and individual branched-chain amino acids (BCAAs) and odds of sarcopenia. The present study aimed to examine the association between dietary intake of BCAAs and sarcopenia and its components among Iranian adults. The data for this cross-sectional study was collected in 2011 among 300 older people (150 men and 150 female) with aged ≥ 55 years. We used a Block-format 117-item food frequency questionnaire (FFQ) to evaluate usual dietary intakes. BCAAs intake was calculated by summing up the amount of valine, leucine and isoleucine intake from all food items in the FFQ. The European Sarcopenia Working Group (EWGSOP) definition was used to determine sarcopenia and its components. Mean age of study participants was 66.8 years and 51% were female. Average intake of BCAAs was 12.8 ± 5.1 g/day. Prevalence of sarcopenia and its components was not significantly different across tertile categories of total and individual BCAAs intake. We found no significant association between total BCAAs intake and odds of sarcopenia (OR for comparison of extreme tertiles 0.48, 95% CI 0.19–1.19, P-trend = 0.10) and its components (For muscle mass 0.83, 95% CI 0.39–1.77, P-trend = 0.63; for hand grip strength 0.81, 95% CI 0.37–1.75, P-trend: 0.59; for gait speed 1.22, 95% CI 0.58–2.57, P-trend = 0.56). After adjusting for potential confounders, this non-significant relationship did not alter. In addition, we did not find any significant association between individual BCAAs intake and odds of sarcopenia or its components. We found no significant association between dietary intakes of BCAAs and sarcopenia in crude model (OR 0.60; 95% CI 0.29–1.26). After controlling for several potential confounders, the result remained insignificant (OR 0.48; 95% CI 0.19–1.19). In this cross-sectional study, no significant association was observed between dietary intakes of total and individual BCAAs and odds of sarcopenia and its components.
Collapse
|
18
|
Amino Acid-Related Metabolic Signature in Obese Children and Adolescents. Nutrients 2022; 14:nu14071454. [PMID: 35406066 PMCID: PMC9003189 DOI: 10.3390/nu14071454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The growing interest in metabolomics has spread to the search for suitable predictive biomarkers for complications related to the emerging issue of pediatric obesity and its related cardiovascular risk and metabolic alteration. Indeed, several studies have investigated the association between metabolic disorders and amino acids, in particular branched-chain amino acids (BCAAs). We have performed a revision of the literature to assess the role of BCAAs in children and adolescents' metabolism, focusing on the molecular pathways involved. We searched on Pubmed/Medline, including articles published until February 2022. The results have shown that plasmatic levels of BCAAs are impaired already in obese children and adolescents. The relationship between BCAAs, obesity and the related metabolic disorders is explained on one side by the activation of the mTORC1 complex-that may promote insulin resistance-and on the other, by the accumulation of toxic metabolites, which may lead to mitochondrial dysfunction, stress kinase activation and damage of pancreatic cells. These compounds may help in the precocious identification of many complications of pediatric obesity. However, further studies are still needed to better assess if BCAAs may be used to screen these conditions and if any other metabolomic compound may be useful to achieve this goal.
Collapse
|
19
|
O'Connor LE, Herrick KA, Parsons R, Reedy J. Heterogeneity in Meat Food Groups Can Meaningfully Alter Population-Level Intake Estimates of Red Meat and Poultry. Front Nutr 2021; 8:778369. [PMID: 34977122 PMCID: PMC8714904 DOI: 10.3389/fnut.2021.778369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Heterogeneity in meat food groups hinders interpretation of research regarding meat intake and chronic disease risk. Our objective was to investigate how heterogeneity in red meat (RM) and poultry food groups influences US population intake estimates. Based on a prior systematic review, we created an ontology of methods used to estimate RM [1= unprocessed RM; 2 (reference)= unprocessed RM + processed RM; 3= unprocessed RM + processed RM + processed poultry; and 4=unprocessed RM + processed RM + processed poultry + chicken patties/nuggets/tenders (PNT)] and three for poultry [A=unprocessed poultry; B= unprocessed poultry + PNT; C (reference)= unprocessed poultry + processed poultry + PNT). We applied methods to 2015-18 National Health and Nutrition Examination Survey data to estimate RM and poultry intake prevalence and amount. We estimated and compared intakes within RM and within poultry methods via the NCI Method for individuals ≥2 years old (n = 15,038), adjusted for age, sex, and race/Hispanic origin. We compared the population percentage that exceeded age- and sex-specific RM and poultry allotments from the Dietary Guidelines for Americans recommended eating patterns. The percent that consumed RM ranged from 47 ± 1.2% to 75 ± 0.8% across methods and mean amount ranged from 10.5 ± 0.28 to 18.2 ± 0.35 lean oz-equivalents/week; 38 ± 1.2% to 71 ± 0.7% and 9.8 ± 0.35 to 13.3 ± 0.35 lean oz-equivalents/week across poultry methods. Estimates for higher, but not lower, intake percentiles differed across RM methods. Compared to the reference, Method 1 was ≥3.0 oz-equivalents/week lower from 20th-70th percentiles, ≥6.0 oz-equivalents/week lower from 75th-90th percentiles, and ≥9.0 oz-equivalents/week lower for the 95th percentile. Method 4, but not Method 3, was ≥3.0 oz-equivalents/week higher than the reference from 50 to 95th percentiles. The population percentage that exceeded allotments was 27 ± 1.8% lower for Method 1, 9 ± 0.8% higher for Method 3, and 14 ± 0.9% higher for Method 4 compared to the reference. Differences were less pronounced for poultry. Our analysis quantifies the magnitude of bias introduced by heterogeneous meat food group methodology. Explicit descriptions of meat food groups are important for development of dietary recommendations to ensure that research studies are compared appropriately.
