1
|
Khumalo N, Chaisi M, Magoro R, Mwale M. An analysis of the gaps in the South African DNA barcoding library of ticks of veterinary and public health importance. Genome 2024; 67:392-402. [PMID: 39018572 DOI: 10.1139/gen-2024-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Ticks transmit pathogens of veterinary and public health importance. Understanding their diversity is critical as infestations lead to significant economic losses globally. To date, over 90 species across three families have been identified in South Africa. However, the taxonomy of most species has not been resolved due to morphological identification challenges. DNA barcoding through the Barcode of Life Data Systems (BOLD) is therefore a valuable tool for species verifications for biodiversity assessments. This study conducted an analysis of South African tick COI barcodes on BOLD by verifying species on checklists, literature, and other sequence databases. The compiled list represented 97 species, including indigenous (59), endemics (27), introduced (2), invasives (1), and eight that could not be classified. Analyses indicated that 31 species (32%) from 11 genera have verified COI barcodes. These are distributed across all nine provinces with the Eastern Cape having the highest species diversity, followed by Limpopo, with KwaZulu-Natal having the least diversity. Rhipicephalus, Hyalomma, and Argas species had multiple barcode index numbers, suggesting cryptic diversity or unresolved taxonomy. We identified 21 species of veterinary or zoonotic importance from the Argasidae and Ixodidae families that should be prioritised for barcoding. Coordinating studies and defining barcoding targets is necessary to ensure that tick checklists are updated to support decision-making for the control of vector-borne diseases and alien invasives.
Collapse
Affiliation(s)
- Nozipho Khumalo
- Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
| | - Mamohale Chaisi
- Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, P/Bag X04, Onderstepoort 0001, Pretoria, South Africa
| | - Rebecca Magoro
- Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
| | - Monica Mwale
- Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Noor PS, Ahmed M, Ansari AS, Gadahi JA, Memon SB, Tariq M, Laghari ZA, Soomro F, Bhutto B, Mari NUN, Chen Z. Molecular Identification of Hyalomma Ticks and Application of Bacillus thuringiensis Toxins as an Effective Biological Acaricide. J Parasitol Res 2024; 2024:9952738. [PMID: 39296814 PMCID: PMC11410401 DOI: 10.1155/2024/9952738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/07/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Bacillus thuringiensis (B. thuringiensis) is considered one of the most important entomopathogenic microorganisms. It produces potent toxins against insects. Therefore, the present study investigates the bioacaricidal properties of B. thuringiensis on the Hyalomma tick species. Firstly, we identify Hyalomma ticks based on morphological screening and molecular characterization. The cytochrome C oxidase subunit I (COX1) gene was selected for the polymerase chain reaction (PCR) analysis, which resulted in the amplification of 656 bp. The amplified products were sequenced, and the isolated (COX1) gene of ticks was submitted to the gene bank of NCBI (Accession No. OR077934.1). The nucleotide sequences were retrieved from the NCBI data bank by BLASTn analysis, which confirmed that all obtained sequences belong to genus Hyalomma, and multiple alignments confirmed that the sequence of Hyalomma anatolicum Tandojam-isolate (HA-TJ) 100% aligned with Hyalomma analoticum KP792577.1, Hyalomma detritum KP792595.1, Hyalomma excavatum KX911989.1, and H. excavatum OQ449693.1. The generated phylogenetic tree confirmed that sequences of HA-TJ COX1 clustered with a single clad of H. analoticum, H. excavatum, and H. detritum. The acaricidal effect of B. thuringiensis toxins B. thuringiensis spore crystal mix (BtSCM) and B. thuringiensis crystal proteins (Btcps) was evaluated against larvae and adult life stages of Hyalomma ticks in vitro. We applied Btcps and BtSCM separately with different concentrations and calculated the mortality percentage. Adult mortality was estimated at the 8th, 10th, 12th, and 15th days posttreatment and larval mortality after 24 h. During treatment of the adult life stage, at first, ticks were immersed in different concentrations of Btcps and BtSCM for 5 min after the treatments, and the samples were transferred to sterile containers and placed in an incubator with 80% humidity at 23°C. Furthermore, Btcps produced the highest mortality on Day 15, 89 ± 1.00% at a concentration of 3000 μg/mL, followed by the 12th, 10th, and 8th days produced 83 ± 1.91%, 70 ± 1.15%, and 61 ± 1.00%, respectively. BtSCM produced mortality of 69 ± 1.91% on Day 15 at a concentration of 3000 μg/mL, followed by the 12th, 10th, and 8th days at 57 ± 2.51%, 37 ± 1.91%, and 34 ± 2.00%. The present study revealed that B. thuringiensis toxins produced a significant (p < 0.05) increase in mortality rate in adults of Hyalomma ticks. Additionally, Btcps and BtSCM were used to treat the larval stage. The treatments were applied to calculate the mortality percentage via the Laravel packet test. At a 1500 μg/mL concentration, Btcps resulted in the highest mortality of 98 ± 1.15%; this was followed by 1250 μg/mL, 1000 μg/mL, and 750 μg/mL, which produced mortalities of 76 ± 1.63%, 60 ± 1.63%, and 56 ± 1.63%, respectively. In addition, BtSCM produced a mortality rate of 79 ± 2.51% at a concentration of 1500 μg/mL. Furthermore, 75 ± 2.51%, 65 ± 1.91%, and 58 ± 1.15% mortality were observed at concentrations of 1250 μg/mL, 1000 μg/mL, and 750 μg/mL, respectively. The results showed a significant (p < 0.05) increase in larval mortality compared to the control group. We conclude that B. thuringiensis toxins are applicable as a bioacaricide.
Collapse
Affiliation(s)
- Panhwer Sana Noor
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
- Laboratory of Animal Disease Model College of Veterinary Medicine Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Department of Veterinary Parasitology Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Munir Ahmed
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Abdul Suboor Ansari
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Shahar Bano Memon
- Department of Animal Breeding and Genetics Sindh Agriculture University, Tandojam, Pakistan
| | - Mansoor Tariq
- Department of Veterinary Pathology Sindh Agriculture University, Tandojam, Pakistan
| | - Zubair Ahmed Laghari
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Feroza Soomro
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Bachal Bhutto
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | | | - Zhengli Chen
- Laboratory of Animal Disease Model College of Veterinary Medicine Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
3
|
Guardone L, Nogarol C, Accorsi A, Vitale N, Listorti V, Scala S, Brusadore S, Miceli IN, Wolfsgruber L, Guercio A, Di Bella S, Grippi F, Razzuoli E, Mandola ML. Ticks and Tick-Borne Pathogens: Occurrence and Host Associations over Four Years of Wildlife Surveillance in the Liguria Region (Northwest Italy). Animals (Basel) 2024; 14:2377. [PMID: 39199911 PMCID: PMC11350676 DOI: 10.3390/ani14162377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tick-borne diseases (TBDs) are a considerable public health problem worldwide. The occurrence of Anaplasma spp., Borrelia burgdorferi s.l., Coxiella burnetii, Rickettsia spp., and tick-borne encephalitis virus (TBEv) was investigated via PCR and sequencing in 683 ticks collected from 105 roe deer, 61 wild boars, 49 fallow deer, and 2 chamois, in the Liguria region, northwest Italy, between 2019 and 2022. The ticks were morphologically identified. Four different tick species were found: Ixodes ricinus (66.8% of the collected ticks), Dermacentor marginatus (15.8%), Rhipicephalus sanguineus s.s. (15.7%), and Haemaphysalis punctata (0.9%). Six ticks (0.9%) were only identified as Rhipicephalus spp. Of the 222 pools analyzed, 27.9% were positive. Most pools (n = 58, 26.1% of pools analyzed) were positive for Rickettsia spp., and several species were found: Rickettsia slovaca was the dominant species (15.3%), followed by R. monacensis (8.1%), while R. helvetica (1.8%), R. massiliae (0.5%), and R. raoultii (0.5%) were found only sporadically. Anaplasma phagocytophilum was identified in three pools and B. burgdorferi s.l. in one pool. All samples were negative for C. burnetii and TBEv. Significant associations were found between I. ricinus and roe deer, D. marginatus and wild boar, and between R. monacensis and I. ricinus. The prevalence of Rickettsia spp. differed significantly between tick and host species. This updated picture of tick species and TBPs in wild ungulates in Liguria, where the population of these animals is increasing, shows a widespread presence of potentially zoonotic Rickettsia spp. Continuous monitoring and public information on preventive measures are needed.
Collapse
Affiliation(s)
- Lisa Guardone
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Chiara Nogarol
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Annalisa Accorsi
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Nicoletta Vitale
- S.S. Epidemiologia—Sanità Animale, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy;
| | - Valeria Listorti
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Sonia Scala
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Sonia Brusadore
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Ilaria Nina Miceli
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Lara Wolfsgruber
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Annalisa Guercio
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Santina Di Bella
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Francesca Grippi
- S.C. Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy;
| | - Elisabetta Razzuoli
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Maria Lucia Mandola
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| |
Collapse
|
4
|
Kelava S, Apanaskevich DA, Shao R, Gofton AW, Mans BJ, Teo EJM, Norval G, Barker D, Nakao R, Barker SC. Insights from entire mitochondrial genome sequences into the phylogeny of ticks of the genera Haemaphysalis and Archaeocroton with the elevation of the subgenus Alloceraea Schulze, 1919 back to the status of a genus. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:189-204. [PMID: 38469668 DOI: 10.1111/mve.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/16/2024] [Indexed: 03/13/2024]
Abstract
We used entire mitochondrial (mt) genome sequences (14.5-15 kbp) to resolve the phylogeny of the four main lineages of the Haematobothrion ticks: Alloceraea, Archaeocroton, Bothriocroton and Haemaphysalis. In our phylogenetic trees, Alloceraea was the sister to Archaeocroton sphenodonti, a tick of an archetypal reptile, the tuatara, from New Zealand, to the exclusion of the rest of the species of Haemaphysalis. The mt genomes of all four of the Alloceraea species that have been sequenced so far had a substantial insert, 132-312 bp, between the tRNA-Glu (E) gene and the nad1 gene in their mt genomes. This insert was not found in any of the other eight subgenera of Haemaphysalis. The mt genomes of 13 species of Haemaphysalis from NCBI GenBank were added to the most recent data set on Haemaphysalis and its close relatives to help resolve the phylogeny of Haemaphysalis, including five new subgenera of Haemaphysalis not previously considered by other authors: Allophysalis (structurally primitive), Aboimisalis (structurally primitive), Herpetobia (structurally intermediate), Ornithophysalis (structurally advanced) and Segalia (structurally advanced). We elevated Alloceraea Schulze, 1919 to the status of genus because Alloceraea Schulze, 1919 is phylogenetically distinct from the other subgenera of Haemaphysalis. Moreover, we propose that the subgenus Allophysalis is the sister to the rest of the Haemaphysalis (14 subgenera) and that the 'structurally primitive' subgenera Hoogstraal and Kim comprise early diverging lineages. Our matrices of the pairwise genetic difference (percent) of mt genomes and partial 16S rRNA sequences indicated that the mt genome sequence of Al. kitaokai (gb# OM368280) may not be Al. kitaokai Hoogstraal, 1969 but rather another species of Alloceraea. In a similar way, the mt genome sequence of H. (Herpetobia) nepalensis Hoogstraal, 1962 (gb# NC_064124) was only 2% genetically different to that of H. (Allophysalis) tibetensis Hoogstraal, 1965 (gb# OM368293): this indicates to us that they are the same species. Alloceraea cretacea may be better placed in a genus other than Alloceraea Schulze, 1919. Reptiles may have been the host to the most recent common ancestor of Archaeocroton and Alloceraea.
Collapse
Affiliation(s)
- Samuel Kelava
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Dmitry A Apanaskevich
- Institute for Coastal Sciences, US National Tick Collection, Georgia Southern University, Statesboro, Georgia, USA
- Department of Biology, Georgia Southern University, Statesboro, Georgia, USA
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Alexander W Gofton
- Health and Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
- The Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Ernest J M Teo
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Gerrut Norval
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Dayana Barker
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Ryo Nakao
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Stephen C Barker
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
5
|
Fedorov D, Hornok S. Checklist of hosts, illustrated geographical range, and ecology of tick species from the genus Ixodes (Acari, Ixodidae) in Russia and other post-Soviet countries. Zookeys 2024; 1201:255-343. [PMID: 38779584 PMCID: PMC11109513 DOI: 10.3897/zookeys.1201.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Hard ticks (Acari: Ixodidae) are the economically and ecologically most important blood-sucking arthropod vectors that can transmit disease agents under temperate climate. In this group, the highest number of species (currently nearing 270) belongs to the genus Ixodes. For this review, more than 400 papers related to this genus in the context of Russia were checked for data on the host records, locations of collection, as well as ecology of assigned tick species. This monograph compensates for the lack of a similarly comprehensive English-language overview of Ixodes species in the region of Russia for nearly half century, and also makes a large set of data easily available for international readers, which is especially important if the original source is difficult to access from outside this country. In addition, the data from a significant number of papers on this topic available only in the Russian language are made accessible through this work.
