1
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
2
|
Macri EV, Touceda V, Wiszniewski M, Cacciagiú LD, Zago V, Puntarulo S, Pellegrino N, Lifshitz F, Friedman SM, Miksztowicz V. Liver response to the consumption of fried sunflower oil. J Nutr Biochem 2024; 134:109734. [PMID: 39117077 DOI: 10.1016/j.jnutbio.2024.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Sunflower oil is one of the most commonly used fat sources in Argentina, and deep-fat frying is the popular food preparation process. The liver response of feeding a diet containing fried sunflower oil (SFOx) on growing rats was studied. Thirty-nine male weanling Wistar rats were randomly assigned to one of three diets for 8 wks: control (C), sunflower oil (SFO), and a diet containing SFOx, both of the sunflower diets were mixed with a commercial rat chow at weight ratio of 13% (w/w). Body weight and food consumption were recorded weekly. At t=8 wk, lipid profile and glycemia were measured. Visceral adiposity was registered. Liver was weighed and preserved for histological analysis, relative fatty acid profile, fibrosis markers and oxidative status. The three diets did not alter body weights; however, the SFOx fed rats showed increased energy intake and visceral fat; therefore, in liver saturated fat content, trans fatty acids, plus other unidentified minor components, such as hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxylepidioxides, and epoxides, were detected. The hepatosomatic index of SFOx rats was altered and showed hepatic steatosis. SFOx rats exhibited increased liver dichlorodihydrofluorescein-diacetate and thiobarbituric acid substance levels and oxidized-proteins content. Their livers had lower relative levels of monounsaturated, polyunsaturated fatty acids and catalase activity, but matrix metalloproteinase-9 activity was unchanged. Consumption of a diet rich in fried oil during growth could induce liver damage due to steatosis, excessive lipid toxicity and the accumulation of reactive oxygen species. Further progression could lead to hepatic fibrosis.
Collapse
Affiliation(s)
- Elisa V Macri
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina
| | - Vanessa Touceda
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina; Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Morena Wiszniewski
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Buenos Aires, Argentina
| | - Leonardo D Cacciagiú
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina; Hospital General de Agudos Teodoro Álvarez. Laboratorio Central, Sección Bioquímica, Buenos Aires, Argentina
| | - Valeria Zago
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Laboratorio de Lípidos y Aterosclerosis, Hospital de Clínicas. INFIBIOC-UBA, Buenos Aires, Argentina
| | - Susana Puntarulo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Néstor Pellegrino
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bromatología, Buenos Aires, Argentina
| | - Fima Lifshitz
- Honorary Professor, State University of New York, Downstate Medical Center, College of Medicine, Brooklyn, Santa Barbara, CA, USA
| | - Silvia M Friedman
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina
| | - Verónica Miksztowicz
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina; Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Zhuang P, Ao Y, Liu X, Ye H, Li H, Wan X, Zhang Y, Jiao J. Circulating fatty acids and risk of severe non-alcoholic fatty liver disease in the UK biobank: a prospective cohort of 116 223 individuals. Food Funct 2024; 15:10527-10538. [PMID: 39370886 DOI: 10.1039/d4fo01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fatty acid (FA) metabolism plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). However, data on the relationship between circulating FAs and NAFLD risk are limited. This study aims to assess the associations between specific circulating FAs and severe NAFLD risk among the general population. Overall 116 223 participants without NAFLD and other liver diseases from the UK Biobank were enrolled between 2006 and 2010 and were followed up until the end of 2021. Plasma concentrations of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) were analyzed using an NMR-based biomarker profiling platform. Hazard ratios (HRs) and 95% confidence intervals (CIs) of NAFLD risk were estimated using Cox proportional-hazard models adjusted for other potential confounders. During a mean follow-up of 12.3 years, we documented 1394 cases of severe NAFLD. After multivariate adjustment, plasma SFAs and MUFAs were associated with a higher risk of severe NAFLD, whereas plasma n-3 PUFAs, n-6 PUFAs, and linoleic acid (LA) were associated with a lower risk. As compared with the lowest quartile, HRs (95% CIs) of severe NAFLD risk in the highest quartiles were 1.85 (1.45-2.36) for SFAs, 1.74 (1.23-2.44) for MUFAs, 0.79 (0.65-0.97) for n-3 PUFAs, 0.68 (0.48-0.96) for n-6 PUFAs, and 0.73 (0.54-0.99) for LA. The significant relationships were mainly mediated by serum TG for SFAs, HDL-C for MUFAs and n-6 PUFAs, and C-reactive protein for n-3 PUFAs. Plasma SFAs were associated with a more pronounced increase in the risk of severe NAFLD among participants with fewer SFA-associated alleles (P interaction = 0.032). Dietary recommendations for reducing plasma SFAs and MUFAs while increasing n-3 and n-6 PUFAs may be protective for severe NAFLD, which could be mediated by lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Hao Ye
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Haoyu Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xuzhi Wan
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Srnic N, Dearlove D, Johnson E, MacLeod C, Krupa A, McGonnell A, Frazer-Morris C, O'Rourke P, Parry S, Hodson L. Greater oxidation of dietary linoleate compared to palmitate in humans following an acute high-carbohydrate diet. Clin Nutr 2024; 43:2305-2315. [PMID: 39226718 DOI: 10.1016/j.clnu.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND We have previously demonstrated that dietary saturated fatty acids (SFA), when compared to polyunsaturated fatty acids (PUFA), are preferentially partitioned into oxidation pathways. However, it remains unclear if this preferential handling is maintained when hepatocellular metabolism is shifted toward fatty acid (FA) esterification and away from oxidation, such as when hepatic de novo lipogenesis (DNL) is upregulated. AIM To investigate whether an acute upregulation of hepatic DNL influences dietary FA partitioning into oxidation pathways. METHODS 20 healthy volunteers (11 females) underwent a fasting baseline visit followed by two study days, 2-weeks apart. Prior to each study day, participants consumed an isocaloric high-carbohydrate diet (to upregulate hepatic DNL) for 3-days. On the two study days, participants consumed an identical standardised test meal that contained either [U13C]palmitate or [U13C]linoleate, in random order, to trace the fate of dietary FA. Blood and breath samples were collected over a 6h postprandial period and 13C enrichment in breath CO2 and plasma lipid fractions were measured using gas-chromatography-combustion-isotope ratio mass spectrometry. RESULTS Compared to the baseline visit, fasting plasma triglyceride concentrations and markers of hepatic DNL, the lipogenic and stearyl-CoA desaturase indices, were significantly (p < 0.05) increased after consumption of the high-carbohydrate diet. Appearance of 13C in expired CO2 and tracer recovery were significantly (p < 0.05) higher after consumption of the meal containing [U13C]linoleate compared to [U13C]palmitate (5.1 ± 0.5% vs. 3.7 ± 0.4%), respectively. Incorporation of 13C into the plasma triglyceride and non-esterified fatty acid pool was significantly (p < 0.001) greater for [U13C]palmitate compared to [U13C]linoleate. CONCLUSION Dietary PUFA compared to SFA appear to be preferentially partitioned into oxidation pathways during an acute upregulation of hepatic DNL, thus consumption of a PUFA-enriched diet may help mitigate intrahepatic triglyceride accumulation in individuals at risk of cardiometabolic disease.
Collapse
Affiliation(s)
- Nikola Srnic
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - David Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Elspeth Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Cameron MacLeod
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Antoni Krupa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Alice McGonnell
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Charlotte Frazer-Morris
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Paige O'Rourke
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Sion Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK; Aston Medical School, Aston University, Birmingham B4 7ET, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
5
|
Ábel T, Benczúr B, Csobod ÉC. Sex differences in pathogenesis and treatment of dyslipidemia in patients with type 2 diabetes and steatotic liver disease. Front Med (Lausanne) 2024; 11:1458025. [PMID: 39376658 PMCID: PMC11456427 DOI: 10.3389/fmed.2024.1458025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Previously published studies have shown that women with type 2 diabetes have a higher risk of atherosclerotic cardiovascular disease than men with type 2 diabetes. The exact reason for this is not yet known. The association between metabolic dysfunction-associated steatotic liver disease and type 2 diabetes appears to be bidirectional, meaning that the onset of one may increase the risk of the onset and progression of the other. Dyslipidemia is common in both diseases. Our aim was therefore to investigate whether there is a sex difference in the pathogenesis and management of dyslipidemia in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction. While the majority of published studies to date have found no difference between men and women in statin treatment, some studies have shown reduced effectiveness in women compared to men. Statin treatment is under-prescribed for both type 2 diabetics and patients with dysfunction-associated steatotic liver disease. No sex differences were found for ezetimibe treatment. However, to the best of our knowledge, no such study was found for fibrate treatment. Conflicting results on the efficacy of newer cholesterol-lowering PCSK9 inhibitors have been reported in women and men. Results from two real-world studies suggest that up-titration of statin dose improves the efficacy of PCSK9 inhibitors in women. Bempedoic acid treatment has been shown to be effective and safe in patients with type 2 diabetes and more effective in lipid lowering in women compared to men, based on phase 3 results published to date. Further research is needed to clarify whether the sex difference in dyslipidemia management shown in some studies plays a role in the risk of ASCVD in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction.
Collapse
Affiliation(s)
- Tatjana Ábel
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Béla Benczúr
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- János Balassa County Hospital, Ist Department of Internal medicine (Cardiology/Nephrology), Szekszárd, Hungary
| | - Éva Csajbókné Csobod
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Manoni M, Altomare A, Nonnis S, Ferrario G, Mazzoleni S, Tretola M, Bee G, Tedeschi G, Aldini G, Pinotti L. Preliminary investigation on the impact of salty and sugary former foods on pig liver and plasma profiles using OMICS approaches. Sci Rep 2024; 14:19386. [PMID: 39169123 PMCID: PMC11339069 DOI: 10.1038/s41598-024-70310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Replacing cereals with food leftovers could reduce feed-food competition and keep nutrients and energy in the food chain. Former food products (FFPs) are industrial food leftovers no more intended for human but still suitable as alternative and sustainable feedstuffs for monogastric. In this study, omics approaches were applied to evaluate the impact of dietary FFPs on pig liver proteome and plasma peptidome. Thirty-six Swiss Large White male castrated pigs were randomly assigned to three dietary treatments [control (CTR), 30% CTR replaced with salty FFP (SA), 30% CTR replaced with sugary FFP (SU)] from the start of the growing phase (22.4 ± 1.7 kg) until slaughtering (110 ± 3 kg). The low number of differentially regulated proteins in each comparison matrix (SA/SU vs. CTR) and the lack of metabolic interaction indicated a marginal impact on hepatic lipid metabolism. The plasma peptidomics investigation showed low variability between the peptidome of the three dietary groups and identified three possible bioactive peptides in the SA group associated with anti-hypertension and vascular homeostasis regulation. To conclude, the limited modulation of liver proteome and plasma peptidome by the SA and SU diets strenghtened the idea of reusing FFPs as feed ingredients to make pig production more sustainable.
