1
|
Yang R, Wang R, Zhao D, Lian K, Shang B, Dong L, Yang X, Dang X, Sun D, Cheng Y. Integrative analysis of transcriptome-wide association study and mRNA expression profile identified risk genes for bipolar disorder. Neurosci Lett 2024; 839:137935. [PMID: 39151574 DOI: 10.1016/j.neulet.2024.137935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Bipolar disorder (BD) is a debilitating neuropsychiatric disorder, which is associated with genetic variation through "vast but mixed" Genome-Wide Association Studies (GWAS). Transcriptome-Wide Association Study (TWAS) is more effective in explaining genetic factors that influence complex diseases and can help identifying risk genes more reliably. So, this study aims to identify potential BD risk genes in pedigrees with TWAS. METHODS We conducted a TWAS analysis with expression quantitative trait loci (eQTL) analysis on extended BD pedigrees, and the BD genome-wide association study (GWAS) summary data acquired from the Psychiatric Genomics Consortium (PGC). Furthermore, the BD-associated genes identified by TWAS were validated by mRNA expression profiles from the Gene Expression Omnibus (GEO) Datasets (GSE23848 and GSE46416). Functional enrichment and annotation analysis were implemented by RStudio (version 4.2.0). RESULTS TWAS identified 362 genes with P value < 0.05, and 18 genes remain significant after Bonferroni correction, such as SEMA3G (PTWAS=1.07 × 10-11), ALOX5AP (PTWAS=3.12 × 10-8), and PLEC (PTWAS=1.27 × 10-7). Further 6 overlapped genes were detected in integrative analysis, such as UQCRB (PTWAS=0.0020, PmRNA=0.0000), TMPRSS9 (PTWAS=0.0405, PmRNA=0.0032), and SNX10 (PTWAS=0.0104, PmRNA=0.0015). Using genes identified by TWAS, Gene Ontology (GO) enrichment analysis identified 40 significant GO terms, such as mitochondrial ATP synthesis coupled electron transport, mitochondrial respiratory, aerobic electron transport chain, oxidative phosphorylation, mitochondrial membrane proteins, and ubiquinone activity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis identified significant 15 pathways for BD, such as Oxidative phosphorylation, endocannabinoids signaling, neurodegeneration, and reactive oxide species. CONCLUSIONS We found a set of BD-associated genes and pathways, validating the important role of neurodevelopmental abnormalities, inflammatory responses, and mitochondrial dysfunction in the pathology of BD, offering novel information for comprehending the genetic basis of BD.
Collapse
Affiliation(s)
- Runxu Yang
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rui Wang
- Department of Prevention and Health Care, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongyan Zhao
- First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Kun Lian
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Binli Shang
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Dong
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xuejuan Yang
- Lincang Psychiatric Hospital, Lincang, Yunnan, China
| | - Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Duo Sun
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqi Cheng
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Meng T, Liu Z, Liu J, Zhang X, Li C, Li J, Wang B, He Y, Fan Z, Xin S, Chen J, Qie R. Multiple coronary heart diseases are risk factors for mental health disorders: A mendelian randomization study. Heart Lung 2024; 66:86-93. [PMID: 38593678 DOI: 10.1016/j.hrtlng.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Previous observational studies have suggested associations between Coronary Heart Disease (CHD) and Mental Health Disorders (MHD). However, the causal nature of these relationships has remained elusive. OBJECTIVE The purpose of this study is to elucidate the causal relationships between eight distinct types of CHD and six types of MHD using Mendelian randomization (MR) analysis. METHODS The MR analysis employed a suite of methods including inverse variance-weighted (IVW), MR-Egger, weighted mode, weighted median, and simple mode techniques. To assess heterogeneity, IVW and MR-Egger tests were utilized. MR-Egger regression also served to investigate potential pleiotropy. The stability of IVW results was verified by leave-one-out sensitivity analysis. RESULTS We analyzed data from over 2,473,005 CHD and 803,801 MHD patients, informed by instrumental variables from large-scale genomic studies on European populations. The analysis revealed a causal increase in the risk of Major Depressive Disorder and Mania associated with Coronary Artery Disease and Myocardial Infarction. Heart Failure was found to causally increase the risk for Bipolar Disorder and Schizophrenia. Atrial Fibrillation and Ischemic Heart Diseases were positively linked to Generalized Anxiety Disorder and Mania, respectively. There was no significant evidence of an association between Hypertensive Heart Disease, Hypertrophic Cardiomyopathy, Pulmonary Heart Disease, and MHD. Reverse MR analysis indicated that MHD do not serve as risk factors for CHD. CONCLUSIONS The findings suggest that specific types of CHD may act as risk factors for certain MHDs. Consequently, incorporating psychological assessments into the management of patients with CHD could be advantageous.