Collapse
Affiliation(s)
- Lauren E. O'Connor
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Kirsten A. Herrick
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ruth Parsons
- Information Management Services, Inc., Rockville, MD, United States
| | - Jill Reedy
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
20
|
Fang Y, Zhang C, Shi H, Wei W, Shang J, Zheng R, Yu L, Wang P, Yang J, Deng X, Zhang Y, Tang S, Shi X, Liu Y, Yang H, Yuan Q, Zhai R, Yuan H. Characteristics of the Gut Microbiota and Metabolism in Patients With Latent Autoimmune Diabetes in Adults: A Case-Control Study. Diabetes Care 2021; 44:2738-2746. [PMID: 34620611 PMCID: PMC8669532 DOI: 10.2337/dc20-2975] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/22/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 and type 2 diabetes are associated with gut dysbiosis. However, the relationship between the gut microbiota and latent autoimmune diabetes in adults (LADA), sharing clinical and metabolic features with classic type 1 and type 2 diabetes, remains unclear. Here, we used a multiomics approach to identify the characteristics of the gut microbiota and metabolic profiles in patients with LADA. RESEARCH DESIGN AND METHODS This age- and sex-matched case-control study included 30 patients with LADA, 31 patients with classic type 1 diabetes, 30 patients with type 2 diabetes, and 29 healthy individuals. The gut microbiota profiles were identified through the 16S rRNA gene, and fecal and serum metabolites were measured through untargeted liquid chromatography-mass spectrometry. RESULTS Patients with LADA had a significantly different structure and composition of the gut microbiota and their metabolites as well as a severe deficiency of short-chain fatty acid-producing bacteria. The gut microbiota structure of the patients with LADA was more similar to that of patients with type 1 diabetes who were positive for GAD antibody. We identified seven serum metabolite modules and eight fecal metabolite modules that differed between the LADA group and the other groups. CONCLUSIONS The characteristic gut microbiota and related metabolites of patients with LADA are associated with autoantibodies, glucose metabolism, islet function, and inflammatory factors, which may contribute to the pathogenesis of LADA. Future longitudinal studies should explore whether modulating the gut microbiota and related metabolites can alter the natural course of autoimmune diabetes in the quest for new therapeutics.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongcai Shi
- Department of Endocrinology of People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Shang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhi Zheng
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Yu
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pingping Wang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Deng
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Zhang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yalei Liu
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huihui Yang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Zhai
- Adfontes (Shanghai) Biotechnology Co., Ltd., Shanghai, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Genetic predisposition to impaired metabolism of the branched chain amino acids, dietary intakes, and risk of type 2 diabetes. GENES AND NUTRITION 2021; 16:20. [PMID: 34727893 PMCID: PMC8561969 DOI: 10.1186/s12263-021-00695-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022]
Abstract
Background and objectives Circulating branched chain amino acids (BCAAs) increase the risk of type 2 diabetes (T2D). The genetic variants in the BCAA metabolic pathway influence the individual metabolic ability of BCAAs and may affect circulating BCAA levels together with dietary intakes. So, we investigated whether genetic predisposition to impaired BCAA metabolism interacts with dietary BCAA intakes on the risk of type 2 diabetes and related parameters. Methods We estimated dietary BCAA intakes among 434 incident T2D cases and 434 age-matched controls from The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases. The genetic risk score (GRS) was calculated on the basis of 5 variants having been identified in the BCAA metabolic pathway. Multivariate logistic regression models and general linear regression models were used to assess the interaction between dietary BCAAs and GRS on T2D risk and HbA1c. Results Dietary BCAAs significantly interact with metabolism related GRS on T2D risk and HbA1c (p for interaction = 0.038 and 0.015, respectively). A high intake of dietary BCAAs was positively associated with diabetes incidence only among high GRS (OR 2.40, 95% CI 1.39, 4.12, P for trend = 0.002). Dietary BCAAs were associated with 0.14% elevated HbA1c (p = 0.003) and this effect increased to 0.21% in high GRS (p = 0.003). Furthermore, GRS were associated with 9.19 μmol/L higher plasma BCAA levels (p = 0.006, P for interaction = 0.015) only among the highest BCAA intake individuals. Conclusions Our study suggests that genetic predisposition to BCAA metabolism disorder modifies the effect of dietary BCAA intakes on T2D risk as well as HbA1c and that higher BCAA intakes exert an unfavorable effect on type 2 diabetes risk and HbA1c only among those with high genetic susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00695-3.
Collapse
|
23
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
24
|
Wang W, Jiang H, Zhang Z, Duan W, Han T, Sun C. Interaction between dietary branched-chain amino acids and genetic risk score on the risk of type 2 diabetes in Chinese. GENES & NUTRITION 2021; 16:4. [PMID: 33663374 PMCID: PMC7934387 DOI: 10.1186/s12263-021-00684-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have found the important gene-diet interactions on type 2 diabetes (T2D) incident but have not followed branched-chain amino acids (BCAAs), even though they have shown heterogeneous effectiveness in diabetes-related factors. So in this study, we aim to investigate whether dietary BCAAs interact with the genetic predisposition in relation to T2D risk and fasting glucose in Chinese adults. METHODS In a case-control study nested in the Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases, we obtained data for 434 incident T2D cases and 434 controls matched by age and sex. An unweighted genetic risk score (GRS) was calculated for 25 T2D-related single nucleotide polymorphisms by summation of the number of risk alleles for T2D. Multivariate logistic regression models and general linear regression models were used to assess the interaction between dietary BCAAs and GRS on T2D risk and fasting glucose. RESULTS Significant interactions were found between GRS and dietary BCAAs on T2D risk and fasting glucose (p for interaction = 0.001 and 0.004, respectively). Comparing with low GRS, the odds ratio of T2D in high GRS were 2.98 (95% CI 1.54-5.76) among those with the highest tertile of total BCAA intake but were non-significant among those with the lowest intake, corresponding to 0.39 (0.12) mmol/L versus - 0.07 (0.10) mmol/L fasting glucose elevation per tertile. Viewed differently, comparing extreme tertiles of dietary BCAAs, the odds ratio (95% CIs) of T2D risk were 0.46 (0.22-0.95), 2.22 (1.15-4.31), and 2.90 (1.54-5.47) (fasting glucose elevation per tertile: - 0.23 (0.10), 0.18 (0.10), and 0.26 (0.13) mmol/L) among participants with low, intermediate, and high genetic risk, respectively. CONCLUSIONS This study indicated that dietary BCAAs could amplify the genetic association with T2D risk and fasting glucose. Moreover, higher BCAA intake showed positive association with T2D when genetic predisposition was also high but changed to negative when genetic predisposition was low.
Collapse
Affiliation(s)
- Weiqi Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Haiyang Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Ziwei Zhang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Wei Duan
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
25
|
Montegiove N, Pellegrino RM, Emiliani C, Pellegrino A, Leonardi L. An Alternative Approach to Evaluate the Quality of Protein-Based Raw Materials for Dry Pet Food. Animals (Basel) 2021; 11:458. [PMID: 33572462 PMCID: PMC7916219 DOI: 10.3390/ani11020458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of dry pet food currently on the market is produced using fresh meats (FMs) and especially meat meals (MMs) as the main protein source. The transport and storage conditions of the raw materials, together with thermal and mechanical treatments in the case of MMs, may result in undesirable alterations of food products and their protein content. This study was conducted to analyze the protein component of three different kinds of raw materials used for dry pet food production, i.e., chicken, pork, and salmon. The quantitative analysis of the protein component was determined using the traditional Kjeldahl method and near-infrared (NIR) spectroscopy, and an alternative method, i.e., the Bradford assay, while the qualitative analysis was performed through SDS-PAGE, followed by Coomassie Blue staining. The amino acid (AA) profile was also evaluated by quadrupole time-of-flight liquid chromatography/mass spectrometry (Q-TOF LC/MS). In addition, the digestibility was tested through in vitro gastric and small intestine digestion simulation. Statistical analysis was performed by the Student's t-test, and data are reported as mean ± SEM, n = 10 (p < 0.05). The results showed that the MMs are lower in quality compared to FMs, both in terms of protein bioavailability and digestibility, having a lower soluble protein (SP) content (chicken MM = 8.6 g SP/100 g dry sample; pork MM = 6.2 g SP/100 g dry sample; salmon MM = 7.9 g SP/100 g dry sample) compared to FMs (chicken FM = 14.6 g SP/100 g dry sample; pork FM = 15.1 g SP/100 g dry sample; salmon FM = 13.7 g SP/100 g dry sample). FMs appear, therefore, to be higher-quality ingredients for pet food production. Moreover, the Bradford assay proved to be a quick and simple method to better estimate protein bioavailability in the raw materials used for dry pet food production, thanks to its correlation with the in vitro digestibility.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (R.M.P.); (C.E.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (R.M.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (R.M.P.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | | | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