Collapse
Affiliation(s)
- Denis Fedorov
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, HungaryHUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research GroupBudapestHungary
- Zoological Institute of the Russian Academy of Sciences (ZIN-RAS), St. Petersburg, RussiaZoological Institute of the Russian Academy of Sciences (ZIN-RAS)St. PetersburgRussia
| | - Sándor Hornok
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, HungaryHUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, HungaryUniversity of Veterinary MedicineBudapestHungary
| |
Collapse
|
6
|
Ali EAA, Hussein NA, El-Hakim AE, Amer MA, Shahein YE. Cloning and catalytic profile of Hyalomma dromedarii leucine aminopeptidase. Int J Biol Macromol 2024; 268:131778. [PMID: 38657929 DOI: 10.1016/j.ijbiomac.2024.131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Ticks have harmful impacts on both human and animal health and cause considerable economic losses. Leucine aminopeptidase enzymes (LAP) play important roles during tick infestation to liberate vital amino acids necessary for growth. The aim of the current study is to identify, express and characterize the LAP from the hard tick Hyalomma dromedarii and elucidate its biochemical characteristics. We cloned an open reading frame of 1560 bp encoding a protein of 519 amino acids. The LAP full-length was expressed in Escherichia coli BL21 (DE3) and purified. The recombinant enzyme (H.d rLAP- 6×His) had a predicted molecular mass of approximately 55 kDa. Purification and the enzymatic characteristics of H.d rLAP- 6×His were studied. The purified enzyme showed maximum activity at 37 °C and pH 8.0-8.5 using Leu-p-nitroanilide as a substrate. The activity of H.d rLAP- 6×His was sensitive to β-mercaptoethanol, dl-dithiothreitol, 1,10- phenanthroline, bestatin HCl, and EDTA and completely abolished by 0.05 % SDS. In parallel, the enzymatic activity was enhanced by Ni2+, Mn2+ and Mg2+, partially inhibited by Na+, Cu2+, Ca2+ and completely inhibited by Zn2+.
Collapse
Affiliation(s)
- Esraa A A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Amr E El-Hakim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mahmoud A Amer
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| |
Collapse
|
7
|
Moustafa MAM, Mohamed WMA, Chatanga E, Naguib D, Matsuno K, Gofton AW, Barker SC, Nonaka N, Nakao R. Unraveling the phylogenetics of genetically closely related species, Haemaphysalis japonica and Haemaphysalis megaspinosa, using entire tick mitogenomes and microbiomes. Sci Rep 2024; 14:9961. [PMID: 38693183 PMCID: PMC11063046 DOI: 10.1038/s41598-024-60163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Ticks have a profound impact on public health. Haemaphysalis is one of the most widespread genera in Asia, including Japan. The taxonomy and genetic differentiation of Haemaphysalis spp. is challenging. For instance, previous studies struggled to distinguish Haemaphysalis japonica and Haemaphysalis megaspinosa due to the dearth of nucleotide sequence polymorphisms in widely used barcoding genes. The classification of H. japonica japonica and its related sub-species Haemaphysalis japonica douglasi or Haemaphysalis jezoensis is also confused due to their high morphological similarity and a lack of molecular data that support the current classification. We used mitogenomes and microbiomes of H. japonica and H. megaspinosa to gain deeper insights into the phylogenetic relationships and genetic divergence between two species. Phylogenetic analyses of concatenated nucleotide sequences of protein-coding genes and ribosomal DNA genes distinguished H. japonica and H. megaspinosa as monophyletic clades, with further subdivision within the H. japonica clade. The 16S rRNA and NAD5 genes were valuable markers for distinguishing H. japonica and H. megaspinosa. Population genetic structure analyses indicated that genetic variation within populations accounted for a large proportion of the total variation compared to variation between populations. Microbiome analyses revealed differences in alpha and beta diversity between H. japonica and H. megaspinosa: H. japonica had the higher diversity. Coxiella sp., a likely endosymbiont, was found in both Haemaphysalis species. The abundance profiles of likely endosymbionts, pathogens, and commensals differed between H. japonica and H. megaspinosa: H. megaspinosa was more diverse.
Collapse
Affiliation(s)
- Mohamed Abdallah Mohamed Moustafa
- Department of Entomology, Rutgers School of Environmental and Biological Sciences, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Wessam M A Mohamed
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Biochemistry and Microbiology, Rutgers School of Environmental and Biological Sciences, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Elisha Chatanga
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Veterinary Pathobiology, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Doaa Naguib
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | | | - Stephen C Barker
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| |
Collapse
|
8
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
9
|
Ali A, Khan M, Ullah Z, Numan M, Tsai KH, Alouffi A, Almutairi MM, Tanaka T. First record of Alectorobius coniceps (Ixodoidea: Argasidae) and Dermacentor sp. (Ixodoidea: Ixodidae) in Pakistan. Front Vet Sci 2024; 10:1326734. [PMID: 38292134 PMCID: PMC10824997 DOI: 10.3389/fvets.2023.1326734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Alectorobius species are soft ticks primarily infesting birds, such as swallows, while Dermacentor species are hard ticks mainly infesting mammals, such as small ruminants. This study for the first time reported on the morphological and molecular bases of two tick species, namely A. coniceps and a Dermacentor sp. in Pakistan. The former species was examined in swallows' nests in Khyber Pakhtunkhwa province, while the latter species was examined in small ruminants in Balochistan province. In total, 25 ticks were collected, with 14 ticks morphologically identified as A. coniceps (males = 9 and females = 5) and 11 ticks identified as Dermacentor sp. (males = 7 and females = 4). Following morphological identification, molecular identification was gained by obtaining 16S rDNA and cox1 sequences for these ticks. The BLAST results for the 16S rDNA and cox1 sequences from A. coniceps shared a maximum identity of 97.46% and 96.49% with the same species from Malta. The BLAST analysis of the 16S rDNA and cox1 sequences from Dermacentor sp. showed maximum identities of 98.42% and 97.45% with Dermacentor pavlovskyi from China. The phylogenetic analysis based on 16S rDNA and cox1 of A. coniceps showed a close evolutionary relationship with the same species. The case of Dermacentor sp., based on 16S DNA and cox1, indicated a close evolutionary relationship with Dermacentor pavlovskyi from China.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mehran Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zafar Ullah
- Department of Zoology, University of Loralai, Loralai, Balochistan, Pakistan
| | - Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Kim MM, Shea G, Šlapeta J. Detection of tick-borne bacterial DNA (Rickettsia sp.) in reptile ticks Amblyomma moreliae from New South Wales, Australia. Parasitol Res 2024; 123:89. [PMID: 38194190 PMCID: PMC10776464 DOI: 10.1007/s00436-023-08108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Ticks are major arthropod vectors of disease, transmitting tick-borne pathogens during blood meal episodes. Rickettsia spp. and Borrelia spp. are two tick-borne pathogens of zoonotic concern previously identified in DNA isolates from the tick genera Amblyomma and Bothriocroton associated with reptilian hosts in Australia. Some reports suggest that these reptile ticks bite and attach to humans via accidental parasitism and transmit disease, with the tick Bothriocroton hydrosauri known to transmit Rickettsia honei or Flinders Island Spotted Fever Rickettsia to humans. This descriptive study aims to identify the ticks collected from wild reptiles submitted to veterinary clinics and captured by snake rescuers from New South Wales (NSW), Australia, and detect the presence of tick-borne bacterial DNA using quantitative polymerase chain reaction (qPCR) to detect Rickettsia spp. and Bartonella spp. and conventional nested-PCR to detect Borrelia spp. Morphological identification revealed ticks removed from one eastern blue-tongued lizard (Tiliqua scincoides scincoides) from North-Eastern NSW (Lismore), one eastern blue-tongued lizard from the Greater Sydney area (Canley Heights), one diamond python (Morelia spilota spilota) from the Greater Sydney area (Woronora Heights) and one red-bellied black snake (Pseudechis porphyriacus) from the Greater Sydney Area (Cronulla) in New South Wales were Amblyomma moreliae. No ticks were positive for Bartonella spp. and Borrelia spp. DNA using real-time PCR targeting ssrA gene and nested PCR targeting Borrelia-specific 16S rRNA gene, respectively. Real-time PCR targeting gltA, ompA, ompB and 17kDa gene of Rickettsia spp. revealed 14 out of 16 ticks were positive. The undescribed Rickettsia sp. DNA was identical to that previously recovered from reptile ticks in Australia and closely related to Rickettsia tamurae and Rickettsia monacensis, both of which are aetiologic pathogens of the Spotted Fever Group Rickettsiosis (SFGR). These results accentuate the ongoing need for increased study efforts to understand zoonotic potential of bacteria from reptile ticks and the tick-reptile-human relationship.
Collapse
Affiliation(s)
- Michelle Misong Kim
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Glenn Shea
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Australian Museum Research Institute, The Australian Museum, Sydney, Sydney, New South Wales, 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- The University of Sydney Institute for Infectious Diseases, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
11
|
Mans BJ. Paradigms in tick evolution. Trends Parasitol 2023; 39:475-486. [PMID: 37061441 DOI: 10.1016/j.pt.2023.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/17/2023]
Abstract
The study of tick evolution may be classified into disciplines such as taxonomy and systematics, biogeography, evolution and development (evo-devo), ecology, and hematophagy. These disciplines overlap and impact each other to various extents. Advances in one field may lead to paradigm shifts in our understanding of tick evolution not apparent to other fields. The current study considers paradigm shifts that occurred, are in the process, or may occur in future for the disciplines that study tick evolution. Some disciplines have undergone significant changes, while others may still be developing their own paradigms. Integration of these various disciplines is essential to come to a holistic view of tick evolution; however, maturation of paradigms may be necessary before this vision can be attained.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa; Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa.
| |
Collapse
|
12
|
Kelava S, Mans BJ, Shao R, Barker D, Teo EJM, Chatanga E, Gofton AW, Moustafa MAM, Nakao R, Barker SC. Seventy-eight entire mitochondrial genomes and nuclear rRNA genes provide insight into the phylogeny of the hard ticks, particularly the Haemaphysalis species, Africaniella transversale and Robertsicus elaphensis. Ticks Tick Borne Dis 2023; 14:102070. [PMID: 36455382 DOI: 10.1016/j.ttbdis.2022.102070] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022]
Abstract
Hoogstraal and Kim (1985) proposed from morphology, three groups of Haemaphysalis subgenera: (i) the "structurally advanced"; (ii) the "structurally intermediate"; and (iii) the "structurally primitive" subgenera. Nuclear gene phylogenies, however, did not indicate monophyly of these morphological groups but alas, only two mitochondrial (mt) genomes from the "structurally intermediate" subgenera had been sequenced. The phylogeny of Haemaphysalis has not yet been resolved. We aimed to resolve the phylogeny of the genus Haemaphysalis, with respect to the subgenus Alloceraea. We presented 15 newly sequenced and annotated mt genomes from 15 species of ticks, five species of which have not been sequenced before, and four new 18S rRNA and 28S rRNA nuclear gene sequences. Our datasets were constructed from 10 mt protein-coding genes, cox1, and the 18S and 28S nuclear rRNA genes. We found a 132-bp insertion between tRNA-Glu (E) gene and the nad1 gene in the mt genome of Haemaphysalis (Alloceraea) inermis that resembles insertions in H. (Alloceraea) kitaokai and Rhipicephalus (Boophilus) geigyi. Our mt phylogenies had the three species of Amblyomma (Aponomma) we sequenced embedded in the main clade of Amblyomma: Am. (Aponomma) fimbriatum, Am. (Aponomma) gervaisi and Am. (Aponomma) latum. This is further support for the hypothesis that the evolution of eyes appears to have occurred in the most-recent-common-ancestor of Amblyocephalus (i.e. Amblyomminae plus Rhipicephalinae) and that eyes were subsequently lost in the most-recent-common-ancestor of the subgenus Am. (Aponomma). Either Africaniella transversale or Robertsicus elaphensis, or perhaps Af. transversale plus Ro. elaphensis, appear to be the sister-group to the rest of the metastriate Ixodida. Our cox1 phylogenies did not indicate monophyly of the "structurally primitive", "structurally intermediate" nor the "structurally advanced" groups of Haemaphysalis subgenera. Indeed, the subgenus Alloceraea may be the only monophyletic subgenus of the genus Haemaphysalis sequenced thus far. All of our mt genome and cox1 phylogenies had the subgenus Alloceraea in a clade that was separate from the rest of the Haemaphysalis ticks. If Alloceraea is indeed the sister to the rest of the Haemaphysalis subgenera this would resonate with the argument of Hoogstraal and Kim (1985), that Alloceraea was a subgenus of "primitive" Haemaphysalis. Alectorobius capensis from Japan had a higher genetic-identity to A. sawaii, which was also from Japan, than to the A. capensis from South Africa. This indicates that A. capensis from Japan may be a cryptic species with respect to the A. capensis from South Africa.