Collapse
Affiliation(s)
- Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Zhiping Liu
- The Second Cardiology Department of the Affiliated Second Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China; Geriatrics, the first affiliated hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiawen Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Xiaobing Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Jiarui Li
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Yinxiong He
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Zengguang Fan
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330200, China
| | - Shilong Xin
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Rui Qie
- Geriatrics, the first affiliated hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Sæther LS, Szabo A, Akkouh IA, Haatveit B, Mohn C, Vaskinn A, Aukrust P, Ormerod MBEG, Eiel Steen N, Melle I, Djurovic S, Andreassen OA, Ueland T, Ueland T. Cognitive and inflammatory heterogeneity in severe mental illness: Translating findings from blood to brain. Brain Behav Immun 2024; 118:287-299. [PMID: 38461955 DOI: 10.1016/j.bbi.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Recent findings link cognitive impairment and inflammatory-immune dysregulation in schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, heterogeneity and translation between the periphery and central (blood-to-brain) mechanisms remains a challenge. Starting with a large SZ, BD and healthy control cohort (n = 1235), we aimed to i) identify candidate peripheral markers (n = 25) associated with cognitive domains (n = 9) and elucidate heterogenous immune-cognitive patterns, ii) evaluate the regulation of candidate markers using human induced pluripotent stem cell (iPSC)-derived astrocytes and neural progenitor cells (n = 10), and iii) evaluate candidate marker messenger RNA expression in leukocytes using microarray in available data from a subsample of the main cohort (n = 776), and in available RNA-sequencing deconvolution analysis of postmortem brain samples (n = 474) from the CommonMind Consortium (CMC). We identified transdiagnostic subgroups based on covariance between cognitive domains (measures of speed and verbal learning) and peripheral markers reflecting inflammatory response (CRP, sTNFR1, YKL-40), innate immune activation (MIF) and extracellular matrix remodelling (YKL-40, CatS). Of the candidate markers there was considerable variance in secretion of YKL-40 in iPSC-derived astrocytes and neural progenitor cells in SZ compared to HC. Further, we provide evidence of dysregulated RNA expression of genes encoding YKL-40 and related signalling pathways in a high neuroinflammatory subgroup in the postmortem brain samples. Our findings suggest a relationship between peripheral inflammatory-immune activity and cognitive impairment, and highlight YKL-40 as a potential marker of cognitive functioning in a subgroup of individuals with severe mental illness.
Collapse
Affiliation(s)
- Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital/University of Oslo, Oslo, Norway
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christine Mohn
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Monica B E G Ormerod
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital/University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| |
Collapse
|
4
|
Akkouh IA, Ueland T, Szabo A, Hughes T, Smeland OB, Andreassen OA, Osete JR, Djurovic S. Longitudinal Transcriptomic Analysis of Human Cortical Spheroids Identifies Axonal Dysregulation in the Prenatal Brain as a Mediator of Genetic Risk for Schizophrenia. Biol Psychiatry 2024; 95:687-698. [PMID: 37661009 DOI: 10.1016/j.biopsych.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) has a known neurodevelopmental etiology, but limited access to human prenatal brain tissue hampers the investigation of basic disease mechanisms in early brain development. Here, we elucidate the molecular mechanisms contributing to SCZ risk in a disease-relevant model of the prenatal human brain. METHODS We generated induced pluripotent stem cell-derived organoids, termed human cortical spheroids (hCSs), from a large, genetically stratified sample of 14 SCZ cases and 14 age- and sex-matched controls. The hCSs were differentiated for 150 days, and comprehensive molecular characterization across 4 time points was carried out. RESULTS The transcriptional and cellular architecture of hCSs closely resembled that of fetal brain tissue at 10 to 24 postconception weeks, showing strongest spatial overlap with frontal regions of the cerebral cortex. A total of 3520 genes were differentially modulated between SCZ and control hCSs across organoid maturation, displaying a significant contribution of genetic loading, an overrepresentation of risk genes for autism spectrum disorder and SCZ, and the strongest enrichment for axonal processes in all hCS stages. The two axon guidance genes SEMA7A and SEMA5A, the first a promoter of synaptic functions and the second a repressor, were downregulated and upregulated, respectively, in SCZ hCSs. This expression pattern was confirmed at the protein level and replicated in a large postmortem sample. CONCLUSIONS Applying a disease-relevant model of the developing fetal brain, we identified consistent dysregulation of axonal genes as an early risk factor for SCZ, providing novel insights into the effects of genetic predisposition on the neurodevelopmental origins of the disorder.