Collapse
Affiliation(s)
- Michele Manoni
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Via dell'Università 6, 26900, Lodi, Italy.
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Via dell'Università 6, 26900, Lodi, Italy
- CRC I-WE, Coordinating Research Centre: Innovation for Well-Being and Environment, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Marco Tretola
- Agroscope, Institute for Livestock Sciences, Rte de la Tioleyre 4, 1725, Posieux, Switzerland
| | - Giuseppe Bee
- Agroscope, Institute for Livestock Sciences, Rte de la Tioleyre 4, 1725, Posieux, Switzerland
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Via dell'Università 6, 26900, Lodi, Italy
- CRC I-WE, Coordinating Research Centre: Innovation for Well-Being and Environment, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Via dell'Università 6, 26900, Lodi, Italy
- CRC I-WE, Coordinating Research Centre: Innovation for Well-Being and Environment, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
8
|
Li Z, Liu R, Gao X, Hou D, Leng M, Zhang Y, Du M, Zhang S, Li C. The correlation between hepatic controlled attenuation parameter (CAP) value and insulin resistance (IR) was stronger than that between body mass index, visceral fat area and IR. Diabetol Metab Syndr 2024; 16:153. [PMID: 38982535 PMCID: PMC11232147 DOI: 10.1186/s13098-024-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Hepatic controlled attenuation parameter (CAP) is a novel marker for quantifying hepatic fat accumulation. Insulin resistance (IR) plays a major role in the pathogenesis and natural history of hepatic steatosis. This study aimed to investigate the possible relationship between CAP value and IR. METHODS This study included a total of 420 patients with overweight or obesity who came to the obesity clinic at Tianjin Union Medical Center. Vibration-controlled transient elastography examination was conducted to detect CAP and liver stiffness measurement (LSM) values. Body composition, including visceral fat area (VFA), and body fat mass (BFM), was evaluated by the direct segmental multi-frequency bioelectrical impedance analysis (BIA). The associations between CAP value, body mass index (BMI), VFA, BFM and homeostasis model assessment of insulin resistance (HOMA-IR) were analyzed. RESULTS CAP value was positively associated with HOMA-IR (r = 0.568, P < 0.001), the strength of which was much stronger than BMI, VFA, and BFM. In multivariate linear regression, CAP value and HOMA-IR showed a significant positive association (adjusted β = 0.015, 95% CI 0.007-0.022, P < 0.001). Subgroup analysis suggested no significant interaction between CAP value and HOMA-IR across age, BMI, LSM, hypertension, and sex groups (all P for interaction > 0.05). CONCLUSIONS Hepatic CAP value is more remarkably than other obesity markers associated with HOMA-IR in individuals with overweight or obesity, regardless of age, BMI, LSM, hypertension, and sex.
Collapse
Affiliation(s)
- Zhouhuiling Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xinying Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dangmin Hou
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Yanju Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyang Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shi Zhang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Chunjun Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China.
| |
Collapse
|
9
|
Feng SS, Wang SJ, Guo L, Ma PP, Ye XL, Pan ML, Hang B, Mao JH, Snijders AM, Lu YB, Ding DF. Serum bile acid and unsaturated fatty acid profiles of non-alcoholic fatty liver disease in type 2 diabetic patients. World J Diabetes 2024; 15:898-913. [PMID: 38766436 PMCID: PMC11099371 DOI: 10.4239/wjd.v15.i5.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 03/14/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND The understanding of bile acid (BA) and unsaturated fatty acid (UFA) profiles, as well as their dysregulation, remains elusive in individuals with type 2 diabetes mellitus (T2DM) coexisting with non-alcoholic fatty liver disease (NAFLD). Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM. AIM To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM. METHODS A training model was developed involving 399 participants, comprising 113 healthy controls (HCs), 134 individuals with T2DM without NAFLD, and 152 individuals with T2DM and NAFLD. External validation encompassed 172 participants. NAFLD patients were divided based on liver fibrosis scores. The analytical approach employed univariate testing, orthogonal partial least squares-discriminant analysis, logistic regression, receiver operating characteristic curve analysis, and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers. RESULTS Compared to HCs, both T2DM and NAFLD groups exhibited diminished levels of specific BAs. In UFAs, particular acids exhibited a positive correlation with NAFLD risk in T2DM, while the ω-6:ω-3 UFA ratio demonstrated a negative correlation. Levels of α-linolenic acid and γ-linolenic acid were linked to significant liver fibrosis in NAFLD. The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients. CONCLUSION This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM, proposing their potential as biomarkers in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Su-Su Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Si-Jing Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Lin Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Pan-Pan Ma
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Xiao-Long Ye
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Ming-Lin Pan
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yi-Bing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Da-Fa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| |
Collapse
|
10
|
Liang C, Zhang LW. Profiling the Gut Microbiota in Obese Children with Formula Feeding in Early Life and Selecting Strains against Obesity. Foods 2024; 13:1379. [PMID: 38731751 PMCID: PMC11083066 DOI: 10.3390/foods13091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Formula feeding, obesity and the gut microbiota are closely related. The present investigation explored the profiles of the intestinal microbiota in obese children over 5 years old with formula feeding in early life. We identified functional bacteria with anti-obesity potential through in vitro and in vivo experiments, elucidating their mechanisms. The results indicated that, in the group of children over 5 years old who were fed formula in early life, obese children exhibited distinct gut microbiota, which were characterized by diminished species diversity and reduced Bifidobacterium levels compared to normal-weight children. As a result, Lactobacillus acidophilus H-68 (H-68) was isolated from the feces of the N-FF group and recognized as a promising candidate. H-68 demonstrated the ability to stimulate cholecystokinin (CCK) secretion in STC-1 cells and produce bile salt hydrolase. In vivo, H-68 promoted CCK secretion, suppressing food intake, and regulated bile acid enterohepatic circulation, leading to increased deoxycholic acid and lithocholic acid levels in the ileum and liver. This regulation effectively inhibited the diet-induced body weight and body fat gain, along with the liver fat deposition. In conclusion, H-68 was recognized for its prospective anti-obesity impact, signifying an auspicious pathway for forthcoming interventions targeted at averting pediatric obesity in formula-fed children.
Collapse
Affiliation(s)
- Cong Liang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
11
|
Song YF, Wang LJ, Luo Z, Hogstrand C, Lai XH, Zheng FF. Moderate replacement of fish oil with palmitic acid-stimulated mitochondrial fusion promotes β-oxidation by Mfn2 interacting with Cpt1α via its GTPase-domain. J Nutr Biochem 2024; 126:109559. [PMID: 38158094 DOI: 10.1016/j.jnutbio.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The mitochondrial matrix serves as the principal locale for the process of fatty acids (FAs) β-oxidation. Preserving the integrity and homeostasis of mitochondria, which is accomplished through ongoing fusion and fission events, is of paramount importance for the effective execution of FAs β-oxidation. There has been no investigation to date into whether and how mitochondrial fusion directly enhances FAs β-oxidation. The underlying mechanism of a balanced FAs ratio favoring hepatic lipid homeostasis remains largely unclear. To address such gaps, the present study was conducted to investigate the mechanism through which a balanced dietary FAs ratio enhances hepatic FAs β-oxidation. The investigation specifically focused on the involvement of Mfn2-mediated mitochondrial fusion in the regulation of Cpt1α in this process. In the present study, the yellow catfish (Pelteobagrus fulvidraco), recognized as a model organism for lipid metabolism, were subjected to eight weeks of in vivo feeding with six distinct diets featuring varying FAs ratios. Additionally, in vitro experiments were conducted to inhibit Mfn2-mediated mitochondrial fusion in isolated hepatocytes, achieved through the transfection of hepatocytes with si-mfn2. Further, deletion mutants for both Mfn2 and Cpt1α were constructed to elucidate the critical regions responsible for the interactions between these two proteins within the system. The key findings were: (1) Substituting palmitic acid (PA) for fish oil (FO) proved to be enhanced in reducing hepatic lipid accumulation. This beneficial effect was primarily attributed to the activation of mitochondrial FAs β-oxidation; (2) The balanced replacement of PA stimulated Mfn2-mediated mitochondrial fusion by diminishing Mfn2 ubiquitination, thereby enhancing its protein retention within the mitochondria; (3) Mfn2-mediated mitochondrial fusion promoted FAs β-oxidation through direct interaction between Mfn2 and Cpt1α via its GTPase-domains, which is essential for the maintenance of Cpt1 activity. Notably, the present research results unveil a previously undisclosed mechanism wherein Mfn2-mediated mitochondrial fusion promotes FAs β-oxidation by directly augmenting the capacity for FA transport into mitochondria (MT), in addition to expanding the mitochondrial matrix. This underscores the pivotal role of mitochondrial fusion in preserving hepatic lipid homeostasis. The present results further confirm that these mechanisms are evolutionarily conserved, extending their relevance from fish to mammals.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.