Collapse
Affiliation(s)
- Samuel Kelava
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Australia
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; The Department of Life and Consumer Sciences, University of South Africa, Florida 1709, South Africa; The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa
| | - Renfu Shao
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Dayana Barker
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Ernest J M Teo
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Australia
| | - Elisha Chatanga
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | | | - Mohamed Abdallah Mohamed Moustafa
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Stephen C Barker
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
13
|
Hard ticks in Burmese amber with Australasian affinities. Parasitology 2023; 150:157-171. [PMID: 36341553 PMCID: PMC10090639 DOI: 10.1017/s0031182022001585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three examples of metastriate hard ticks (Ixodida: Ixodidae) with apparent affinities to modern Australasian genera are described from the mid-Cretaceous (ca. 100 Ma) Burmese amber of Myanmar. Two nymphs of Bothriocroton muelleri sp. nov. represent the oldest (and only) fossil record of this genus, living members of which are restricted to Australia and predominantly feed on monitor lizards, snakes and echidnas. A female of Archaeocroton kaufmani sp. nov. shares its basis capitulum shape with the tuatara tick Archaeocroton sphenodonti (Dumbleton, 1943), the only extant member of this genus and an endemic species for New Zealand. The presence of 2 Australasian genera in Burmese amber is consistent with a previous record of an Ixodes Latreille, 1795 tick from this deposit which resembles Australian members of this genus. They further support an emerging hypothesis that fauna of the amber forest, which may have been on an island at the time of deposition, was at least partly Gondwanan in origin. A revised evolutionary tree for Ixodida is presented compiling data from several new Burmese amber ticks described in the last few years.
Collapse
|
14
|
Ahmad I, Ullah S, Alouffi A, Almutairi MM, Khan M, Numan M, Safi SZ, Chitimia-Dobler L, Tanaka T, Ali A. Description of Male, Redescription of Female, Host Record, and Phylogenetic Position of Haemaphysalis danieli. Pathogens 2022; 11:pathogens11121495. [PMID: 36558829 PMCID: PMC9788198 DOI: 10.3390/pathogens11121495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
Haemaphysalis ticks are globally distributed with the greatest diversity in the Oriental region. This study aimed to primarily provide information on the morphology, host record, and preliminary phylogenetic position of a poorly known tick Haemaphysalis danieli. Herds comprised of goats and sheep were examined for this tick species in Upper Dir, Khyber Pakhtunkhwa, Pakistan. A total of 127 ticks, including males (n = 15, 11.8%) and females (n = 112, 88.2%), were collected, and morphologically identified as H. danieli. The morphological identification was confirmed through the 16S rDNA and cytochrome c oxidase (cox1) sequences. Phylogenetic analysis inferred based on 16S rDNA and cox1 showed a close evolutionary relationship of H. danieli with a conspecific from China and an undetermined Haemaphysalis sp. from China and Anatolia. A total of 32/223 (14.3%) goats in two different herds were the only host infested by H. danieli. The earliest study provided the morphological description of H. danieli male, host record, and phylogenetic position. The information provided herein could assist in minimizing the knowledge gap regarding the systematic and taxonomy of Haemaphysalis species.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Shafi Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehran Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | | | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: author:
| |
Collapse
|
15
|
MALDI-TOF MS Identification of Dromedary Camel Ticks and Detection of Associated Microorganisms, Southern Algeria. Microorganisms 2022; 10:microorganisms10112178. [DOI: 10.3390/microorganisms10112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
This study used MALDI-TOF MS and molecular tools to identify tick species infesting camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms. Ninety-one adult ticks were collected from nine camels and were morphologically identified as Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this study. The spectra of the remaining tick specimens not included in the MS database were queried against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and 2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.
Collapse
|
16
|
An L, Bhowmick B, Liang D, Suo P, Liao C, Zhao J, Han Q. The microbiota changes of the brown dog tick, Rhipicephalus sanguineus under starvation stress. Front Physiol 2022; 13:932130. [PMID: 36160860 PMCID: PMC9504665 DOI: 10.3389/fphys.2022.932130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Rhipicephalus sanguineus, the brown dog tick, is the most widespread tick in the world and a predominant vector of multiple pathogens affecting wild and domestic animals. There is an increasing interest in understanding the role of tick microbiome in pathogen acquisition and transmission as well as in environment–vector interfaces. Several studies suggested that the tick microbial communities are under the influence of several factors including the tick species, dietary bloodmeal, and physiological stress. Compared with insects, very little of the microbial community is known to contribute to the nutrition of the host. Therefore, it is of significance to elucidate the regulation of the microbial community of Rh. Sanguineus under starvation stress. Starvation stress was induced in wild-type adults (1 month, 2 months, 4 months, 6 months) and the microbial composition and diversity were analyzed before and after blood feeding. After the evaluation, it was found that the microbial community composition of Rh. sanguineus changed significantly with starvation stress. The dominant symbiotic bacteria Coxiella spp. of Rh. sanguineus gradually decreased with the prolongation of starvation stress. We also demonstrated that the starvation tolerance of Rh. sanguineus was as long as 6 months. Next, Coxiella-like endosymbionts were quantitatively analyzed by fluorescence quantitative PCR. We found a pronounced tissue tropism in the Malpighian tubule and female gonad, and less in the midgut and salivary gland organs. Finally, the blood-fed nymphs were injected with ofloxacin within 24 h. The nymphs were allowed to develop into adults. It was found that the adult blood-sucking rate, adult weight after blood meal, fecundity (egg hatching rate), and feeding period of the newly hatched larvae were all affected to varying degrees, indicating that the removal of most symbiotic bacteria had an irreversible effect on it.
Collapse
Affiliation(s)
- Liping An
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- One Health Institute, Hainan University, Haikou, Hainan, China
| | - Biswajit Bhowmick
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- One Health Institute, Hainan University, Haikou, Hainan, China
| | - Dejuan Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- One Health Institute, Hainan University, Haikou, Hainan, China
| | - Penghui Suo
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- One Health Institute, Hainan University, Haikou, Hainan, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- One Health Institute, Hainan University, Haikou, Hainan, China
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- One Health Institute, Hainan University, Haikou, Hainan, China
- *Correspondence: Jianguo Zhao, ; Qian Han,
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- One Health Institute, Hainan University, Haikou, Hainan, China
- *Correspondence: Jianguo Zhao, ; Qian Han,
| |
Collapse
|
17
|
Bakkes DK, Matloa DE, Mans BJ, Matthee CA. Their young bite better: On- and off-host selection pressure as drivers for evolutionary-developmental modification in Rhipicephalus ticks. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101189. [PMID: 35785582 DOI: 10.1016/j.asd.2022.101189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Distinct life stages may experience different selection pressures influencing phenotypic evolution. Morphological evolution is also constrained by early phenotypes, since early development forms the phenotypic basis of later development. This work investigates evolutionary-developmental modification in three life stages and both sexes of 24 Rhipicephalus species using phylogenetic comparative methods for geometric morphometrics of basis capituli (basal mouthpart structure used for host attachment), and scutum or conscutum areas (proxy for overall body size). Findings indicate species using large hosts at early life stages have distinct basis capituli shapes, correlated with host size, enabling attachment to the tough skins of large hosts. Host-truncate species (one- and two-host) generally retain these adaptive features into later life stages, suggesting neoteny is linked to the evolution of host truncation. In contrast, species using small hosts at early life stages have lost these features. Developmental trajectories differ significantly between host-use strategies (niches), and correlate with distinct clades. In two-host and three-host species using large hosts at early life stages, developmental change is heterotopically accelerated (greater cell mass development) before the first off-host period where selection probably favours large individuals able to better resist dehydration when questing (waiting) for less abundant, less active hosts. In other species, development is heterotopically reduced (neotenic), possibly because dehydration risk is bypassed by prolonged host attachment (one-host species - heterotopic neoteny), or is allometrically repatterned possibly by using highly abundant and active hosts (three-host species using small hosts at early life stages - allometric repatterning). These findings highlight complex trade-offs between on- and off-host factors of free-living ectoparasite ecology, which mediate responses to diverse selection pressures varied by life stage and host-use strategy. It is proposed that these trade-offs shape evolutionary-developmental morphology and diversity of Rhipicephalus ticks.
Collapse
Affiliation(s)
- Deon K Bakkes
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, 0110, South Africa; Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Dikeledi E Matloa
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, 0110, South Africa
| | - Ben J Mans
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa; Department of Life and Consumer Sciences, University of South Africa, South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
18
|
Description of the female, nymph and larva and mitochondrial genome, and redescription of the male of Ixodes barkeri Barker, 2019 (Acari: Ixodidae), from the short-beaked echidna, Tachyglossus aculeatus, with a consideration of the most suitable subgenus for this tick. Parasit Vectors 2022; 15:117. [PMID: 35365195 PMCID: PMC8974234 DOI: 10.1186/s13071-022-05165-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ixodes barkeri, a tick with a distinctive ventrolateral horn-like projection on palpal segment 1, was described in 2019 from two male ticks from the Wet Tropics of Far North Queensland, Australia. However, females lie at the core of the taxonomy and subgenus classification of Ixodes; hence, we sought specimens of female ticks, successfully recovering females, plus nymphs and larvae. Mitochondrial genomes are also desirable additions to the descriptions of species of ticks particularly regarding subgenus systematics. So, we sequenced the mt genomes of I. barkeri Barker, 2019, and the possible relatives of I. barkeri that were available to us (I. australiensis Neumann, 1904, I. fecialis Warburton & Nuttall, 1909, and I. woyliei Ash et al. 2017) with a view to discovering which if any of the subgenera of Ixodes would be most suitable for I. barkeri Barker, 2019. Results The female, nymph, larva and mitochondrial genome of Ixodes barkeri Barker, 2019, are described for the first time and the male of I. barkeri is redescribed in greater detail than previously. So far, I. barkeri is known only from a monotreme, the short-beaked echidna, Tachyglossus aculeatus (Shaw, 1792), from the highland rainforests of the Wet Tropics of Far North Queensland, Australia. Conclusions Our phylogeny from entire mitochondrial genomes indicated that I. barkeri and indeed I. woyliei Ash et al., 2017, another tick that was described recently, are best placed in the subgenus Endopalpiger Schulze, 1935. Graphical Abstract ![]()
Collapse
|
19
|
Laga AC, Mather TN, Duhaime RJ, Granter SR. Identification of Hard Ticks in the United States: A Practical Guide for Clinicians and Pathologists. Am J Dermatopathol 2022; 44:163-169. [PMID: 34132663 DOI: 10.1097/dad.0000000000002005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT According to guidelines published by the Infectious Disease Society of America, Lyme disease prophylaxis is possible if a tick can be identified as Ixodes scapularis (nymphal or adult) within 72 hours of tick removal. However, a recent survey of medical practitioners indicates generally poor proficiency in tick identification. In this study, we provide a simple, practical guide to aid medical practitioners in identifying the most commonly encountered human biting ticks of North America.
Collapse
Affiliation(s)
- Alvaro C Laga
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Thomas N Mather
- Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI; and
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI
| | - Roland J Duhaime
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI
| | - Scott R Granter
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Hard Ticks (Ixodidae) from Wildlife in Liguria, Northwest Italy: Tick Species Diversity and Tick-Host Associations. INSECTS 2022; 13:insects13020199. [PMID: 35206772 PMCID: PMC8880679 DOI: 10.3390/insects13020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023]
Abstract
Hard ticks’ geographical distribution and abundance are influenced by wildlife population. This work presents the results of the identification of ticks retrieved from wild animals in the framework of a Regional Plan of Monitoring and Surveillance of Wildlife health. The frequency of distribution of ticks in different hosts and their geographical patterns were also investigated. Ticks were collected from game animals (Sus scrofa, Capreolus capreolus, Dama dama, and Rupicapra rupicapra) during two hunting seasons (2018–2019 and 2019–2020) in the four provinces of the Liguria region in northwest Italy. In the same period, ticks were also collected from carcasses of Vulpes vulpes, Canis lupus, Meles meles, and Asio otus received for necropsy. Tick species were identified according to taxonomic keys. A total of 819 ticks, removed from 259 animals, were found and identified. Overall, Ixodes ricinus was the dominant species (62.6%), followed by Dermacentor marginatus (24.5%), Rhipicephalus sanguineus s.l. (12.5%), Haemaphysalis punctata (0.2%), and Ixodes hexagonus (0.1%). I. ricinus was also the prevalent species in roe deer and in fallow deer and the only species collected from the three wolf carcasses examined. In contrast, D. marginatus was the dominant species in S. scrofa. This last tick species was also more frequent in one province (Imperia), whereas Ixodes spp. were more common in another one (Savona). Wild animals proved to be useful for characterizing and monitoring tick population.