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Veeneman RR, Vermeulen JM, Bialas M, Bhamidipati AK, Abdellaoui A, Munafò MR, Denys D, Bezzina CR, Verweij KJH, Tadros R, Treur JL. Mental illness and cardiovascular health: observational and polygenic score analyses in a population-based cohort study. Psychol Med 2024; 54:931-939. [PMID: 37706306 DOI: 10.1017/s0033291723002635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND Individuals with serious mental illness have a markedly shorter life expectancy. A major contributor to premature death is cardiovascular disease (CVD). We investigated associations of (genetic liability for) depressive disorder, bipolar disorder and schizophrenia with a range of CVD traits and examined to what degree these were driven by important confounders. METHODS We included participants of the Dutch Lifelines cohort (N = 147 337) with information on self-reported lifetime diagnosis of depressive disorder, bipolar disorder, or schizophrenia and CVD traits. Employing linear mixed-effects models, we examined associations between mental illness diagnoses and CVD, correcting for psychotropic medication, demographic and lifestyle factors. In a subsample (N = 73 965), we repeated these analyses using polygenic scores (PGSs) for the three mental illnesses. RESULTS There was strong evidence that depressive disorder diagnosis is associated with increased arrhythmia and atherosclerosis risk and lower heart rate variability, even after confounder adjustment. Positive associations were also found for the depression PGSs with arrhythmia and atherosclerosis. Bipolar disorder was associated with a higher risk of nearly all CVD traits, though most diminished after adjustment. The bipolar disorder PGSs did not show any associations. While the schizophrenia PGSs was associated with increased arrhythmia risk and lower heart rate variability, schizophrenia diagnosis was not. All mental illness diagnoses were associated with lower blood pressure and a lower risk of hypertension. CONCLUSIONS Our study shows widespread associations of (genetic liability to) mental illness (primarily depressive disorder) with CVD, even after confounder adjustment. Future research should focus on clarifying potential causal pathways between mental illness and CVD.
Collapse
Affiliation(s)
- R R Veeneman
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - J M Vermeulen
- Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M Bialas
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - A K Bhamidipati
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - A Abdellaoui
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - D Denys
- Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - C R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - K J H Verweij
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - R Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - J L Treur
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Laaboub N, Locatelli I, Grosu C, Piras M, Ngoc TH, Ranjbar S, Preisig M, Elowe J, von Gunten A, Conus P, Eap CB. Metabolic disturbances are risk factors for readmission to psychiatric hospitals in non-smokers but not in smokers: results from a Swiss psychiatric cohort and in first-episode psychosis patients. Front Psychiatry 2024; 15:1256416. [PMID: 38414502 PMCID: PMC10896922 DOI: 10.3389/fpsyt.2024.1256416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Background Psychiatric patients are at high risk of readmission, and a high body mass index has previously been shown as a risk factor. We sought to replicate this finding and 1) to prospectively assess the association of metabolic syndrome and its five components with readmission in psychiatric hospitals and 2) to identify other clinical and sociodemographic predictors of readmission. Methods Between 2007 and 2019, data on 16727 admissions of 7786 adult and elderly patients admitted to the Department of Psychiatry of the Lausanne University Hospital, were collected. Metabolic syndrome was defined according to the International Diabetes Federation definition. Cox frailty models were used to investigate the associations between readmission and metabolic disturbances. Results A total of 2697 (35%) patients were readmitted to our psychiatric hospital. Novel risk factors for readmission in non-smokers were identified, including being overweight (HR=1.26; 95%CI=[1.05; 1.51]) or obese (HR=1.33; 95%CI=[1.08; 1.62]), displaying hypertriglyceridemia (HR=1.21; 95%CI=[1.04; 1.40]) and metabolic syndrome (HR=1.26; 95%CI=[1.02; 1.55]). Central obesity and hyperglycemia increased the risk of readmission when considering the Health of the Nation Outcome Scales variable. In first-episode psychosis patients, obesity (HR=2.23; 95%CI=[1.14; 4.30]) and high-density lipoprotein hypocholesterolemia (HR=1.90; 95%CI=[1.14; 3.20]) doubled the risk of readmission. Conclusion The observed interaction between smoking and metabolic variables are compatible with a ceiling effect; metabolic variables increase the risk of readmission in non-smokers but not in smokers who are already at higher risk. Future studies should determine whether better metabolic monitoring and treatment can reduce readmission risk.