| | - Ling-Jiao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Fei-Fei Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Djuricic I, Calder PC. Omega-3 ( n-3) Fatty Acid-Statin Interaction: Evidence for a Novel Therapeutic Strategy for Atherosclerotic Cardiovascular Disease. Nutrients 2024; 16:962. [PMID: 38612996 PMCID: PMC11013773 DOI: 10.3390/nu16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes, such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3) fatty acid-statin interactions in the prevention and treatment of ASCVD and to provide evidence to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy, primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which overlap, including improving endothelial function, modulation of inflammation, and stabilizing atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and the possible statin-n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Song W, Wen R, Liu T, Zhou L, Wang G, Dai X, Shi L. Oat-based postbiotics ameliorate high-sucrose induced liver injury and colitis susceptibility by modulating fatty acids metabolism and gut microbiota. J Nutr Biochem 2024; 125:109553. [PMID: 38147914 DOI: 10.1016/j.jnutbio.2023.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
High-sucrose (HS) consumption leads to metabolic disorders and increases susceptibility to colitis. Postbiotics hold great potentials in combating metabolic diseases and offer advantages in safety and processability, compared with living probiotics. We developed innovative oat-based postbiotics and extensively explored how they could benefit in rats with long-term high-sucrose consumption. The postbiotics fermented with Lactiplantibacillus plantarum (OF-1) and OF-5, the one fermented with the optimal selection of five probiotics (i.e., L. plantarum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lactobacillus acidophilus, and Bifidobacterium lactis) alleviated HS induced liver injury, impaired fatty acid metabolism and inflammation through activating AMPK/SREBP-1c pathways. Moreover, oat-based postbiotics restored detrimental effects of HS on fatty acid profiles in liver, as evidenced by the increases in polyunsaturated fatty acids and decreases in saturated fatty acids, with OF-5 showing most pronounced effects. Furthermore, oat-based postbiotics prevented HS exacerbated susceptibility to dextran sodium sulfate caused colitis and reconstructed epithelial tight junction proteins in colons. Oat-based postbiotics, in particular OF-5 notably remodeled gut microbiota composition, e.g., enriching the relative abundances of Akkermansia, Bifidobacterium, Alloprevotella and Prevotella, which may play an important role in the liver-colon axis responsible for improvements of liver functions and reduction of colitis susceptibility. The heat-inactivated probiotics protected against HS-induced liver and colon damage, but such effects were less pronounced compared with oat-based postbiotics. Our findings emphasize the great value of oat-based postbiotics as nutritional therapeutics to combat unhealthy diet induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruixue Wen
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, Guangdong, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
Liang C, Niu HY, Lyu LZ, Wu YF, Zhang LW. Profiles of Intestinal Flora in Breastfed Obese Children and Selecting Functional Strains Against Obesity. Mol Nutr Food Res 2024; 68:e2300735. [PMID: 38227364 DOI: 10.1002/mnfr.202300735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Indexed: 01/17/2024]
Abstract
SCOPE Breast milk has the potential to prevent childhood obesity by providing probiotics, but there are still instances of obesity in breastfed children. METHODS AND RESULTS This study investigates the difference in intestinal flora structure between breastfed children with obesity (OB-BF) and normal-weight breastfed children (N-BF). Building upon this foundation, it employs both cell and mouse models to identify an antiobesity strain within the fecal matter of N-BF children and explore its underlying mechanisms. The results reveal a reduction in lactobacillus levels within the intestinal flora of OB-BF children compared to N-BF children. Consequently, Lactobacillus plantarum H-72 (H-72) is identified as a promising candidate due to its capacity to stimulate glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine cells (ECCs). In vivo, H-72 effectively increases serum GLP-1 concentration, reduces food intake, regulates the expression of genes related to energy metabolism (SCD-1, FAS, UCP-1, and UCP-3), and regulates gut microbiota structure in mice. Moreover, the lipoteichoic acid of H-72 activates toll-like receptor 4 to enhanced GLP-1 secretion in STC-1 cells. CONCLUSIONS L. plantarum H-72 is screened out for its potential antiobesity effect, which presents a potential and promising avenue for future interventions aimed at preventing pediatric obesity in breastfed children.
Collapse
Affiliation(s)
- Cong Liang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
15
|
Schoeler M, Ellero-Simatos S, Birkner T, Mayneris-Perxachs J, Olsson L, Brolin H, Loeber U, Kraft JD, Polizzi A, Martí-Navas M, Puig J, Moschetta A, Montagner A, Gourdy P, Heymes C, Guillou H, Tremaroli V, Fernández-Real JM, Forslund SK, Burcelin R, Caesar R. The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis. Nat Commun 2023; 14:5329. [PMID: 37658064 PMCID: PMC10474162 DOI: 10.1038/s41467-023-41074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.
Collapse
Affiliation(s)
- Marc Schoeler
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Till Birkner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lisa Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Harald Brolin
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Ulrike Loeber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Jamie D Kraft
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Marian Martí-Navas
- Department of Radiology, Biomedical Research Institute Imaging Research Unit, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital of Girona, Avinguda de França, s/n, 17007, Girona, Catalonia, Spain
| | - Josep Puig
- Department of Radiology, Biomedical Research Institute Imaging Research Unit, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital of Girona, Avinguda de França, s/n, 17007, Girona, Catalonia, Spain
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
- Medicina e Chirurgia d'Accettazione E d'Urgenza, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70124, Bari, Italy
- Medicina Sub-Intensiva, Presidio Maxi-Emergenze Fiera del Levante, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70124, Bari, Italy
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
- Endocrinology-Diabetology-Nutrition Department, Toulouse University Hospital, Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Sofia K Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Remy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
| |
Collapse
|
16
|
Kaur J, Singh DP, Kumar V, Kaur S, Bhunia RK, Kondepudi KK, Kuhad A, Bishnoi M. Transient Receptor Potential (TRP) based polypharmacological combination stimulates energy expending phenotype to reverse HFD-induced obesity in mice. Life Sci 2023; 324:121704. [PMID: 37075945 DOI: 10.1016/j.lfs.2023.121704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND & AIM Obesity is a worldwide epidemic leading to decreased quality of life, higher medical expenses and significant morbidity. Enhancing energy expenditure and substrate utilization in adipose tissues through dietary constituents and polypharmacological approaches is gaining importance for the prevention and therapeutics of obesity. An important factor in this regard is Transient Receptor Potential (TRP) channel modulation and resultant activation of "brite" phenotype. Various dietary TRP channel agonists like capsaicin (TRPV1), cinnamaldehyde (TRPA1), and menthol (TRPM8) have shown anti-obesity effects, individually and in combination. We aimed to determine the therapeutic potential of such combination of sub-effective doses of these agents against diet-induced obesity, and explore the involved cellular processes. KEY FINDINGS The combination of sub-effective doses of capsaicin, cinnamaldehyde and menthol induced "brite" phenotype in differentiating 3T3-L1 cells and subcutaneous white adipose tissue of HFD-fed obese mice. The intervention prevented adipose tissue hypertrophy and weight gain, enhanced the thermogenic potential, mitochondrial biogenesis and overall activation of brown adipose tissue. These changes observed in vitro as well as in vivo, were linked to increased phosphorylation of kinases, AMPK and ERK. In the liver, the combination treatment enhanced insulin sensitivity, improved gluconeogenic potential and lipolysis, prevented fatty acid accumulation and enhanced glucose utilization. SIGNIFICANCE We report on the discovery of therapeutic potential of TRP-based dietary triagonist combination against HFD-induced abnormalities in metabolic tissues. Our findings indicate that a common central mechanism may affect multiple peripheral tissues. This study opens up avenues of development of therapeutic functional foods for obesity.
Collapse
Affiliation(s)
- Jasleen Kaur
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Dhirendra Pratap Singh
- Neurotoxicology and Immunotoxicology Laboratory, Division of Biological Sciences, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat 380016, India
| | - Vijay Kumar
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Simranjit Kaur
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Rupam Kumar Bhunia
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW De novo lipogenesis (DNL) is a metabolic process occurring mainly within the liver, in humans. Insulin is a primary signal for promoting DNL; thus, nutritional state is a key determinant for upregulation of the pathway. However, the effects of dietary macronutrient composition on hepatic DNL remain unclear. Nor is it clear if a nutrition-induced increase in DNL results in accumulation of intra-hepatic triglyceride (IHTG); a mechanism often proposed for pathological IHTG. Here, we review the latest evidence surrounding the nutritional regulation of hepatic DNL. RECENT FINDINGS The role of carbohydrate intake on hepatic DNL regulation has been well studied, with only limited data on the effects of fats and proteins. Overall, increasing carbohydrate intake typically results in an upregulation of DNL, with fructose being more lipogenic than glucose. For fat, it appears that an increased intake of n-3 polyunsaturated fatty acids downregulates DNL, whilst, in contrast, an increased dietary protein intake may upregulate DNL. SUMMARY Although DNL is upregulated with high-carbohydrate or mixed-macronutrient meal consumption, the effects of fat and protein remain unclear. Additionally, the effects of different phenotypes (including sex, age, ethnicity, and menopause status) in combination with different diets (enriched in different macronutrients) on hepatic DNL requires elucidation.
Collapse
Affiliation(s)
- Eloise Cross
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford
| | - David J Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
18
|
Tian A, Sun Z, Zhang M, Li J, Pan X, Chen P. Associations between dietary fatty acid patterns and non-alcoholic fatty liver disease in typical dietary population: A UK biobank study. Front Nutr 2023; 10:1117626. [PMID: 36824175 PMCID: PMC9942598 DOI: 10.3389/fnut.2023.1117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Background and Aims Dietary fatty acid composition is associated with non-alcoholic fatty liver disease (NAFLD). Few evidence had identified a clear role of dietary fatty acid composition of typical diet in NAFLD. We aimed to investigate the relationship between dietary patterns and NAFLD in populations with typical diets and to explore the effect of fatty acid composition in dietary patterns on NAFLD. Methods Principal component analysis was used to identify 4 dietary patterns in UK Biobank participants. Logistic regression was used to estimate the association between dietary patterns and NAFLD. Mediation analysis was performed to evaluate the extent to which the relationship between dietary patterns and NAFLD was explained by dietary fatty acid combinations, as surrogated by serum fatty acids measured by nuclear magnetic resonance. Results A dietary fatty acid pattern (DFP1) characterized by "PUFA enriched vegetarian" was negatively associated with NAFLD risk. Serum fatty acids were significantly associated with DFP1 and NAFLD. Mediation analysis showed SFA (27.8%, p < 0.001), PUFA (25.1%, p < 0.001), ω-6 PUFA (14.3%, p < 0.001), LA (15.6%, p < 0.001) and DHA (10%, p < 0.001) had a significant indirect effect on the association between DFP1 and NAFLD. A dietary pattern characterized by "PUFA enriched carnivore" (DFP2) was not associated with NAFLD risk. Conclusion A "PUFA enriched vegetarian" dietary pattern with increased LA and DHA, may be beneficial for the treatment or prevention of NAFLD, while a "PUFA enriched carnivore" dietary pattern may not be harmful to NAFLD.
Collapse
Affiliation(s)
- Aowen Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Miaoran Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiuling Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xingchen Pan
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Peng Chen
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Peng Chen, ✉
| |
Collapse
|
19
|
Nagase Y, Satoh T, Shigetome K, Tokumaru N, Matsumoto E, Yamada KD, Imafuku T, Watanabe H, Maruyama T, Ogata Y, Yoshida M, Saruwatari J, Oniki K. Serum Fatty Acid Composition Balance by Fuzzy C-Means Method in Individuals with or without Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients 2023; 15:nu15040809. [PMID: 36839168 PMCID: PMC9960614 DOI: 10.3390/nu15040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Circulating fatty acid composition is assumed to play an important role in metabolic dysfunction-associated fatty liver disease (MAFLD) pathogenesis. This study aimed to investigate the association between the overall balance of serum fatty acid composition and MAFLD prevalence. This cross-sectional study involved 400 Japanese individuals recruited from a health-screening program. We measured fatty acids in serum lipids using gas chromatography-mass spectrometry. The serum fatty acid composition balance was evaluated using fuzzy c-means clustering, which assigns individual data points to multiple clusters and calculates the percentage of data points belonging to multiple clusters, and serum fatty acid mass%. The participants were classified into four characteristic subclasses (i.e., Clusters 1, 2, 3, and 4), and the specific serum fatty acid composition balance (i.e., Cluster 4) was associated with a higher MAFLD prevalence. We suggest that the fuzzy c-means method can be used to determine the circulating fatty acid composition balance and highlight the importance of focusing on this balance when examining the relationship between MAFLD and serum fatty acids.