Collapse
|
21
|
Mofokeng LS, Smit NJ, Cook CA. Molecular screening of ticks of the genus Amblyomma (Acari: Ixodidae) infesting South African reptiles with comments on their potential to act as vectors for Hepatozoon fitzsimonsi (Dias, 1953) (Adeleorina: Hepatozoidae). Int J Parasitol Parasites Wildl 2021; 16:163-167. [PMID: 34584839 PMCID: PMC8455905 DOI: 10.1016/j.ijppaw.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/01/2022]
Abstract
In South Africa, the role of reptilian ticks in the transmission of haemoparasites is lacking, in part, due to limited information on tick diversity and their associated haemoparasites. The aim of this research was to identify tick species parasitizing reptiles and to molecularly screen these ectoparasites for species of the blood apicomplexan genus Hepatozoon. Samples were collected from Ndumo Game Reserve, KwaZulu-Natal, and the Cape Columbine region, Western Cape. Reptiles collected included 2 snakes, 2 monitor lizards of a single species respectively, as well as 17 tortoises of four species. Ticks collected from these were morphologically identified as Amblyomma latum (n = 2) and Amblyomma marmoreum (n = 98), this identification was molecularly confirmed using 16S rRNA and CO1 genes. Screening for Hepatozoon was done by amplifying the 18S rRNA gene. A species of Hepatozoon, Hepatozoon fitzsimonsi, was identified from A. marmoreum ticks, with an overall prevalence of 10%. This Hepatozoon species, has been described parasitizing tortoises from southern Africa, and has been reported from ticks infesting tortoises from Kenya, East Africa. Even though ticks have been suggested to be the likely vector of this Hepatozoon species, with this supported by the findings of Hepatozoon-like developmental stages in ticks collected off of infected tortoises, a recent systematic revision placed this species in a newly erected genus Bartazoon, a genus vectorised by biting insects. The present study thus provides further support for ticks acting as the potential vectors of H. fitzsimonsi.
Collapse
Affiliation(s)
- Lehlohonolo S. Mofokeng
- Water Research Group, Unit for Environmental Sciences and Management, North - West University, Potchefstroom, 2531, South Africa
| | - Nico J. Smit
- Water Research Group, Unit for Environmental Sciences and Management, North - West University, Potchefstroom, 2531, South Africa
| | - Courtney A. Cook
- Water Research Group, Unit for Environmental Sciences and Management, North - West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
22
|
Selles SMA, Kouidri M, González MG, González J, Sánchez M, González-Coloma A, Sanchis J, Elhachimi L, Olmeda AS, Tercero JM, Valcárcel F. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens 2021; 10:pathogens10111379. [PMID: 34832535 PMCID: PMC8617816 DOI: 10.3390/pathogens10111379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
Tick control is a priority in order to prevent the transmission of vector-borne diseases. Industrial chemical acaricides and repellents have been the most efficient tools against hard ticks for a long time. However, the appearance of resistances has meant the declining effectiveness of the chemicals available on the market. The trend today is to develop alternative control methods using natural products to replace nonefficient pesticides and to preserve the efficient ones, hoping to delay resistance development. Traditional in vitro evaluation of acaricidal activity or resistance to synthetic pesticides have been reviewed and they mainly focus on just one species, the one host tick (Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)). Recent reports have called for the standardization of natural product components, extraction techniques, and experimental design to fully discover their acaricidal potential. This study reviews the main variables used in the bibliography about the efficiency of natural products against ticks, and it proposes a unification of variables relating to ticks, practical development of bioassays, and estimation of ixodicidal activity.
Collapse
Affiliation(s)
- Sidi Mohammed Ammar Selles
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
- Laboratory of Research on Local Animal Products, University of Tiaret, Tiaret 14000, Algeria
- Correspondence:
| | - Mokhtaria Kouidri
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
- Laboratory of Farm Animal Products, University of Tiaret, Tiaret 14000, Algeria
| | - Marta G. González
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
| | - Julia González
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - María Sánchez
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
- Villamagna S.A., Finca “La Garganta”, 14440 Villanueva de Córdoba, Spain;
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
| | - Jaime Sanchis
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
- Facultad de Veterinaria, CENUR Litoral Norte, Universidad de la República, Rivera, Salto 1350, Uruguay
| | - Latifa Elhachimi
- Département de parasitologie et de Santé Publique, Institut Agronomique et Vétérinaire Hassan II, Rabat B.P. 6202, Morocco;
| | - A. Sonia Olmeda
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - José Maria Tercero
- Villamagna S.A., Finca “La Garganta”, 14440 Villanueva de Córdoba, Spain;
| | - Félix Valcárcel
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
| |
Collapse
|
23
|
A Review of Australian Tick Vaccine Research. Vaccines (Basel) 2021; 9:vaccines9091030. [PMID: 34579266 PMCID: PMC8473225 DOI: 10.3390/vaccines9091030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Tick vaccine research in Australia has demonstrated leadership worldwide through the development of the first anti-tick vaccine in the 1990s. Australia’s Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) research led to the development of vaccines and/or precursors of vaccines (such as crude extracts) for both the cattle tick and the paralysis tick. CSIRO commercialised the Bm86 vaccine in the early 1990s for Rhipicephalus australis; however, issues with dosing and lack of global conservation led to the market closure of Tick-GARD in Australia. New research programs arose both locally and globally. The Australian paralysis tick Ixodes holocyclus has perplexed research veterinarians since the 1920s; however, not until the 2000s did biotechnology exist to elucidate the neurotoxin—holocyclotoxin family of toxins leading to a proof of concept vaccine cocktail. This review revisits these discoveries and describes tributes to deceased tick vaccine protagonists in Australia, including Sir Clunies Ross, Dr Bernard Stone and Dr David Kemp.
Collapse
|
24
|
Batool M, Blazier JC, Rogovska YV, Wang J, Liu S, Nebogatkin IV, Rogovskyy AS. Metagenomic analysis of individually analyzed ticks from Eastern Europe demonstrates regional and sex-dependent differences in the microbiota of Ixodes ricinus. Ticks Tick Borne Dis 2021; 12:101768. [PMID: 34119873 DOI: 10.1016/j.ttbdis.2021.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Understanding the microbial ecology of disease vectors may be useful for development of novel strategies aimed at preventing transmission of vector-borne pathogens. Although Ixodes ricinus is one of the most important tick vectors, the microbiota of this tick has been examined for only limited parts of the globe. To date, the microbiota of I. ricinus ticks collected from Eastern Europe has not been defined. The objective of this study was to compare microbiota of I. ricinus ticks within (males vs. females) and between collection sites that represented three administrative regions of Ukraine, Dnipropetrovs'k (D), Kharkiv (K), and Poltava (P). A total of 89 questing I. ricinus adults were collected from region D (number of ticks, n = 29; 14 males and 15 females), region K (n = 30; 15 males and 15 females) and region P (n = 30; 15 males and 15 females). Each tick was subjected to metagenomic analysis by targeting the V6 region of 16S rRNA gene through the Illumina 4000 Hiseq sequencing. The alpha diversity analysis demonstrated that, regardless of tick sex, patterns of bacterial diversity in ticks from regions K and P were similar, whereas the microbiota of region D ticks was quite distinct. A number of inter-regional differences were detected by most beta diversity metrics for both males and females. The inter-regional variations were also supported by the principal coordinate analysis based on the unweighted UniFrac metrics with three region-specific clusters of female ticks and one distinct cluster of region D males. Lastly, numerous region- and sex-specific differences were also identified in the relative abundance of various bacterial taxa. Collectively, the present findings demonstrate that the microbiota of the I. ricinus tick can exhibit a high degree of variation between tick sexes and geographical regions.
Collapse
Affiliation(s)
- Maliha Batool
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical, Sciences, Texas A&M University, TAMU, College Station, TX, 77843, USA
| | - John C Blazier
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
| | - Yuliya V Rogovska
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical, Sciences, Texas A&M University, TAMU, College Station, TX, 77843, USA
| | - Jiangli Wang
- Department of Statistics and Finance, the University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuling Liu
- Statistical Collaboration Center, Department of Statistics, College of Science, Texas A&M University, College Station, TX 77843, USA
| | - Igor V Nebogatkin
- I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, 01601, Ukraine
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical, Sciences, Texas A&M University, TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Bakkes DK, Ropiquet A, Chitimia-Dobler L, Matloa DE, Apanaskevich DA, Horak IG, Mans BJ, Matthee CA. Adaptive radiation and speciation in Rhipicephalus ticks: A medley of novel hosts, nested predator-prey food webs, off-host periods and dispersal along temperature variation gradients. Mol Phylogenet Evol 2021; 162:107178. [PMID: 33892098 DOI: 10.1016/j.ympev.2021.107178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023]
Abstract
Rhipicephalus are a species-diverse genus of ticks, mainly distributed in the Afrotropics with some species in the Palearctic and Oriental regions. Current taxonomic consensus comprise nine informal species groups/lineages based on immature morphology. This work integrates biogeographic, ecological and molecular lines of evidence to better understand Rhipicephalus evolution. Phylogenetic analysis based on four genes (12S, 16S, 28S-D2 and COI) recovered five distinct clades with nine descendant clades that are generally congruent with current taxonomy, with some exceptions. Historical biogeography is inferred from molecular divergence times, ancestral distribution areas, host-use and climate niches of four phylogenetically significant bioclimatic variables (isothermality, annual, seasonal and diurnal temperature range). Novel hosts enabled host-linked dispersal events into new environments, and ticks exploited new hosts through nested predator-prey connections in food webs. Diversification was further induced by climate niche partitioning along gradients in temperature range during off-host periods. Ancestral climate niche estimates corroborated dispersal events by indicating hypothetical ancestors moved into environments with different annual and seasonal temperature ranges along latitudinal gradients. Host size for immature and adult life stages was important for dispersal and subsequent diversification rates. Clades that utilise large, mobile hosts (ungulates and carnivores) early in development have wider geographic ranges but slower diversification rates, and those utilising small, less mobile hosts (rodents, lagomorphs and afroinsectivores) early in development have smaller ranges but higher diversification rates. These findings suggest diversification is driven by a complex set of factors linked to both host-associations (host size, ranges and mobility) and climate niche partitioning along annual and seasonal temperature range gradients that vary with latitude. Moreover, competitive interactions can reinforce these processes and drive speciation. Off-host periods facilitate adaptive radiation by enabling host switches along nested predator-prey connections in food webs, but at the cost of environmental exposure that partitions niches among dispersing progenitors, disrupting geneflow and driving diversification. As such, the evolution and ecological niches of Rhipicephalus are characterised by trade-offs between on- and off-host periods, and these trade-offs interact with nested predator-prey connections in food webs, host-use at different life stages, as well as gradients in annual and seasonal temperature ranges to drive adaptive radiation and speciation.