26
|
Chen HY, Sun CY, Lee CC, Wu IW, Chen YC, Lin YH, Fang WC, Pan HC. Ketoanalogue supplements reduce mortality in patients with pre-dialysis advanced diabetic kidney disease: A nationwide population-based study. Clin Nutr 2021; 40:4149-4160. [PMID: 33597108 DOI: 10.1016/j.clnu.2021.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Metabolism dysregulation and protein energy wasting occur in patients with chronic kidney disease (CKD) and are associated with poor survival, especially in patients prior to starting dialysis. Accumulating evidence indicates that dietary supplementation with ketoanalogues (KAs, a mixture of branched-chain amino acids) exerts a variety of beneficial effects for patients with CKD. However, the role of KAs in diabetic kidney disease (DKD), one of the major causes of CKD, is still controversial. The aim of this study was to explore the impact of KA supplements on survival in patients with stage 5 DKD who have not yet started dialysis (DKD-5-ND). METHODS We analyzed a nationwide cohort retrieved from the National Health Insurance Research Database in Taiwan to study the long-term impact of KA supplements in patients with DKD-5-ND. We enrolled 15,782 incident pre-dialysis DKD patients between January 1, 2004 and December 31, 2007. Landmark analysis was used to eliminate immortal bias, and overlap weighting was used to balance differences between the KA users and nonusers in the beginning. The primary study endpoint was all-cause mortality, and the occurrence of permanent dialysis (presenting the end-stage renal disease, ESRD) and major adverse cardiovascular events (MACEs) was also evaluated. All patients were followed for five years or until death. RESULTS The prevalence of KA usage in the DKD-5-ND patients was 6.3%. The 5-year all-cause mortality rate in the KA users was lower than that in the nonusers (34.7% vs 42.7%). After adjusting for known covariates, the KA users still had a lower risk of mortality (adjusted hazard ratio [aHR]: 0.73, 95% confidence interval [CI]: 0.66-0.82). In addition, the incidence of ESRD was also slightly lower among the KA users (90.9% for users vs 91.2% for nonusers, adjusted cause-specific hazard ratio [aCSHR]: 0.65, 95% CI: 0.61-0.69), and the occurrence of MACEs was lower (adjusted incidence rate ratios [aIRR]: 0.76, 95% CI: 0.67-0.86). Although the all-cause mortality was higher among patientsolder than 70 years (60.5% for KA users vs 46.5% for nonusers) the risk reduction seemed prominent among older patients (aHR: 0.65, 95% CI: 0.56-0.76 for patients aged ≥70 years; aHR: 0.82, 95% CI: 0.71-0.96 for patients aged < 70 years). The reduction in risks of mortality was consistent in subgroup analysis and sensitivity tests. CONCLUSIONS The use of KA supplements seemed to be beneficial for patients with DKD-5-ND; further in-depth analysis of using KA for these patients is warranted.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Yin Sun
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - I-Wen Wu
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yung-Chang Chen
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Hsuan Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ching Fang
- Department of Family Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Heng-Chih Pan
- Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
27
|
Food consumption of branched chain amino acids and insulin resistance: A systematic review of observational studies in humans. Clin Nutr ESPEN 2020; 40:277-281. [PMID: 33183550 DOI: 10.1016/j.clnesp.2020.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022]
Abstract
This review systematically investigated observational studies in humans that evaluated the dietary intake of branched-chain amino acids (BCAA) and its association with insulin resistance. A search implemented through the electronic databases of PubMed, Scopus, and Web of Science. The evaluation of insulin resistance or the risk of developing insulin resistance in humans were the variables of interest in the search for articles. After using the selection criteria, three studies included in this review. The Food Frequency Questionnaire (FFQ) was the instrument used to evaluate the diet in all of the selected studies. Overall, 1940 studies identified and three thoroughly reviewed. We found only one study with positive effects of BCAA on insulin resistance; the other two reviewed studies did not demonstrate positive effects of the dietary intake of BCAA, individually or the sum of three amino acids on variables of interest. In this sense, the associations between BCAA and insulin resistance are inconsistent, potentially due to other longitudinal outcomes.
Collapse
|
28
|
Abstract
Dietary proteins have been used for years to treat obesity. Body weight loss is beneficial when it concerns fat mass, but loss of fat free mass - especially muscle might be detrimental. This occurs because protein breakdown predominates over synthesis, thus administering anabolic dietary compounds like proteins might counter fat free mass loss while allowing for fat mass loss.Indeed, varying the quantity of proteins will decrease muscle anabolic response and increase hyperphagia in rodents fed a low protein diet; but it will favor lean mass maintenance and promote satiety, in certain age groups of humans fed a high protein diet. Beyond protein quantity, protein source is an important metabolic regulator: whey protein and plant based diets exercize favorable effects on the risk of developing obesity, body composition, metabolic parameters or fat free mass preservation of obese patients. Specific amino-acids like branched chain amino acids (BCAA), methionine, tryptophan and its metabolites, and glutamate can also positively influence parameters and complications of obesity especially in rodent models, with less studies translating this in humans.Tuning the quality and quantity of proteins or even specific amino-acids can thus be seen as a potential therapeutic intervention on the body composition, metabolic syndrome parameters and appetite regulation of obese patients. Since these effects vary across age groups and much of the data comes from murine models, long-term prospective studies modulating proteins and amino acids in the human diet are needed.
Collapse
Affiliation(s)
- Mathilde Simonson
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Yves Boirie
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| | - Christelle Guillet
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
29
|
Greger M. A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Am J Lifestyle Med 2020; 14:500-510. [PMID: 32922235 PMCID: PMC7444011 DOI: 10.1177/1559827620912400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
What does the best available balance of scientific evidence show is the optimum way to lose weight? Calorie density, water content, protein source, and other components significantly influence the effectiveness of different dietary regimes for weight loss. By "walling off your calories," preferentially deriving your macronutrients from structurally intact plant foods, some calories remain trapped within indigestible cell walls, which then blunts the glycemic impact, activates the ileal brake, and delivers prebiotics to the gut microbiome. This may help explain why the current evidence indicates that a whole food, plant-based diet achieves greater weight loss compared with other dietary interventions that do not restrict calories or mandate exercise. So, the most effective diet for weight loss appears to be the only diet shown to reverse heart disease in the majority of patients. Plant-based diets have also been found to help treat, arrest, and reverse other leading chronic diseases such as type 2 diabetes and hypertension, whereas low-carbohydrate diets have been found to impair artery function and worsen heart disease, the leading killer of men and women in the United States. A diet centered on whole plant foods appears to be a safe, simple, sustainable solution to the obesity epidemic.
Collapse
|
30
|
Dietary intake of specific amino acids and liver status in subjects with nonalcoholic fatty liver disease: fatty liver in obesity (FLiO) study. Eur J Nutr 2020; 60:1769-1780. [PMID: 32857176 DOI: 10.1007/s00394-020-02370-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Identification of dietary factors involved in the development and progression of nonalcoholic fatty liver disease (NAFLD) is relevant to the current epidemics of the disease. Dietary amino acids appear to play a key role in the onset and progression of NAFLD. The aim of this study was to analyze potential associations between specific dietary amino acids and variables related to glucose metabolism and hepatic status in adults with overweight/obesity and NAFLD. METHODS One hundred and twelve individuals from the Fatty Liver in Obesity (FLiO) study were evaluated. Liver assessment was carried out by ultrasonography, magnetic resonance imaging and analysis of biochemical parameters. Dietary amino acid intake (aromatic amino acids (AAA); branched-chain amino acids (BCAA); sulfur amino acids (SAA)) was estimated by means of a validated 137-item food frequency questionnaire. RESULTS Higher consumption of these amino acids was associated with worse hepatic health. Multiple adjusted regression models confirmed that dietary AAA, BCAA and SAA were positively associated with liver fat content. AAA and BCAA were positively associated with liver iron concentration. Regarding ferritin levels, a positive association was found with BCAA. Dietary intake of these amino acids was positively correlated with glucose metabolism (glycated hemoglobin, triglyceride and glucose index) although the significance disappeared when potential confounders were included in the model. CONCLUSION These findings suggest that the consumption of specific dietary amino acids might negatively impact on liver status and, to a lesser extent on glucose metabolism in subjects with overweight/obesity and NAFLD. A control of specific dietary amino acid composition should be considered in the management of NAFLD and associated insulin resistance. NCT03183193; June 2017.