Collapse
Affiliation(s)
- Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Isabella Locatelli
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Tram Ho Ngoc
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Setareh Ranjbar
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Martin Preisig
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Julien Elowe
- Service of Adult Psychiatry North-West, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
7
|
Mikhalitskaya EV, Vyalova NM, Ermakov EA, Levchuk LA, Simutkin GG, Bokhan NA, Ivanova SA. Association of Single Nucleotide Polymorphisms of Cytokine Genes with Depression, Schizophrenia and Bipolar Disorder. Genes (Basel) 2023; 14:1460. [PMID: 37510364 PMCID: PMC10379485 DOI: 10.3390/genes14071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Immune gene variants are known to be associated with the risk of psychiatric disorders, their clinical manifestations, and their response to therapy. This narrative review summarizes the current literature over the past decade on the association of polymorphic variants of cytokine genes with risk, severity, and response to treatment for severe mental disorders such as bipolar disorder, depression, and schizophrenia. A search of literature in databases was carried out using keywords related to depressive disorder, bipolar disorder, schizophrenia, inflammation, and cytokines. Gene lists were extracted from publications to identify common genes and pathways for these mental disorders. Associations between polymorphic variants of the IL1B, IL6, and TNFA genes were the most replicated and relevant in depression. Polymorphic variants of the IL1B, IL6, IL6R, IL10, IL17A, and TNFA genes have been associated with schizophrenia. Bipolar disorder has mainly been associated with polymorphic variants of the IL1B gene. Interestingly, the IL6R gene polymorphism (rs2228145) was associated with all three diseases. Some cytokine genes have also been associated with clinical presentation and response to pharmacotherapy. There is also evidence that some specific polymorphic variants may affect the expression of cytokine genes. Thus, the data from this review indicate a link between neuroinflammation and severe mental disorders.
Collapse
Affiliation(s)
- Ekaterina V Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| | - Natalya M Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| | - Evgeny A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyudmila A Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| |
Collapse
|
8
|
Mongan D, Raj Susai S, Föcking M, Byrne JF, Zammit S, Cannon M, Cotter DR. Associations between plasma inflammatory markers and psychotic disorder, depressive disorder and generalised anxiety disorder in early adulthood: A nested case-control study. Brain Behav Immun 2023; 111:90-100. [PMID: 37004760 DOI: 10.1016/j.bbi.2023.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Low-grade inflammation may occur in association with several mental disorders of early adulthood, though associations with markers of chronic inflammation such as soluble urokinase plasminogen activator receptor (suPAR) are less well-established. We aimed to examine associations between acute and chronic inflammatory markers and mental disorders, as well as psychiatric co-morbidity, in young adults aged 24 years in the Avon Longitudinal Study of Parents and Children. METHODS Included were 781 participants (of 4019 who attended at age 24 years) who completed psychiatric assessments and provided plasma samples. Of these, 377 met criteria for psychotic disorder, depressive disorder or generalised anxiety disorder and 404 did not. Plasma concentrations of IFN-γ, IL-6, IL-8, IL-10, TNF-α, CRP, sVCAM1, sICAM1, suPAR and alpha-2-macroglobulin were measured using immunoassays. Logistic regression compared standardised inflammatory marker levels in cases and controls. Negative binomial regression evaluated associations between inflammatory markers and co-morbidity (number of mental disorders). Models were adjusted for sex, body mass index, cigarette smoking, cannabis use and employment status, then additionally for childhood trauma. RESULTS For psychotic disorder, there was evidence for associations with IL-6 (odds ratio[OR] 1.68, 95 %CI 1.20-2.34) and suPAR (OR 1.74, 95 %CI 1.17-2.58). There was weaker evidence for an association between suPAR and depressive disorder (OR 1.31, 95 %CI 1.05-1.62). There was little evidence for associations between inflammatory markers and generalised anxiety disorder. There was weak evidence for an association between suPAR and co-morbidity (β 0.10, 95 %CI 0.01-0.19). There was little evidence for additional confounding by childhood trauma. CONCLUSIONS There was evidence that 24-year-olds with psychotic disorder had raised plasma IL-6 and suPAR concentrations compared to controls. These findings have implications regarding the role of inflammation in mental disorders in early adulthood.
