1
|
Graham KV, Janasov EG, Paul RL, Scagel CF, Lee JC. Silicon supplementation can reduce infestation by azalea lace bug-(Hemiptera: Tingidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1948-1958. [PMID: 39028322 DOI: 10.1093/jee/toae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The azalea lace bug (ALB), Stephanitis pyrioides (Scott) (Hemiptera: Tingidae), is a pest of azaleas and rhododendrons. The application of silicon (Si) to plants has been shown to accumulate in other plants and enhance defense to other plant pests. We evaluated whether Si applications decreased ALB infestation on rhododendron leaves and increased Si accumulation in leaves. Potted plants were treated with 4 or 8 weekly applications of calcium silicate and calcium carbonate (calcium control, Ca) via foliar or soil application. In 3 out of 4 choice studies, plants treated with calcium silicate or calcium carbonate had less frass deposition and oviposition by ALB compared to controls, but treated plants did not consistently have fewer ALB adults. Leaf damage was quantified in one study and leaves with more frass as an indicator of feeding had more visible damage. In no-choice studies, there were no differences between treatments in one study, but oviposition was greater on foliar/soil Si-treated plants than controls in another study. Since rhododendron aphids (Illinoia lambersi) appeared in the greenhouse during or after studies, we compared their colonization on previously treated rhododendrons. Infestation of new leaf rosettes or random leaves by I. lambersi was lower on plants sprayed with foliar silicon or calcium applied via soil in 2 studies. Treated rhododendrons did not accumulate extra Si or Ca in leaves compared to controls. In general, silicon or calcium application protected rhododendrons from ALB oviposition and aphid colonization in free-choice conditions, and may be part of an integrated pest management program.
Collapse
Affiliation(s)
| | - Eric G Janasov
- USDA-ARS-Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, USA
| | - Ryan L Paul
- USDA-ARS-Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, USA
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Carolyn F Scagel
- USDA ARS Horticultural Crops Plant Genetics and Improvement Research Unit, Corvallis, OR, USA
| | - Jana C Lee
- USDA-ARS-Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, USA
| |
Collapse
|
2
|
Li ZX, Tan JF, Yao N, Xie RH. From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects? ADVANCED BIOTECHNOLOGY 2024; 2:37. [PMID: 39883238 PMCID: PMC11740848 DOI: 10.1007/s44307-024-00045-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 01/31/2025]
Abstract
The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores. This review aims to summarize recent advances that elucidate the impact of nutrient availability on plant defense responses. Particularly, we focus on how nutrient status shapes plant resistance to herbivores, delving into the molecular mechanisms underlying this physiological process. Moreover, the interplay between mineral nutrients and various herbivore defense mechanisms, including physical protection, plant hormone signaling, defensive metabolite production, and volatile organic compound emissions that deter herbivores or attract their natural enemies, are discussed. This comprehensive review sets the stage for future investigations into the intricate crosstalk between nutrient signaling and plant defense responses, which serves as a central mechanism to guide sustainable pest management approaches, thereby promoting balanced agroecosystem health and enhancing plant ecosystem productivity and resilience.
Collapse
Affiliation(s)
- Zhi-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Bloese J, Galanti R, Porter R, Know T. The Beneficial Effects of Soluble Silicon Fertilizer in Dendrobium Orchids: Silicon-Augmented Resistance against Damage by Insect Pests and Fungal Pathogens. INSECTS 2024; 15:323. [PMID: 38786879 PMCID: PMC11121872 DOI: 10.3390/insects15050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The effects of soluble silicon fertilization on monocots and dicots have been widely studied. However, little is known regarding its effects on protecting epiphytes against insect and fungal pests. The efficacy of silicon fertilizer to reduce damage by thrips pest complexes, namely: Thrips palmi Karny, Frankliniella occidentalis Pergande, Chaetanaphothrips orchidii Moulton, and Chaetanaphothrips signipennis Bagnall (Thysanoptera: Thripidae), and the fungal pathogens: Botrytis cinerea Persoon (Helotiales: Sclerotiniaceae) and Fusarium spp. Link (Hypocreales: Nectriaceae) was examined during a nine-month greenhouse trial in Hawaii. The trial assessed yield, quality, and pest damage across three common varieties of dendrobiums. All replicates received additional soluble silicon fertilizer applications alternating weekly between soil drench and foliar (50 mg Si/plant) applications. Yield, quality, and spray length, pest damage, plant vigor, SPAD, and leaf temperature were measured. Data were analyzed using a generalized linear model (glm) with repeated measures followed by post-hoc pair-wise comparisons in R, version 4.3.1. Treatment effects were significant at p < 0.001 for the majority of the explanatory variables including: marketable yield, spray length, thrips damage, and fungal damage. Overall, the lavender variety ('Uniwai Supreme') benefited the most from silicon applications with a 73.0% increase in marketable yield, compared to the white variety ('Uniwai Mist'), which had an increase of 50.6% marketable sprays in contrast to its untreated control. Si benefits conferred to the purple variety ('Uniwai Royale') were intermediate to the lavender and white varieties. Although the magnitude of Si benefits varied among the varieties, all dendrobium varieties significantly benefited from silicon fertilization.
Collapse
Affiliation(s)
- Joanna Bloese
- College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA; (R.G.)
| | | | | | | |
Collapse
|
4
|
Balakrishnan D, Bateman N, Kariyat RR. Rice physical defenses and their role against insect herbivores. PLANTA 2024; 259:110. [PMID: 38565704 PMCID: PMC10987372 DOI: 10.1007/s00425-024-04381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Understanding surface defenses, a relatively unexplored area in rice can provide valuable insight into constitutive and induced defenses against herbivores. Plants have evolved a multi-layered defense system against the wide range of pests that constantly attack them. Physical defenses comprised of trichomes, wax, silica, callose, and lignin, and are considered as the first line of defense against herbivory that can directly affect herbivores by restricting or deterring them. Most studies on physical defenses against insect herbivores have been focused on dicots compared to monocots, although monocots include one of the most important crops, rice, which half of the global population is dependent on as their staple food. In rice, Silica is an important element stimulating plant growth, although Silica has also been found to impart resistance against herbivores. However, other physical defenses in rice including wax, trichomes, callose, and lignin are less explored. A detailed exploration of the morphological structures and functional consequences of physical defense structures in rice can assist in incorporating these resistance traits in plant breeding and genetic improvement programs, and thereby potentially reduce the use of chemicals in the field. This mini review addresses these points with a closer look at current literature and prospects on rice physical defenses.
Collapse
Affiliation(s)
- Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nick Bateman
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rupesh R Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
5
|
Coutinho WBG, da Silva FC, Barrigossi JAF, de Sousa Almeida AC, Gonçalves de Jesus F. Silicon applications in rice plants alter the stylet probing behaviors of Glyphepomis spinosa (Hemiptera: Pentatomidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:23. [PMID: 38597909 PMCID: PMC11005758 DOI: 10.1093/jisesa/ieae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The stink bug Glyphepomis spinosa Campos & Grazia (Hemiptera: Pentatomidae) is a potential rice pest in Brazil. This study evaluates the interaction between silicon sources and 3 rice cultivars (BRS Esmeralda, Canela de Ferro, and IRGA 417) and examines how increasing silicon levels affect the stylet probing behavior of G. spinosa. The experiment was set up in a completely randomized design with a 3 × 3 factorial scheme (silicon sources: calcium silicate, potassium silicate, a control, and 3 rice cultivars). Fertilizing rice plants with Si altered the probing behavior of the stink bug G. spinosa. The cultivar interaction by Si source was significant in a few variables. This was evidenced by longer periods without ingestion, prolonged time to the first stylet probe (initial probing), and less time spent in cellular maceration. This result supports the use of electropenetrography as a tool to evaluate resistance inducers in plants.
Collapse
Affiliation(s)
- Walter Baida Garcia Coutinho
- Federal Goiano Institute—Campus Urutaí, Rodovia Geraldo Silva Nascimento, Km 2,5, Urutaí, 75790-000 Goiás, Brazil
| | - Franciele Cristina da Silva
- Federal Goiano Institute—Campus Urutaí, Rodovia Geraldo Silva Nascimento, Km 2,5, Urutaí, 75790-000 Goiás, Brazil
| | | | | | - Flávio Gonçalves de Jesus
- Federal Goiano Institute—Campus Urutaí, Rodovia Geraldo Silva Nascimento, Km 2,5, Urutaí, 75790-000 Goiás, Brazil
| |
Collapse
|
6
|
Ratnadass A, Llandres AL, Goebel FR, Husson O, Jean J, Napoli A, Sester M, Joseph S. Potential of silicon-rich biochar (Sichar) amendment to control crop pests and pathogens in agroecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168545. [PMID: 37984651 DOI: 10.1016/j.scitotenv.2023.168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
We reviewed the potential of silicon (Si)-rich biochars (sichars) as crop amendments for pest and pathogen control. The main pathosystems that emerged from our systematic literature search were bacterial wilt on solanaceous crops (mainly tomato, pepper, tobacco and eggplant), piercing-sucking hemipteran pests and soil-borne fungi on gramineous crops (mainly rice and wheat), and parasitic nematodes on other crops. The major pest and pathogen mitigation pathways identified were: i) Si-based physical barriers; ii) Induction of plant defenses; iii) Enhancement of plant-beneficial/pathogen-antagonistic soil microflora in the case of root nematodes; iv) Alteration of soil physical-chemical properties resulting in Eh-pH conditions unfavorable to root nematodes; v) Alteration of soil physical-chemical properties resulting in Eh-pH, bulk density and/or water holding capacity favorable to plant growth and resulting tolerance to necrotrophic pathogens; vi) Increased Si uptake resulting in reduced plant quality, owing to reduced nitrogen intake towards some hemi-biotrophic pests or pathogens. Our review highlighted synergies between pathways and tradeoffs between others, depending, inter alia, on: i) crop type (notably whether Si-accumulating or not); ii) pest/pathogen type (e.g. below-ground/root-damaging vs above-ground/aerial part-damaging; "biotrophic" vs "necrotrophic" sensu lato, and corresponding systemic resistance pathways; thriving Eh-pH spectrum; etc.); iii) soil type. Our review also stressed the need for further research on: i) the contribution of Si and other physical-chemical characteristics of biochars (including potential antagonistic effects); ii) the pyrolysis process to a) optimize Si availability in the soil and its uptake by the crop and b) to minimize formation of harmful compounds e.g. cristobalite; iii) on the optimal form of biochar, e.g. Si-nano particles on the surface of the biochar, micron-sized biochar-based compound fertilizer vs larger biochar porous matrices.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR AIDA, 97410 Saint-Pierre, Réunion, France; AIDA, Univ Montpellier, CIRAD, Montpellier, France.
| | - Ana L Llandres
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, Institut de Recherche Coton (IRC), Cotonou, Benin; CIRAD, UPR AIDA, International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| | - François-Régis Goebel
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Olivier Husson
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Janine Jean
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Alfredo Napoli
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Mathilde Sester
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Aïda, Phnom Penh, Cambodia; Institut Technologique du Cambodge, Phnom Penh, Cambodia
| | - Stephen Joseph
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Materials Science and Engineering, University of NSW, Sydney, NSW 2052, Australia; Institute for Superconducting and Electronic Materials, School of Physics, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
7
|
Saw G, Nagdev P, Jeer M, Murali-Baskaran RK. Silica nanoparticles mediated insect pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105524. [PMID: 37532341 DOI: 10.1016/j.pestbp.2023.105524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Silicon is known for mitigating the biotic and abiotic stresses of crop plants. Many studies have proved beneficial effects of bulk silicon against biotic stresses in general and insect pests in particular. However, the beneficial effects of silica nanoparticles in crop plants against insect pests were barely studied and reported. By virtue of its physical and chemical nature, silica nanoparticles offer various advantages over bulk silicon sources for its applications in the field of insect pest management. Silica nanoparticles can act as insecticide for killing target insect pest or it can act as a carrier of insecticide molecule for its sustained release. Silica nanoparticles can improve plant resistance to insect pests and also aid in attracting natural enemies via enhanced volatile compounds emission. Silica nanoparticles are safe to use and eco-friendly in nature in comparison to synthetic pesticides. This review provides insights into the applications of silica nanoparticles in insect pest management along with discussion on its synthesis, side effects and future course of action.