Collapse
|
31
|
Xie Y, Wang C, Zhao D, Zhou C, Li C. Long-Term Intake of Pork Meat Proteins Altered the Composition of Gut Microbiota and Host-Derived Proteins in the Gut Contents of Mice. Mol Nutr Food Res 2020; 64:e2000291. [PMID: 32730665 DOI: 10.1002/mnfr.202000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/09/2020] [Indexed: 11/07/2022]
Abstract
SCOPE This study is to investigate the effects of long-term intake of pork protein on the composition of gut microbiota and proteins in mice. METHODS AND RESULTS C57BL/6J mice are fed pork meat protein diets for 240 days, and the composition of gut microbiota and proteins in luminal contents from the duodenum to the colon are analyzed by 16S rRNA gene sequencing and LC-MS/MS. The stewed pork protein diet group has a highly similar microbiota composition to that of the cooked pork protein diet group, but different from the pork emulsion sausage or dry-cured pork protein diet groups. Lachnospiraceae NK4A136, Odoribacter, Defluviitaleaceae UCG-011, Ruminiclostridium 9, Blautia, Lachnoclostridium, and Ruminococcaceae UCG-010 play an important role in response to changes in gut luminal proteins. Specific microbes are significantly correlated with the Cela3b and Cpa1 that are derived from the host and involve protein digestion and absorption. CONCLUSIONS Pork meat protein diets alter the gut microbiota composition and specific gut microbes may have a great impact on protein digestion and absorption by regulating the secretion of digestive proteins from the host. These findings provide a new insight into the associations of long-term intake of meat protein diet with gut microbiota and host.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chao Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Changyu Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
32
|
Effects of enriched branched-chain amino acid supplementation on sarcopenia. Aging (Albany NY) 2020; 12:15091-15103. [PMID: 32712600 PMCID: PMC7425429 DOI: 10.18632/aging.103576] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022]
Abstract
To evaluate the effects of short-term administration of enriched branched-chain amino acids (BCAAs) on subjects with pre-sarcopenia or sarcopenia, our quasi-experimental study enrolled 33 subjects (12 pre-sarcopenia/21 sarcopenia; 6 men/27 women; mean age 66.6 ± 10.3 years) to take one sachet (3.6 g) of enriched BCAA powder twice a day for five weeks followed by a discontinuation period of 12 weeks. We evaluated sarcopenic parameters, including grip strength, 6-meter gait speed, and bioelectrical-impedance-analysis-derived skeletal mass index (SMI), at baseline, 5 weeks, and 17 weeks. We found that both pre-sarcopenic and sarcopenic subjects showed improved SMI, gait speed, and grip strength at 5 weeks. However, all three parameters progressively declined at 17 weeks, especially SMI and grip strength in subjects aged < 65 years and gait speed and grip strength in subjects aged ≥ 65 years. It thus appears that supplementation with enriched BCAAs for 5 weeks correlates with short-term positive effects on sarcopenic parameters but attenuation of those effects following discontinuation for 12 weeks.
Collapse
|
33
|
Meat and fish intake and type 2 diabetes: Dose-response meta-analysis of prospective cohort studies. DIABETES & METABOLISM 2020; 46:345-352. [PMID: 32302686 DOI: 10.1016/j.diabet.2020.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2023]
Abstract
AIMS This meta-analysis aimed to quantitatively examine the possible associations between total meat, red meat, processed meat, poultry and fish intakes and type 2 diabetes (T2D). METHODS Relevant articles were identified in PubMed, Embase and Web of Science databases using a search time up to January 2019. Generalized least-squares trend estimations and restricted cubic spline regression models were used for analysis. RESULTS Twenty-eight articles were included in the analysis. When comparing the highest with the lowest category of meat intake, the summary relative risk of T2D was 1.33 (95% CI: 1.16-1.52) for total meat, 1.22 (95% CI: 1.16-1.28) for red meat, 1.25 (95% CI: 1.13-1.37) for processed meat, 1.00 (95% CI: 0.93-1.07) for poultry and 1.01 (95% CI: 0.93-1.10) for fish. In the dose-response analysis, each additional 100g/day of total and red meat, and 50g/day of processed meat, were found to be associated with a 36% (95% CI: 1.23-1.49), 31% (95% CI: 1.19-1.45) and 46% (95% CI: 1.26-1.69) increased risk of T2D, respectively. In addition, there was evidence of a non-linear dose-response association between processed meat and T2D (P=0.004), with the risk increasing by 30% with increasing intakes up to 30g/day. CONCLUSION Our meta-analysis has shown a linear dose-response relationship between total meat, red meat and processed meat intakes and T2D risk. In addition, a non-linear relationship of intake of processed meat with risk of T2D was detected.
Collapse
|
34
|
Effect of Lifestyle Intervention in the Concentration of Adipoquines and Branched Chain Amino Acids in Subjects with High Risk of Developing Type 2 Diabetes: Feel4Diabetes Study. Cells 2020; 9:cells9030693. [PMID: 32178221 PMCID: PMC7140606 DOI: 10.3390/cells9030693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction: The global prevalence of type 2 diabetes (T2D) is increasing rapidly, especially in low- and middle-income countries and has a high number of associated comorbidities. Plasmatic concentrations of branched chain amino acids (BCAA) and retinol-binding protein 4 (RBP4) have been shown to be elevated in T2D subjects in cross-sectional studies. However, the effect of lifestyle community-based interventions on BCAA and RBP4 concentrations has not yet been analyzed. Material and methods: The Feel4Diabetes study is a school and community-based intervention that identified 360 European families with a high risk of developing T2D according to the FINDRISC questionnaire. Families were randomized in control and intervention groups were followed-up from 2016 to 2018. In the Spanish families, the concentration of BCAA and RBP4 was determined in 266 subjects (115 control and 151 intervention group) that attended the three time-point assessments by colorimetric and ELISA reaction, respectively. Results: Baseline BCAA levels showed positive correlations with the FINDRISC score and glucose impairment (baseline glucose, insulin, and glycated hemoglobin), body mass index, and body weight. The participants receiving the community-based intervention showed a significant decrease in glycated hemoglobin and BCAA levels compared to the control group (p = 0.011 and p < 0.001, respectively). However, baseline RBP4 did not show significant correlations with anthropometric and glycemic parameters, and no significant change was observed in anthropometric parameters and RBP4 concentrations throughout the follow-up. Conclusion: A community-based intervention on lifestyle led to a significant reduction in BCAA levels regardless of weight loss. These findings suggest that this interventional approach could be promising in T2D prevention.
Collapse
|
35
|
Hosseinpour-Niazi S, Tahmasebinejad Z, Esfandiar Z, Bakhshi B, Mirmiran P, Azizi F. Weight gain, but not macronutrient intake, modifies the effect of dietary branch chain amino acids on the risk of metabolic syndrome. Diabetes Res Clin Pract 2020; 161:108039. [PMID: 32007512 DOI: 10.1016/j.diabres.2020.108039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022]
Abstract
AIMS The aim of this study was to investigate whether both weight change and the background intakes of macronutrient modulate the association between dietary branch chain amino acids (BCAAs) and the risk of metabolic syndrome (MetS). METHODS This prospective study was conducted within the framework of theTehranLipidand Glucose Study. BCAA intakes were collected using a valid and reliable semi-quantitative food frequency questionnaire. MetS components were defined according to the modified national Cholesterol Education Program Adult Treatment Panel III. Weight change was categorized as weight gain (≥ or <7% over 8.9 year follow-up). Dietary fat and carbohydrate intake were categorized as above/below the median intake. RESULTS Among participants with weight gain ≥ 7% during follow-up, intakes of both dietary BCAAs and its various sources (below or above the median intake) were associated with higher risk of MetS, compared with subjects with lower intakes of BCAAs and weight change ≤ 7%. Background dietary fat and carbohydrate did not modify the association of dietary BCAAs and its various sources with the risk of MetS. CONCLUSIONS Weight change, but not dietary macronutrient intake, modulates the association between dietary BCAAs and risk of MetS among adults.