Collapse
Affiliation(s)
- David Mongan
- Centre for Public Health, Queen's University Belfast, Northern Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jonah F Byrne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
9
|
Osete JR, Akkouh IA, Ievglevskyi O, Vandenberghe M, de Assis DR, Ueland T, Kondratskaya E, Holen B, Szabo A, Hughes T, Smeland OB, Steen VM, Andreassen OA, Djurovic S. Transcriptional and functional effects of lithium in bipolar disorder iPSC-derived cortical spheroids. Mol Psychiatry 2023; 28:3033-3043. [PMID: 36653674 PMCID: PMC10615757 DOI: 10.1038/s41380-023-01944-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Lithium (Li) is recommended for long-term treatment of bipolar disorder (BD). However, its mechanism of action is still poorly understood. Induced pluripotent stem cell (iPSC)-derived brain organoids have emerged as a powerful tool for modeling BD-related disease mechanisms. We studied the effects of 1 mM Li treatment for 1 month in iPSC-derived human cortical spheroids (hCS) from 10 healthy controls (CTRL) and 11 BD patients (6 Li-responders, Li-R, and 5 Li non-treated, Li-N). At day 180 of differentiation, BD hCS showed smaller size, reduced proportion of neurons, decreased neuronal excitability and reduced neural network activity compared to CTRL hCS. Li rescued excitability of BD hCS neurons by exerting an opposite effect in the two diagnostic groups, increasing excitability in BD hCS and decreasing it in CTRL hCS. We identified 132 Li-associated differentially expressed genes (DEGs), which were overrepresented in sodium ion homeostasis and kidney-related pathways. Moreover, Li regulated secretion of pro-inflammatory cytokines and increased mitochondrial reserve capacity in BD hCS. Through long-term Li treatment of a human 3D brain model, this study partly elucidates the functional and transcriptional mechanisms underlying the clinical effects of Li, such as rescue of neuronal excitability and neuroprotection. Our results also underscore the substantial influence of treatment duration in Li studies. Lastly, this study illustrates the potential of patient iPSC-derived 3D brain models for precision medicine in psychiatry.
Collapse
Affiliation(s)
- Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Ievglevskyi
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Matthieu Vandenberghe
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Denis Reis de Assis
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Elena Kondratskaya
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Børge Holen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Vidar Martin Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Scheurink TAW, Borkent J, Gangadin SS, El Aidy S, Mandl R, Sommer IEC. Association between gut permeability, brain volume, and cognition in healthy participants and patients with schizophrenia spectrum disorder. Brain Behav 2023; 13:e3011. [PMID: 37095714 PMCID: PMC10275537 DOI: 10.1002/brb3.3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION The barrier function of the gut is important for many organs and systems, including the brain. If gut permeability increases, bacterial fragments may enter the circulation, giving rise to increased systemic inflammation. Increases in bacterial translocation are reflected in higher values of blood markers, including lipopolysaccharide binding protein (LBP) and soluble cluster of differentiation 14 (sCD14). Some pioneer studies showed a negative association between bacterial translocation markers and brain volumes, but this association remains scarcely investigated. We investigate the effect of bacterial translocation on brain volumes and cognition in both healthy controls and patients with a schizophrenia spectrum disorder (SSD). MATERIALS AND METHODS Healthy controls (n = 39) and SSD patients (n = 72) underwent an MRI-scan, venipuncture and cognition assessments. We investigated associations between LBP and sCD14 and brain volumes (intracranial volume, total brain volume, and hippocampal volume) using linear regression. We then associated LBP and sCD14 to cognitive function using a mediation analysis, with intracranial volume as mediator. RESULTS Healthy controls showed a negative association between hippocampal volume and LBP (b = -0.11, p = .04), and intracranial volume and sCD14 (b = -0.25, p = .07). Both markers were indirectly associated with lower cognitive functioning in healthy controls (LBP: b = -0.071, p = .028; sCD14: b = -0.213, p = .052), mediated by low intracranial volume. In the SSD patients, these associations were markedly less present. CONCLUSION These findings extend earlier studies suggesting that increased bacterial translocation may negatively affect brain volume, which indirectly impacts cognition, even in this young healthy group. If replicated, this finding stresses the importance of a healthy gut for the development and optimal functioning of the brain. Absence of these associations in the SSD group may indicate that other factors such as allostatic load, chronic medication use and interrupted educational carrier had larger impact and attenuated the relative contribution of bacterial translocation.