Collapse
Affiliation(s)
- Gouranga Saw
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| | - Priyanka Nagdev
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| | - Mallikarjuna Jeer
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India.
| | - R K Murali-Baskaran
- ICAR-National Institute of Biotic Stress Management, Raipur 493225, Chhattisgarh, India
| |
Collapse
|
8
|
Leroy N, Martin C, Arguelles Arias A, Cornélis JT, Verheggen FJ. If All Else Fails: Impact of Silicon Accumulation in Maize Leaves on Volatile Emissions and Oviposition Site Selection of Spodoptera exigua Hübner. J Chem Ecol 2022; 48:841-849. [PMID: 36302913 DOI: 10.1007/s10886-022-01386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Silicon (Si) fertilization alleviates biotic stresses in plants. Si enhances plant resistance against phytophagous insects through physical and biochemical mechanisms. In particular, Si modifies jasmonic acid levels and the emissions of herbivore-induced plant volatiles (HIPVs). Here, we investigated whether Si accumulation in the tissues of maize leaves modifies the emissions of constitutive and herbivore-induced plant volatiles, with cascade deterrent effects on oviposition site selection by Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Maize plants were cultivated in a hydroponic system under three Si concentrations, resulting in three groups of plants expressing different Si concentrations in their tissues (0.31 ± 0.04, 4.69 ± 0.49, and 9.56 ± 0.30 g Si. Kg- 1 DW). We collected volatiles from undamaged and caterpillar-infested plants, and found that Si concentration in plant tissues had no significant impact. Jasmonic acid content was high in insect-infested plants, but was similar across all Si treatments. Oviposition site selection bioassays using fertilized S. exigua females showed that Si concentration in plant tissues did not affect the number of eggs laid on Si-treated plants. In conclusion, our study shows that the Si content in maize tissues does not impact the semiochemical interactions with S. exigua.
Collapse
Affiliation(s)
- Nicolas Leroy
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Clément Martin
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Anthony Arguelles Arias
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Jean-Thomas Cornélis
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030, Gembloux, Belgium
| | - François J Verheggen
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium.
| |
Collapse
|
9
|
Goswami P, Mathur J, Srivastava N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon 2022; 8:e09908. [PMID: 35847613 PMCID: PMC9284391 DOI: 10.1016/j.heliyon.2022.e09908] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 01/23/2023] Open
Abstract
Agriculture crops encounter several biotic and abiotic stresses, including pests, diseases, nutritional deficits, and climate change, which necessitate the development of new agricultural technologies. By developing nano-based fertilizers, insecticides and herbicides, and early disease diagnostics, nanotechnology may help to increase agricultural crop quality and production. The application of silica nanoparticles (SiNPs) may be the solution for increasing the yield to combat the agriculture crisis in the near future. SiNPs have unique physiological properties, such as large surface area, aggregation, reactivity, penetrating ability, size, and structure, which enable them to penetrate plants and regulate their metabolic processes. Pesticide delivery, enhanced nutrition supply, disease management, and higher photosynthetic efficiency and germination rate are all attributed to SiNPs deposition on plant tissue surfaces. SiNPs have been demonstrated to be non-toxic in nature, making them suitable for usage in agriculture. In this regard, the current work provides the most important and contemporary applications of SiNPs in agriculture as well as biogenic and non-biogenic synthetic techniques. As a result, this review summarizes the literature on SiNPs and explores the use of SiNPs in a variety of agricultural disciplines.
Collapse
Affiliation(s)
- Pooja Goswami
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali Tonk, Rajasthan, 304022, India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali Tonk, Rajasthan, 304022, India
| | - Nidhi Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali Tonk, Rajasthan, 304022, India
| |
Collapse
|
10
|
Drenched Silicon Suppresses Disease and Insect Pests in Coffee Plant Grown in Controlled Environment by Improving Physiology and Upregulating Defense Genes. Int J Mol Sci 2022; 23:ijms23073543. [PMID: 35408899 PMCID: PMC8998747 DOI: 10.3390/ijms23073543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Plant disease and insect pests are major limiting factors that reduce crop production worldwide. The ornamental indoor cultivation cash crop dwarf coffee Punica arabica ‘Pacas’ is also troubled by these issues. Silicon (Si) is one of the most abundant elements in the lithosphere and positively impacts plant health by effectively mitigating biotic and abiotic stresses. Several studies have shown that Si activates plant defense systems, although the specific nature of the involvement of Si in biochemical processes that lead to resistance is unclear. In our study, Si significantly promoted the growth and development of dwarf coffee seedlings grown in plant growth chambers. More than that, through natural infection, Si suppressed disease and insect pests by improving physiology (e.g., the strong development of the internal structures of roots, stems, and leaves; higher photosynthetic efficiency; more abundant organic matter accumulation; the promotion of root activity; the efficient absorption and transfer of mineral elements; and various activated enzymes) and up-regulating defense genes (CaERFTF11 and CaERF13). Overall, in agriculture, Si may potentially contribute to global food security and safety by assisting in the creation of enhanced crop types with optimal production as well by mitigating plant disease and insect pests. In this sense, Si is a sustainable alternative in agricultural production.
Collapse
|
11
|
Peñalver-Cruz A, Horgan FG. Interactions between Rice Resistance to Planthoppers and Honeydew-Related Egg Parasitism under Varying Levels of Nitrogenous Fertilizer. INSECTS 2022; 13:insects13030251. [PMID: 35323548 PMCID: PMC8948641 DOI: 10.3390/insects13030251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Planthopper outbreaks in rice are associated with excessive fertilizer applications. Public research has focused on developing resistant rice to combat these outbreaks. However, to preserve ecosystem resilience, natural enemy efficacy should be maintained on resistant and susceptible rice. We examined the impact of egg parasitoids on planthoppers (Nilaparvata lugens (Stål) [BPH] and Sogatella furcifera (Horváth) [WBPH]) and a leafhopper (Nephotettix virescens (Distant) [GLH]) in field plots of resistant (IR62) and susceptible (IR64) rice under low and high nitrogen. GLH and WBPH were more abundant in low-nitrogen plots during dry (GLH) and wet (GLH, WBPH) season sampling at an early crop stage. GLH were also more abundant on IR64. Parasitoids killed between 24 and 52% of planthopper eggs during exposures in trap plants. Parasitism by Oligosita and Anagrus wasps was higher on IR64 (BPH eggs) and in high-nitrogen plots (Oligosita spp. on BPH and WBPH eggs; Anagrus spp. on BPH eggs). Parasitism by Anagrus spp. was associated with the presence of honeydew and was highest where honeydew was derived from BPH feeding on IR62; these effects were only observed under high nitrogen. Results suggest that honeydew from IR62 favors parasitoids when plants are most vulnerable (i.e., under high nitrogen), thereby countering nitrogen-induced declines in host resistance. Abstract Host plant resistance is the most researched method for the management of planthoppers and leafhoppers in tropical rice. For optimal effects, resistance should be resilient to fertilizer inputs and work in synergy with natural enemies. In field plot experiments, we examined how rice resistance and fertilizer inputs affect mortality of planthopper and leafhopper eggs by hymenopteran parasitoids. We used IR62 as a variety with resistance to Nilaparvata lugens (Stål) [BPH], Sogatella furcifera (Horváth) [WBPH] and Nephotettix virescens (Distant) [GLH], and IR64 as a susceptible control. The herbivores were more abundant during wet season sampling in low-nitrogen plots. During this study, parasitoids killed between 31 and 38% of BPH eggs and 24 and 52% of WBPH eggs during four days of field exposure. Parasitism, mainly due to Oligosita spp., was generally higher in high-nitrogen and IR64 plots. Similar densities of eggs in exposed plants suggest that these trends were mediated by semiochemicals and therefore support the Optimal Defense Hypothesis. Honeydew from BPH on IR62 had more xylem-derived wastes than honeydew on IR64. We applied honeydew from both varieties to sentinel plants. Parasitism by Anagrus spp. was higher on plants of either variety treated with honeydew derived from IR62; however, the effect was only apparent in high-nitrogen plots. Results suggest that Anagrus spp., by responding to honeydew, will counter the nitrogen-induced enhancement of planthopper fitness on resistant rice.
Collapse
Affiliation(s)
- Ainara Peñalver-Cruz
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Université de Rennes, CEDEX, 49045 Angers, France;
- International Rice Research Institute, Makati 1226, Metro Manila, Philippines
| | - Finbarr G. Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile
- Centre for Pesticide Suicide Prevention, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Correspondence:
| |
Collapse
|
12
|
Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. PLANTS 2021; 10:plants10102163. [PMID: 34685972 PMCID: PMC8537781 DOI: 10.3390/plants10102163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Silicon (Si) has never been acknowledged as a vital nutrient though it confers a crucial role in a variety of plants. Si may usually be expressed more clearly in Si-accumulating plants subjected to biotic stress. It safeguards several plant species from disease. It is considered as a common element in the lithosphere of up to 30% of soils, with most minerals and rocks containing silicon, and is classified as a "significant non-essential" element for plants. Plant roots absorb Si, which is subsequently transferred to the aboveground parts through transpiration stream. The soluble Si in cytosol activates metabolic processes that create jasmonic acid and herbivore-induced organic compounds in plants to extend their defense against biotic stressors. The soluble Si in the plant tissues also attracts natural predators and parasitoids during pest infestation to boost biological control, and it acts as a natural insect repellent. However, so far scientists, policymakers, and farmers have paid little attention to its usage as a pesticide. The recent developments in the era of genomics and metabolomics have opened a new window of knowledge in designing molecular strategies integrated with the role of Si in stress mitigation in plants. Accordingly, the present review summarizes the current status of Si-mediated plant defense against insect, fungal, and bacterial attacks. It was noted that the Si-application quenches biotic stress on a long-term basis, which could be beneficial for ecologically integrated strategy instead of using pesticides in the near future for crop improvement and to enhance productivity.