Collapse
Affiliation(s)
- Somayeh Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhale Tahmasebinejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohre Esfandiar
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Bakhshi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
de la O V, Zazpe I, Ruiz-Canela M. Effect of branched-chain amino acid supplementation, dietary intake and circulating levels in cardiometabolic diseases: an updated review. Curr Opin Clin Nutr Metab Care 2020; 23:35-50. [PMID: 31688095 DOI: 10.1097/mco.0000000000000614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Branched-chain amino acids (BCAAs) are essential amino acids derived from diet. BCAA supplementation has been recommended in elderly and athletes, but recent studies suggest an association between high dietary BCAAs and blood levels of BCAAs with greater risk of cardiometabolic diseases (CMD). This review aims to integrate current epidemiological evidence analyzing the association between BCAAs and related-CMD risk factors. RECENT FINDINGS Most epidemiological studies consistently show that dietary BCAAs are associated with higher risk of type-2 diabetes (T2D) whereas there is limited evidence related with other cardiovascular risk factors. Evidence also exists showing an association between higher circulating BCAA levels and risk of T2D and cardiovascular disease, and also probably with metabolic syndrome and overweight/obesity. Several clinical trials suggest beneficial cardiometabolic effect of BCAAs supplementation, although with a small sample size and short follow-up. Studies show a weak correlation between dietary BCAAs and circulating BCAA levels. Protein quality sources and whole dietary pattern are key aspects to improve our understanding of the effect of BCAAs as well as factors associated with higher protein needs, such as age or frailty. SUMMARY Dietary and circulating BCAAs exhibit possible detrimental cardiometabolic effects, but BCAA supplementation may have some positive influence on target groups with nutritional deficiencies.
Collapse
Affiliation(s)
- Víctor de la O
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra Navarra Institute for Health Research (IdiSNA) Department of Nutrition, Food Sciences and Physiology, School of Pharmacy and Nutrition Sciences, University of Navarra, Pamplona CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | |
Collapse
|
37
|
Votruba SB, Shaw PA, Oh EJ, Venti CA, Bonfiglio S, Krakoff J, O'Brien DM. Associations of plasma, RBCs, and hair carbon and nitrogen isotope ratios with fish, meat, and sugar-sweetened beverage intake in a 12-wk inpatient feeding study. Am J Clin Nutr 2019; 110:1306-1315. [PMID: 31515553 PMCID: PMC6885477 DOI: 10.1093/ajcn/nqz208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Naturally occurring carbon and nitrogen stable isotope ratios [13C/12C (CIR) and 15N/14N (NIR)] are promising dietary biomarkers. As these candidate biomarkers have long tissue residence times, long-term feeding studies are needed for their evaluation. OBJECTIVE Our aim was to evaluate plasma, RBCs, and hair CIR and NIR as biomarkers of fish, meat, and sugar-sweetened beverage (SSB) intake in a 12-wk dietary intervention. METHODS Thirty-two men (aged 46.2 ± 10.5 y; BMI: 27.2 ± 4.0 kg/m2) underwent a 12-wk inpatient dietary intervention at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) in Phoenix, Arizona. The effects of fish, meat, and SSB intake on CIR and NIR were evaluated using a balanced factorial design, with each intake factor at 2 levels (present/absent) in a common, background diet (50% carbohydrate, 30% fat, 20% protein). Fasting blood samples were taken biweekly from baseline, and hair samples were collected at baseline and postintervention. Data were analyzed using multivariable regression. RESULTS The postintervention CIR of plasma was elevated when diets included meat (β = 0.89, 95% CI: 0.73,1.05) and SSBs (β = 0.48, 95% CI: 0.32, 0.64). The postintervention NIR of plasma was elevated when diets included fish (β = 0.85, 95% CI: 0.64, 1.05) and meat (β = 0.61, 95% CI: 0.42, 0.8). Results were similar for RBCs and hair. Postintervention RBC CIR and NIR had strong associations with baseline, suggesting that turnover to the intervention diets was incomplete after 12 wk. Estimates of isotopic turnover rate further confirmed incomplete turnover of RBCs. CONCLUSIONS CIR was associated with meat and SSBs, and more strongly with meat. NIR was associated with fish and meat, and more strongly with fish. Overall, CIR and NIR discriminated between dietary fish and meat, and to a lesser extent SSBs, indicating their potential utility as biomarkers of intake in US diets. Approaches to make these biomarkers more specific are needed. This trial was registered at clinicaltrials.gov as NCT01237093.
Collapse
Affiliation(s)
- Susanne B Votruba
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Phoenix, AZ, USA,Address correspondence to SBV (e-mail: )
| | - Pamela A Shaw
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric J Oh
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen A Venti
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Phoenix, AZ, USA
| | - Susan Bonfiglio
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Phoenix, AZ, USA
| | - Diane M O'Brien
- Center for Alaska Native Health Research, Institute of Arctic Biology, Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
38
|
Fan M, Li Y, Wang C, Mao Z, Zhou W, Zhang L, Yang X, Cui S, Li L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: ADose-Response Meta-Analysis of Prospective Studies. Nutrients 2019; 11:nu11112783. [PMID: 31731672 PMCID: PMC6893550 DOI: 10.3390/nu11112783] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The relationship between dietary protein consumption and the risk of type 2 diabetes (T2D) has been inconsistent. The aim of this meta-analysis was to explore the relations between dietary protein consumption and the risk of T2D. We conducted systematic retrieval of prospective studies in PubMed, Embase, and Web of Science. Summary relative risks were compiled with a fixed effects model or a random effects model, and a restricted cubic spline regression model and generalized least squares analysis were used to evaluate the diet–T2D incidence relationship. T2D risk increased with increasing consumption of total protein and animal protein, red meat, processed meat, milk, and eggs, respectively, while plant protein and yogurt had an inverse relationship. A non-linear association with the risk for T2D was found for the consumption of plant protein, processed meat, milk, yogurt, and soy. This meta-analysis suggests that substitution of plant protein and yogurt for animal protein, especially red meat and processed meat, can reduce the risk for T2D.
Collapse
Affiliation(s)
- Mengying Fan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
| | - Yuqian Li
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450000, China;
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
| | - Wen Zhou
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
| | - Lulu Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
| | - Xiu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
| | - Songyang Cui
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (M.F.); (C.W.); (Z.M.); (W.Z.); (L.Z.); (X.Y.); (S.C.)