Collapse
Affiliation(s)
- Yuka Nagase
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takao Satoh
- Kumamoto Industrial Research Institute, Kumamoto 862-0901, Japan
| | - Keiichi Shigetome
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Naoto Tokumaru
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Erika Matsumoto
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kazunori D. Yamada
- Unprecedented-Scale Data Analytics Center, Tohoku University, Sendai 980-8578, Japan
| | - Tadashi Imafuku
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yasuhiro Ogata
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto 861-8520, Japan
| | - Minoru Yoshida
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto 861-8520, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (J.S.); (K.O.); Tel.: +81-96-371-4545 (J.S.); +81-96-371-4512 (K.O.)
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (J.S.); (K.O.); Tel.: +81-96-371-4545 (J.S.); +81-96-371-4512 (K.O.)
| |
Collapse
|
20
|
Trouwborst I, Gijbels A, Jardon KM, Siebelink E, Hul GB, Wanders L, Erdos B, Péter S, Singh-Povel CM, de Vogel-van den Bosch J, Adriaens ME, Arts ICW, Thijssen DHJ, Feskens EJM, Goossens GH, Afman LA, Blaak EE. Cardiometabolic health improvements upon dietary intervention are driven by tissue-specific insulin resistance phenotype: A precision nutrition trial. Cell Metab 2023; 35:71-83.e5. [PMID: 36599304 DOI: 10.1016/j.cmet.2022.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 11/13/2022] [Indexed: 01/05/2023]
Abstract
Precision nutrition based on metabolic phenotype may increase the effectiveness of interventions. In this proof-of-concept study, we investigated the effect of modulating dietary macronutrient composition according to muscle insulin-resistant (MIR) or liver insulin-resistant (LIR) phenotypes on cardiometabolic health. Women and men with MIR or LIR (n = 242, body mass index [BMI] 25-40 kg/m2, 40-75 years) were randomized to phenotype diet (PhenoDiet) group A or B and followed a 12-week high-monounsaturated fatty acid (HMUFA) diet or low-fat, high-protein, and high-fiber diet (LFHP) (PhenoDiet group A, MIR/HMUFA and LIR/LFHP; PhenoDiet group B, MIR/LFHP and LIR/HMUFA). PhenoDiet group B showed no significant improvements in the primary outcome disposition index, but greater improvements in insulin sensitivity, glucose homeostasis, serum triacylglycerol, and C-reactive protein compared with PhenoDiet group A were observed. We demonstrate that modulating macronutrient composition within the dietary guidelines based on tissue-specific insulin resistance (IR) phenotype enhances cardiometabolic health improvements. Clinicaltrials.gov registration: NCT03708419, CCMO registration NL63768.068.17.
Collapse
Affiliation(s)
- Inez Trouwborst
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands
| | - Anouk Gijbels
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Kelly M Jardon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands
| | - Els Siebelink
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gabby B Hul
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands
| | - Lisa Wanders
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Balázs Erdos
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | | | | | | | - Michiel E Adriaens
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Ilja C W Arts
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Dick H J Thijssen
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lydia A Afman
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands.
| |
Collapse
|
21
|
We are what we eat: The role of lipids in metabolic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516463 DOI: 10.1016/bs.afnr.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids play a fundamental role, both structurally and functionally, for the correct functioning of the organism. In the last two decades, they have evolved from molecules involved only in energy storage to compounds that play an important role as components of cell membranes and signaling molecules that regulate cell homeostasis. For this reason, their interest as compounds involved in human health has been gaining weight. Indeed, lipids derived from dietary sources and endogenous biosynthesis are relevant for the pathophysiology of numerous diseases. There exist pathological conditions that are characterized by alterations in lipid metabolism. This is particularly true for metabolic diseases, such as liver steatosis, type 2 diabetes, cancer and cardiovascular diseases. The main issue to be considered is lipid homeostasis. A precise control of fat homeostasis is required for a correct regulation of metabolic pathways and safe and efficient energy storage in adipocytes. When this fails, a deregulation occurs in the maintenance of systemic metabolism. This happens because an increased concentrations of lipids impair cellular homeostasis and disrupt tissue function, giving rise to lipotoxicity. Fat accumulation results in many alterations in the physiology of the affected organs, mainly in metabolic tissues. These alterations include the activation of oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, increased inflammation, accumulation of bioactive molecules and modification of gene expression. In this chapter, we review the main metabolic diseases in which alterations in lipid homeostasis are involved and discuss their pathogenic mechanisms.
Collapse
|
22
|
Saponaro C, Sabatini S, Gaggini M, Carli F, Rosso C, Positano V, Armandi A, Caviglia GP, Faletti R, Bugianesi E, Gastaldelli A. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int 2022; 42:2418-2427. [PMID: 35900229 DOI: 10.1111/liv.15377] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disorder, but the factors that determine this heterogeneity remain poorly understood. Adipose tissue dysfunction is causally linked to NAFLD since it causes intrahepatic triglyceride (IHTG) accumulation through increased hepatic lipid flow, due to insulin resistance and pro-inflammatory adipokines release. While many studies in NAFLD have looked at total adiposity (i.e. mainly subcutaneous fat, SC-AT), it is still unclear the possible impact of visceral fat (VF). Thus, we investigated how VF versus SC-AT was related to NAFLD severity in lean, overweight and obese individuals versus lean controls. METHODS Thirty-two non-diabetic NAFLD with liver biopsy (BMI 21.4-34.7 kg/m2 ) and eight lean individuals (BMI 19.6-22.8 kg/m2 ) were characterized for fat distribution (VF, SC-AT and IHTG by magnetic resonance imaging), lipolysis and insulin resistance by tracer infusion, free fatty acids (FFAs) and triglyceride (TAG) concentration and composition (by mass spectrometry). RESULTS Intrahepatic triglyceride was positively associated with lipolysis, adipose tissue insulin resistance (Adipo-IR), TAG concentrations, and increased saturated/unsaturated FFA ratio. Compared to controls VF was higher in NAFLD (including lean individuals), increased with fibrosis stage and associated with insulin resistance in liver, muscle and adipose tissue, increased lipolysis and decreased adiponectin levels. Collectively, our results suggest that VF accumulation, given its location close to the liver, is one of the major risk factors for NAFLD. CONCLUSIONS These findings propose VF as an early indicator of NAFLD progression independently of BMI, which may allow for evidence-based prevention and intervention strategies.
Collapse
Affiliation(s)
- Chiara Saponaro
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy.,University of Lille, CHU Lille, Inserm U1190, EGID, Lille, France
| | - Silvia Sabatini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Angelo Armandi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gian Paolo Caviglia
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccardo Faletti
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
23
|
Luo S, Zhou L, Jiang X, Xia Y, Huang L, Ling R, Tang S, Zou Z, Chen C, Qiu J. Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice. Front Pharmacol 2022; 13:1015005. [PMID: 36313282 PMCID: PMC9616603 DOI: 10.3389/fphar.2022.1015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Asparagus cochinchinensis is a valuable traditional Chinese medicine that has anti-inflammatory ability and effectively regulates the dysbiosis within the body. Obesity is usually characterized by chronic low-grade inflammation with aberrant gut microbiota. However, the role of Asparagus cochinchinensis against obesity remains unknown. Therefore, a high-fat diet (HFD)-induced obese mouse model with or without aqueous extract from Asparagus cochinchinensis root (ACE) treatment was established herein to determine whether ACE alleviated obesity and its involved mechanisms. Our results showed that ACE administration significantly decreased the weight gain and relieved dyslipidemia induced by HFD Treatment of ACE also improved glucose tolerance and insulin resistance in obese animal model, and remarkably decreased inflammation and lipogenesis in the liver and adipose. Moreover, administration of ACE significantly reshaped the gut microbiota of obese mice. These findings together suggest that ACE has beneficial effect against HFD-induced obesity and will provide valuable insights for the therapeutic potential of ACE against obesity and may aid in strategy-making for weight loss.
Collapse
Affiliation(s)
- Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yinyin Xia
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lishuang Huang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Run Ling
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhen Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Mäkelä TNK, Tuomainen TP, Hantunen S, Virtanen JK. Associations of serum n-3 and n-6 polyunsaturated fatty acids with prevalence and incidence of nonalcoholic fatty liver disease. Am J Clin Nutr 2022; 116:759-770. [PMID: 35648467 PMCID: PMC9437980 DOI: 10.1093/ajcn/nqac150] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver diseases worldwide, and lifestyle and diet are significant factors in its development. Recent studies have suggested that dietary fat quality is associated with the development of NAFLD. OBJECTIVES Our purpose was to investigate the cross-sectional and longitudinal associations of serum n-3 (ω-3) and n-6 (ω-6) PUFAs with NAFLD among middle-aged and older men and women from eastern Finland. We also investigated the associations of estimated Δ5-desaturase and Δ6-desaturase activities, enzymes involved in PUFA metabolism, with NAFLD. METHODS After exclusions, the cross-sectional analyses included 1533 men examined in 1984-1989 and 674 men and 870 women examined in 1998-2001 in the Kuopio Ischaemic Heart Disease Risk Factor Study. The longitudinal analyses included 520 men examined in 1991-1993 and 301 men and 466 women examined in 2005-2008. Fatty liver index (FLI) was used as a surrogate for NAFLD. Hepatic steatosis was defined as FLI >60. ANCOVA and logistic regression were used for analyses. RESULTS In the longitudinal analyses, participants with higher serum concentrations of total n-6 PUFA and linoleic acid, the major n-6 PUFA, had markedly lower FLI and lower odds for hepatic steatosis (e.g., odds ratios for incident hepatic steatosis in the highest compared with lowest quartiles were ≤0.41), whereas serum γ-linolenic acid concentration was associated with a higher FLI and higher odds for hepatic steatosis. The associations with the other PUFAs were generally weaker and nonsignificant. In the cross-sectional analyses, also the long-chain n-3 PUFAs had inverse associations. In most analyses, high estimated Δ5-desaturase activity was associated with lower risk and high estimated Δ6-desaturase activity with higher risk for NAFLD. CONCLUSIONS In middle-aged and older Finnish adults, higher serum concentrations of total n-6 PUFAs and linoleic acid were associated with lower odds for future NAFLD.