Collapse
|
13
|
Pereira P, Nascimento AM, de Souza BHS, Peñaflor MFGV. Silicon Supplementation of Maize Impacts Fall Armyworm Colonization and Increases Predator Attraction. NEOTROPICAL ENTOMOLOGY 2021; 50:654-661. [PMID: 34184235 DOI: 10.1007/s13744-021-00891-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Supplementation with Silicon (Si) is well-known for increasing resistance of grasses to insect herbivores. Although the exact underlying mechanism remains unknown, Si accumulation interacts with the jasmonic acid-signalling pathway, which modulates herbivore-induced plant defences. We examined whether Si supplementation alters direct and induced indirect defences in maize plants in ways that deter the initial infestation by the fall armyworm Spodoptera frugiperda (JE Smith). We assessed the herbivore's oviposition preference, neonate and third-instar larval performance as well as the recruitment of a predator of young larvae, the flower bug Orius insidiosus (Say), by herbivore-induced plant volatiles (HIPVs). In choice tests, S. frugiperda deposited about two times more eggs on -Si than on +Si maize. The mortality of neonate S. frugiperda larvae was about sixfold higher in +Si compared to -Si plants, even though they consumed similar leaf area on both treatments. Although there were no mortality differences, Si supplementation also impacted third-instar larvae that gained about twofold less weight than those fed on -Si maize. In olfactometer assays, O. insidiosus was not attracted to volatiles of uninfested maize plants with or without Si supplementation, but it was attracted to those emitted by fall armyworm-infested plants, irrespective of whether plants received Si supplementation. However, when the flower bug could choose between the volatiles released from -Si and +Si fall armyworm-infested plants, it preferentially oriented to +Si fall armyworm-infested plant. Our results show that Si supplementation in maize may deter fall armyworm colonization because of greater direct defences and attractiveness of HIPVs to the flower bug.
Collapse
Affiliation(s)
- Patrícia Pereira
- Dept of Entomology, Agrarian Sciences College of Lavras (ESAL), Lavras Federal University, Lavras, MG, Brazil
| | - Amanda Maria Nascimento
- Dept of Entomology, Agrarian Sciences College of Lavras (ESAL), Lavras Federal University, Lavras, MG, Brazil
| | | | | |
Collapse
|
14
|
Zellner W, Tubaña B, Rodrigues FA, Datnoff LE. Silicon's Role in Plant Stress Reduction and Why This Element Is Not Used Routinely for Managing Plant Health. PLANT DISEASE 2021; 105:2033-2049. [PMID: 33455444 DOI: 10.1094/pdis-08-20-1797-fe] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Numerous reviews and hundreds of refereed articles have been published on silicon's effects on abiotic and biotic stress as well as overall plant growth and development. The science for silicon is well-documented and comprehensive. However, even with this robust body of information, silicon is still not routinely used for alleviating plant stress and promoting plant growth and development. What is holding producers and growers back from using silicon? There are several possible reasons, which include: (i) lack of consistent information on which soil orders are low or limited in silicon, (ii) no universally accepted soil test for gauging the amounts of soluble silicon have been calibrated for many agronomic or horticultural crops, (iii) most analytical laboratories do not routinely assay plant tissue for silicon and current standard tissue digestion procedures used would render silicon insoluble, (iv) many scientists still state that plants are either silicon accumulators or non-accumulators when in reality all plants accumulate some silicon in their plant tissues, (v) silicon is not recognized as being necessary for plant development, (vi) lack of economic studies to show the benefits of applying silicon, and (vii) lack of extension outreach to present the positive benefits of silicon to producers and growers. Many of these issues mentioned above will need to be resolved if silicon is to become a standard practice to improve agronomic and horticultural crop production and plant health.
Collapse
Affiliation(s)
- Wendy Zellner
- Department of Biological Sciences, The University of Toledo, Toledo, OH, U.S.A
| | - Brenda Tubaña
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, U.S.A
| | - Fabrício A Rodrigues
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State, Brazil
| | - Lawrence E Datnoff
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, U.S.A
| |
Collapse
|
15
|
Thabet AF, Boraei HA, Galal OA, El-Samahy MFM, Mousa KM, Zhang YZ, Tuda M, Helmy EA, Wen J, Nozaki T. Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci Rep 2021; 11:14484. [PMID: 34262071 PMCID: PMC8280210 DOI: 10.1038/s41598-021-93518-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
The agricultural use of silica (SiO2) nanoparticles (NPs) has the potential to control insect pests while the safety and tritrophic effects on plants and beneficial natural enemies remains unknown. Here, we evaluate the effects of silica NPs on insect pests with different feeding niches, natural enemies, and a plant. Silica NPs were applied at different concentrations (75-425 mg/L) on field-cultivated faba bean and soybean for two growing seasons. The faba bean pests, the cowpea aphid Aphis craccivora and the American serpentine leafminer Liriomyza trifolii, and the soybean pest, the cotton leafworm Spodoptera littoralis, were monitored along with their associated predators. Additional laboratory experiments were performed to test the effects of silica NPs on the growth of faba bean seedlings and to determine whether the rove beetle Paederus fuscipes is attracted to cotton leafworm-infested soybean treated with silica NPs. In the field experiments, silica NPs reduced the populations of all three insect pests and their associated predators, including rove beetles, as the concentration of silica NPs increased. In soybean fields, however, the total number of predators initially increased after applying the lowest concentration. An olfactometer-based choice test found that rove beetles were more likely to move towards an herbivore-infested plant treated with silica NPs than to a water-treated control, suggesting that silica NPs enhance the attraction of natural enemies via herbivore-induced plant volatiles. In the laboratory, while silica NPs inhibited the development of faba bean roots at 400 mg/L, they did not affect germination percentage, germination time, shoot length, or vigor index compared to the control.
Collapse
Affiliation(s)
- Ahmed F Thabet
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt.
- Genetics Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt.
- Field Crop Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-sheikh, Egypt.
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Hessien A Boraei
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt
| | - Ola A Galal
- Genetics Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt
| | - Magdy F M El-Samahy
- Field Crop Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-sheikh, Egypt
| | - Kareem M Mousa
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yao Z Zhang
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Eman A Helmy
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Regional Centre for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Jian Wen
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tsubasa Nozaki
- Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- The Kyushu University Museum, Fukuoka, Japan
| |
Collapse
|
16
|
Song XP, Verma KK, Tian DD, Zhang XQ, Liang YJ, Huang X, Li CN, Li YR. Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biol Res 2021; 54:19. [PMID: 34238380 PMCID: PMC8265040 DOI: 10.1186/s40659-021-00344-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.
Collapse
Affiliation(s)
- Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiao-Qiu Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yong-Jian Liang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532200, Guangxi, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Chang-Ning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China.
| |
Collapse
|
17
|
Jia L, Han Y, Hou M. Silicon amendment to rice plants reduces the transmission of southern rice black-streaked dwarf virus by Sogatella furcifera. PEST MANAGEMENT SCIENCE 2021; 77:3233-3240. [PMID: 33728797 DOI: 10.1002/ps.6365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant viruses are transmitted mainly by piercing-sucking herbivores, and viral disease management relies on chemical control of vectors. Southern rice black-streaked dwarf virus (SRBSDV) is transmitted by the white-backed planthopper (WBPH), Sogatella furcifera. This study aimed to evaluate the potential of silicon (Si) amendment for reducing SRBSDV transmission. RESULTS The settling and ovipositional preferences of WBPH females decreased significantly by 14.6-43.7% for plants treated with either 0.16 g or 0.32 g SiO2 kg-1 soil during SRBSDV acquisition and by 26.2-28.3% for plants treated with 0.32 g SiO2 kg-1 soil during SRBSDV inoculation, compared with controls. Adding either 0.16 or 0.32 g SiO2 kg-1 soil significantly reduced SRBSDV inoculation rate by 31.3% and 45.3%, respectively, and acquisition rate by 25.5% and 66.0%, respectively. Silicification was intensified more in plants treated with 0.32 g SiO2 kg-1 soil than in controls. The nonprobing (np) duration increased, and the phloem sap ingestion (N4-b) duration decreased significantly in the WBPHs feeding on high-rate-Si-supplemented plants compared with control plants during both inoculation and acquisition access. CONCLUSION This study showed that Si amendment to rice plants decreased the WBPH settling and ovipositional preference and the SRBSDV acquisition and inoculation rates, thereby reducing SRBSDV transmission. The intensified plant silicification and the altered WBPH feeding behaviors (i.e. prolonged np and shortened N4-b) may explain the reduced SRBSDV transmission in Si-amended plants. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luyao Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Han
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Hall CR, Rowe RC, Mikhael M, Read E, Hartley SE, Johnson SN. Plant silicon application alters leaf alkaloid concentrations and impacts parasitoids more adversely than their aphid hosts. Oecologia 2021; 196:145-154. [PMID: 33929604 DOI: 10.1007/s00442-021-04902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Grasses accumulate large amounts of silicon (Si) which acts as a highly effective physical defence against insect herbivory, however recent evidence shows that Si supplementation also modifies plant secondary metabolite concetrations. Changes in plant secondary metabolites concentrations can have cascading effects on higher trophic levels, such as parasitoids, as they are dependent on the host herbivore for growth and development. However, relatively little is known about how Si application affects higher trophic levels. We examined the effects of Si addition on alkaloid content in leaves of Phalaris aquatica (Poaceae) and the effect on interactions between an aphid (Rhopalosiphum padi) and its parasitoid (Aphidius colemani). Si supplementation had no effect on aphid abundance or parasitism rate. Adult aphids, aphid mummies (parasitised aphids) and the emergent parasitoids were, however, significantly smaller on Si+ plants. Parasitoid traits (size and emergence) were correlated with aphid mummy size. Si addition reduced parasitoid emergence rate and size due to reduced host mummy size, in addition, significantly fewer females emerged from mummies on Si+ plants. Aphid infestation significantly altered alkaloids concentrations, reducing gramine by 80% while increasing tryptamine by 91% in Si- plants. Si addition reduced aphid-induced tryptamine concentrations by 64% and increased 5-MeO-tryptamine by over 800% in control and 142% in aphid infested plants. Our results show that while Si addition has modest impacts on the herbivore, it significantly alters secondary metabolites and has stronger effects on the higher trophic level through changes in the quality of the parasitised host.