- Correspondence: ; Tel.: +86-0371-67781247; Fax: +86-0371-67781868
| |
Collapse
|
39
|
Mariotti F. Animal and Plant Protein Sources and Cardiometabolic Health. Adv Nutr 2019; 10:S351-S366. [PMID: 31728490 PMCID: PMC6855969 DOI: 10.1093/advances/nmy110] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
The sources or types of protein in the diet have long been overlooked regarding their link to cardiometabolic health. The picture is complicated by the fact that animal and plant proteins are consumed along with other nutrients and substances which make up the "protein package" so plant and animal protein come with clear nutrient clusters. This review aimed at deciphering the relation between plant and animal protein and cardiometabolic health by examining different nutritional levels (such as amino acids, protein type, protein foods, protein patterns, and associated overall dietary and nutrient patterns) and varying levels of scientific evidence [basic science, randomized controlled trials (RCTs), observational data]. Plant protein in Western countries is a robust marker of nutrient adequacy of the diet, whereas the contribution of animal protein is highly heterogeneous. Yet recent data from large cohorts have confirmed that total and animal proteins are associated with the risk of cardiovascular disease and diabetes, even when fully adjusting for lifestyle and dietary or nutritional factors. Here again, there is marked variability depending on the type of animal protein. Protein from processed red meat and total red meat on the one hand, and from legumes, nuts, and seeds on the other, are often reported at the extremes of the risk range. RCTs using purified proteins have contributed little to the topic to date, inasmuch as the findings cannot readily be extrapolated to current or near-future diets, but RCTs studying whole protein foods have shown a beneficial effect of pulses. Despite the fact that many of the benefits of plant protein reported in observational or interventional studies may stem from the protein package that they convey and the nutrients that they displace, there are also important indications that protein per se may affect cardiometabolic health via the many amino acids that are present in typically contrasting levels in plant compared with animal proteins.
Collapse
Affiliation(s)
- François Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
40
|
Seah JYH, Ong CN, Koh WP, Yuan JM, van Dam RM. A Dietary Pattern Derived from Reduced Rank Regression and Fatty Acid Biomarkers Is Associated with Lower Risk of Type 2 Diabetes and Coronary Artery Disease in Chinese Adults. J Nutr 2019; 149:2001-2010. [PMID: 31386157 PMCID: PMC6825830 DOI: 10.1093/jn/nxz164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Combinations of circulating fatty acids may affect the risk of type 2 diabetes (T2D) and coronary artery disease (CAD). No previous studies have identified a dietary pattern predicting fatty acid profiles using reduced rank regression (RRR) and evaluated its associations with the risk of T2D and CAD. OBJECTIVE The aim of this study was to derive a dietary pattern to explain variation in plasma fatty acid concentrations using RRR and evaluate these in relation to risk of T2D and CAD. METHODS We derived a dietary pattern using fatty acid concentrations from 711 controls of a nested case-control study in the Singapore Chinese Health Study using RRR with 36 food and beverages as predictors and 19 fatty acid biomarkers as responses. Dietary pattern scores were then calculated for the full cohort of men and women (mean age: 56 y). We followed up 45,411 and 58,065 participants for incident T2D and CAD mortality, respectively. Multivariable Cox regression models were used to estimate HRs and 95% CIs. RESULTS We identified a dietary pattern high in soy, vegetables, fruits, tea, tomato products, bread, fish, margarine and dairy, and low in rice, red meat, coffee, alcohol, sugar-sweetened beverages, and eggs. This pattern predicted higher circulating n-3 (ω-3) PUFAs (18:3n-3, 20:3n-3, 20:5n-3), odd-chain fatty acids (15:0, 17:0), 18:2n-6 and 20:1, and lower 20:4n-6 and 16:1. During a mean follow-up of 11 y and 19 y, 5207 T2D and 3016 CAD mortality events, respectively, were identified. Higher dietary pattern scores were associated with a lower risk of T2D [multivariable-adjusted HR comparing extreme quintiles, 0.86 (95% CI: 0.79, 0.95); P-trend <0.001] and CAD mortality [HR, 0.76 (95% CI: 0.68, 0.86); P-trend <0.001]. CONCLUSIONS Dietary patterns reflecting higher circulating n-3 PUFAs, odd-chain fatty acids, and linoleic acid may be associated with lower T2D and CAD risk in Chinese adults. This trial was registered at www.clinicaltrials.gov as NCT03356340.
Collapse
Affiliation(s)
- Jowy Y H Seah
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore
- NUS Graduate School for Integrative Sciences and Engineering, NUS, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore
- NUS Graduate School for Integrative Sciences and Engineering, NUS, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, NUS and National University Health System, Singapore
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Tharrey M, Mariotti F, Mashchak A, Barbillon P, Delattre M, Huneau JF, Fraser GE. Patterns of amino acid intake are strongly associated with cardiovascular mortality, independently of the sources of protein. Int J Epidemiol 2019; 49:312-321. [DOI: 10.1093/ije/dyz194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
The intake of specific amino acids (AA) has been associated with cardiovascular health, but amino acids are consumed together as dietary protein. Here we investigated the association between identified patterns of amino acid intake and cardiovascular mortality.
Methods
A total of 2216 cardiovascular deaths among 79 838 men and women from the Adventist Health Study-2 were included in our analysis. Baseline dietary patterns based on the participants' amino acids intakes were derived by factor analysis. Using Cox regression analyses, we estimated multivariate-adjusted hazard ratios (HRs) adjusted for sociodemographic and lifestyle factors and other dietary components.
Results
Three patterns of amino acids were identified. Factor 1 was positively associated with cardiovascular disease (CVD) mortality [hazard ratio (HR)Q5-Q1: 1.62, 98.75% confidence interval (CI): 1.15, 2.28; P-trend <0.001]; and Factors 2 and 3 were inversely associated with CVD mortality (HR Q5-Q1 Factor 2: 0.74, 98.75% CI: 0.53, 1.04; P-trend <0.01 and HR Q5-Q1 Factor 3: 0.65, 98.75% CI: 0.44, 0.95; P-trend <0.05]. The associations with Factor 1 (with high loadings on indispensable amino acids such as branched chain amino acids, lysine, methionine) and Factor 3 (with high loadings on non-indispensable amino acids, namely arginine, glycine, aspartate+asparagine) remained significant after further adjustment for nutrient intake and for the five protein source patterns identified previously (HR Q5-Q1: 1.56 (0.99, 2.45) and 0.55 (0.35, 0.85); P-trends < 0.01).
Conclusions
Indispensable AA have a positive and some non-indispensable AA have a negative, independent, strong association with the risk of cardiovascular mortality.
Collapse
Affiliation(s)
- Marion Tharrey
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
- MOISA, INRA, CIHEAM-IAMM, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Francois Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Andrew Mashchak
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Pierre Barbillon
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Maud Delattre
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | | | - Gary E Fraser
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
42
|
Altered branched chain amino acid metabolism: toward a unifying cardiometabolic hypothesis. Curr Opin Cardiol 2019; 33:558-564. [PMID: 29994805 DOI: 10.1097/hco.0000000000000552] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease (CVD) and type II diabetes (T2D) share common etiologic pathways that may long precede the development of clinically evident disease. Early identification of risk markers could support efforts to individualize risk prediction and improve the efficacy of primary prevention, as well as uncover novel therapeutic targets. RECENT FINDINGS Altered metabolism of branched-chain amino acids (BCAAs), and their subsequent accumulation in circulation, may precede the development of insulin resistance and clinically manifest cardiometabolic diseases. BCAAs - the essential amino acids leucine, isoleucine and valine - likely promote insulin resistance through activation of mammalian target of rapamycin complex 1. Epidemiologic studies demonstrate robust associations between BCAAs and incident T2D, and Mendelian randomization supports a potentially causal relationship. More recently, there is emerging evidence that BCAAs are also associated with incident atherosclerotic CVD, possibly mediated by the development of T2D. SUMMARY In this article, we review the biochemistry of BCAAs, their potential contribution to cardiometabolic risk, the available evidence from molecular epidemiologic studies to date, and, finally, consider future research and clinical directions. Overall, BCAAs represent a promising emerging target for risk stratification and possible intervention, to support efforts to mitigate the burden of cardiometabolic disease in the population.