Collapse
Affiliation(s)
- Toon Anton Willem Scheurink
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jenny Borkent
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Shiral S. Gangadin
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sahar El Aidy
- Host‐Microbe Metabolic InteractionsGroningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Rene Mandl
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of PsychiatryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
11
|
Jensen SB, Sheikh MA, Akkouh IA, Szabo A, O’Connell KS, Lekva T, Engh JA, Agartz I, Elvsåshagen T, Ormerod MBEG, Weibell MA, Johnsen E, Kroken RA, Melle I, Drange OK, Nærland T, Vaaler AE, Westlye LT, Aukrust P, Djurovic S, Eiel Steen N, Andreassen OA, Ueland T. Elevated Systemic Levels of Markers Reflecting Intestinal Barrier Dysfunction and Inflammasome Activation Are Correlated in Severe Mental Illness. Schizophr Bull 2023; 49:635-645. [PMID: 36462169 PMCID: PMC10154716 DOI: 10.1093/schbul/sbac191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND AND HYPOTHESIS Gut microbiota alterations have been reported in severe mental illness (SMI) but fewer studies have probed for signs of gut barrier disruption and inflammation. We hypothesized that gut leakage of microbial products due to intestinal inflammation could contribute to systemic inflammasome activation in SMI. STUDY DESIGN We measured plasma levels of the chemokine CCL25 and soluble mucosal vascular addressin cell adhesion molecule-1 (sMAdCAM-1) as markers of T cell homing, adhesion and inflammation in the gut, lipopolysaccharide binding protein (LBP) and intestinal fatty acid binding protein (I-FABP) as markers of bacterial translocation and gut barrier dysfunction, in a large SMI cohort (n = 567) including schizophrenia (SCZ, n = 389) and affective disorder (AFF, n = 178), relative to healthy controls (HC, n = 418). We assessed associations with plasma IL-18 and IL-18BPa and leukocyte mRNA expression of NLRP3 and NLRC4 as markers of inflammasome activation. STUDY RESULTS Our main findings were: (1) higher levels of sMAdCAM-1 (P = .002), I-FABP (P = 7.6E-11), CCL25 (P = 9.6E-05) and LBP (P = 2.6E-04) in SMI compared to HC in age, sex, BMI, CRP and freezer storage time adjusted analysis; (2) the highest levels of sMAdCAM-1 and CCL25 (both P = 2.6E-04) were observed in SCZ and I-FABP (P = 2.5E-10) and LBP (3) in AFF; and (3), I-FABP correlated with IL-18BPa levels and LBP correlated with NLRC4. CONCLUSIONS Our findings support that intestinal barrier inflammation and dysfunction in SMI could contribute to systemic inflammation through inflammasome activation.
Collapse
Affiliation(s)
- Søren B Jensen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - John A Engh
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Division of Mental health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ingrid Agartz
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Monica B E G Ormerod
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Melissa A Weibell
- Division of Psychiatry, Network for Clinical Psychosis Research, Stavanger University Hospital, Stavanger, Norway
- Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole K Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
- Department of Psychiatry, Sørlandet Hospital, Kristiansand, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Rare Disorders, Division of Child and Adolescent medicine, Oslo University Hospital, Oslo, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
| | - Lars T Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
12
|
Severe Mental Illness and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 80:918-933. [PMID: 36007991 DOI: 10.1016/j.jacc.2022.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
People with severe mental illness, consisting of schizophrenia, bipolar disorder, and major depression, have a high burden of modifiable cardiovascular risk behaviors and conditions and have a cardiovascular mortality rate twice that of the general population. People with acute and chronic cardiovascular disease are at a higher risk of developing mental health symptoms and disease. There is emerging evidence for shared etiological factors between severe mental illness and cardiovascular disease that includes biological, genetic, and behavioral mechanisms. This state-of-the art review will describe the relationship between severe mental illness and cardiovascular disease, explore the factors that lead to poor cardiovascular outcomes in people with severe mental illness, propose strategies to improve the cardiovascular health of people with severe mental illness, and present areas for future research focus.