Collapse
Affiliation(s)
- Tiia N K Mäkelä
- Institute of Clinical Medicine, University of Eastern Finland, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Sari Hantunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Zhu T, Lu XT, Liu ZY, Zhu HL. Dietary linoleic acid and the ratio of unsaturated to saturated fatty acids are inversely associated with significant liver fibrosis risk: A nationwide survey. Front Nutr 2022; 9:938645. [PMID: 35958259 PMCID: PMC9360805 DOI: 10.3389/fnut.2022.938645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Since no pharmaceuticals have been proven to effectively reduce liver fibrosis, dietary fatty acids may be beneficial as one of the non-pharmaceutical interventions due to their important roles in liver metabolism. In this cross-sectional study, we analyzed the data from the 2017–2018 cycle of National Health and Nutrition Examination Survey to examine the associations between the proportion and composition of dietary fatty acid intakes with significant liver fibrosis among US population. The dietary fatty acid consumptions were calculated based on two 24-h dietary recalls. Significant liver fibrosis was diagnosed based on liver stiffness measurement value derived from the vibration controlled transient elastography. Multivariate logistic regression analysis and sensitivity analysis were performed to assess the association between dietary fatty acid consumption and significant liver fibrosis risk. Finally, restricted cubic spline analysis was carried out to explore the dose–response between polyunsaturated fatty acids (PUFA) or linoleic acid intakes and the risk of significant liver fibrosis. The results showed that the multivariate adjusted odds ratios (95% confidence intervals) of significant liver fibrosis were 0.34 (0.14–0.84), 0.68 (0.50–0.91), and 0.64 (0.47–0.87) for the highest level of unsaturated to saturated fatty acid ratio, dietary PUFA, and linoleic acid intakes compared to the lowest reference, respectively. The sensitivity analysis and restricted cubic spline analysis produced similar results, reinforcing the inverse association of unsaturated to saturated fatty acid ratio, PUFA, and linoleic acid consumptions with significant liver fibrosis risk. However, other dietary fatty acids did not show the statistically significant association with significant liver fibrosis. In conclusion, dietary linoleic acid may play a key role in the inverse association between the unsaturated to saturated fatty acid ratio and the risk of significant liver fibrosis. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Department of Food Science and Engineering, School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya, China
| | - Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Early biochemical observations point to nutritional strategies to manage non-alcoholic fatty liver disease. Clin Sci (Lond) 2022; 136:1019-1023. [PMID: 35775425 DOI: 10.1042/cs20220380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease globally. The first stage of NAFLD is steatosis, the accumulation of triacylglycerols within hepatocytes. Inflammation and oxidative stress both contribute to progression to more severe disease. In 2004 Clinical Science published two papers reporting on fatty acids and oxidative stress markers in the livers of patients with NAFLD; both these papers are highly cited. One paper reported an altered pattern of fatty acids within the livers of patients with NAFLD; there was a lower contribution of polyunsaturated fatty acids (PUFAs) including both n - 6 and n - 3 PUFAs and an altered balance between n - 6 and n - 3 PUFAs in favour of the former. Ratios of precursor PUFAs to their long chain more unsaturated derivatives were altered in NAFLD and were interpreted to indicate a reduced activity of the pathway of synthesis of long chain highly unsaturated PUFAs. The authors interpreted their findings to indicate that a low hepatic content of n - 3 PUFAs has a causal role in NAFLD. The second paper reported lower hepatic antioxidant defences and increased markers of oxidative stress in NAFLD, consistent with a role for oxidative stress in the disease. Many studies have now explored the effect of supplemental n - 3 PUFAs or antioxidants, including vitamin E, in patients with NAFLD with some benefits being reported. There remains much interest in n - 3 PUFAs and antioxidants as preventive and therapeutic strategies in NAFLD and therefore it seems likely that citation of the two papers from 2004 will be sustained.
Collapse
|
27
|
Calder PC. Omega-3 fatty acids and metabolic partitioning of fatty acids within the liver in the context of nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2022; 25:248-255. [PMID: 35762160 DOI: 10.1097/mco.0000000000000845] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent form of liver disease globally, affecting about 25% of the world's adult population. It is more common in those living with obesity, where it may affect as many as 80% of individuals. The aim of this article is to describe recent human studies evaluating the influence of omega-3 fatty acids on de novo lipogenesis (DNL) and hepatic fatty acid partitioning between incorporation into triacylglycerols (TAGs) and β-oxidation, to discuss the relevance of these effects in the context of NAFLD, and to provide an overview of the mechanisms that might be involved. RECENT FINDINGS The omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) decrease hepatic DNL and partition fatty acids away from TAG synthesis and toward β-oxidation. EPA and DHA affect multiple hepatic transcription factors resulting in down-regulation of the DNL pathway and upregulation of β-oxidation. The net result is decreased accumulation of hepatic TAG and lowering of circulating TAG concentrations. Human trials demonstrate that EPA and DHA can decrease liver fat in patients with NAFLD. SUMMARY Increased intake of EPA and DHA may reduce the likelihood of hepatic TAG accumulation and could be used to reduce liver fat in patients with NAFLD.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
28
|
NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules 2022; 12:biom12060824. [PMID: 35740949 PMCID: PMC9221336 DOI: 10.3390/biom12060824] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is one of the most common causes of liver diseases worldwide. NAFLD is growing in parallel with the obesity epidemic. No pharmacological treatment is available to treat NAFLD, specifically. The reason might be that NAFLD is a multi-factorial disease with an incomplete understanding of the mechanisms involved, an absence of accurate and inexpensive imaging tools, and lack of adequate non-invasive biomarkers. NAFLD consists of the accumulation of excess lipids in the liver, causing lipotoxicity that might progress to metabolic-associated steatohepatitis (NASH), liver fibrosis, and hepatocellular carcinoma. The mechanisms for the pathogenesis of NAFLD, current interventions in the management of the disease, and the role of sirtuins as potential targets for treatment are discussed here. In addition, the current diagnostic tools, and the role of non-coding RNAs as emerging diagnostic biomarkers are summarized. The availability of non-invasive biomarkers, and accurate and inexpensive non-invasive diagnosis tools are crucial in the detection of the early signs in the progression of NAFLD. This will expedite clinical trials and the validation of the emerging therapeutic treatments.
Collapse
|
29
|
Hu J, Zheng P, Qiu J, Chen Q, Zeng S, Zhang Y, Lin S, Zheng B. High-Amylose Corn Starch Regulated Gut Microbiota and Serum Bile Acids in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms23115905. [PMID: 35682591 PMCID: PMC9180756 DOI: 10.3390/ijms23115905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary High-amylose corn starch, as a kind of resistant starch, could profoundly regulate the gut microbiota and exert anti-obesity properties. Since the gut microbiota was found to improve metabolic health by altering circulating bile acids, therefore, here we investigated the association between the gut microbiota and serum bile acids in high fat diet induced obese mice fed with high-amylose corn starch. We found high-amylose corn starch could modulate the gut microbiota composition and partially restore the alternations in circulating bile acid profiles in obese mice. These influences on gut microbiota and circulating bile acids could be the underlying mechanisms of anti-obesity activity of high-amylose corn starch. Abstract High-amylose corn starch is well known for its anti-obesity activity, which is mainly based on the regulatory effects on gut microbiota. Recently, the gut microbiota has been reported to improve metabolic health by altering circulating bile acids. Therefore, in this study, the influence of high-amylose corn starch (HACS) on intestinal microbiota composition and serum bile acids was explored in mice fed with a high fat diet (HFD). The results demonstrated HACS treatment reduced HFD-induced body weight gain, hepatic lipid accumulation, and adipocyte hypertrophy as well as improved blood lipid profiles. Moreover, HACS also greatly impacted the gut microbiota with increased Firmicutes and decreased Bacteroidetes relative abundance being observed. Furthermore, compared to ND-fed mice, the mice with HFD feeding exhibited more obvious changes in serum bile acids profiles than the HFD-fed mice with the HACS intervention, showing HACS might restore HFD-induced alterations to bile acid composition in blood. In summary, our results suggested that the underlying mechanisms of anti-obesity activity of HACS may involve its regulatory effects on gut microbiota and circulating bile acids.
Collapse
Affiliation(s)
- Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Peiying Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Jinhui Qiu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qingyan Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoxiao Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| |
Collapse
|
30
|
Reduction of De Novo Lipogenesis Mediates Beneficial Effects of Isoenergetic Diets on Fatty Liver: Mechanistic Insights from the MEDEA Randomized Clinical Trial. Nutrients 2022; 14:nu14102178. [PMID: 35631319 PMCID: PMC9143579 DOI: 10.3390/nu14102178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Non-alcoholic liver steatosis (NAS) results from an imbalance between hepatic lipid storage, disposal, and partitioning. A multifactorial diet high in fiber, monounsaturated fatty acids (MUFAs), n-6 and n-3 polyunsaturated fatty acids (PUFAs), polyphenols, and vitamins D, E, and C reduces NAS in people with type 2 diabetes (T2D) by 40% compared to a MUFA-rich diet. We evaluated whether dietary effects on NAS are mediated by changes in hepatic de novo lipogenesis (DNL), stearoyl-CoA desaturase (SCD1) activity, and/or β-oxidation. METHODS According to a randomized parallel group study design, 37 individuals with T2D completed an 8-week isocaloric intervention with a MUFA diet (n = 20) or multifactorial diet (n = 17). Before and after the intervention, liver fat content was evaluated by proton magnetic resonance spectroscopy, serum triglyceride fatty acid concentrations measured by gas chromatography, plasma β-hydroxybutyrate by enzymatic method, and DNL and SCD-1 activity assessed by calculating the palmitic acid/linoleic acid (C16:0/C18:2 n6) and palmitoleic acid/palmitic acid (C16:1/C16:0) ratios, respectively. RESULTS Compared to baseline, mean ± SD DNL significantly decreased after the multifactorial diet (2.2 ± 0.8 vs. 1.5 ± 0.5, p = 0.0001) but did not change after the MUFA diet (1.9 ± 1.1 vs. 1.9 ± 0.9, p = 0.949), with a significant difference between the two interventions (p = 0.004). The mean SCD-1 activity also decreased after the multifactorial diet (0.13 ± 0.05 vs. 0.10 ± 0.03; p = 0.001), but with no significant difference between interventions (p = 0.205). Fasting plasma β-hydroxybutyrate concentrations did not change significantly after the MUFA or multifactorial diet. Changes in the DNL index significantly and positively correlated with changes in liver fat (r = 0.426; p = 0.009). CONCLUSIONS A diet rich in multiple beneficial dietary components (fiber, polyphenols, MUFAs, PUFAs, and other antioxidants) compared to a diet rich only in MUFAs further reduces liver fat accumulation through the inhibition of DNL. Registered under ClinicalTrials.gov no. NCT03380416.