Collapse
|
43
|
Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, Schlesinger S. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 2019; 366:l2368. [PMID: 31270064 PMCID: PMC6607211 DOI: 10.1136/bmj.l2368] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To summarise the evidence of associations between dietary factors and incidence of type 2 diabetes and to evaluate the strength and validity of these associations. DESIGN Umbrella review of systematic reviews with meta-analyses of prospective observational studies. DATA SOURCES PubMed, Web of Science, and Embase, searched up to August 2018. ELIGIBILITY CRITERIA Systematic reviews with meta-analyses reporting summary risk estimates for the associations between incidence of type 2 diabetes and dietary behaviours or diet quality indices, food groups, foods, beverages, alcoholic beverages, macronutrients, and micronutrients. RESULTS 53 publications were included, with 153 adjusted summary hazard ratios on dietary behaviours or diet quality indices (n=12), food groups and foods (n=56), beverages (n=10), alcoholic beverages (n=12), macronutrients (n=32), and micronutrients (n=31), regarding incidence of type 2 diabetes. Methodological quality was high for 75% (n=115) of meta-analyses, moderate for 23% (n=35), and low for 2% (n=3). Quality of evidence was rated high for an inverse association for type 2 diabetes incidence with increased intake of whole grains (for an increment of 30 g/day, adjusted summary hazard ratio 0.87 (95% confidence interval 0.82 to 0.93)) and cereal fibre (for an increment of 10 g/day, 0.75 (0.65 to 0.86)), as well as for moderate intake of total alcohol (for an intake of 12-24 g/day v no consumption, 0.75 (0.67 to 0.83)). Quality of evidence was also high for the association for increased incidence of type 2 diabetes with higher intake of red meat (for an increment of 100 g/day, 1.17 (1.08 to 1.26)), processed meat (for an increment of 50 g/day, 1.37 (1.22 to 1.54)), bacon (per two slices/day, 2.07 (1.40 to 3.05)), and sugar sweetened beverages (for an increase of one serving/day, 1.26 (1.11 to 1.43)). CONCLUSIONS Overall, the association between dietary factors and type 2 diabetes has been extensively studied, but few of the associations were graded as high quality of evidence. Further factors are likely to be important in type 2 diabetes prevention; thus, more well conducted research, with more detailed assessment of diet, is needed. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42018088106.
Collapse
Affiliation(s)
- Manuela Neuenschwander
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | - Aurélie Ballon
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | - Katharina S Weber
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research, München-Neuherberg, Germany
| | - Teresa Norat
- Department of Nutrition, Bjørknes University College, Oslo, Norway
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Centre-University of Freiburg, Freiburg, Germany
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
- German Centre for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
44
|
Woo SL, Yang J, Hsu M, Yang A, Zhang L, Lee RP, Gilbuena I, Thames G, Huang J, Rasmussen A, Carpenter CL, Henning SM, Heber D, Wang Y, Li Z. Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. Am J Clin Nutr 2019; 109:1569-1577. [PMID: 31005973 PMCID: PMC6900494 DOI: 10.1093/ajcn/nqz024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent studies have shown that circulating branched-chain amino acids (BCAAs) are elevated in obese, insulin-resistant individuals. However, it is not known if supplementation of additional BCAAs will further impair glucose metabolism. OBJECTIVES The aim of this pilot study was to determine the effects of BCAA supplementation on glucose metabolism in obese, prediabetic individuals. METHODS This is a randomized crossover study involving 12 obese individuals with prediabetes. Participants were randomly assigned to receive a daily supplement containing either 20 g BCAA or protein low in BCAAs for 4 wk with a 2-wk washout in between. At each visit, an oral-glucose-tolerance test (OGTT) was performed. Collected blood samples were used to measure glucose, insulin, and insulin resistance-associated biomarkers. RESULTS BCAA supplementation tended to decrease the plasma glucose area under the curve (AUC) measured by the OGTT (AUC percentage change from supplementation baseline, BCAA: -3.3% ± 3%; low-BCAA: 10.0% ± 6%; P = 0.08). However, BCAA supplementation did not affect plasma insulin during OGTT challenge (BCAA: -3.9% ± 8%; low-BCAA: 14.8% ± 10%; P = 0.28). The plasma concentrations of nerve growth factor (BCAA: 4.0 ± 1 pg/mL; low-BCAA: 5.7 ± 1 pg/mL; P = 0.01) and monocyte chemoattractant protein-1 (BCAA: -0.4% ± 9%; low-BCAA: 29.0% ± 18%; P = 0.02) were significantly lowered by BCAA supplementation compared to low-BCAA control. Plasma interleukin 1β was significantly elevated by BCAA supplementation (BCAA: 231.4% ± 187%; low-BCAA: 20.6% ± 33%; P = 0.05). BCAA supplementation did not affect the circulating concentrations of the BCAAs leucine (BCAA: 9.0% ± 12%; low-BCAA: 9.2% ± 11%), valine (BCAA: 9.1% ± 11%; low-BCAA: 12.0% ± 13%), or isoleucine (BCAA: 2.5% ± 11%; low-BCAA: 7.3% ± 11%). CONCLUSIONS Our data suggest that BCAA supplementation did not impair glucose metabolism in obese, prediabetic subjects. Further studies are needed to confirm the results seen in the present study. This study was registered at clinicaltrials.gov as NCT03715010.
Collapse
Affiliation(s)
- Shih-Lung Woo
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Mark Hsu
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Alicia Yang
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Lijun Zhang
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Ru-po Lee
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Irene Gilbuena
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Gail Thames
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Jianjun Huang
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Anna Rasmussen
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Catherine L Carpenter
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - David Heber
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA
| | - Yibin Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine, Division of Molecular Medicine, Department of Anesthesiology, University of California, Los Angeles, CA,Address correspondence to ZL (e-mail: )
| |
Collapse
|
45
|
Biswas D, Duffley L, Pulinilkunnil T. Role of branched‐chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019; 33:8711-8731. [DOI: 10.1096/fj.201802842rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Luke Duffley
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| |
Collapse
|
46
|
Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, Gregoriou GC, Senior AM, Wang QP, Brandon AE, Perks R, O’Sullivan J, Koay YC, Bell-Anderson K, Kebede M, Yau B, Atkinson C, Svineng G, Dodgson T, Wali JA, Piper MDW, Juricic P, Partridge L, Rose AJ, Raubenheimer D, Cooney GJ, Le Couteur DG, Simpson SJ. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab 2019; 1:532-545. [PMID: 31656947 PMCID: PMC6814438 DOI: 10.1038/s42255-019-0059-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mTOR activation, but rather due to a shift in the relative quantity of dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but, rather, a consequence of hyperphagia driven by AA imbalance.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
- Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord NSW, Australia
- ANZAC Research Institute, The University of Sydney NSW, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Devin Wahl
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
- Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord NSW, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Elena Bagley
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Gabrielle C Gregoriou
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, China
| | - Amanda E Brandon
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Ruth Perks
- Charles Perkins Centre, The University of Sydney NSW, Australia
| | - John O’Sullivan
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Heart Research Institute, The University of Sydney, NSW, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Heart Research Institute, The University of Sydney, NSW, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Melkam Kebede
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Belinda Yau
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Clare Atkinson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | | | - Timothy Dodgson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Jibran A Wali
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | | | - Paula Juricic
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | | | - Adam J Rose
- Monash Biomedicine Discovery Institute, Monash University VIC, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
- Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord NSW, Australia
- ANZAC Research Institute, The University of Sydney NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| |
Collapse
|
47
|
Okekunle AP, Zhang M, Wang Z, Onwuka JU, Wu X, Feng R, Li C. Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk: a meta-analysis. Acta Diabetol 2019; 56:187-195. [PMID: 30413881 DOI: 10.1007/s00592-018-1243-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
AIM To assess whether oral branched-chain amino acids (BCAA) supplementation exerts influence on circulating BCAA and the significance of dietary BCAA in type 2 diabetes and obesity risk. METHOD We searched PUBMED, EMBASE and Cochrane library through June 2018 to retrieve and screen published reports for inclusion in the meta-analysis after methodological assessment. Heterogeneity of studies was evaluated using I2 statistics, while sensitivity analysis and funnel plot were used to evaluate the potential effect of individual studies on the overall estimates and publication bias, respectively, using RevMan 5.3. RESULT Eight articles on randomized clinical trial of oral BCAA supplementation, and seven articles on dietary BCAA intake and type 2 diabetes/obesity risks were eligible for inclusion in our meta-analyses. Mean difference and 95% confidence interval (CI) of circulating leucine was 39.65 (3.54, 75.76) µmol/L, P = 0.03 post-BCAA supplementation. Also, OR and 95% CI for higher total BCAA intake and metabolic disorder risks were, 1.32 (1.14, 1.53), P = 0.0003-type 2 diabetes and 0.62 (0.47, 0.82), P = 0.0008-obesity. CONCLUSION Oral BCAA supplementation exerts modest influence on circulating leucine profile and higher total BCAA intake is positively and contra-positively associated with type 2 diabetes and obesity risk, respectively.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of General Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Zhen Wang
- Mudanjiang City Health Supervision, Mudanjiang, Heilongjiang, People's Republic of China
| | - Justina Ucheojor Onwuka
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China.