Collapse
Affiliation(s)
- Casey R Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.
| | - Rhiannon C Rowe
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Elizabeth Read
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, 3083, Australia
| | - Sue E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
19
|
Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124820. [PMID: 33516974 DOI: 10.1016/j.jhazmat.2020.124820] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Exogenous applications of silicon (Si) can initiate cellular defence pathways to enhance plant resistance to abiotic and biotic stresses. Plant Si accumulation is regulated by several transporters of silicic acid (e.g. Lsi1, Lsi2, and Lsi6), but the precise mechanisms involved in overall Si transport and its beneficial effects remains unclear. In stressed plants, the accumulation of Si leads to a defence mechanism involving the formation of amorphous or hydrated silicic acid caused by their polymerization and interaction with other organic substances. Silicon also regulates plant ionic homeostasis, which involves the nutrient acquisition, availability, and replenishment in the soil through biogeochemical cycles. Furthermore, Si is implicated in modulating ethylene-dependent and jasmonate pathways, as well as other phytohormones, particularly under stress conditions. Crosstalk between Si and phytohormones could lead to improvements in Si-mediated crop growth, especially when plants are exposed to stress. The integration of Si with reactive oxygen species (ROS) metabolism appears to be a part of the signaling cascade that regulates plant phytohormone homeostasis, as well as morphological, biochemical, and molecular responses. This review aims to provide an update on Si interplays with ROS, phytohormones, and other signaling molecules that regulate plant development under stress conditions.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent PG College of University of Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sowbiya Muneer
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Mlynská dolina, Bratislava, Slovakia; Institute of Botany, Plant Science. and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, Granada, Spain.
| |
Collapse
|
20
|
Katz O, Puppe D, Kaczorek D, Prakash NB, Schaller J. Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. PLANTS (BASEL, SWITZERLAND) 2021; 10:652. [PMID: 33808069 PMCID: PMC8066056 DOI: 10.3390/plants10040652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
Plants' ability to take up silicon from the soil, accumulate it within their tissues and then reincorporate it into the soil through litter creates an intricate network of feedback mechanisms in ecosystems. Here, we provide a concise review of silicon's roles in soil chemistry and physics and in plant physiology and ecology, focusing on the processes that form these feedback mechanisms. Through this review and analysis, we demonstrate how this feedback network drives ecosystem processes and affects ecosystem functioning. Consequently, we show that Si uptake and accumulation by plants is involved in several ecosystem services like soil appropriation, biomass supply, and carbon sequestration. Considering the demand for food of an increasing global population and the challenges of climate change, a detailed understanding of the underlying processes of these ecosystem services is of prime importance. Silicon and its role in ecosystem functioning and services thus should be the main focus of future research.
Collapse
Affiliation(s)
- Ofir Katz
- Dead Sea and Arava Science Center, Mt. Masada, Tamar Regional Council, 86910 Tamar, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, 8855630 Eilat, Israel
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Nagabovanalli B. Prakash
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, GKVK, Bangalore 560065, India;
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| |
Collapse
|
21
|
Acevedo FE, Peiffer M, Ray S, Tan CW, Felton GW. Silicon-Mediated Enhancement of Herbivore Resistance in Agricultural Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:631824. [PMID: 33679847 PMCID: PMC7928372 DOI: 10.3389/fpls.2021.631824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/18/2021] [Indexed: 06/06/2023]
Abstract
Silicon (Si) is a beneficial mineral that enhances plant protection against abiotic and biotic stresses, including insect herbivores. Si increases mechanical and biochemical defenses in a variety of plant species. However, the use of Si in agriculture remains poorly adopted despite its widely documented benefits in plant health. In this study, we tested the effect of Si supplementation on the induction of plant resistance against a chewing herbivore in crops with differential ability to accumulate this element. Our model system comprised the generalist herbivore fall armyworm (FAW) Spodoptera frugiperda and three economically important plant species with differential ability to uptake silicon: tomato (non-Si accumulator), soybean, and maize (Si-accumulators). We investigated the effects of Si supply and insect herbivory on the induction of physical and biochemical plant defenses, and herbivore growth using potted plants in greenhouse conditions. Herbivory and Si supply increased peroxidase (POX) activity and trichome density in tomato, and the concentration of phenolics in soybean. Si supplementation increased leaf Si concentration in all plants. Previous herbivory affected FAW larval weight gain in all plants tested, and the Si treatment further reduced weight gain of larvae fed on Si accumulator plants. Notably, our results strongly suggest that non-glandular trichomes are important reservoirs of Si in maize and may increase plant resistance to chewing herbivores. We conclude that Si offers transient resistance to FAW in soybean, and a more lasting resistance in maize. Si supply is a promising strategy in management programs of chewing herbivores in Si-accumulator plants.
Collapse
|
22
|
Xue X, Geng T, Liu H, Yang W, Zhong W, Zhang Z, Zhu C, Chu Z. Foliar Application of Silicon Enhances Resistance Against Phytophthora infestans Through the ET/JA- and NPR1- Dependent Signaling Pathways in Potato. FRONTIERS IN PLANT SCIENCE 2021; 12:609870. [PMID: 33584769 PMCID: PMC7876464 DOI: 10.3389/fpls.2021.609870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
Late blight (LB), caused by the oomycete pathogen Phytophthora infestans, is a devastating disease of potato that is necessary to control by regularly treatment with fungicides. Silicon (Si) has been used to enhance plant resistance against a broad range of bacterial and fungal pathogens; however, the enhanced LB resistance and the molecular mechanisms involving the plant hormone pathways remain unclear. In this study, Si treatment of potato plants was found to enhance LB resistance in both detached leaves and living plants accompanied by induction of reactive oxygen species (ROS) production and pathogenesis-related genes expression. Regarding the hormone pathways involved in Si-mediated LB resistance, we found a rapidly increased content of ethylene (ET) 15 min after spraying with Si. Increased jasmonic acid (JA) and JA-Ile and decreased salicylic acid (SA) were identified in plants at 1 day after spraying with Si and an additional 1 day after P. infestans EC1 infection. Furthermore, pretreatment with Me-JA enhanced resistance to EC1, while pretreatment with DIECA, an inhibitor of JA synthesis, enhanced the susceptibility and attenuated the Si-mediated resistance to LB. Consistent with these hormonal alterations, Si-mediated LB resistance was significantly attenuated in StETR1-, StEIN2-, StAOS-, StOPR3-, StNPR1-, and StHSP90-repressed plants but not in StCOI1- and StSID2-repressed plants using virus-induced gene silencing (VIGS). The Si-mediated accumulation of JA/JA-Ile was significantly attenuated in StETR1-, StEIN2-, StOPR3- and StHSP90-VIGS plants but not in StCOI1-, StSID2- and StNPR1-VIGS plants. Overall, we reveal that Si can be used as a putative alternative to fungicides to control LB, and conclude that Si-mediated LB resistance is dependent on the ET/JA-signaling pathways in a StHSP90- and StNPR1-dependent manner.
Collapse
Affiliation(s)
- Xiaojing Xue
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Tiantian Geng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wei Yang
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Weiran Zhong
- Institute of Characteristics Crops, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhiliang Zhang
- Institute of Characteristics Crops, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
23
|
Murali-Baskaran RK, Senthil-Nathan S, Hunter WB. Anti-herbivore activity of soluble silicon for crop protection in agriculture: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2626-2637. [PMID: 33150504 DOI: 10.1007/s11356-020-11453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Silicon (Si) is considered an important component for plant growth, development, and yield in many crop species. Silicon is also known to reduce plant pests. Although Si, the major component of soil next to oxygen, it is not used as a major nutrient by crop plants. However, extensive literature demonstrate the beneficial effects of soluble silicates, like silicon [orthosilicic acid (Si(H4SiO4)], on reducing biotic stress in crop ecosystems. In general, monocots tend to accumulate substantially more Si in plant tissues than dicots. Si accumulates in plant cell walls, providing protection by increasing the synthesis of lignin and phenolic compounds and activating the endogenous chemical defenses of plants including volatile and non-volatile compounds and other physical structures like trichomes. This review provides an overview of the history of silicon use in agriculture in India, for the management of insect pests. The future research needs in this field of study are also presented.
Collapse
Affiliation(s)
| | - Sengottayan Senthil-Nathan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Science, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627412, India
| | - Wayne Brian Hunter
- Agricultural Research Service, U.S. Horticultural Research Laboratory, United States Department of Agriculture, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| |
Collapse
|
24
|
Singh A, Kumar A, Hartley S, Singh IK. Silicon: its ameliorative effect on plant defense against herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6730-6743. [PMID: 32591824 DOI: 10.1093/jxb/eraa300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Plants protect themselves against pest attack utilizing both direct and indirect modes of defense. The direct mode of defense includes morphological, biochemical, and molecular barriers that affect feeding, growth, and survival of herbivores whereas the indirect mode of defense includes release of a blend of volatiles that attract natural enemies of the pests. Both of these strategies adopted by plants are reinforced if the plants are supplied with one of the most abundant metalloids, silicon (Si). Plants absorb Si as silicic acid (Si(OH)4) and accumulate it as phytoliths, which strengthens their physical defense. This deposition of Si in plant tissue is up-regulated upon pest attack. Further, Si deposited in the apoplast, suppresses pest effector molecules. Additionally, Si up-regulates the expression of defense-related genes and proteins and their activity and enhances the accumulation of secondary metabolites, boosting induced molecular and biochemical defenses. Moreover, Si plays a crucial role in phytohormone-mediated direct and indirect defense mechanisms. It is also involved in the reduction of harmful effects of oxidative stress resulting from herbivory by accelerating the scavenging process. Despite increasing evidence of its multiple roles in defense against pests, the practical implications of Si for crop protection have received less attention. Here, we highlight recent developments in Si-mediated improved plant resistance against pests and its significance for future use in crop improvement.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Kumar
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Susan Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
25
|
Sampaio MV, Franco GM, Lima DT, Oliveira ARC, Silva PF, Santos ALZ, Resende AVM, Santos FAA, Girão LVC. Plant Silicon Amendment Does Not Reduce Population Growth of Schizaphis graminum or Host Quality for the Parasitoid Lysiphlebus testaceipes. NEOTROPICAL ENTOMOLOGY 2020; 49:745-757. [PMID: 32445112 DOI: 10.1007/s13744-020-00775-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Interactions between different pest control methods can affect Integrated Pest Management efficiency. This study sought to evaluate (1) if Si accumulation is related to the level of constitutive resistance in sorghum genotypes, (2) the level of Si induces resistance by antibiosis in sorghum genotypes with different levels of constitutive resistance to Schizaphis graminum (Rondani) (reared individualized or in colonies), and (3) the fitness of Lysiphlebus testaceipes (Cresson) in aphids reared on Si-treated and untreated plants. Several experiments were conducted under greenhouse conditions, using sorghum genotypes with different levels of resistance grown in pots with or without the addition of Si to the soil. The susceptible (BR007B), moderately resistant (GB3B), and highly resistant (TX430XGR111) genotypes all absorbed more Si when it was added to the soil compared with when it was not amended. However, the final Si content of treated plants was not related to the level of constitutive resistance among treated genotypes. While Si soil application did reduce the fecundity of individualized aphids reared on the susceptible and moderately resistant sorghum plants, it did not reduce populational growth of aphid colonies, independent of the level of plant's constitutive resistance. Parasitoid (L. testaceipes) had higher weight when reared from aphids fed on plants with added Si. Sorghum × constitutive resistance × S. graminum interactions were affected by plant Si content only for individualized aphids but not for aphid colonies. Sorghum × S. graminum × L. testaceipes interactions suggest that Si can have, overall, a positive effect on the biological control of S. graminum.