Collapse
Affiliation(s)
- Deon K Bakkes
- Gertrud Theiler Tick Museum - Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria 0110, South Africa; Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Anne Ropiquet
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Middlesex University, Department of Natural Sciences- Faculty of Science and Technology, London NW4 4BT, United Kingdom
| | | | - Dikeledi E Matloa
- Gertrud Theiler Tick Museum - Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Dmitry A Apanaskevich
- United States National Tick Collection, the James H. Oliver, Jr. Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 30460-8042, USA; Biology Department, Georgia Southern University, Statesboro, GA 30460, USA; Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Ivan G Horak
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Ben J Mans
- Gertrud Theiler Tick Museum - Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa; Department of Life and Consumer Sciences, University of South Africa, South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
26
|
Orkun Ö, Vatansever Z. Rediscovery and first genetic description of some poorly known tick species: Haemaphysalis kopetdaghica Kerbabaev, 1962 and Dermacentor raskemensis Pomerantzev, 1946. Ticks Tick Borne Dis 2021; 12:101726. [PMID: 33857749 DOI: 10.1016/j.ttbdis.2021.101726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to provide novel information for some poorly known/rare tick species collected from wild goats (Capra aegagrus) in the mountains of Eastern Anatolia, Turkey and to expand upon the available genetic data. The collected ticks were morphologically identified as Haemaphysalis kopetdaghica (all active stages, n = 140), Dermacentor raskemensis (adults, n = 7), Ixodes gibbosus (adults, n = 15), Rhipicephalus kohlsi (female, n = 1), and R. bursa (nymphs, n = 2). A total of 32 engorged ticks (6 larvae, 6 nymphs, and 20 females) collected were allowed to molt to the next stage or for egg laying and larval hatching, respectively. In addition, one R. kohlsi female (previously confirmed by SEM microscopy) collected from a wild goat in the neighboring province of Erzurum was included in this study for further genetic comparison. The partial mitochondrial 16S rDNA and cytochrome c oxidase subunit 1 (barcoding regions) genes of each tick species were sequenced. All DNA samples obtained from the ticks were checked by PCR for the presence of Anaplasma spp., Babesia spp., Borrelia burgdorferi sensu lato, spotted fever group rickettsiae, and Theileria spp., but were found to be negative. Phylogenetic analyses of the 16S rDNA and cox1 genes were performed using the ML method to determine their genetic relationship with related ticks. As a result, this study has: i) rediscovered and provided two new tick records (H. kopetdaghica and D. raskemensis) for Turkey, ii) provided the first genetic data for H. kopetdaghica and D. raskemensis and revealed their phylogenetic relationships, iii) characterized the cox1 region of I. gibbosus for the first time, and iv) revealed significant genetic diversity between R. kohlsi from Anatolia and R. kohlsi from Oman, suggesting that R. kohlsi could include a cryptic species.
Collapse
Affiliation(s)
- Ömer Orkun
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Zati Vatansever
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
27
|
Negi T, Kandari LS, Arunachalam K. Update on prevalence and distribution pattern of tick-borne diseases among humans in India: a review. Parasitol Res 2021; 120:1523-1539. [PMID: 33797610 DOI: 10.1007/s00436-021-07114-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
In the present scenario, tick-borne diseases (TBDs) are well known for their negative impacts on humans as well as animal health in India. The reason lies in their increased incidences due to global warming, environmental and ecological changes, and availability of suitable habitats. On a global basis, they are now considered a serious threat to human as well as livestock health. The major tick-borne diseases in India include Kyasanur forest disease (KFD), Crimean-congo hemorrhagic fever (CCHF), Lyme disease (LD), Q fever (also known as coxiellosis), and Rickettsial infections. In recent years, other tick-borne diseases such as Babesiosis, Ganjam virus (GANV), and Bhanja virus (BHAV) infections have also been reported in India. The purpose of this paper is to review the history and the current state of knowledge of tick-borne diseases in the country. The conclusion of this review is extending the requirement of greater efforts in research and government management for the diagnosis and treatment and as well as prevention of these diseases so that tick-borne disease burden should be minimizing in India.
Collapse
Affiliation(s)
- Tripti Negi
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248 012, India.
| | - Laxman Singh Kandari
- Department of Forestry and Natural Resources, School of Agriculture and Allied Science, HNB Garhwal University, Srinagar, Uttarakhand, 246 174, India
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248 012, India
| |
Collapse
|
28
|
Hanafi-Bojd AA, Jafari S, Telmadarraiy Z, Abbasi-Ghahramanloo A, Moradi-Asl E. Spatial Distribution of Ticks (Arachniada: Argasidae and Ixodidae) and Their Infection Rate to Crimean-Congo Hemorrhagic Fever Virus in Iran. J Arthropod Borne Dis 2021; 15:41-59. [PMID: 34277855 PMCID: PMC8271239 DOI: 10.18502/jad.v15i1.6485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The Crimean-Congo Hemorrhagic Fever (CCHF) is one of the most important arthropod-borne viral diseases with a mortality rate of about 30% among humans. The disease, caused by a Nairovirus, is transmitted to humans and animals by hard and soft ticks. This study aimed to determine the distribution of soft and hard ticks in the past three decades in Iran with an emphasis on the vectors of the CCHF virus. Methods: In this study, all studies that were carried out in different regions of Iran from 1979 to 2018 and their results were published in prestigious journals were used to create a database. The distribution of ticks was mapped using ArcMap10.3. Results: Based on the results, nine genera and 37 species of soft and hard ticks were recorded in Iran. So far, six genera and 16 species of hard and soft ticks were reported to be infected with the CCHF virus. The infection to this virus was reported from 18 out of 31 provinces, with a high rate in Sistan and Baluchistan as well as Khuzestan provinces. The highest levels of CCHF infection belonged to Hyalomma marginatum and H. anatolicum. Conclusion: The main vectors of CCHF, H. marginatum and H. anatolicum, were reported in more than 38.7% of Iran's provinces, and these two species were identified as invasive species in Iran. Thus, control activities should be strengthened to avoid the outbreaks of CCHF.
Collapse
Affiliation(s)
- Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samin Jafari
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakkyeh Telmadarraiy
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Abbasi-Ghahramanloo
- Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Eslam Moradi-Asl
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
29
|
Nuclear (18S-28S rRNA) and mitochondrial genome markers of Carios (Carios) vespertilionis (Argasidae) support Carios Latreille, 1796 as a lineage embedded in the Ornithodorinae: re-classification of the Carios sensu Klompen and Oliver (1993) clade into its respective subgenera. Ticks Tick Borne Dis 2021; 12:101688. [PMID: 33652332 DOI: 10.1016/j.ttbdis.2021.101688] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
Argasid systematics remains controversial with widespread adherence to the Hoogstraal (1985) classification scheme, even though it does not reflect evolutionary relationships and results in paraphyly for the main genera of soft ticks (Argasidae), namely Argas and Ornithodoros. The alternative classification scheme, proposed by Klompen and Oliver (1993), has problems of its own: most notably paraphyly of the subgenus Pavlovskyella and the controversial grouping together of the subgenera Alectorobius, Antricola, Carios, Chiropterargas, Nothoaspis, Parantricola, Reticulinasus and Subparmatus into the genus Carios. Recent phylogenetic analyses of 18S/28S rRNA sequences and mitochondrial genomes agree with the scheme of Klompen and Oliver (1993), with regard to the paraphyly of Pavlovskyella, placement of Alveonasus, Ogadenus, Proknekalia and Secretargas in the Argasinae and placement of Carios and Chiropterargas in the Ornithodorinae (Mans et al., 2019). The Carios clade and its constituent subgenera remain controversial, since the phylogenetic position of its type species Carios (Carios) vespertilionis Latreille, 1796 (formerly Argas vespertilionis) has not been determined with confidence. The current study aimed to resolve Carios sensu lato Klompen and Oliver, 1993, and Carios sensu stricto Hoogstraal, 1985, by determining and analysing phylogenetic nuclear and mitochondrial markers for C. (C.) vespertilionis. Both the nuclear and mitochondrial markers support placement of Carios s.s. within the subfamily Ornithodorinae, but to the exclusion of the clade that includes the 6 other subgenera that are part of Carios s.l. Klompen and Oliver (1993), namely Alectorobius, Antricola, Nothoaspis, Parantricola, Reticulinasus and Subparmatus. These 6 subgenera form a monophyletic clade that might be placed as new subgenera within the genus Alectorobius, or elevated to genera. Given the substantial differences in biology among these subgenera, we propose that these 6 subgenera be elevated to genera. Thus, we propose to modify the classification scheme of Mans et al. (2019) so that the subfamily Argasinae now has six genera, Alveonasus, Argas (subgenera Argas and Persicargas), Navis, Ogadenus, Proknekalia and Secretargas, and the subfamily Ornithodorinae has nine genera, Alectorobius, Antricola (subgenera Antricola and Parantricola), Carios, Chiropterargas, Nothoaspis, Ornithodoros (subgenera Microargas, Ornamentum, Ornithodoros, Pavlovskyella and Theriodoros), Otobius, Reticulinasus and Subparmatus (genera indicated in bold).
Collapse
|
30
|
Changing the Recipe: Pathogen Directed Changes in Tick Saliva Components. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041806. [PMID: 33673273 PMCID: PMC7918122 DOI: 10.3390/ijerph18041806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Ticks are obligate hematophagous parasites and are important vectors of a wide variety of pathogens. These pathogens include spirochetes in the genus Borrelia that cause Lyme disease, rickettsial pathogens, and tick-borne encephalitis virus, among others. Due to their prolonged feeding period of up to two weeks, hard ticks must counteract vertebrate host defense reactions in order to survive and reproduce. To overcome host defense mechanisms, ticks have evolved a large number of pharmacologically active molecules that are secreted in their saliva, which inhibits or modulates host immune defenses and wound healing responses upon injection into the bite site. These bioactive molecules in tick saliva can create a privileged environment in the host’s skin that tick-borne pathogens take advantage of. In fact, evidence is accumulating that tick-transmitted pathogens manipulate tick saliva composition to enhance their own survival, transmission, and evasion of host defenses. We review what is known about specific and functionally characterized tick saliva molecules in the context of tick infection with the genus Borrelia, the intracellular pathogen Anaplasma phagocytophilum, and tick-borne encephalitis virus. Additionally, we review studies analyzing sialome-level responses to pathogen challenge.
Collapse
|
31
|
Wang Q, Pan YS, Jiang BG, Ye RZ, Chang QC, Shao HZ, Cui XM, Xu DL, Li LF, Wei W, Xia LY, Li J, Zhao L, Guo WB, Zhou YH, Jiang JF, Jia N, Cao WC. Prevalence of Multiple Tick-Borne Pathogens in Various Tick Vectors in Northeastern China. Vector Borne Zoonotic Dis 2020; 21:162-171. [PMID: 33347789 DOI: 10.1089/vbz.2020.2712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: Tick-borne bacteria and protozoa can cause a variety of human and animal diseases in China. It is of great importance to monitor the prevalence and dynamic variation of these pathogens in ticks in ever-changing natural and social environment. Materials and Methods: Ticks were collected from Heilongjiang and Jilin provinces of northeastern China during 2018-2019 followed by morphological identification. The presence of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. was examined by PCR and Sanger sequencing. The obtained sequences were subjected to phylogenetic analysis through Mega 7.0. Statistical analysis was performed using SPSS 24.0. Results: A total of 250 ticks from 5 species of 3 genera were collected. Ixodes and Haemaphysalis ticks carried more species of pathogens than Dermacentor, and the pathogens detected in Haemaphysalis japonica varied significantly among different sampling sites. The infection rates of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. were 41.2%, 0, 2.0%, 7.2%, 1.2%, and 7.2%, respectively. Twelve pathogens were identified, among which Rickettsia raoultii (29.6%), Candidatus Rickettsia tarasevichiae (9.2%), and Theileria equi (4.4%) were the three most common ones. Rickettsia had its dominant vector, that is, R. raoultii had high infection rates in Dermacentor nuttalli and Dermacentor silvarum, Ca. R. tarasevichiae in Ixodes persulcatus, and Rickettsia heilongjiangensis in H. japonica. Interestingly, unclassified species were observed, including a Rickettsia sp., an Ehrlichia sp., a Borrelia sp., and a Babesia sp. Coinfections with different pathogens were identified in 9.2% of all tested ticks, with I. persulcatus most likely to be coinfected (23.8%) and Rickettsia spp. and Borrelia spp. as the most common combination (16.7%). Conclusions: The results of this study reflect high diversity and complexity of pathogens in ticks, which are useful for designing more targeted and effective control measures for tick-borne diseases in China.