Collapse
|
13
|
Peripheral inflammatory markers associated with brain volume reduction in patients with bipolar I disorder. Acta Neuropsychiatr 2022; 34:191-200. [PMID: 34924065 DOI: 10.1017/neu.2021.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neuroinflammation and brain structural abnormalities are found in bipolar disorder (BD). Elevated levels of cytokines and chemokines have been detected in the serum and cerebrospinal fluid of patients with BD. This study investigated the association between peripheral inflammatory markers and brain subregion volumes in BD patients. METHODS Euthymic patients with bipolar I disorder (BD-I) aged 20-45 years underwent whole-brain magnetic resonance imaging. Plasma levels of monocyte chemoattractant protein-1 (MCP-1), chitinase-3-like protein 1 (also known as YKL-40), fractalkine (FKN), soluble tumour necrosis factor receptor-1 (sTNF-R1), interleukin-1β, and transforming growth factor-β1 were measured on the day of neuroimaging. Clinical data were obtained from medical records and interviewing patients and reliable others. RESULTS We recruited 31 patients with a mean age of 29.5 years. In multivariate regression analysis, plasma level YKL-40, a chemokine, was the most common inflammatory marker among these measurements displaying significantly negative association with the volume of various brain subareas across the frontal, temporal, and parietal lobes. Higher YKL-40 and sTNF-R1 levels were both significantly associated with lower volumes of the left anterior cingulum, left frontal lobe, right superior temporal gyrus, and supramarginal gyrus. A greater number of total lifetime mood episodes were also associated with smaller volumes of the right caudate nucleus and bilateral frontal lobes. CONCLUSIONS The volume of brain regions known to be relevant to BD-I may be diminished in relation to higher plasma level of YKL-40, sTNF-R1, and more lifetime mood episodes. Macrophage and macrophage-like cells may be involved in brain volume reduction among BD-I patients.
Collapse
|
14
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
15
|
Werner MCF, Wirgenes KV, Shadrin AA, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Limited association between infections, autoimmune disease and genetic risk and immune activation in severe mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110511. [PMID: 35063598 DOI: 10.1016/j.pnpbp.2022.110511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Low-grade inflammation may be part of the underlying mechanism of schizophrenia and bipolar disorder. We investigated if genetic susceptibility, infections or autoimmunity could explain the immune activation. METHODS Seven immune markers were selected based on indicated associations to severe mental disorders (IL-1Ra, sIL-2R, IL-18, sgp130, sTNFR-1, APRIL, ICAM-1) and measured in plasma of patients with schizophrenia (SCZ, N = 732) and bipolar spectrum disorders (BD, N = 460) and healthy controls (HC, N = 938). Information on rate of infections and autoimmune diseases were obtained from Norwegian national health registries for a twelve-year period. Polygenic risk scores (PRS) of SCZ and BD were calculated from genome-wide association studies. Analysis of covariance were used to test effects of infection rate, autoimmune disease and PRS on differences in immune markers between patients and HC. RESULTS Infection rate differed between all groups (BD > HC > SCZ, all p < 0.001) whereas autoimmune disease was more frequent in BD compared to SCZ (p = 0.004) and HC (p = 0.003). sIL-2R was positively associated with autoimmune disease (p = 0.001) and negatively associated with PRS of SCZ (p = 0.006) across SCZ and HC; however, associations represented only small changes in the difference of sIL-2R levels between SCZ and HC. CONCLUSION There were few significant associations between rate of infections, autoimmune disease or PRS and altered immune markers in SCZ and BD, and the detected associations represented only small changes in the immune aberrations. The findings suggest that most of the low-grade inflammation in SCZ and BD is explained by other factors than the underlying PRS, autoimmunity and infection rates.