Collapse
Affiliation(s)
- M V Sampaio
- Institute of Agricultural Sciences, Federal Univ of Uberlândia, Uberlândia, MG, Brasil.
| | - G M Franco
- Institute of Agricultural Sciences, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
- Entomology Dept, Louisiana State Univ, Baton Rouge, LA, USA
| | - D T Lima
- Institute of Agricultural Sciences, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
| | - A R C Oliveira
- Institute of Agricultural Sciences, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
| | - P F Silva
- Institute of Agricultural Sciences, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
| | - A L Z Santos
- Institute of Agricultural Sciences, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
- School of Agricultural and Veterinarian Sciences, São Paulo State Univ (Unesp), Jaboticabal, Brasil
| | - A V M Resende
- Institute of Agricultural Sciences, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
| | - F A A Santos
- Institute of Biotechnology, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
| | - L V C Girão
- College of Veterinary Medicine, Federal Univ of Uberlândia, Uberlândia, MG, Brasil
| |
Collapse
|
26
|
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104641. [PMID: 32711774 DOI: 10.1016/j.pestbp.2020.104641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Farghama Khalil
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
27
|
Johnson SN, Rowe RC, Hall CR. Aphid Feeding Induces Phytohormonal Cross-Talk without Affecting Silicon Defense against Subsequent Chewing Herbivores. PLANTS 2020; 9:plants9081009. [PMID: 32784988 PMCID: PMC7464791 DOI: 10.3390/plants9081009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/26/2022]
Abstract
Prior feeding by insect herbivores frequently affects plant quality for herbivores that subsequently feed on the plant. Facilitation occurs when one herbivore improves plant quality for other herbivores, including when the former compromises plant defenses. Silicon (Si) is an important defense in grasses that increases following activation of the jasmonic acid (JA) pathway. Given that aphids often stimulate the salicylic acid (SA) pathway, we hypothesized that this could reduce Si defense because of the well documented antagonistic cross-talk between SA and JA. We tested this in the model grass Brachypodium distachyon with and without Si (+Si and −Si, respectively); half of the plants were exposed to aphids (Rhopalosiphum padi) and half remained aphid-free. Aphid-free and aphid-exposed plants were then fed to chewing herbivores (Helicoverpa armigera). Aphids triggered higher SA concentrations which suppressed JA concentrations but this did not affect foliar Si. Chewing herbivores triggered higher JA concentrations and induced Si uptake, regardless of previous feeding by aphids. Chewer growth rates were not impacted by prior aphid herbivory but were reduced by 75% when feeding on +Si plants. We concluded that aphids caused phytohormonal cross-talk but this was overridden by chewing herbivory that also induced Si uptake.
Collapse
|
28
|
Soil and foliar application of rock dust as natural control agent for two-spotted spider mites on tomato plants. Sci Rep 2020; 10:12108. [PMID: 32694587 PMCID: PMC7374085 DOI: 10.1038/s41598-020-69060-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022] Open
Abstract
Mineral-based products represent a valid alternative to synthetic pesticides in integrated pest management. We investigated the effects of a novel granite dust product as an agent for controlling two-spotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), on tomato plants (Solanum lycopersicum L.). Two-choice tests for repellency and repulsiveness, and no-choice bioassays with different type of applications (soil, foliar, and soil–foliar) were used in order to evaluate performance and action of the product. Evaluation of epidermal micromorphology and mesophyll structure of treated plants and elemental analyses of leaves were performed. In repulsiveness experiments, almost all dust treatments significantly inhibited mites from migrating to and/or settling on the treated leaf. In repellency experiments, foliar and soil dust treatments were not significantly different from control. Significant mortality was observed for all dust treatments in two-choice and in no-choice bioassays, suggesting mites are susceptible to rock dust by contact, and by indirect interaction through the feeding on plants subjected to soil application of rock dust. Leaf epidermal micromorphology and mesophyll structure of treated plants showed structural variation due to mineral accumulation, which was also confirmed by elemental analyses of leaves. These results demonstrate for the first time that granite rock dust interacts with two-spotted spider mites by modifying pest behavior and via acaricidal action, providing more insights in understanding the mechanism of this novel natural product as pest management tool.
Collapse
|
29
|
de Oliveira RS, Peñaflor MFGV, Gonçalves FG, Sampaio MV, Korndörfer AP, Silva WD, Bento JMS. Silicon-induced changes in plant volatiles reduce attractiveness of wheat to the bird cherry-oat aphid Rhopalosiphum padi and attract the parasitoid Lysiphlebus testaceipes. PLoS One 2020; 15:e0231005. [PMID: 32243466 PMCID: PMC7122784 DOI: 10.1371/journal.pone.0231005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/13/2020] [Indexed: 01/11/2023] Open
Abstract
Silicon (Si) supplementation is well-known for enhancing plant resistance to insect pests, however, only recently studies revealed that Si accumulation in the plant not only confers a mechanical barrier to insect feeding, but also primes jasmonic acid-dependent defenses. Here, we examined whether Si supplementation alters wheat volatile emissions that influence the bird cherry-oat aphid (Rhopalosiphum padi) olfactory preference and the aphid parasitoid Lysiphlebus testaceipes. Even though Si accumulation in wheat did not impact aphid performance, we found that R. padi preferred constitutive volatiles from–Si wheat over those emitted by +Si wheat plants. In Y-tube olfactometer bioassays, the parasitoid was attracted to volatiles from +Si uninfested wheat, but not to those from–Si uninfested wheat. +Si and–Si aphid-infested plants released equally attractive blends to the aphid parasitoid; however, wasps were unable to distinguish +Si uninfested plant odors from those of aphid-infested treatments. GC-MS analyses revealed that +Si uninfested wheat plants emitted increased amounts of a single compound, geranyl acetone, compared to -Si uninfested wheat, but similar to those emitted by aphid-infested treatments. By contrast, Si supplementation in wheat did not alter composition of aphid-induced plant volatiles. Our results show that changes in wheat volatile blend induced by Si accumulation mediate the non-preference behavior of the bird cherry-oat aphid and the attraction of its parasitoid L. testaceipes. Conversely to the literature, Si supplementation by itself seems to work as an elicitor of induced defenses in wheat, and not as a priming agent.
Collapse
Affiliation(s)
| | | | - Felipe G. Gonçalves
- Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP, Brazil
| | | | - Ana Paula Korndörfer
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Weliton D. Silva
- Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP, Brazil
| | - José Maurício S. Bento
- Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP, Brazil
| |
Collapse
|
30
|
Alvarenga R, Auad AM, Moraes JC, Silva SE. Do silicon and nitric oxide induce resistance to Mahanarva spectabilis (Hemiptera: Cercopidae) in forage grasses? PEST MANAGEMENT SCIENCE 2019; 75:3282-3292. [PMID: 31006949 DOI: 10.1002/ps.5450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/08/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Great efforts have been made to identify grasses that are resistant to spittlebugs (Hemiptera: Cercopidae). However, the time required to develop and launch new cultivars is relatively long. The employment of resistance inducers is a current strategy that may be useful for the control of insect pests. This analysis evaluates the feasibility of using the chemical inducers silicon and nitric oxide to increase spittlebug resistance based on changes in forage grass vegetative characteristics and the biological traits of Mahanarva spectabilis (Distant, 1909). RESULTS Mahanarva spectabilis nymphs and adults can cause significant damage to forage grasses. Furthermore, silicon and nitric oxide inducers were not sufficient to lessen this damage by positively influencing the growth and development of forage grasses. These inducers did not negatively alter the biological parameters of M. spectabilis or diminish its population. However, phenolic compound concentrations increased when forage grasses were treated with silicon or attacked by adult insects, but this parameter was not useful to predict spittlebug resistance. This fact suggests that the physiological and biochemical changes caused by silicon should be further studied. CONCLUSION The current analysis demonstrated that application of the chemical inducers silicon and nitric oxide is currently not a viable strategy for the effective and economic management of M. spectabilis on Brachiaria ruziziensis, Pennisetum purpureum and Digitaria sp. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Alexander M Auad
- Laboratory of Entomology, Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle, Juiz de Fora, Brazil
| | - Jair C Moraes
- Entomology Department, Federal University of Lavras, Lavras, Brazil
| | - Sandra Eb Silva
- Laboratory of Entomology, Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle, Juiz de Fora, Brazil
| |
Collapse
|
31
|
Parrilli M, Sommaggio D, Tassini C, Di Marco S, Osti F, Ferrari R, Metruccio E, Masetti A, Burgio G. The role of Trichoderma spp. and silica gel in plant defence mechanisms and insect response in vineyard. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:771-780. [PMID: 31097045 DOI: 10.1017/s0007485319000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Several elicitors, stimulating induced resistance mechanisms, have potential in preventing or mitigating pathogen infections. Some of these compounds, triggering the production of jasmonic acid (JA), a precursor of herbivore-induced plant volatiles, could also play a central role in indirect resistance to pest species, by improving beneficial arthropod performance, and necrotrophic pathogens. In the current work, Trichoderma gamsii/T. asperellum and silica gel treatments - alone and in combination - were studied to evaluate the plant defence mechanism on grapevines (Vitis vinifera L.) by laboratory and field trials. JA production level was measured before and after Plasmopara viticola infection on potted vines. JA production induced by silica gel was higher than that caused by Trichoderma before infection. In Trichoderma-treated plants, JA production increased after P. viticola inoculation. In vineyard field trials, Mymaridae (Hymenoptera: Chalcidoidea) showed higher captures in transparent sticky traps on silica gel-treated plants, in comparison with control. On the other hand, no significant attraction was detected for Ichneumonoidea and other Chalcidoidea in silica gel and T. gamsii/T. asperellum-treated plants. The potential effects of elicitors are discussed, in the frame of attract and reward strategy.