Collapse
Affiliation(s)
- Qian Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Run-Ze Ye
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Hong-Ze Shao
- Animal Husbandry and Veterinary Science Research Institute of Jilin Province, Changchun, P.R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Da-Li Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Lian-Feng Li
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, P.R. China
| | - Wei Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Luo-Yuan Xia
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Lin Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Yu-Hao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Wu-Chun Cao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| |
Collapse
|
32
|
Ghoneim NH, Abdel-Moein KA, Zaher HM, Abuowarda MM. Investigation of Ixodidae ticks infesting camels at slaughterhouse and its potential role in transmitting Coxiella burnetii in Egypt. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Pettersson JHO, Ellström P, Ling J, Nilsson I, Bergström S, González-Acuña D, Olsen B, Holmes EC. Circumpolar diversification of the Ixodes uriae tick virome. PLoS Pathog 2020; 16:e1008759. [PMID: 32745135 PMCID: PMC7425989 DOI: 10.1371/journal.ppat.1008759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022] Open
Abstract
Ticks (order: Ixodida) are a highly diverse and ecologically important group of ectoparasitic blood-feeding organisms. One such species, the seabird tick (Ixodes uriae), is widely distributed around the circumpolar regions of the northern and southern hemispheres. It has been suggested that Ix. uriae spread from the southern to the northern circumpolar region millions of years ago and has remained isolated in these regions ever since. Such a profound biographic subdivision provides a unique opportunity to determine whether viruses associated with ticks exhibit the same evolutionary patterns as their hosts. To test this, we collected Ix. uriae specimens near a Gentoo penguin (Pygoscelis papua) colony at Neko harbour, Antarctica, and from migratory birds—the Razorbill (Alca torda) and the Common murre (Uria aalge)—on Bonden island, northern Sweden. Through meta-transcriptomic next-generation sequencing we identified 16 RNA viruses, seven of which were novel. Notably, we detected the same species, Ronne virus, and two closely related species, Bonden virus and Piguzov virus, in both hemispheres indicating that there have been at least two cross-circumpolar dispersal events. Similarly, we identified viruses discovered previously in other locations several decades ago, including Gadgets Gully virus, Taggert virus and Okhotskiy virus. By identifying the same or closely related viruses in geographically disjunct sampling locations we provide evidence for virus dispersal within and between the circumpolar regions. In marked contrast, our phylogenetic analysis revealed no movement of the Ix. uriae tick hosts between the same locations. Combined, these data suggest that migratory birds are responsible for the movement of viruses at both local and global scales. As host populations diverge, so may those microorganisms, including viruses, that are dependent on those hosts. To examine this key issue in host-microbe evolution we compared the co-phylogenies of the seabird tick, Ixodes uriae, and their RNA viruses sampled from the far northern and southern hemispheres. Despite the huge geographic distance between them, phylogeographic analysis reveals that the same and closely related viruses were found both within and between the northern and southern circumpolar regions, most likely reflecting transfer by virus-infected migratory birds. In contrast, genomic data suggested that the Ix. uriae populations were phylogenetically distinct between the northern and southern hemispheres. This work emphasises the importance of migratory birds and ticks as vectors and sources of virus dispersal and introduction at both the local and global scales.
Collapse
Affiliation(s)
- John H.-O. Pettersson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ingela Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| |
Collapse
|
34
|
Chen Z, Xuan Y, Liang G, Yang X, Yu Z, Barker SC, Kelava S, Bu W, Liu J, Gao S. Precise annotation of tick mitochondrial genomes reveals multiple copy number variation of short tandem repeats and one transposon-like element. BMC Genomics 2020; 21:488. [PMID: 32680454 PMCID: PMC7367389 DOI: 10.1186/s12864-020-06906-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background In the present study, we used long-PCR amplification coupled with Next-Generation Sequencing (NGS) to obtain complete mitochondrial (mt) genomes of individual ticks and unprecedently performed precise annotation of these mt genomes. We aimed to: (1) develop a simple, cost-effective and accurate method for the study of extremely high AT-content mt genomes within an individual animal (e.g. Dermacentor silvarum) containing miniscule DNA; (2) provide a high-quality reference genome for D. silvarum with precise annotation and also for future studies of other tick mt genomes; and (3) detect and analyze mt DNA variation within an individual tick. Results These annotations were confirmed by the PacBio full-length transcriptome data to cover both entire strands of the mitochondrial genomes without any gaps or overlaps. Moreover, two new and important findings were reported for the first time, contributing fundamental knowledge to mt biology. The first was the discovery of a transposon-like element that may eventually reveal much about mechanisms of gene rearrangements in mt genomes. Another finding was that Copy Number Variation (CNV) of Short Tandem Repeats (STRs) account for mitochondrial sequence diversity (heterogeneity) within an individual tick, insect, mouse or human, whereas SNPs were not detected. The CNV of STRs in the protein-coding genes resulted in frameshift mutations in the proteins, which can cause deleterious effects. Mitochondria containing these deleterious STR mutations accumulate in cells and can produce deleterious proteins. Conclusions We proposed that the accumulation of CNV of STRs in mitochondria may cause aging or diseases. Future tests of the CNV of STRs hypothesis help to ultimately reveal the genetic basis of mitochondrial DNA variation and its consequences (e.g., aging and diseases) in animals. Our study will lead to the reconsideration of the importance of STRs and a unified study of CNV of STRs with longer and shorter repeat units (particularly polynucleotides) in both nuclear and mt genomes.
Collapse
Affiliation(s)
- Ze Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China
| | - Yibo Xuan
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China.,College of Life Sciences, Nankai University, Tianjin, Tianjin, 300071, P. R. China
| | - Guangcai Liang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, Tianjin, 300350, P. R. China
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China
| | - Stephen C Barker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Samuel Kelava
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin, Tianjin, 300071, P. R. China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China.
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, Tianjin, 300071, P. R. China. .,School of Statistics and Data Science, Nankai University, Tianjin, Tianjin, 300071, P. R. China.
| |
Collapse
|
35
|
Urushiyama F, Matsubara K, Doi K, Taira M, Komiya T, Tokiwa T. First record of infestation of a pet sloth in Japan with the exotic tick Amblyomma geayi (Acari: Ixodidae). Parasitol Int 2020; 78:102157. [PMID: 32534954 DOI: 10.1016/j.parint.2020.102157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022]
Abstract
On December 11, 2018, a single unengorged adult tick was found on the body surface of the trunk of an imported wild-caught Linnaeus's two-toed sloth (Choloepus didactylus) during a routine health check in an animal clinic in Tokyo, Japan. The tick was identified as Amblyomma geayi based on the morphological and molecular characteristics. This is the first case of the introduction of an Amblyomma species to Japan via an imported pet sloth. The present study highlights the current loopholes in Japan's regulatory system for animal imports.
Collapse
Affiliation(s)
- Fumiya Urushiyama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Kyonan, Musashino, Tokyo, Japan
| | | | - Kandai Doi
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Kyonan, Musashino, Tokyo, Japan
| | - Masakatsu Taira
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chuo, Chiba, Japan
| | - Tomoyoshi Komiya
- Department of Medical Technology and Clinical Engineering, Hokuriku University, Kanazawa, Ishikawa, Japan
| | - Toshihiro Tokiwa
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Kyonan, Musashino, Tokyo, Japan.
| |
Collapse
|
36
|
Distribution and molecular characterization of rickettsiae in ticks in Harbin area of Northeastern China. PLoS Negl Trop Dis 2020; 14:e0008342. [PMID: 32497120 PMCID: PMC7272007 DOI: 10.1371/journal.pntd.0008342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 05/01/2020] [Indexed: 12/02/2022] Open
Abstract
Tick-borne rickettsioses are world-spreading infectious zoonoses. Ticks serve as reservoirs and vectors for Rickettsia and play a key role in transmission of rickettsioses. Most of the Chinese rickettsiosis patients are reported from Northeastern China but the distribution of tick and tick-borne Rickettsia species in Northeastern China remain poorly studied. In this study, a total of 1,286 ticks were captured from the seven counties of Harbin, an area in Northeastern China, and the tick-borne Rickettsia species were identified by PCR and sequencing of rrs, gltA, groEL, ompA and 17-kDa antigen-encoding genes. Of the 5 identified tick species, Haemaphysalis longicornis and Ixodes persulcatus were the predominant tick species in the livestock and vegetation, respectively. Rickettsia raoultii and “Candidatus Rickettsia tarasevichiae” were the two detectable Rickettsia species in the ticks with a 28.8% positive rate but no rickettsiae were found in ticks of Haemaphysalis concinna. R. raoultii detected in 37.6% of the Dermacentor nuttalli, Dermacentor silvarum and H. longicornis ticks while “Ca. R. tarasevichiae” was only present in 22.8% of the I. persulcatus ticks. In particular, the positive rate of both R. raoultii and “Ca. R. tarasevichiae” in ticks from the livestock (40.7%) was significantly higher than that from the vegetation (19.5%). The results indicate that the tick and tick-borne Rickettsia species are diverse in different regions of Harbin due to geographic difference and the ticks from livestock may play a more important role in transmission of rickettsioses to human. Rickettsiosis is a tick-borne infectious disease of global importance. The disease has been prevailing in Northeastern China but the distribution of tick and tick-borne Rickettsia species from different areas of Northeastern China remain poorly studied. We collected a total of 1,286 ticks in the seven counties with different geographic environments of Harbin, an area of Northeastern China, and all the ticks were classified as Dermacentor nuttalli, Dermacentor silvarum, Haemaphysalis concinna, Haemaphysalis longicornis or Ixodes persulcatus. A total of 28.8% of the ticks tested positive for either Rickettsia raoultii or “Candidatus Rickettsia tarasevichiae”, in which 37.6% of the D. nuttalli, D. silvarum and H. longicornis ticks were positive for R. raoultii while 22.8% of the I. persulcatus ticks were positive for “Ca. R. tarasevichiae”. The positive rate of both R. raoultii and “Ca. R. tarasevichiae” in ticks from the livestock (40.7%) was significantly higher than that from the vegetation (19.5%). All the data indicate that ticks in the Harbin area have a high infection rate with Rickettsia species and domestic animals may have a tick-livestock rickettsial circulation that may play an important role in transmission of rickettsioses.
Collapse
|
37
|
de Oliveira JCP, Reckziegel GH, Ramos CADN, Giannelli A, Alves LC, de Carvalho GA, Ramos RAN. Detection of Rickettsia felis in ectoparasites collected from domestic animals. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:255-264. [PMID: 32472468 DOI: 10.1007/s10493-020-00505-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Ticks and fleas are arthropods widely distributed around the world involved in the transmission of various vector-borne diseases (VBDs), including Brazilian Spotted Fever (BSF), Baggio-Yoshinari Syndrome and the plague, with outstanding consequences for the public health. The aim of this study was to investigate the presence of Rickettsia spp., Borrelia spp. and Yersinia pestis in arthropods collected from dogs, cats and horses living in the state of Pernambuco, Northeastern Brazil. From January 2017 to April 2019, ectoparasites were collected, morphologically identified and molecularly analysed through PCR and sequencing. In total 401 specimens were collected from 86 animals, being 68% (n = 273) and 32% (n = 128) from rural and urban areas, respectively. The most commonly detected species were the ticks Dermacentor nitens, Amblyomma sculptum, Rhipicephalus sanguineus sensu lato (s.l.), Rhipicephalus microplus, and Amblyomma ovale, and the fleas Ctenocephalides felis and Ctenocephalides canis. DNA of Rickettsia felis was detected in D. nitens collected from horses, and C. felis, and R. sanguineus s.l. collected from dogs. All samples scored negative for Borrelia spp. and Y. pestis DNA. This study provides valuable data on ectoparasite fauna from domestic animals and identifies the circulation of a zoonotic pathogen (i.e., R. felis) in the population of the arthropods assessed. Therefore, preventive measures should be adopted in order to reduce the risk of occurrence of neglected VBD caused by this pathogen in animal and human hosts.
Collapse
Affiliation(s)
- Jéssica Cardoso Pessoa de Oliveira
- Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Av. Bom Pastor, S/N, Boa Vista, Garanhuns, CEP 55292-270, Brazil
| | | | | | | | - Leucio Câmara Alves
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Gílcia Aparecida de Carvalho
- Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Av. Bom Pastor, S/N, Boa Vista, Garanhuns, CEP 55292-270, Brazil
| | - Rafael Antonio Nascimento Ramos
- Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Av. Bom Pastor, S/N, Boa Vista, Garanhuns, CEP 55292-270, Brazil.
| |
Collapse
|
38
|
De Novo RNA-seq and Functional Annotation of Haemaphysalis longicornis. Acta Parasitol 2019; 64:807-820. [PMID: 31418165 DOI: 10.2478/s11686-019-00103-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE Haemaphysalis longicornis (Neumann) is a hematophagous tick widely distributed in northern China. It not only causes enormous economic loss to animal husbandry, but also as a vector and reservoir of various zoonotic pathogens, it spreads natural focal diseases, such as severe fever with thrombocytopenia syndrome, seriously threatening human health. Lack of transcriptomic and genomic data from H. longicornis limits the study of this important medical vector. METHODS The engorged female H. longicornis from Gansu, China, was used for RNA extraction, de novo RNA-seq, functional annotation, and ORF prediction. RESULTS As a result, 53.09 million clean reads (98.88%) with a GC content of 54.29% were obtained. A total of 65,916 Unigenes were assembled, of which 34.59% (23,330) were successfully annotated. Of these Unigenes, 22,587 (34.27%) were annotated to species by NCBI non-redundant protein (nr). Ixodes scapularis, Limulus polyphemus, Parasteatoda tepidariorum, Stegodyphus mimosarum, and Metaseiulus occidentalis were the top BLAST hit species, accounting for 47.23%, 9.58%, 4.11%, 3.50%, and 2.69%, respectively. A total of 29,182 ORFs were predicted, and 35 complete ORFs for functional genes were identified, including ORFs involved in digestion (14), stress responses (8), anticoagulation (3), reproduction (3), antimicrobial (2), drug resistance (2), movement (2), autophagy (1), and immunity (1), respectively. The Unigene ORFs encoding cathepsin and heat shock proteins were further analyzed phylogenetically. CONCLUSION De novo RNA-seq and functional annotation of H. longicornis were successfully completed for the first time, providing a molecular data resource for further research on blood-sucking, pathogen transmission mechanisms, and effective prevention and control strategies.