Collapse
|
31
|
Alzahrani NS, Alshammari GM, El-Ansary A, Yagoub AEA, Amina M, Saleh A, Yahya MA. Anti-Hyperlipidemia, Hypoglycemic, and Hepatoprotective Impacts of Pearl Millet ( Pennisetum glaucum L.) Grains and Their Ethanol Extract on Rats Fed a High-Fat Diet. Nutrients 2022; 14:nu14091791. [PMID: 35565759 PMCID: PMC9105973 DOI: 10.3390/nu14091791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, high fat diet (HFD), HFD + MGE (25 mg/Kg), HFD + MPGethaolE (50 mg/Kg), HFD + MPGethaolE (100 mg/Kg), HFD + MPG (10%), HFD + MPG (20%), and HFD + MPG (30%). The final body weight, visceral, epididymal fat pads, and the liver weight were significantly decreased, in a dose-dependent manner, in HFD fed rats that were co-administered either the MPG powder or MPGethaolE. In the same line, serum levels of triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein-cholesterol (LDL-c), as well as fasting glucose, insulin, HOMA-IR, and serum levels of lipopolysaccharides (LPS), interleukine-6 (IL-6), interleukine-10 (IL-10), C-reactive protein (CRP), tumor necrosis factor (TNF-α), and adiponectin were progressively decreased while serum levels of high-density lipoproteins (HDL-c) were significantly increased when increasing the doses of both treatments. In conclusion, both the raw powder and ethanolic extract of MP have a comparative dose-dependent anti-obesity, hypoglycemic, hypolipidemic, anti-inflammatory, and anti-steatotic in HFD-fed rats.
Collapse
Affiliation(s)
- Nadiah S. Alzahrani
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
- Correspondence:
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Abu ElGasim A. Yagoub
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| |
Collapse
|
32
|
Gan M, Chen X, Chen Z, Chen L, Zhang S, Zhao Y, Niu L, Li X, Shen L, Zhu L. Genistein Alleviates High-Fat Diet-Induced Obesity by Inhibiting the Process of Gluconeogenesis in Mice. Nutrients 2022; 14:nu14081551. [PMID: 35458112 PMCID: PMC9032493 DOI: 10.3390/nu14081551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Genistein is an isoflavone phytoestrogen that has been shown to improve obesity; however, the underlying molecular mechanisms involved therein have not been clearly elucidated. In this study, we administered genistein to high-fat diet-induced obese mice to investigate its effect on hepatic gluconeogenesis. The results showed that genistein treatment significantly inhibited body weight gain, hyperglycemia, and adipose and hepatic lipid deposition in high-fat diet-induced obese mice. Glucose tolerance test (GTT), insulin tolerance test (ITT) and pyruvate tolerance test (PTT) showed that genistein treatment significantly inhibited gluconeogenesis and improved insulin resistance in obese mice. In addition, this study also found that genistein could promote the expression of miR-451 in vitro and in vivo, and the dual-luciferase reporter system showed that G6pc (glucose-6-phosphatase) may be a target gene of miR-451. Both genistein treatment and in vivo injection of miR-451 agomir significantly inhibited gluconeogenesis and inhibited the expression of G6pc and Gk (glycerol kinase, a known target gene of miR-451). In conclusion, genistein may inhibit gluconeogenesis in obese mice by regulating the expression of Gk and G6pc through miR-451. These results may provide insights into the functions of miR-451 and food-derived phytoestrogens in ameliorating and preventing gluconeogenesis-related diseases.
Collapse
Affiliation(s)
- Mailin Gan
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongjian Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.G.); (X.C.); (Z.C.); (L.C.); (S.Z.); (Y.Z.); (L.N.); (X.L.); (L.S.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-1133
| |
Collapse
|
33
|
Monroe JD, Fraher D, Huang X, Mellett NA, Meikle PJ, Sinclair AJ, Lirette ST, Maihle NJ, Gong Z, Gibert Y. Identification of novel lipid biomarkers in xmrk- and Myc-induced models of hepatocellular carcinoma in zebrafish. Cancer Metab 2022; 10:7. [PMID: 35379333 PMCID: PMC8981695 DOI: 10.1186/s40170-022-00283-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by complex dysregulation of lipids. Increasing evidence suggests that particular lipid species are associated with HCC progression. Here, we aimed to identify lipid biomarkers of HCC associated with the induction of two oncogenes, xmrk, a zebrafish homolog of the human epidermal growth factor receptor (EGFR), and Myc, a regulator of EGFR expression during HCC. METHODS We induced HCC in transgenic xmrk, Myc, and xmrk/Myc zebrafish models. Liver specimens were histologically analyzed to characterize the HCC stage, Oil-Red-O stained to detect lipids, and liquid chromatography/mass spectrometry analyzed to assign and quantify lipid species. Quantitative real-time polymerase chain reaction was used to measure lipid metabolic gene expression in liver samples. Lipid species data was analyzed using univariate and multivariate logistic modeling to correlate lipid class levels with HCC progression. RESULTS We found that induction of xmrk, Myc and xmrk/Myc caused different stages of HCC. Lipid deposition and class levels generally increased during tumor progression, but triglyceride levels decreased. Myc appears to control early HCC stage lipid species levels in double transgenics, whereas xmrk may take over this role in later stages. Lipid metabolic gene expression can be regulated by either xmrk, Myc, or both oncogenes. Our computational models showed that variations in total levels of several lipid classes are associated with HCC progression. CONCLUSIONS These data indicate that xmrk and Myc can temporally regulate lipid species that may serve as effective biomarkers of HCC progression.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniel Fraher
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, 75 Pigdons Road, Geelong, VIC, 3216, Australia
| | - Xiaoqian Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, 3168, Australia
| | - Seth T Lirette
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Nita J Maihle
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
34
|
Toor R, Chana I. Exploring diet associations with Covid-19 and other diseases: a Network Analysis-based approach. Med Biol Eng Comput 2022; 60:991-1013. [PMID: 35171411 PMCID: PMC8852958 DOI: 10.1007/s11517-022-02505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
The current global pandemic, Covid-19, is a severe threat to human health and existence especially when it is mutating very frequently. Being a novel disease, Covid-19 is impacting the patients with comorbidities and is predicted to have long-term consequences, even for those who have recovered from it. To clearly recognize its impact, it is important to comprehend the complex relationship between Covid-19 and other diseases. It is also being observed that people with good immune system are less susceptible to the disease. It is perceived that if a correlation between Covid-19, other diseases, and diet is realized, then caregivers would be able to enhance their further course of medical action and recommendations. Network Analysis is one such technique that can bring forth such complex interdependencies and associations. In this paper, a Network Analysis-based approach has been proposed for analyzing the interplay of diets/foods along with Covid-19 and other diseases. Relationships between Covid-19, diabetes mellitus type 2 (T2DM), non-alcoholic fatty liver disease (NAFLD), and diets have been curated, visualized, and further analyzed in this study so as to predict unknown associations. Network algorithms including Louvain graph algorithm (LA), K nearest neighbors (KNN), and Page rank algorithms (PR) have been employed for predicting a total of 60 disease-diet associations, out of which 46 have been found to be either significant in disease risk prevention/mitigation or in its progression as validated using PubMed literature. A precision of 76.7% has been achieved which is significant considering the involvement of a novel disease like Covid-19. The generated interdependencies can be further explored by medical professionals and caregivers in order to plan healthy eating patterns for Covid-19 patients. The proposed approach can also be utilized for finding beneficial diets for different combinations of comorbidities with Covid-19 as per the underlying health conditions of a patient. Graphical abstract.
Collapse
Affiliation(s)
- Rashmeet Toor
- Cloud and IoT Research Lab, Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
| | - Inderveer Chana
- Cloud and IoT Research Lab, Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
35
|
Nagarajan SR, Cross E, Sanna F, Hodson L. Dysregulation of hepatic metabolism with obesity: factors influencing glucose and lipid metabolism. Proc Nutr Soc 2022; 81:1-11. [PMID: 34726148 DOI: 10.1017/s0029665121003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The liver is a key metabolic organ that undertakes a multitude of physiological processes over the course of a day, including intrahepatic lipid and glucose metabolism which plays a key role in the regulation of systemic lipid and glucose concentrations. It serves as an intermediary organ between exogenous (dietary) and endogenous energy supply to extrahepatic organs. Thus, perturbations in hepatic metabolism can impact widely on metabolic disease risk. For example, the accumulation of intra-hepatocellular TAG (IHTG), for which adiposity is almost invariably a causative factor may result in dysregulation of metabolic pathways. Accumulation of IHTG is likely due to an imbalance between fatty acid delivery, synthesis and removal (via oxidation or export as TAG) from the liver; insulin plays a key role in all of these processes.
Collapse
Affiliation(s)
- S R Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - E Cross
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - F Sanna
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - L Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
miR-27a Regulates Sheep Adipocyte Differentiation by Targeting CPT1B Gene. Animals (Basel) 2021; 12:ani12010028. [PMID: 35011132 PMCID: PMC8749678 DOI: 10.3390/ani12010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The content of intramuscular fat (IMF) is the main determinant of the nutritional and economic value of sheep meat. Therefore, lipid synthesis in sheep longissimus lumborum (LL) has become an important research focus. MicroRNA-27a (miR-27a) has been shown to play a crucial role in the proliferation and differentiation of adipocyte progenitor cells. In this study, we revealed that miR-27a significantly inhibited the formation of lipid droplets by targeting CPT1B to inhibit genes involved in lipid synthesis including PPAR γ, SCD, LPL, and FABP4. Here, we constructed a miR-27a-CPT1B regulatory network map, which revealed the interaction between miR-27a and CPT1B in lipid synthesis in ovine preadipocytes. Abstract MiRNAs are vital regulators and play a major role in cell differentiation, biological development, and disease occurrence. In recent years, many studies have found that miRNAs are involved in the proliferation and differentiation of adipocytes. The objective of this study was to evaluate the effect of miR-27a and its target gene CPT1B on ovine preadipocytes differentiation in Small-tailed Han sheep (Ovis aries). Down-regulation of miR-27a significantly promoted the production of lipid droplets, while overexpression of miR-27a led to a reduction in lipid droplet production. In addition, inhibition of miR-27a led to a significant increase in the expression of genes involved in lipid synthesis, including PPAR γ, SCD, LPL, and FABP4. Target Scan software predicted that CPT1B is a new potential target gene of miR-27a. Further experiments revealed that CPT1B gene expression and protein levels were negatively correlated with miR-27a expression. Overexpression of miR-27a led to a significant decrease in CPT1B mRNA levels and inhibited the accumulation of lipid droplets and vice versa. Moreover, overexpression of CPT1B promoted the synthesis of lipid droplets in ovine preadipocytes. Furthermore, luciferase reporter assays confirmed CPT1B to be a miR-27a direct target gene. This study confirmed that miR-27a increases the expression of genes related to lipid synthesis in ovine preadipocytes by targeting CPT1B, thereby promoting the synthesis of lipid droplets. The results of this study can be used to be exploited in devising novel approaches for improving the IMF content of sheep.