Collapse
Affiliation(s)
- M Parrilli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - D Sommaggio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - C Tassini
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - S Di Marco
- C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
| | - F Osti
- C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
| | - R Ferrari
- C.A.A. (Centro Agricoltura Ambiente G. Nicoli), Via Argini Nord 3351, 40014, Località Castello dei Ronchi, Crevalcore, BO, Italy
| | - E Metruccio
- C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
| | - A Masetti
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - G Burgio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| |
Collapse
|
32
|
Leroy N, Tombeur FD, Walgraffe Y, Cornélis JT, Verheggen FJ. Silicon and Plant Natural Defenses against Insect Pests: Impact on Plant Volatile Organic Compounds and Cascade Effects on Multitrophic Interactions. PLANTS 2019; 8:plants8110444. [PMID: 31652861 PMCID: PMC6918431 DOI: 10.3390/plants8110444] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 11/20/2022]
Abstract
Environmental factors controlling silicon (Si) accumulation in terrestrial plant are key drivers to alleviate plant biotic stresses, including insect herbivory. While there is a general agreement on the ability of Si-enriched plant to better resist insect feeding, recent studies suggest that Si also primes biochemical defense pathways in various plant families. In this review, we first summarize how soil parameters and climate variables influence Si assimilation in plants. Then, we describe recent evidences on the ability of Si to modulate plant volatile emissions, with potential cascade effects on phytophagous insects and higher trophic levels. Even though the mechanisms still need to be elucidated, Si accumulation in plants leads to contrasting effects on the levels of the three major phytohormones, namely jasmonic acid, salicylic acid and ethylene, resulting in modified emissions of plant volatile organic compounds. Herbivore-induced plant volatiles would be particularly impacted by Si concentration in plant tissues, resulting in a cascade effect on the attraction of natural enemies of pests, known to locate their prey or hosts based on plant volatile cues. Since seven of the top 10 most important crops in the world are Si-accumulating Poaceae species, it is important to discuss the potential of Si mobility in soil-plant systems as a novel component of an integrated pest management.
Collapse
Affiliation(s)
- Nicolas Leroy
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| | - Félix de Tombeur
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium.
| | - Yseult Walgraffe
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| | - Jean-Thomas Cornélis
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium.
| | - François J Verheggen
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| |
Collapse
|
33
|
Lin Y, Sun Z, Li Z, Xue R, Cui W, Sun S, Liu T, Zeng R, Song Y. Deficiency in Silicon Transporter Lsi1 Compromises Inducibility of Anti-herbivore Defense in Rice Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:652. [PMID: 31178878 PMCID: PMC6543919 DOI: 10.3389/fpls.2019.00652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/30/2019] [Indexed: 05/02/2023]
Abstract
Silicon (Si) application can significantly enhance rice resistance against herbivorous insects. However, the underlying mechanism is elusive. In this study, silicon transporter mutant OsLsi1 and corresponding wild-type rice (WT) were treated with and without Si to determine Si effects on rice resistance to leaffolder (LF), Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Si application on WT plants significantly promoted rice plant growth, upregulated expression level of OsLsi1 and increased Si accumulation in the leaves and roots, as well as effectively reduced LF weight gain, while it showed only marginal or no effect on the mutant plants. Furthermore, upon LF infestation, transcript levels of OsLOX, OsAOS2, OsCOI1a, OsCOI1b, and OsBBPI, and activity of catalase, superoxide dismutase, peroxidase, and polyphenol oxidase were significantly higher in Si-treated than untreated WT plants. However, OsLsi1 mutant plants displayed higher susceptibility to LF, and minimal response of defense-related enzymes and jasmonate dependent genes to Si application. These results suggest that induced defense plays a vital role in Si-enhanced resistance and deficiency in silicon transporter Lsi1 compromises inducibility of anti-herbivore defense in rice plants.
Collapse
Affiliation(s)
- Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenfang Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weikang Cui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaozhi Sun
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Liu
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
34
|
Frew A, Weston LA, Reynolds OL, Gurr GM. The role of silicon in plant biology: a paradigm shift in research approach. ANNALS OF BOTANY 2018; 121:1265-1273. [PMID: 29438453 PMCID: PMC6007437 DOI: 10.1093/aob/mcy009] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and regulatory processes, thereby allowing greater unification and focus of current research across disciplines. SCOPE AND CONCLUSIONS Silicon is often regarded as a plant nutritional 'non-entity'. A suite of factors associated with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting the need for a unifying research framework targeting common underlying mechanisms. The traditional approach of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies will pave the way for unification of the field and a deeper understanding of the role of Si in plants.
Collapse
Affiliation(s)
- Adam Frew
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- For correspondence. E-mail
| | - Leslie A Weston
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
| | - Olivia L Reynolds
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- Biosecurity and Food Safety, New South Wales Department of Primary Industries, Narellan, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
35
|
Alhousari F, Greger M. Silicon and Mechanisms of Plant Resistance to Insect Pests. PLANTS 2018; 7:plants7020033. [PMID: 29652790 PMCID: PMC6027389 DOI: 10.3390/plants7020033] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023]
Abstract
This paper reviews the most recent progress in exploring silicon-mediated resistance to herbivorous insects and the mechanisms involved. The aim is to determine whether any mechanism seems more common than the others as well as whether the mechanisms are more pronounced in silicon-accumulating than non-silicon-accumulating species or in monocots than eudicots. Two types of mechanisms counter insect pest attacks: physical or mechanical barriers and biochemical/molecular mechanisms (in which Si can upregulate and prime plant defence pathways against insects). Although most studies have examined high Si accumulators, both accumulators and non-accumulators of silicon as well as monocots and eudicots display similar Si defence mechanisms against insects.
Collapse
Affiliation(s)
- Fadi Alhousari
- Department of Ecology, Environment and Plant Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Maria Greger
- Department of Ecology, Environment and Plant Science, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
36
|
Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties. Int J Mol Sci 2018; 19:ijms19030899. [PMID: 29562647 PMCID: PMC5877760 DOI: 10.3390/ijms19030899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/03/2022] Open
Abstract
Mineral nutrient homeostasis is essential for plant growth and development. Recent research has demonstrated that the occurrence of interactions among the mechanisms regulating the homeostasis of different nutrients in plants is a general rule rather than an exception. Therefore, it is important to understand how plants regulate the homeostasis of these elements and how multiple mineral nutrient signals are wired to influence plant growth. Silicon (Si) is not directly involved in plant metabolism but it is an essential element for a high and sustainable production of crops, especially rice, because of its high content in the total shoot dry weight. Although some mechanisms underlying the role of Si in plants responses to both abiotic and biotic stresses have been proposed, the involvement of Si in regulating plant growth in conditions where the availability of essential macro- and micronutrients changes remains poorly investigated. In this study, the existence of an interaction between Si, phosphate (Pi), and iron (Fe) availability was examined in lowland (Suphanburi 1, SPR1) and upland (Kum Hom Chiang Mai University, KH CMU) rice varieties. The effect of Si and/or Fe deficiency on plant growth, Pi accumulation, Pi transporter expression (OsPHO1;2), and Pi root-to-shoot translocation in these two rice varieties grown under individual or combinatorial nutrient stress conditions were determined. The phenotypic, physiological, and molecular data of this study revealed an interesting tripartite Pi-Fe-Si homeostasis interaction that influences plant growth in contrasting manners in the two rice varieties. These results not only reveal the involvement of Si in modulating rice growth through an interaction with essential micro- and macronutrients, but, more importantly, they opens new research avenues to uncover the molecular basis of Pi-Fe-Si signaling crosstalk in plants.
Collapse
|
37
|
Ryalls JMW, Hartley SE, Johnson SN. Impacts of silicon-based grass defences across trophic levels under both current and future atmospheric CO 2 scenarios. Biol Lett 2017; 13:rsbl.2016.0912. [PMID: 28298594 DOI: 10.1098/rsbl.2016.0912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 11/12/2022] Open
Abstract
Silicon (Si) has important functional roles in plants, including resistance against herbivores. Environmental change, such as increasing atmospheric concentrations of CO2, may alter allocation to Si defences in grasses, potentially changing the feeding behaviour and performance of herbivores, which may in turn impact on higher trophic groups. Using Si-treated and untreated grasses (Phalaris aquatica) maintained under ambient (400 ppm) and elevated (640 and 800 ppm) CO2 concentrations, we show that Si reduced feeding by crickets (Acheta domesticus), resulting in smaller body mass. This, in turn, reduced predatory behaviour by praying mantids (Tenodera sinensis), which consequently performed worse. Despite elevated CO2 decreasing Si concentrations in P. aquatica, this reduction was not large enough to affect the feeding behaviour of crickets or their predator. Our results suggest that Si-based defences in plants have adverse impacts on both primary and secondary trophic taxa, and these are not likely to decline under future climate change scenarios.
Collapse
Affiliation(s)
- James M W Ryalls
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke Street, Richmond, New South Wales 2753, Australia
| | - Susan E Hartley
- York Environmental Sustainability Institute, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke Street, Richmond, New South Wales 2753, Australia
| |
Collapse
|
38
|
Yang L, Li P, Li F, Ali S, Sun X, Hou M. Silicon amendment to rice plants contributes to reduced feeding in a phloem-sucking insect through modulation of callose deposition. Ecol Evol 2017; 8:631-637. [PMID: 29321899 PMCID: PMC5756854 DOI: 10.1002/ece3.3653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/02/2022] Open
Abstract
Silicon (Si) uptake by Poaceae plants has beneficial effects on herbivore defense. Increased plant physical barrier and altered herbivorous feeding behaviors are documented to reduce herbivorous arthropod feeding and contribute to enhanced plant defense. Here, we show that Si amendment to rice (Oryza sativa) plants contributes to reduced feeding in a phloem feeder, the brown planthopper (Nilaparvata lugens, BPH), through modulation of callose deposition. We associated the temporal dynamics of BPH feeding with callose deposition on sieve plates and further with callose synthase and hydrolase gene expression in plants amended with Si. Biological assays revealed that BPH feeding was lower in Si‐amended than in nonamended plants in the early stages post‐BPH infestation. Histological observation showed that BPH infestation triggered fast and strong callose deposition in Si‐amended plants compared with nonamended plants. Analysis using qRT‐PCR revealed that expression of the callose synthase gene OsGSL1 was up‐regulated more and that the callose hydrolase (β‐1,3‐glucanase) gene Gns5 was up‐regulated less in Si‐amended than in nonamended plants during the initial stages of BPH infestation. These dynamic expression levels of OsGSL1 and Gns5 in response to BPH infestation correspond to callose deposition patterns in Si‐amended versus nonamended plants. It is demonstrated here that BPH infestation triggers differential gene expression associated with callose synthesis and hydrolysis in Si‐amended and nonamended rice plants, which allows callose to be deposited more on sieve tubes and sieve tube occlusions to be maintained more thus contributing to reduced BPH feeding on Si‐amended plants.