Collapse
|
39
|
Jiang Y, Hou X, Zhang L, Tan Y, Lu C, Xiao D, Li H, Hao Q, Wan K. Case report: A patient coinfected by Borrelia burgdorferi sensu lato and spotted fever group Rickettsiae in Urumqi, China. Medicine (Baltimore) 2019; 98:e17977. [PMID: 31725662 PMCID: PMC6867798 DOI: 10.1097/md.0000000000017977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Both Borrelia burgdorferi sensu lato and spotted fever group Rickettsiae (SFGR) are pathogens carried by ticks. There is a possibility of co-infection with these tick-borne diseases. PATIENT CONCERNS Male patient, 63 years-of-age, admitted to hospital with skin rash presenting for 1 week and fever with cough and expectoration for 3 days before admission. DIAGNOSES We diagnosed that the patient was co-infected by B burgdorferi sl and SFGR using laboratory test results and the patient's clinical manifestations. INTERVENTIONS The patient started therapy with oral minocycline, then levofloxacin by intravenous injection for SFGR. Meanwhile, he was treated with penicillin G sodium, cefoperazone sulbactam sodium and ceftriaxone by intravenous injection for B burgdorferi sl. OUTCOMES After the patient was in stable condition, he was discharged from hospital. LESSONS This case report highlights the possibility of co-infection by 2 tick-borne diseases in Urumqi, Xinjiang Uygur Autonomous Region, China. The antibiotic therapy should be based on the detection of pathogenic bacteria, and the different susceptibilities of co-infecting bacteria should be considered.
Collapse
Affiliation(s)
- Yi Jiang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention / State Key Laboratory for Infectious Disease Prevention and Control, Beijing
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou
| | - Xuexia Hou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention / State Key Laboratory for Infectious Disease Prevention and Control, Beijing
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou
| | - Lin Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention / State Key Laboratory for Infectious Disease Prevention and Control, Beijing
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou
| | - Yuhui Tan
- Department of Neurology, Xinjiang Uygur Autonomous Region Hospital, Urumqi, PR China
| | - Chen Lu
- Department of Neurology, Xinjiang Uygur Autonomous Region Hospital, Urumqi, PR China
| | - Dong Xiao
- Department of Neurology, Xinjiang Uygur Autonomous Region Hospital, Urumqi, PR China
| | - Hongyan Li
- Department of Neurology, Xinjiang Uygur Autonomous Region Hospital, Urumqi, PR China
| | - Qin Hao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention / State Key Laboratory for Infectious Disease Prevention and Control, Beijing
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou
| | - Kanglin Wan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention / State Key Laboratory for Infectious Disease Prevention and Control, Beijing
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou
| |
Collapse
|
40
|
Zhang Y, Zhang X, Liu J. Ticks (Acari: Ixodoidea) in China: Geographical distribution, host diversity, and specificity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21544. [PMID: 30859631 PMCID: PMC6850514 DOI: 10.1002/arch.21544] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/05/2019] [Accepted: 02/26/2019] [Indexed: 06/08/2023]
Abstract
Ticks are obligate blood-sucking ectoparasites, which not only directly damage through bites but also transmit many pathogens. China has a high diversity of tick species, 125 species have been reported, including 111 hard tick and 14 soft tick species. Many of the ticks are important vectors of pathogens, resulting in zoonoses. The dynamics of ticks are affected by both the host and habitat environment. However, systematic studies on the geographical distribution, host diversity, and specificity of ticks are limited in China. To achieve this goal, the relevant available data were summarized and analyzed in this study. Ticks are distributed in all parts of China and Xinjiang has the most records of ticks. The distribution of ticks in adjacent areas is similar, indicating that the habitat environment affects their distribution. Most ticks are widely distributed, whereas some species are endemic to their distributed regions. Ticks are parasitic on mammals, birds, and reptiles, of which mammals are the main host species. Overall, most ticks parasitize different hosts, only a few ticks have strict host specificity, such as ticks that are specifically parasitic on reptiles and bats. In addition, environmental changes and control efforts also influence the dynamics of ticks. These results can better reveal tick biological traits and are valuable for tick control.
Collapse
Affiliation(s)
- Yan‐Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life SciencesHebei Normal UniversityShijiazhuangHebeiChina
| | - Xiao‐Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life SciencesHebei Normal UniversityShijiazhuangHebeiChina
| | - Jing‐Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life SciencesHebei Normal UniversityShijiazhuangHebeiChina
| |
Collapse
|
41
|
Charrier NP, Hermouet A, Hervet C, Agoulon A, Barker SC, Heylen D, Toty C, McCoy KD, Plantard O, Rispe C. A transcriptome-based phylogenetic study of hard ticks (Ixodidae). Sci Rep 2019; 9:12923. [PMID: 31501478 PMCID: PMC6733903 DOI: 10.1038/s41598-019-49641-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022] Open
Abstract
Hard ticks are widely distributed across temperate regions, show strong variation in host associations, and are potential vectors of a diversity of medically important zoonoses, such as Lyme disease. To address unresolved issues with respect to the evolutionary relationships among certain species or genera, we produced novel RNA-Seq data sets for nine different Ixodes species. We combined this new data with 18 data sets obtained from public databases, both for Ixodes and non-Ixodes hard tick species, using soft ticks as an outgroup. We assembled transcriptomes (for 27 species in total), predicted coding sequences and identified single copy orthologues (SCO). Using Maximum-likelihood and Bayesian frameworks, we reconstructed a hard tick phylogeny for the nuclear genome. We also obtained a mitochondrial DNA-based phylogeny using published genome sequences and mitochondrial sequences derived from the new transcriptomes. Our results confirm previous studies showing that the Ixodes genus is monophyletic and clarify the relationships among Ixodes sub-genera. This work provides a baseline for studying the evolutionary history of ticks: we indeed found an unexpected acceleration of substitutions for mitochondrial sequences of Prostriata, and for nuclear and mitochondrial genes of two species of Rhipicephalus, which we relate with patterns of genome architecture and changes of life-cycle, respectively.
Collapse
Affiliation(s)
| | | | | | | | - Stephen C Barker
- Department of Parasitology, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Céline Toty
- Laboratoire MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution & Contrôle), Université de Montpellier, Centre National de la Recherche Scientifique (UMR5290), Institut de Recherche pour le Développement (UR224), Montpellier, France
| | - Karen D McCoy
- Laboratoire MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution & Contrôle), Université de Montpellier, Centre National de la Recherche Scientifique (UMR5290), Institut de Recherche pour le Développement (UR224), Montpellier, France
| | | | | |
Collapse
|
42
|
Rar V, Yakimenko V, Tikunov A, Vinarskaya N, Tancev A, Babkin I, Epikhina T, Tikunova N. Genetic and morphological characterization of Ixodes apronophorus from Western Siberia, Russia. Ticks Tick Borne Dis 2019; 11:101284. [PMID: 31540803 DOI: 10.1016/j.ttbdis.2019.101284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 07/10/2019] [Accepted: 08/31/2019] [Indexed: 11/19/2022]
Abstract
Genetic variability of I. apronophorus from Western Siberia, Russia was examined using the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial 16S rRNA and cytochrome c oxidase subunit 1 (cox1) genes and compared to those of Ixodes persulcatus and Ixodes trianguliceps from the same site. The I. apronophorus sequences demonstrated the highest nucleotide and haplotype diversity for both mitochondrial genes, whereas I. persulcatus was more variable in the nuclear ITS2. Phylogenetic analysis of the molecular sequence data showed that I. apronophorus differed from other Ixodes species, including Romanian I. apronophorus. The level of identity between 16S rRNA gene sequences of Siberian and Romanian I. apronophorus was only 91%; these sequences did not form a monophyletic group, indicating that I. apronophorus from Siberia and Romania could be different tick species. The analysis of morphological features of the Siberian I. apronophorus confirmed their consistency with those for the previously described I. apronophorus species. Based on the 16S rRNA and ITS2 sequences, Siberian I. apronophorus clustered together with Ixodes kazakstani and Ixodes scapularis, which are the recognized members of the Ixodes ricinus-I. persulcatus species complex within the subgenus Ixodes, and can be assigned to this complex.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia.
| | | | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Natalia Vinarskaya
- Omsk Research Institute of Natural Foci Infections, Omsk, Russia; Omsk State Pedagogical University, Omsk, Russia
| | - Aleksey Tancev
- Omsk Research Institute of Natural Foci Infections, Omsk, Russia
| | - Igor Babkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Tamara Epikhina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| |
Collapse
|
43
|
McCann KM, Grant WN, Spratt DM, Hedtke SM. Cryptic species diversity in ticks that transmit disease in Australia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:125-131. [PMID: 31463190 PMCID: PMC6706653 DOI: 10.1016/j.ijppaw.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
Ticks are important vectors of a broad range of pathogens in Australia. Many tick species are morphologically similar and are therefore difficult to identify using morphology alone, particularly when collected in the larval and nymphal life stages. We report here the application of molecular methods to examine the species diversity of ixodid ticks at two sites in southern New South Wales, Australia. Our taxon sampling included six morphologically characterised adult stage voucher specimens of Ixodes trichosuri, Ixodes tasmani, Ixodes fecialis and Ixodes holocyclus (the paralysis tick) and ~250 field collected specimens that were in the larva or nymph stage and thus not morphologically identifiable. One nuclear and two mitochondrial amplicons were sequenced using a combination of Sanger and Illumina MiSeq sequencing. Phylogenetic relationships were estimated using both maximum likelihood and Bayesian methods. Two clades with strong bootstrap and Bayesian support were observed across trees estimated from each of three markers and from an analysis of the concatenated sequences. One voucher specimen of I. trichosuri was located in one of these clades, while the other I. trichosuri voucher specimen was in a second clade with the remaining three identified species, suggesting these morphologically similar ticks may represent different cryptic species. Unidentified specimens were found across both clades, and molecular divergence of many of these is equal to or greater than that observed between identified species, suggesting additional unidentified species may exist. Further studies are required to understand the taxonomic status of ticks in Australia, and how this species diversity impacts disease risk for livestock, domestic animals, wildlife and humans. Ticks genetically closely related had distinct morphological features. Remarkable genetic diversity of tick species collected. Rapid evolution of morphological characters in Ixodes. Understanding tick relationships could improve control of disease risk.
Collapse
Affiliation(s)
- Kirsty M. McCann
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Warwick N. Grant
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
- Corresponding author.
| | - David M. Spratt
- Australian National Wildlife Collection, CSIRO, GPO Box 1700, Canberra, 2601, Australia
| | - Shannon M. Hedtke
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
44
|
Du CH, Sun Y, Xu RM, Shao Z. Description of Haemaphysalis (Alloceraea) Kolonini sp. nov., a new species in subgenus Alloceraea Schulze (Ixodidae: Haemaphysalis) in China. Acta Parasitol 2018; 63:678-691. [PMID: 30367775 DOI: 10.1515/ap-2018-0080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 06/18/2018] [Indexed: 11/15/2022]
Abstract
Southeastern Asia has been postulated as probably the original sites of genus Haemaphysalis, where numerous structurally advanced haemaphysalids now occur. Because of its phylogenetic and biological interest, we report the discovery of a structurally primitive new species Haemaphysalis (A.) kolonini belonging to subgenus Alloceraea from Baoshan and Weixi cities, Yunnan province, southwestern China. Both the morphological and phylogenic characteristics of the species support congruently to erect Hae. (A.) kolonini as a new species. The male and female adults of Haemaphysalis (A.) kolonini are respectively described and illustrated. Taxonomic discussion and keys to Alloceraea species in China are also provided to be able to distinguish species that are close morphologically.