Collapse
|
37
|
Chen Y, Miura Y, Sakurai T, Chen Z, Shrestha R, Kato S, Okada E, Ukawa S, Nakagawa T, Nakamura K, Tamakoshi A, Chiba H, Imai H, Minami H, Mizuta M, Hui SP. Comparison of dimension reduction methods on fatty acids food source study. Sci Rep 2021; 11:18748. [PMID: 34548525 PMCID: PMC8455623 DOI: 10.1038/s41598-021-97349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Serum fatty acids (FAs) exist in the four lipid fractions of triglycerides (TGs), phospholipids (PLs), cholesteryl esters (CEs) and free fatty acids (FFAs). Total fatty acids (TFAs) indicate the sum of FAs in them. In this study, four statistical analysis methods, which are independent component analysis (ICA), factor analysis, common principal component analysis (CPCA) and principal component analysis (PCA), were conducted to uncover food sources of FAs among the four lipid fractions (CE, FFA, and TG + PL). Among the methods, ICA provided the most suggestive results. To distinguish the animal fat intake from endogenous fatty acids, FFA variables in ICA and factor analysis were studied. ICA provided more distinct suggestions of FA food sources (endogenous, plant oil intake, animal fat intake, and fish oil intake) than factor analysis. Moreover, ICA was discovered as a new approach to distinguish animal FAs from endogenous FAs, which will have an impact on epidemiological studies. In addition, the correlation coefficients between a published dataset of food FA compositions and the loading values obtained in the present ICA study suggested specific foods as serum FA sources. In conclusion, we found that ICA is a useful tool to uncover food sources of serum FAs.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Yusuke Miura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Rojeet Shrestha
- Patients Choice Laboratories, 7026 Corporate Dr, Indianapolis, IN, 46278, USA
| | - Sota Kato
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Emiko Okada
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Osaka City University Graduate School of Human Life Science, Osaka, 558-8585, Japan
| | | | - Koshi Nakamura
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Akiko Tamakoshi
- Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, 007-0894, Japan
| | - Hideyuki Imai
- Faculty of Information Science and Technology, Computer Science and Information Technology Mathematical Science, Hokkaido University, Sapporo, 060-0814, Japan
| | - Hiroyuki Minami
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Masahiro Mizuta
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan.
| |
Collapse
|
38
|
Fridén M, Rosqvist F, Kullberg J, Ahlström H, Lind L, Risérus U. Associations between fatty acid composition in serum cholesteryl esters and liver fat, basal fat oxidation, and resting energy expenditure: a population-based study. Am J Clin Nutr 2021; 114:1743-1751. [PMID: 34225361 PMCID: PMC8574708 DOI: 10.1093/ajcn/nqab221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND We have repeatedly shown in short-term feeding trials that a high intake of dietary n-6 PUFAs, i.e. linoleic acid, prevents liver fat accumulation compared with saturated fat. However, population-based data is lacking and the mechanisms behind such effects are unclear. OBJECTIVE To investigate associations between serum cholesteryl ester (CE) fatty acids and liver fat, basal fat oxidation [respiratory quotient (RQ)], and resting energy expenditure (REE). We hypothesized that PUFA in particular is inversely associated with liver fat and that such a relation is partly explained by a PUFA-induced increase in basal fat oxidation or REE. METHODS Cross-sectional analyses using linear regression models in a population-based cohort with data on serum CE fatty acid composition and liver fat (n = 308). RESULTS Linoleic acid (18:2n-6) (β = -0.03, 95% CI: -0.06, -0.001) and Δ5 desaturase index were inversely associated, whereas, γ-linolenic acid (18:3n-6) (β = 0.59, 95% CI: 0.28, 0.90), dihomo-γ-linolenic acid (20:3n-6) (β = 1.20, 95% CI: 0.65, 1.75), arachidonic acid (20:4n-6) (β = 0.08, 95% CI: 0.002, 0.16), palmitoleic acid (16:1n-7) (β = 0.37, 95% CI: 0.04, 0.70), Δ6 desaturase, and stearoyl CoA desaturase-1 (SCD-1) index were directly associated with liver fat after adjustment for confounders. Several serum CE fatty acids were correlated with both liver fat and REE, but only the association between DHA (22:6n-3) and liver fat was clearly attenuated after adjustment for REE (from β = -0.63 95% CI: -1.24, -0.02 to β = -0.34, 95% CI: -0.95, 0.27). Palmitoleic acid and SCD-1 were weakly inversely correlated with RQ but could not explain a lower liver fat content. CONCLUSIONS Several serum CE fatty acids are associated with liver fat, among them linoleic acid. Although we identified novel associations between individual fatty acids and RQ and REE, our findings imply that PUFAs might prevent liver fat accumulation through mechanisms other than enhanced whole-body energy metabolism.
Collapse
Affiliation(s)
- Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden,Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden,Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
39
|
Meex RCR, Blaak EE. Mitochondrial Dysfunction is a Key Pathway that Links Saturated Fat Intake to the Development and Progression of NAFLD. Mol Nutr Food Res 2021; 65:e1900942. [PMID: 32574416 PMCID: PMC7816225 DOI: 10.1002/mnfr.201900942] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is characterized by fat accumulation in the liver. Hypercaloric diets generally increase hepatic fat accumulation, whereas hypocaloric diets decrease liver fat content. In addition, there is evidence to suggest that moderate amounts of unsaturated fatty acids seems to be protective for the development of a fatty liver, while consumption of saturated fatty acids (SFA) appears to predispose toward hepatic steatosis. Recent studies highlight a key role for mitochondrial dysfunction in the development and progression of NAFLD. It is proposed that changes in mitochondrial structure and function are key mechanisms by which SFA lead to the development and progression of NAFLD. In this review, it is described how SFA intake is associated with liver steatosis and decreases the efficiency of the respiratory transport chain. This results in the production of reactive oxygen species and damage to nearby structures, eventually leading to inflammation, apoptosis, and scarring of the liver. Furthermore, studies demonstrating that SFA intake affects the composition of mitochondrial membranes are presented, and this process accelerates the progression of NAFLD. It is likely that events are intertwined and reinforce each other, leading to a constant deterioration in health.
Collapse
Affiliation(s)
- Ruth C. R. Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| |
Collapse
|
40
|
Rosqvist F, Orho-Melander M, Kullberg J, Iggman D, Johansson HE, Cedernaes J, Ahlström H, Risérus U. Abdominal Fat and Metabolic Health Markers but Not PNPLA3 Genotype Predicts Liver Fat Accumulation in Response to Excess Intake of Energy and Saturated Fat in Healthy Individuals. Front Nutr 2020; 7:606004. [PMID: 33344496 PMCID: PMC7744344 DOI: 10.3389/fnut.2020.606004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Saturated fat (SFA) has consistently been shown to increase liver fat, but the response appears variable at the individual level. Phenotypic and genotypic characteristics have been demonstrated to modify the hypercholesterolemic effect of SFA but it is unclear which characteristics that predict liver fat accumulation in response to a hypercaloric diet high in SFA. Objective: To identify predictors of liver fat accumulation in response to an increased intake of SFA. Design: We pooled our two previously conducted double-blind randomized trials (LIPOGAIN and LIPOGAIN-2, clinicaltrials.gov NCT01427140 and NCT02211612) and used data from the n = 49 metabolically healthy men (n = 32) and women (n = 17) randomized to a hypercaloric diet through addition of SFA-rich muffins for 7–8 weeks. Associations between clinical and metabolic variables at baseline and changes in liver fat during the intervention were analyzed using Spearman rank correlation. Linear regression was used to generate a prediction model. Results: Liver fat increased by 33% (IQR 5.4–82.7%; P < 0.0001) in response to excess energy intake and this was not associated (r = 0.17, P = 0.23) with the increase in body weight (1.9 kg; IQR 1.1–2.9 kg). Liver fat accumulation was similar (P = 0.28) in carriers (33%, IQR 14–79%) and non-carriers (33%, IQR −11 to +87%) of the PNPLA3-I148M variant. Baseline visceral and liver fat content, as well as levels of the liver enzyme γ-glutamyl transferase (GT), were the strongest positive predictors of liver fat accumulation—in contrast, adiponectin and the fatty acid 17:0 in adipose tissue were the only negative predictors in univariate analyses. A regression model based on eight clinical and metabolic variables could explain 81% of the variation in liver fat accumulation. Conclusion: Our results suggest there exists a highly inter-individual variation in the accumulation of liver fat in metabolically healthy men and women, in response to an increased energy intake from SFA and carbohydrates that occurs over circa 2 months. This marked variability in liver fat accumulation could largely be predicted by a set of clinical (e.g., GT and BMI) and metabolic (e.g., fatty acids, HOMA-IR, and adiponectin) variables assessed at baseline.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | | | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - David Iggman
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden.,Center for Clinical Research Dalarna, Falun, Sweden
| | - Hans-Erik Johansson
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Prevalence of metabolic-associated fatty liver disease (MAFLD) is increasing, and as pharmacological treatment does not exist, lifestyle interventions (i.e. diet and exercise) represent the cornerstone management and treatment strategy. Although the available data clearly demonstrate that changes in lifestyle influence intrahepatic triglyceride (IHTG) content, the mechanisms through which this is achieved are seldom investigated. Here, we review recent evidence demonstrating the influence of lifestyle interventions on hepatic fatty acid metabolism and IHTG content. RECENT FINDINGS Diet and exercise influence IHTG content through various, and often interrelated factors. These include alterations in whole-body and tissue-specific insulin sensitivity, which may influence the flux of fatty acid and lipogenic substrates to the liver, and changes in intrahepatic fatty acid synthesis and partitioning. Notably, there are only a few studies that have investigated intrahepatic fatty acid metabolism in vivo in humans before and after an intervention. SUMMARY Lifestyle interventions represent an effective means of influencing hepatic fatty acid metabolism. IHTG content is decreased without weight-loss either through exercise or by changing the macronutrient composition of the diet, although what the optimal macronutrient composition is to achieve this has yet to be defined.
Collapse
Affiliation(s)
- Sion A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford
| | - Mark C Turner
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
42
|
Winters-van Eekelen E, Verkouter I, Peters HPF, Alssema M, de Roos BG, Schrauwen-Hinderling VB, Roumans KHM, Schoones JW, Zock PL, Schrauwen P, Rosendaal FR, Dekkers OM, de Mutsert R. Effects of dietary macronutrients on liver fat content in adults: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2020; 75:588-601. [PMID: 33087892 DOI: 10.1038/s41430-020-00778-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Dietary macronutrient composition may affect hepatic liver content and its associated diseases, but the results from human intervention trials have been equivocal or underpowered. We aimed to assess the effects of dietary macronutrient composition on liver fat content by conducting a systematic review and meta-analysis of randomized controlled trials in adults. Four databases (PubMed, Embase, Web of Science, and COCHRANE Library) were systematically searched for trials with isocaloric diets evaluating the effect of dietary macronutrient composition (energy percentages of fat, carbohydrates, and protein, and their specific types) on liver fat content as assessed by magnetic resonance techniques, computed tomography or liver biopsy. Data on change in liver fat content were pooled by random or fixed-effects meta-analyses and expressed as standardized mean difference (SMD). We included 26 randomized controlled trials providing data for 32 comparisons on dietary macronutrient composition. Replacing dietary fat with carbohydrates did not result in changes in liver fat (12 comparisons, SMD 0.01 (95% CI -0.36; 0.37)). Unsaturated fat as compared with saturated fat reduced liver fat content (4 comparisons, SMD -0.80 (95% CI -1.09; -0.51)). Replacing carbohydrates with protein reduced liver fat content (5 comparisons, SMD -0.33 (95% CI -0.54; -0.12)). Our meta-analyses showed that replacing carbohydrates with total fat on liver fat content was not effective, while replacing carbohydrates with proteins and saturated fat with unsaturated fat was. More well-performed and well-described studies on the effect of types of carbohydrates and proteins on liver fat content are needed, especially studies comparing proteins with fats.