Collapse
Affiliation(s)
- Lang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China.,Scientific Observing and Experimental Station of Crop Pests in Guilin Ministry of Agriculture Guilin China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Changsha China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China.,Scientific Observing and Experimental Station of Crop Pests in Guilin Ministry of Agriculture Guilin China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Changsha China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China.,Scientific Observing and Experimental Station of Crop Pests in Guilin Ministry of Agriculture Guilin China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Changsha China
| | - Shahbaz Ali
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China.,Scientific Observing and Experimental Station of Crop Pests in Guilin Ministry of Agriculture Guilin China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Changsha China
| | - Xiaoqin Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China.,Scientific Observing and Experimental Station of Crop Pests in Guilin Ministry of Agriculture Guilin China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Changsha China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China.,Scientific Observing and Experimental Station of Crop Pests in Guilin Ministry of Agriculture Guilin China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Changsha China
| |
Collapse
|
39
|
Debona D, Rodrigues FA, Datnoff LE. Silicon's Role in Abiotic and Biotic Plant Stresses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:85-107. [PMID: 28504920 DOI: 10.1146/annurev-phyto-080516-035312] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silicon (Si) plays a pivotal role in the nutritional status of a wide variety of monocot and dicot plant species and helps them, whether directly or indirectly, counteract abiotic and/or biotic stresses. In general, plants with a high root or shoot Si concentration are less prone to pest attack and exhibit enhanced tolerance to abiotic stresses such as drought, low temperature, or metal toxicity. However, the most remarkable effect of Si is the reduction in the intensities of a number of seedborne, soilborne, and foliar diseases in many economically important crops that are caused by biotrophic, hemibiotrophic, and necrotrophic plant pathogens. The reduction in disease symptom expression is due to the effect of Si on some components of host resistance, including incubation period, lesion size, and lesion number. The mechanical barrier formed by the polymerization of Si beneath the cuticle and in the cell walls was the first proposed hypothesis to explain how this element reduced the severity of plant diseases. However, new insights have revealed that many plant species supplied with Si have the phenylpropanoid and terpenoid pathways potentiated and have a faster and stronger transcription of defense genes and higher activities of defense enzymes. Photosynthesis and the antioxidant system are also improved for Si-supplied plants. Although the current understanding of how this overlooked element improves plant reaction against pathogen infections, pest attacks, and abiotic stresses has advanced, the exact mechanism(s) by which it modulates plant physiology through the potentiation of host defense mechanisms still needs further investigation at the genomic, metabolomic, and proteomic levels.
Collapse
Affiliation(s)
- Daniel Debona
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Viçosa Federal University, Viçosa, Minas Gerais State, Brazil, 36570-900;
| | - Fabrício A Rodrigues
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Viçosa Federal University, Viçosa, Minas Gerais State, Brazil, 36570-900;
| | - Lawrence E Datnoff
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803;
| |
Collapse
|
40
|
Alvarenga R, Moraes JC, Auad AM, Coelho M, Nascimento AM. Induction of resistance of corn plants to Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:527-533. [PMID: 28112063 DOI: 10.1017/s0007485316001176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of this study was to evaluate the effects of silicon application and administration of the phytohormone gibberellic acid on resistance of the corn plants to the fall armyworm (FAW), Spodoptera frugiperda, and their vegetative characteristics. We evaluated larval and pupal duration, survival and biomass, and adult longevity, malformation and fecundity of S. frugiperda after feeding on plant matter treated with silicon and/or gibberellic acid. The feeding preference of FAW first-instar larvae, the total leaf area consumed by the insects, and the vegetative parameters of corn plants were also evaluated. No significant differences were observed in the measured parameters of larval and pupal stages of S. frugiperda in response to silicon or gibberellic acid. In adult stage insects, the number of eggs per female was significantly reduced in insects derived from larvae fed plants treated with silicon or gibberellic acid. In a non-preference test, 48 h after release, caterpillars preferred control untreated plants and consumed less matter from plants that had received hormonal treatment (gibberellic acid). Gibberellic acid also altered the vegetative characteristics of plants, by increasing their height, shoot fresh and dry mass, and silicon content. We conclude that gibberellic acid can alter the vegetative characteristics and silicon uptake of corn plants, leading to a reduction in their consumption by S. frugiperda larvae and a decrease in female insect oviposition.
Collapse
Affiliation(s)
- R Alvarenga
- Departamento de Entomologia,Lavras,Universidade Federal de Lavras,Minas Gerais,Brazil
| | - J C Moraes
- Departamento de Entomologia,Lavras,Universidade Federal de Lavras,Minas Gerais,Brazil
| | - A M Auad
- Laboratório de Entomologia,Embrapa - Centro Nacional de Pesquisa de Gado de Leite,Juiz de Fora,Minas Gerais,Brazil
| | - M Coelho
- Departamento de Entomologia,Lavras,Universidade Federal de Lavras,Minas Gerais,Brazil
| | - A M Nascimento
- Departamento de Entomologia,Lavras,Universidade Federal de Lavras,Minas Gerais,Brazil
| |
Collapse
|
41
|
Rashid MM, Ahmed N, Jahan M, Islam KS, Nansen C, Willers JL, Ali MP. Higher Fertilizer Inputs Increase Fitness Traits of Brown Planthopper in Rice. Sci Rep 2017; 7:4719. [PMID: 28680158 PMCID: PMC5498570 DOI: 10.1038/s41598-017-05023-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/09/2017] [Indexed: 11/09/2022] Open
Abstract
Rice (Oryza sativa L.) is the primary staple food source for more than half of the world's population. In many developing countries, increased use of fertilizers is a response to increase demand for rice. In this study, we investigated the effects of three principal fertilizer components (nitrogen, phosphorus and potassium) on the development of potted rice plants and their effects on fitness traits of the brown planthopper (BPH) [Nilaparvata lugens (Stål) (Homoptera: Delphacidae)], which is a major pest of rice in Bangladesh and elsewhere. Compared to low fertilizer inputs, high fertilizer treatments induced plant growth but also favored BPH development. The BPH had higher survival, developed faster, and the intrinsic rate of natural increase (r m ) was higher on well-fertilized than under-fertilized plants. Among the fertilizer inputs, nitrogen had the strongest effect on the fitness traits of BPH. Furthermore, both the "Plant vigor hypothesis" and the "Plant stress hypothesis" were supported by the results, the former hypothesis more so than the latter. These hypotheses suggest that the most suitable/attractive hosts for insect herbivores are the most vigorous plants. Our findings emphasized that an exclusive focus on yield increases through only enhanced crop fertilization may have unforeseen, indirect, effects on crop susceptibility to pests, such as BPH.
Collapse
Affiliation(s)
- M M Rashid
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - N Ahmed
- Entomology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - M Jahan
- Department of Entomology, Bangladesh Agricultural University (BAU), Mymensingh, 2202, Bangladesh
| | - K S Islam
- Department of Entomology, Bangladesh Agricultural University (BAU), Mymensingh, 2202, Bangladesh
| | - C Nansen
- Department of Entomology and Nematology, UC Davis Briggs Hall, Room 367, Davis, CA, USA.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - J L Willers
- United States Department of Agriculture, Agricultural Research Service, Southern Insect Management Research Unit, 141 Experiment Station Road, P.O. Box 346, Stoneville, MS, 38776, USA.
| | - M P Ali
- Entomology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh.
| |
Collapse
|
42
|
Yang L, Han Y, Li P, Li F, Ali S, Hou M. Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Sci Rep 2017; 7:4232. [PMID: 28652621 PMCID: PMC5484686 DOI: 10.1038/s41598-017-04571-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 01/25/2023] Open
Abstract
Plant resistance to herbivores is a key component in integrated pest management. In most cases, silicon (Si) amendment to plants enhances resistance to herbivorous insects. The increase of plant physical barrier and altered insect behaviors are proposed as mechanisms for the enhanced resistance in Si-amended plants, but our understanding of the induced mechanisms involved in Si-enhanced plant resistance to phloem-feeding insects remains unclear. Here, we show that Si amendment to rice (Oryza sativa) plants impacts multiple plant defense responses induced by a phloem-feeder, the brown planthopper (Nilaparvata lugens, BPH). Si amendment improved silicification of leaf sheaths that BPH feed on. Si addition suppressed the increase of malondialdehyde concentration while encouraged increase of H2O2 concentration in plants attacked by BPH. Higher activities of catalase and superoxide dismutase were recorded in Si-amended than in non-amended BPH-infested plants. BPH infestation activated synthases for secondary metabolites, polyphenol oxidase and pheny-lalanine ammonia-lyase, and β-1,3-glucanase, but the activation was greater in Si-amended than in non-amended plants. Taken together, our findings demonstrate that Si amendment interacts with BPH infestation in the induction of plant defense responses and consequently, to confer enhanced rice plant resistance.
Collapse
Affiliation(s)
- Lang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Yongqiang Han
- Institute of Plant Protection of Hunan Province, Changsha, 410125, China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Shahbaz Ali
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| |
Collapse
|
43
|
Johnson SN, Hartley SE, Ryalls JMW, Frew A, DeGabriel JL, Duncan M, Gherlenda AN. Silicon‐induced root nodulation and synthesis of essential amino acids in a legume is associated with higher herbivore abundance. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW2751 Australia
| | - Susan E. Hartley
- York Environment and Sustainability Institute Department of Biology University of York YorkYO10 5DD UK
| | - James M. W. Ryalls
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW2751 Australia
| | - Adam Frew
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW2751 Australia
| | - Jane L. DeGabriel
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW2751 Australia
| | - Michael Duncan
- School of Science and Health Western Sydney University Locked Bag 1797 Penrith NSW2751 Australia
| | - Andrew N. Gherlenda
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW2751 Australia
| |
Collapse
|
44
|
Yang L, Han Y, Li P, Wen L, Hou M. Silicon amendment to rice plants impairs sucking behaviors and population growth in the phloem feeder Nilaparvata lugens (Hemiptera: Delphacidae). Sci Rep 2017; 7:1101. [PMID: 28439066 PMCID: PMC5430648 DOI: 10.1038/s41598-017-01060-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/20/2017] [Indexed: 11/24/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is a migratory and destructive sucking insect pest of rice. Silicon (Si) amendment to plants can confer enhanced resistance to herbivores and is emerging as a novel approach for pest management. In the present study, we tested the effects of Si addition at 0.16 (low) and 0.32 (high) g Si/kg soil on sucking behaviors and population growth in BPH. Si amendment increased Si content in rice stems and extended non-probing event and phloem puncture followed by sustained phloem ingestion over that in the no-Si-addition control. High Si addition rate prolonged the stylet pathway and the time needed to reach the first phloem puncture, shortened durations of phloem puncture and phloem ingestion, and decreased the proportion of individuals that produced sustained phloem ingestion. BPH female feeding on and preference for plants with the high Si addition rate were also reduced. As a result, Si application significantly decreased BPH population growth rates while increased population doubling time. These results indicate that Si amendment, especially at the high rate, confers enhanced rice plant resistance to BPH through impairment of BPH feeding. Our results highlight the potential of Si amendment as an alternative for BPH management.