| | - Chunlong Li
- Department of General Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
48
|
Rousseau M, Guénard F, Garneau V, Allam-Ndoul B, Lemieux S, Pérusse L, Vohl MC. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients 2019; 11:nu11010173. [PMID: 30650556 PMCID: PMC6356602 DOI: 10.3390/nu11010173] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/11/2023] Open
Abstract
Elevated plasma branched-chain amino acids (BCAA) and C3 and C5 acylcarnitines (AC) levels observed in individuals with insulin resistance (IR) might be influenced by dietary protein intakes. This study explores the associations between dietary protein sources, plasma BCAA levels and C3 and C5 ACs in normal weight (NW) or overweight (OW) individuals with or without metabolic syndrome (MS). Data from 199 men and women aged 18⁻55 years with complete metabolite profile were analyzed. Associations between metabolic parameters, protein sources, plasma BCAA and AC levels were tested. OW/MS+ consumed significantly more animal protein (p = 0.0388) and had higher plasma BCAA levels (p < 0.0001) than OW/MS- or NW/MS- individuals. Plasma BCAA levels were not associated with BCAA intakes in the whole cohort, while there was a trend for an association between plasma BCAA levels and red meat or with animal protein in OW/MS+. These associations were of weak magnitude. In NW/MS- individuals, the protein sources associated with BCAA levels varied greatly with adjustment for confounders. Plasma C3 and C5 ACs were associated with plasma BCAA levels in the whole cohort (p < 0.0001) and in subgroups based on OW and MS status. These results suggest a modest association of meat or animal protein intakes and an association of C3 and C5 ACs with plasma BCAA levels, obesity and MS.
Collapse
Affiliation(s)
- Michèle Rousseau
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Véronique Garneau
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Bénédicte Allam-Ndoul
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Simone Lemieux
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- Department of Kinesiology, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
49
|
Lu Y, Wang Y, Liang X, Zou L, Ong CN, Yuan JM, Koh WP, Pan A. Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population. Metabolites 2019; 9:metabo9010014. [PMID: 30646552 PMCID: PMC6359471 DOI: 10.3390/metabo9010014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/21/2023] Open
Abstract
We aimed to simultaneously examine the associations of both essential and non-essential amino acids with both prevalent and incident type 2 diabetes in a Chinese population. A case-control study was nested within the Singapore Chinese Health Study. Participants included 144 cases with prevalent and 160 cases with incident type 2 diabetes and 304 controls. Cases and controls were individually matched on age, sex, and date of blood collection. Baseline serum levels of 9 essential and 10 non-essential amino acids were measured using liquid chromatography tandem mass spectrometry. We identified that five essential (isoleucine, leucine, lysine, phenylalanine, and valine) and five non-essential (alanine, glutamic acid, glutamine, glycine, and tyrosine) amino acids were associated with the prevalence of type 2 diabetes; four essential (isoleucine, leucine, tryptophan, and valine) and two non-essential (glutamine and tyrosine) amino acids were associated with the incidence of type 2 diabetes. Of these, valine and tyrosine independently led to a significant improvement in risk prediction of incident type 2 diabetes. This study demonstrates that both essential and non-essential amino acids were associated with the risk for prevalent and incident type 2 diabetes, and the findings could aid in diabetes risk assessment in this Chinese population.
Collapse
Affiliation(s)
- Yonghai Lu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Yeli Wang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - Xu Liang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Li Zou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore 169857, Singapore.
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
50
|
Okekunle AP, Wu X, Feng R, Li Y, Sun C. Higher intakes of energy-adjusted dietary amino acids are inversely associated with obesity risk. Amino Acids 2018; 51:373-382. [PMID: 30377838 DOI: 10.1007/s00726-018-2672-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
We assessed the relationship between energy-adjusted amino acids (EAA) intakes and obesity risk using data on nutrient intakes derived from the Chinese food composition tables to determine dietary intakes (DI) among 1109 obese and 3009 normal weight subjects. Dietary patterns (DP) were identified using principal component analysis, multivariable-adjusted odds ratio (OR) and 95% confidence interval (CI) of obesity risk by quartiles of EAA intakes was estimated using logistic regression with two-sided P < 0.05. Multivariable-adjusted OR and 95% CI for obesity risk were 1.00, 0.801 (0.573, 1.119), 0.718 (0.504, 1.024) and 0.532 (0.353, 0.803) P-trend = 0.003 across energy-adjusted quartiles of total AA intakes. Similarly, higher DI of 13 AA; isoleucine, leucine, valine, lysine, cysteine, phenylalanine, tyrosine, threonine, histidine, aspartic acid, glutamic acid, proline, and serine were associated with lower risk of obesity. Furthermore, six DP; 'Wheaten food and Rice', 'Fruit, Vegetables and Milk', 'Snack, Beverage and Ice cream', 'Potatoes, Soybean & Egg', 'Livestock & Poultry meat' and 'Fish' were identified. Multivariable-adjusted OR and 95% CI across quartiles of DP adherence for obesity risk were 1.00, 0.737 (0.535, 1.017), 0.563 (0.406, 0.779), 0.724 (0.518, 1.011) P-trend = 0.018 for 'Fruit, Vegetables and Milk', 1.00, 0.734 (0.531, 1.013), 0.841(0.609, 1.161), 0.657 (0.478, 0.904) P-trend = 0.027 for 'Potatoes, Soybean & Egg' and 1.00, 1.106 (0.791, 1.548), 1.367(0.975, 1.917), 1.953 (1.399, 2.726) P-trend = 0.000 for 'Fish'. Additionally, lower adherence to 'Snack, Beverage and Ice cream' and 'Fish' patterns is associated with a protective higher AA intake-obesity risk relationship. Energy-adjusted AA intakes were inversely associated with obesity risk, but the associations appear modifiable by DP adherence of respondents.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|