Collapse
Affiliation(s)
| | - Inge Verkouter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marjan Alssema
- Unilever Research and Development, Vlaardingen, the Netherlands
| | - Babette G de Roos
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, 6200, Maastricht, the Netherlands
| | - Kay H M Roumans
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jan W Schoones
- Walaeus Library, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter L Zock
- Unilever Research and Development, Vlaardingen, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Endocrinology, Leiden University Center, Leiden, the Netherlands.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
43
|
Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med 2020; 17:e1003102. [PMID: 32530938 PMCID: PMC7292352 DOI: 10.1371/journal.pmed.1003102] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND De novo lipogenesis (DNL) is the primary metabolic pathway synthesizing fatty acids from carbohydrates, protein, or alcohol. Our aim was to examine associations of in vivo levels of selected fatty acids (16:0, 16:1n7, 18:0, 18:1n9) in DNL with incidence of type 2 diabetes (T2D). METHODS AND FINDINGS Seventeen cohorts from 12 countries (7 from Europe, 7 from the United States, 1 from Australia, 1 from Taiwan; baseline years = 1970-1973 to 2006-2010) conducted harmonized individual-level analyses of associations of DNL-related fatty acids with incident T2D. In total, we evaluated 65,225 participants (mean ages = 52.3-75.5 years; % women = 20.4%-62.3% in 12 cohorts recruiting both sexes) and 15,383 incident cases of T2D over the 9-year follow-up on average. Cohort-specific association of each of 16:0, 16:1n7, 18:0, and 18:1n9 with incident T2D was estimated, adjusted for demographic factors, socioeconomic characteristics, alcohol, smoking, physical activity, dyslipidemia, hypertension, menopausal status, and adiposity. Cohort-specific associations were meta-analyzed with an inverse-variance-weighted approach. Each of the 4 fatty acids positively related to incident T2D. Relative risks (RRs) per cohort-specific range between midpoints of the top and bottom quintiles of fatty acid concentrations were 1.53 (1.41-1.66; p < 0.001) for 16:0, 1.40 (1.33-1.48; p < 0.001) for 16:1n-7, 1.14 (1.05-1.22; p = 0.001) for 18:0, and 1.16 (1.07-1.25; p < 0.001) for 18:1n9. Heterogeneity was seen across cohorts (I2 = 51.1%-73.1% for each fatty acid) but not explained by lipid fractions and global geographical regions. Further adjusted for triglycerides (and 16:0 when appropriate) to evaluate associations independent of overall DNL, the associations remained significant for 16:0, 16:1n7, and 18:0 but were attenuated for 18:1n9 (RR = 1.03, 95% confidence interval (CI) = 0.94-1.13). These findings had limitations in potential reverse causation and residual confounding by imprecisely measured or unmeasured factors. CONCLUSIONS Concentrations of fatty acids in the DNL were positively associated with T2D incidence. Our findings support further work to investigate a possible role of DNL and individual fatty acids in the development of T2D.
Collapse
|
44
|
Staňková P, Kučera O, Peterová E, Lotková H, Maseko TE, Nožičková K, Červinková Z. Adaptation of Mitochondrial Substrate Flux in a Mouse Model of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21031101. [PMID: 32046101 PMCID: PMC7036817 DOI: 10.3390/ijms21031101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Maladaptation of mitochondrial oxidative flux seems to be a considerable feature of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to induce NAFLD in mice fed a Western-style diet (WD) and to evaluate liver mitochondrial functions. Experiments were performed on male C57BL/6J mice fed with a control diet or a WD for 24 weeks. Histological changes in liver and adipose tissue as well as hepatic expression of fibrotic and inflammatory genes and proteins were evaluated. The mitochondrial respiration was assessed by high-resolution respirometry. Oxidative stress was evaluated by measuring lipoperoxidation, glutathione, and reactive oxygen species level. Feeding mice a WD induced adipose tissue inflammation and massive liver steatosis accompanied by mild inflammation and fibrosis. We found decreased succinate-activated mitochondrial respiration and decreased succinate dehydrogenase (SDH) activity in the mice fed a WD. The oxidative flux with other substrates was not affected. We observed increased ketogenic capacity, but no impact on the capacity for fatty acid oxidation. We did not confirm the presence of oxidative stress. Mitochondria in this stage of the disease are adapted to increased substrate flux. However, inhibition of SDH can lead to the accumulation of succinate, an important signaling molecule associated with inflammation, fibrosis, and carcinogenesis.
Collapse
Affiliation(s)
- Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
- Correspondence: ; Tel.: +420-495-816-186
| | - Eva Peterová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Halka Lotková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Tumisang Edward Maseko
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Kateřina Nožičková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (H.L.); (T.E.M.); (K.N.); (Z.Č.)
| |
Collapse
|
45
|
Abstract
Cardio-metabolic risk (CMR) embodies a clustering of metabolic abnormalities that increase the likelihood of developing CVD in the large arteries of the heart, peripheral tissues and brain. These abnormalities share a common origin of insulin resistance, which manifests typically as excess visceral adipose tissue in the abdominal cavity, and within cells of key metabolic tissues (ectopic fat), including the liver, pancreas, heart and skeletal muscle. As expected, the increased risk of CVD that can be attributed to CMR factors is alarmingly high in overweight and obese populations, but this risk can be reduced by reversing many of the inappropriate diet and lifestyle behaviours that underlie its development. The Nutrition Society's 2018 Winter Meeting at the Royal Society of Medicine addressed the topic of the 'Optimal diet and lifestyle for managing cardio-metabolic risk', with the aim of providing mechanistic insights into the impact of macronutrients, dietary patterns and meal timing in key metabolic tissues. The 2-d programme concluded with a summary of its main outcomes, and an overview of their implications for dietary policy in the UK.
Collapse
|
46
|
Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, Ouatu A, Floria M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J Diabetes Res 2020; 2020:3920196. [PMID: 32832560 PMCID: PMC7424491 DOI: 10.1155/2020/3920196] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) remain as one of the most global problematic metabolic diseases with rapidly increasing prevalence and incidence. Epidemiological studies noted that T2DM patients have by two-fold increase to develop NAFLD, and vice versa. This complex and intricate association is supported and mediated by insulin resistance (IR). In this review, we discuss the NAFLD immunopathogenesis, connection with IR and T2DM, the role of screening and noninvasive tools, and mostly the impact of the current antidiabetic drugs on steatosis liver and new potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Minela Aida Maranduca
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, Emergency Military Clinical Hospital, Iasi, Romania
| |
Collapse
|
47
|
Zirnheld KH, Warner DR, Warner JB, Hardesty JE, McClain CJ, Kirpich IA. Dietary fatty acids and bioactive fatty acid metabolites in alcoholic liver disease. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Hodson L, Gunn PJ. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol 2019; 15:689-700. [PMID: 31554932 DOI: 10.1038/s41574-019-0256-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasing global public health burden. NAFLD is strongly associated with type 2 diabetes mellitus, obesity and cardiovascular disease and begins with intrahepatic triacylglycerol accumulation. Under healthy conditions, the liver regulates lipid metabolism to meet systemic energy needs in the fed and fasted states. The processes of fatty acid uptake, fatty acid synthesis and the intracellular partitioning of fatty acids into storage, oxidation and secretion pathways are tightly regulated. When one or more of these processes becomes dysregulated, excess lipid accumulation can occur. Although genetic and environmental factors have been implicated in the development of NAFLD, it remains unclear why an imbalance in these pathways begins. The regulation of fatty acid partitioning occurs at several points, including during triacylglycerol synthesis, lipid droplet formation and lipolysis. These processes are influenced by enzyme function, intake of dietary fats and sugars and whole-body metabolism, and are further affected by the presence of obesity or insulin resistance. Insight into how the liver controls fatty acid metabolism in health and how these processes might be affected in disease would offer the potential for new therapeutic treatments for NAFLD to be developed.
Collapse
Affiliation(s)
- Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| | - Pippa J Gunn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
49
|
Wang L, Yang X, Zhu Y, Zhan S, Chao Z, Zhong T, Guo J, Wang Y, Li L, Zhang H. Genome-Wide Identification and Characterization of Long Noncoding RNAs of Brown to White Adipose Tissue Transformation in Goats. Cells 2019; 8:E904. [PMID: 31443273 PMCID: PMC6721666 DOI: 10.3390/cells8080904] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the thermogenesis and energy storage of brown adipose tissue (BAT). However, knowledge of the cellular transition from BAT to white adipose tissue (WAT) and the potential role of lncRNAs in goat adipose tissue remains largely unknown. In this study, we analyzed the transformation from BAT to WAT using histological and uncoupling protein 1 (UCP1) gene analyses. Brown adipose tissue mainly existed within the goat perirenal fat at 1 day and there was obviously a transition from BAT to WAT from 1 day to 1 year. The RNA libraries constructed from the perirenal adipose tissues of 1 day, 30 days, and 1 year goats were sequenced. A total number of 21,232 lncRNAs from perirenal fat were identified, including 5393 intronic-lncRNAs and 3546 antisense-lncRNAs. Furthermore, a total of 548 differentially expressed lncRNAs were detected across three stages (fold change ≥ 2.0, false discovery rate (FDR) < 0.05), and six lncRNAs were validated by qPCR. Furthermore, trans analysis found lncRNAs that were transcribed close to 890 protein-coding genes. Additionally, a coexpression network suggested that 4519 lncRNAs and 5212 mRNAs were potentially in trans-regulatory relationships (r > 0.95 or r < -0.95). In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the targeted genes were involved in the biosynthesis of unsaturated fatty acids, fatty acid elongation and metabolism, the citrate cycle, oxidative phosphorylation, the mitochondrial respiratory chain complex, and AMP-activated protein kinase (AMPK) signaling pathways. The present study provides a comprehensive catalog of lncRNAs involved in the transformation from BAT to WAT and provides insight into understanding the role of lncRNAs in goat brown adipogenesis.
Collapse
Affiliation(s)
- Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yuehua Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, Hainan, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
50
|
The influence of dietary fatty acids on liver fat content and metabolism – ERRATUM. Proc Nutr Soc 2019; 78:473. [DOI: 10.1017/s0029665119000697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|