Collapse
Affiliation(s)
- Lang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Yongqiang Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Lizhang Wen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| |
Collapse
|
45
|
Liu J, Zhu J, Zhang P, Han L, Reynolds OL, Zeng R, Wu J, Shao Y, You M, Gurr GM. Silicon Supplementation Alters the Composition of Herbivore Induced Plant Volatiles and Enhances Attraction of Parasitoids to Infested Rice Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1265. [PMID: 28769965 PMCID: PMC5515826 DOI: 10.3389/fpls.2017.01265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/05/2017] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is important in plant defenses that operate in a direct manner against herbivores, and work in rice (Oryza sativa) has established that this is mediated by the jasmonate signaling pathway. Plant defenses also operate indirectly, by the production of herbivore induced plant volatiles (HIPVs) that attract predators and parasitoids of herbivores. These indirect defenses too are mediated by the jasmonate pathway but no earlier work has demonstrated an effect of Si on HIPVs. In this study, we tested the effect of Si supplementation versus Si deprivation to rice plants on subsequent HIPV production following feeding by the important pest, rice leaffolder (Cnaphalocrocis medinalis). Gas chromatography-mass spectrometry analyses showed lower production of α-bergamotene, β-sesquiohellandrene, hexanal 2-ethyl, and cedrol from +Si herbivore-infested plants compared with -Si infested plants. These changes in plant chemistry were ecologically significant in altering the extent to which parasitoids were attracted to infested plants. Adult females of Trathala flavo-orbitalis and Microplitis mediator both exhibited greater attraction to the HIPV blend of +Si plants infested with their respective insect hosts compared to -Si infested plants. In equivalent studies using RNAi rice plants in which jasmonate perception was silenced there was no equivalent change to the HIPV blend associated with Si treatment; indicating that the effects of Si on HIPVs are modulated by the jasmonate pathway. Further, this work demonstrates that silicon alters the HIPV blend of herbivore-infested rice plants. The significance of this finding is that there are no earlier-published studies of this phenomenon in rice or any other plant species. Si treatment to crops offers scope for enhancing induced, indirect defenses and associated biological control of pests because parasitoids are more strongly attracted by the HIPVs produced by +Si plants.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, Charles Sturt University, OrangeNSW, Australia
| | - Jiwei Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang UniversityHangzhou, China
| | - Liwei Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Olivia L. Reynolds
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries, MenangleNSW, Australia
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jinhong Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yue Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, Charles Sturt University, OrangeNSW, Australia
- *Correspondence: Geoff M. Gurr,
| |
Collapse
|
46
|
Wu X, Yu Y, Baerson SR, Song Y, Liang G, Ding C, Niu J, Pan Z, Zeng R. Interactions between Nitrogen and Silicon in Rice and Their Effects on Resistance toward the Brown Planthopper Nilaparvata lugens. FRONTIERS IN PLANT SCIENCE 2017; 8:28. [PMID: 28167952 PMCID: PMC5253352 DOI: 10.3389/fpls.2017.00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/05/2017] [Indexed: 05/02/2023]
Abstract
Nitrogen (N) and silicon (Si) are two important nutritional elements required for plant growth, and both impact host plant resistance toward insect herbivores. The interaction between the two elements may therefore play a significant role in determining host plant resistance. We investigated this interaction in rice (Oryza sativa L.) and its effect on resistance to the herbivore brown planthopper Nilaparvata lugens (BPH). Our results indicate that high-level (5.76 mM) N fertilization reduced Si accumulation in rice leaves, and furthermore, this decrease was likely due to decreased expression of Si transporters OsLsi1 and OsLsi2. Conversely, reduced N accumulation was observed at high N fertilization levels when Si was exogenously provided, and this was associated with down-regulation of OsAMT1;1 and OsGS1;1, which are involved in ammonium uptake and assimilation, respectively. Under lower N fertilization levels (0.72 and/or 1.44 mM), Si amendment resulted in increased OsNRT1:1, OsGS2, OsFd-GOGAT, OsNADH-GOGAT2, and OsGDH2 expression. Additionally, bioassays revealed that high N fertilization level significantly decreased rice resistance to BPH, and the opposite effect was observed when Si was provided. These results provide additional insight into the antagonistic interaction between Si and N accumulation in rice, and the effects on plant growth and susceptibility to herbivores.
Collapse
Affiliation(s)
- Xiaoying Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University (SCAU)Guangzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yaoguang Yu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University (SCAU)Guangzhou, China
| | - Scott R. Baerson
- Natural Products Utilization Research Unit, United States Department of Agriculture – Agricultural Research Service, StarkvilleMS, USA
| | - Yuanyuan Song
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University (SCAU)Guangzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Guohua Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University (SCAU)Guangzhou, China
| | - Chaohui Ding
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University (SCAU)Guangzhou, China
| | - Jinbo Niu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University (SCAU)Guangzhou, China
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, United States Department of Agriculture – Agricultural Research Service, StarkvilleMS, USA
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Rensen Zeng, ;
| |
Collapse
|
47
|
Rashid MM, Jahan M, Islam KS. Response of Adult Brown Planthopper Nilaparvata lugens (Stål) to Rice Nutrient Management. NEOTROPICAL ENTOMOLOGY 2016; 45:588-596. [PMID: 27155974 DOI: 10.1186/s13717-017-0080-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/05/2016] [Indexed: 05/23/2023]
Abstract
Nitrogen (N) limitation is well documented for the brown planthopper (BPH) Nilaparvata lugens (Stål), but phosphorus (P) and potassium (K) limitation is poorly studied. We studied the effects of N, P, and K application on chemical composition of rice plants and its consequences on life parameters-adult longevity, fecundity, and egg hatchability of BPH. Life parameters of BPH were regressed as function of plant chemical composition. A completely randomized design with four replicates in a factorial scheme was used considering N, P, and K levels as factors. Nitrogen application increased N and soluble proteins (SP) and decreased silicon (Si) content in the plants resulting in increased adult longevity, fecundity, and egg hatchability of BPH. Phosphorus fertilization increased P content and showed markedly increased fecundity, but not egg hatchability or adult longevity. Significant interaction between N and P was observed for fecundity of BPH. Potassium supplementation increased K content but reduced N, Si, SP, and total free sugars (TFS) content in the plants, but it had no significant effect on life parameters of BPH. The association of BPH life parameters with N, SP, TFS, and P content was significant and positive, but it was negative with the content of Si. Thus, N and P fertilization on rice plants enhanced BPH fitness. In conclusion, judicious nutrient application can be helpful in avoiding generalized infestation of BPH to rice.
Collapse
Affiliation(s)
- M M Rashid
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh.
| | - M Jahan
- Dept of Entomology, Bangladesh Agricultural Univ, Mymensingh, Bangladesh
| | - K S Islam
- Dept of Entomology, Bangladesh Agricultural Univ, Mymensingh, Bangladesh
| |
Collapse
|
48
|
Han Y, Li P, Gong S, Yang L, Wen L, Hou M. Defense Responses in Rice Induced by Silicon Amendment against Infestation by the Leaf Folder Cnaphalocrocis medinalis. PLoS One 2016; 11:e0153918. [PMID: 27124300 PMCID: PMC4849577 DOI: 10.1371/journal.pone.0153918] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/06/2016] [Indexed: 02/03/2023] Open
Abstract
Silicon (Si) amendment to plants can confer enhanced resistance to herbivores. In the present study, the physiological and cytological mechanisms underlying the enhanced resistance of plants with Si addition were investigated for one of the most destructive rice pests in Asian countries, the rice leaf folder, Cnaphalocrocis medinalis (Guenée). Activities of defense-related enzymes, superoxide dismutase, peroxidase, catalase, phenylalanine ammonia-lyase, and polyphenol oxidase, and concentrations of malondialdehyde and soluble protein in leaves were measured in rice plants with or without leaf folder infestation and with or without Si amendment at 0.32 g Si/kg soil. Silicon amendment significantly reduced leaf folder larval survival. Silicon addition alone did not change activities of defense-related enzymes and malondialdehyde concentration in rice leaves. With leaf folder infestation, activities of the defense-related enzymes increased and malondialdehyde concentration decreased in plants amended with Si. Soluble protein content increased with Si addition when the plants were not infested, but was reduced more in the infested plants with Si amendment than in those without Si addition. Regardless of leaf folder infestation, Si amendment significantly increased leaf Si content through increases in the number and width of silica cells. Our results show that Si addition enhances rice resistance to the leaf folder through priming the feeding stress defense system, reduction in soluble protein content and cell silicification of rice leaves.
Collapse
Affiliation(s)
- Yongqiang Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Shaolong Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Lang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Lizhang Wen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
- * E-mail:
| |
Collapse
|
49
|
Reynolds OL, Padula MP, Zeng R, Gurr GM. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture. FRONTIERS IN PLANT SCIENCE 2016; 7:744. [PMID: 27379104 PMCID: PMC4904004 DOI: 10.3389/fpls.2016.00744] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels.
Collapse
Affiliation(s)
- Olivia L. Reynolds
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, FujianChina
- Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries, Menangle, NSWAustralia
- *Correspondence: Geoff M. Gurr, ; Olivia L. Reynolds,
| | - Matthew P. Padula
- Proteomics Core Facility, School of Life Sciences, University of Technology Sydney, Sydney, NSWAustralia
| | - Rensen Zeng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, FujianChina
| | - Geoff M. Gurr
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, FujianChina
- Graham Centre for Agricultural Innovation, Charles Sturt University, Orange, NSWAustralia
- *Correspondence: Geoff M. Gurr, ; Olivia L. Reynolds,
| |
Collapse
|
50
|
Nikpay A, Soleyman-Nejadian E, Goldasteh S, Farazmand H. Response of Sugarcane and Sugarcane Stalk Borers Sesamia spp. (Lepidoptera: Noctuidae) to Calcium Silicate Fertilization. NEOTROPICAL ENTOMOLOGY 2015; 44:498-503. [PMID: 26243329 DOI: 10.1007/s13744-015-0298-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/26/2015] [Indexed: 05/16/2023]
Abstract
Sugarcane is grown extensively throughout the world including more than 100,000 ha in Khuzestan province, Iran. The pink stalk borers Sesamia are key pests of sugarcane in this region, while other stalk borers will occur in sugarcane worldwide. Application of silicon as a soil amendment has provided plant mitigation to both biotic and abiotic stresses. Silicon has been shown to enhance resistance of sugarcane against stalk borers. Field trials were conducted to determine the effects of calcium silicate against infestations of stalk borers Sesamia spp. and on yield quality. Experiments were conducted with three sugarcane varieties CP69-1062, IRC99-01, and SP70-1143 and two rates of calcium silicate (400 and 800 kg/ha). Percentage of stalk damaged, percentage of bored internodes, length of borer tunnel (mm), number of larvae + pupae per 100 stalks, number of exit holes, and cane yield quality were determined. We demonstrate significant reduction on borer population and damage under silicon treatment, but greater reduction in the percentages of stalk damage, bored internodes, moth exit holes, and length of borer tunnel and number of larvae and pupae per 100 stalks were observed in the susceptible variety CP69-1062. Silicon treatment positively affected cane and sugarcane juice quality of for the variety CP69-1062, but not for SP70-1143. We conclude that the benefits of silicon to sugarcane quality and sugarcane resistance to stalk borers are dependent on the sugarcane variety.
Collapse
Affiliation(s)
- A Nikpay
- Dept of Entomology, Arak Branch, Islamic Azad Univ, Arak, Iran,
| | | | | | | |
Collapse
|