Collapse
Affiliation(s)
- Chun-Hong Du
- Yunnan Institute of Epidemic Diseases Prevention and Control.No.5 Wenhua Rd. Xiaguan Dis. Dali, Yunnan, P.R. China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Department of Vector Biology and Control, Beijing Institute of Microbiology and Epidemiology, No.20 Dong-dajie Street, Fengtai District, Beijing 100071, P.R. China
| | - Rong-Man Xu
- State Key Laboratory of Pathogen and Biosecurity, Department of Vector Biology and Control, Beijing Institute of Microbiology and Epidemiology, No.20 Dong-dajie Street, Fengtai District, Beijing 100071, P.R. China
| | - ZongTi Shao
- Yunnan Institute of Epidemic Diseases Prevention and Control.No.5 Wenhua Rd. Xiaguan Dis. Dali, Yunnan, P.R. China
| |
Collapse
|
45
|
Distribution of tick-borne diseases in Japan: Past patterns and implications for the future. J Infect Chemother 2018; 24:499-504. [PMID: 29685854 DOI: 10.1016/j.jiac.2018.03.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/23/2018] [Indexed: 01/27/2023]
Abstract
The rapid geographical spread of tick-borne diseases (TBDs) worldwide has recently provoked significant concerns amongst public health authorities. Tick-borne pathogens are maintained in enzootic cycles involving ticks and wild animal hosts, with epizootic spread to other mammals, including livestock and humans. Despite the increasing public health concern, current TBD diagnostic tests and treatments are inadequate, and predictive models of future risks posed by TBDs are limited by the heterogeneity of environmental, vector, and host factors, even in neighboring regions. In recent years, infections resulting in severe fever with thrombocytopenia syndrome (SFTS), Japanese spotted fever, and the scrub typhus pathogens have been reported frequently in addition to traditional TBDs in Japan. The Japanese archipelago is extremely elongated from north to south and its climate varies considerably, creating remarkable regional differences in tick species. The importance of continuous surveillance of TBDs has been growing in terms of geopathology - studies dealing with the relationships between geographic factors and the causes of specific diseases - in Japan and neighboring areas among eastern Asian countries, including China and Korea. In this review, we summarize detailed information regarding the history and epidemic status of human TBDs in Japan.
Collapse
|
46
|
Mans BJ, Featherston J, Kvas M, Pillay KA, de Klerk DG, Pienaar R, de Castro MH, Schwan TG, Lopez JE, Teel P, Pérez de León AA, Sonenshine DE, Egekwu NI, Bakkes DK, Heyne H, Kanduma EG, Nyangiwe N, Bouattour A, Latif AA. Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick Borne Dis 2018; 10:219-240. [PMID: 30309738 DOI: 10.1016/j.ttbdis.2018.09.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/02/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
The systematics of the genera and subgenera within the soft tick family Argasidae is not adequately resolved. Different classification schemes, reflecting diverse schools of scientific thought that elevated or downgraded groups to genera or subgenera, have been proposed. In the most recent classification scheme, Argas and Ornithodoros are paraphyletic and the placement of various subgenera remains uncertain because molecular data are lacking. Thus, reclassification of the Argasidae is required. This will enable an understanding of soft tick systematics within an evolutionary context. This study addressed that knowledge gap using mitochondrial genome and nuclear (18S and 28S ribosomal RNA) sequence data for representatives of the subgenera Alectorobius, Argas, Chiropterargas, Ogadenus, Ornamentum, Ornithodoros, Navis (subgen. nov.), Pavlovskyella, Persicargas, Proknekalia, Reticulinasus and Secretargas, from the Afrotropical, Nearctic and Palearctic regions. Hard tick species (Ixodidae) and a new representative of Nuttalliella namaqua (Nuttalliellidae), were also sequenced with a total of 83 whole mitochondrial genomes, 18S rRNA and 28S rRNA genes generated. The study confirmed the utility of next-generation sequencing to retrieve systematic markers. Paraphyly of Argas and Ornithodoros was resolved by systematic analysis and a new species list is proposed. This corresponds broadly with the morphological cladistic analysis of Klompen and Oliver (1993). Estimation of divergence times using molecular dating allowed dissection of phylogeographic patterns for argasid evolution. The discovery of cryptic species in the subgenera Chiropterargas, Ogadenus and Ornithodoros, suggests that cryptic speciation is common within the Argasidae. Cryptic speciation has implications for past biological studies of soft ticks. These are discussed in particular for the Ornithodoros (Ornithodoros) moubata and Ornithodoros (Ornithodoros) savignyi groups.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; Department of Life and Consumer Sciences, University of South Africa, South Africa.
| | - Jonathan Featherston
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Marija Kvas
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Kerry-Anne Pillay
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Daniel G de Klerk
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Minique H de Castro
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Tom G Schwan
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Job E Lopez
- Department of Paediatrics, National School of Tropical Medicine, Paediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pete Teel
- Department of Entomology, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States; Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIH), Rockville, MD, United States
| | - Noble I Egekwu
- Agricultural Research Service, United States Department of Agriculture, Washington, D.C., United States
| | - Deon K Bakkes
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Heloise Heyne
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Esther G Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, P.O BOX 30197, 00100, Nairobi, Kenya
| | - Nkululeko Nyangiwe
- Döhne Agricultural Development Institute, Private Bag X15, Stutterheim, 4930, South Africa
| | - Ali Bouattour
- Laboratoire d'Entomologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Abdalla A Latif
- School of Life Sciences, University of KwaZulu-Natal, Durban, Westville, South Africa
| |
Collapse
|
47
|
Gasmi S, Bouchard C, Ogden NH, Adam-Poupart A, Pelcat Y, Rees EE, Milord F, Leighton PA, Lindsay RL, Koffi JK, Thivierge K. Evidence for increasing densities and geographic ranges of tick species of public health significance other than Ixodes scapularis in Québec, Canada. PLoS One 2018; 13:e0201924. [PMID: 30133502 PMCID: PMC6104943 DOI: 10.1371/journal.pone.0201924] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/24/2018] [Indexed: 11/19/2022] Open
Abstract
Climate change is driving emergence and establishment of Ixodes scapularis, the main vector of Lyme disease in Québec, Canada. As for the black-legged tick, I. scapularis Say, global warming may also favor northward expansion of other species of medically important ticks. The aims of this study were to determine (1) current diversity and abundance of ticks of public health significance other than I. scapularis, (2) sex and age of the human population bitten by these ticks (3), and the seasonal and geographic pattern of their occurrence. From 2007 to 2015, twelve tick species other than I. scapularis were submitted in the Québec passive tick surveillance program. Of these 9243 ticks, 91.2% were Ixodes cookei, 4.1% were Dermacentor variabilis, 4.0% were Rhipicephalus sanguineus and 0.7% were Amblyomma americanum. The combined annual proportion of submitted I. cookei, D. variabilis, R. sanguineus and A. americanum ticks in passive surveillance rose from 6.1% in 2007 to 16.0% in 2015 and an annual growing trend was observed for each tick species. The number of municipalities where I. cookei ticks were acquired rose from 104 to 197 during the same period. Of the 862 people bitten by these ticks, 43.3% were I. cookei ticks removed from children aged < 10 years. These findings demonstrate the need for surveillance of all the tick species of medical importance in Québec, particularly because climate may increase their abundance and geographic ranges, increasing the risk to the public of the diseases they transmit.
Collapse
Affiliation(s)
- Salima Gasmi
- Policy Integration and Zoonoses Division, Centre for Food-borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Québec, Canada
| | - Catherine Bouchard
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Nicholas H. Ogden
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Ariane Adam-Poupart
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Montréal, Québec, Canada
| | - Yann Pelcat
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Erin E. Rees
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - François Milord
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Montréal, Québec, Canada
| | - Patrick A. Leighton
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Robbin L. Lindsay
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jules K. Koffi
- Policy Integration and Zoonoses Division, Centre for Food-borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Québec, Canada
| | - Karine Thivierge
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Québec, Canada
| |
Collapse
|
48
|
Ghosh S, Patra G, Borthakur SK, Behera P, Tolenkhomba TC, Das M, Lalnunpuia C. Prevalence of hard tick infestations in cattle of Mizoram, India. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1474988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Subhamoy Ghosh
- Department of Veterinary Parasitology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India
| | - Gautam Patra
- Department of Veterinary Parasitology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India
| | - Sonjoy Kumar Borthakur
- Department of Veterinary Parasitology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India
| | - Parthasarathi Behera
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India
| | - T. C. Tolenkhomba
- Department of Animal Genetics and Breeding, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India
| | - Malay Das
- Department of Veterinary Public Health & Epidemiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India
| | - C. Lalnunpuia
- Department of Veterinary Parasitology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India
| |
Collapse
|
49
|
Liu ZQ, Liu YF, Kuermanali N, Wang DF, Chen SJ, Guo HL, Zhao L, Wang JW, Han T, Wang YZ, Wang J, Shen CF, Zhang ZZ, Chen CF. Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi, and advances phylogenetic hypotheses for the Ixodidae. PLoS One 2018; 13:e0197524. [PMID: 29768482 PMCID: PMC5955544 DOI: 10.1371/journal.pone.0197524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Phylogeny of hard ticks (Ixodidae) remains unresolved. Mitochondrial genomes (mitogenomes) are increasingly used to resolve phylogenetic controversies, but remain unavailable for the entire large Hyalomma genus. Hyalomma asiaticum is a parasitic tick distributed throughout the Asia. As a result of great morphological variability, two subspecies have been recognised historically; until a morphological data-based synonymization was proposed. However, this hypothesis was never tested using molecular data. Therefore, objectives of this study were to: 1. sequence the first Hyalomma mitogenome; 2. scrutinise the proposed synonymization using molecular data, i.e. complete mitogenomes of both subspecies: H. a. asiaticum and kozlovi; 3. conduct phylogenomic and comparative analyses of all available Ixodidae mitogenomes. Results corroborate the proposed synonymization: the two mitogenomes are almost identical (99.6%). Genomic features of both mitogenomes are standard for Metastriata; which includes the presence of two control regions and all three "Tick-Box" motifs. Gene order and strand distribution are perfectly conserved for the entire Metastriata group. Suspecting compositional biases, we conducted phylogenetic analyses (29 almost complete mitogenomes) using homogeneous and heterogeneous (CAT) models of substitution. The results were congruent, apart from the deep-level topology of prostriate ticks (Ixodes): the homogeneous model produced a monophyletic Ixodes, but the CAT model produced a paraphyletic Ixodes (and thereby Prostriata), divided into Australasian and non-Australasian clades. This topology implies that all metastriate ticks have evolved from the ancestor of the non-Australian branch of prostriate ticks. Metastriata was divided into three clades: 1. Amblyomminae and Rhipicephalinae (Rhipicephalus, Hyalomma, Dermacentor); 2. Haemaphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti; 3. Amblyomma elaphense, basal to all Metastriata. We conclude that mitogenomes have the potential to resolve the long-standing debate about the evolutionary history of ticks, but heterogeneous evolutionary models should be used to alleviate the effects of compositional heterogeneity on deep-level relationships.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan-Feng Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Nuer Kuermanali
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Deng-Feng Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shi-Jun Chen
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui-Ling Guo
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Li Zhao
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Wei Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Han
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuan-Zhi Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jie Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chen-Feng Shen
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhuang-Zhi Zhang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
50
|
Coimbra-Dores MJ, Maia-Silva M, Marques W, Oliveira AC, Rosa F, Dias D. Phylogenetic insights on Mediterranean and Afrotropical Rhipicephalus species (Acari: Ixodida) based on mitochondrial DNA. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:107-128. [PMID: 29605833 DOI: 10.1007/s10493-018-0254-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
A multigene phylogeny including 24 Rhipicephalus species from the Afrotropical and Mediterranean regions, based on mitochondrial DNA genes (COI, 12S and 16S), was constructed based on Bayesian inference and maximum likelihood estimations. The phylogenetic reconstruction revealed 31 Rhipicephalus clades, which include the first molecular records of Rhipicephalus duttoni (Neumann), and Rhipicephalus senegalensis (Koch). Our results support the R. pulchellus, R. evertsi and R. pravus complexes as more phylogenetically close to Rhipicephalus (Boophilus) than to the remaining Rhipicephalus clades, suggesting two main monophyletic groups within the genus. Additionally, the phenotypic resembling R. sanguineus s.l. and Rhipicephalus turanicus (Pomerantsev) are here represented by nine clades, of which none of the R. turanicus assemblages appeared as distributed in the Iberian Peninsula. These results not only indicate that both species include more cryptic diversity than the already reported, but also suggest that R. turanicus distribution is less extended than previously anticipated. This analysis allowed to improve species identification by exposing cryptic species and reinforced mtDNA markers suitability for intra/inter-species clarification analyses. Incorporating new species molecular records to improve phylogenetic clarification can significantly improve ticks' identification methods which will have epidemiologic implications on public health.
Collapse
Affiliation(s)
- Maria João Coimbra-Dores
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal.
- Faculty of Sciences, Centre for Environmental and Marine Studies (CESAM), University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Mariana Maia-Silva
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Wilson Marques
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Fernanda Rosa
- Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Deodália Dias
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
- Faculty of Sciences, Centre for Environmental and Marine Studies (CESAM), University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|