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Borkent J, Ioannou M, Laman JD, Haarman BCM, Sommer IEC. Role of the gut microbiome in three major psychiatric disorders. Psychol Med 2022; 52:1222-1242. [PMID: 35506416 PMCID: PMC9157303 DOI: 10.1017/s0033291722000897] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia-spectrum disorders (SSD) are heterogeneous psychiatric disorders, which place significant burden on patient's well-being and global health. Disruptions in the gut-microbiome may play a role in these psychiatric disorders. This review presents current data on composition of the human gastrointestinal microbiota, and its interaction mechanisms in the gut-brain axis in MDD, BD and SSD. Diversity metrics and microbial relative abundance differed across studies. More studies reported inconsistent findings (n = 7) or no differences (n = 8) than studies who reported lower α-diversity in these psychiatric disorders (n = 5). The most consistent findings across studies were higher relative abundances of the genera Streptococcus, Lactobacillus, and Eggerthella and lower relative abundance of the butyrate producing Faecalibacterium in patients with psychiatric disorders. All three increased genera were associated with higher symptom severity. Confounders, such as medication use and life style have not been accounted for. So far, the results of probiotics trials have been inconsistent. Most traditional and widely used probiotics (consisting of Bifidobacterium spp. and Lactobacillus spp.) are safe, however, they do not correct potential microbiota disbalances in these disorders. Findings on prebiotics and faecal microbiota transplantation (FMT) are too limited to draw definitive conclusions. Disease-specific pro/prebiotic treatment or even FMT could be auspicious interventions for prevention and therapy for psychiatric disorders and should be investigated in future trials.
Collapse
Affiliation(s)
- Jenny Borkent
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalini Ioannou
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jon D. Laman
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Göteson A, Isgren A, Sparding T, Holmén-Larsson J, Jakobsson J, Pålsson E, Landén M. A serum proteomic study of two case-control cohorts identifies novel biomarkers for bipolar disorder. Transl Psychiatry 2022; 12:55. [PMID: 35136035 PMCID: PMC8826439 DOI: 10.1038/s41398-022-01819-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
We set out to identify novel protein associations with potential as clinically viable biomarkers for bipolar disorder. To this end, we used proximity extension assay to analyze 201 unique proteins in blood serum from two independent cohorts comprising patients with bipolar disorder and healthy controls (total n = 493). We identified 32 proteins significantly associated with bipolar disorder in both case-control cohorts after adjusting for relevant covariates. Twenty-two findings are novel to bipolar disorder, but 10 proteins have previously been associated with bipolar disorder: chitinase-3-like protein 1, C-C motif chemokine 3 (CCL3), CCL4, CCL20, CCL25, interleukin 10, growth/differentiation factor-15, matrilysin (MMP-7), pro-adrenomedullin, and TNF-R1. Next, we estimated the variance in serum protein concentrations explained by psychiatric drugs and found that some case-control associations may have been driven by psychiatric drugs. The highest variance explained was observed between lithium use and MMP-7, and in post-hoc analyses and found that the serum concentration of MMP-7 was positively associated with serum lithium concentration, duration of lithium therapy, and inversely associated with estimated glomerular filtration rate in an interaction with lithium. This is noteworthy given that MMP-7 has been suggested as a mediator of renal tubulointerstitial fibrosis, which is characteristic of lithium-induced nephropathy. Finally, we used machine learning to evaluate the classification performance of the studied biomarkers but the average performance in unseen data was fair to moderate (area under the receiver operating curve = 0.72). Taken together, our serum biomarker findings provide novel insight to the etiopathology of bipolar disorder, and we present a suggestive biomarker for lithium-induced nephropathy.
Collapse
Affiliation(s)
- Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Anniella Isgren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Timea Sparding
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Holmén-Larsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Joel Jakobsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Werner MCF, Wirgenes KV, Shadrin A, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Immune marker levels in severe mental disorders: associations with polygenic risk scores of related mental phenotypes and psoriasis. Transl Psychiatry 2022; 12:38. [PMID: 35082268 PMCID: PMC8792001 DOI: 10.1038/s41398-022-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence implicate immune abnormalities in the pathophysiology of severe mental disorders (SMD) and comorbid mental disorders. Here, we use the data from genome-wide association studies (GWAS) of autoimmune diseases and mental phenotypes associated with SMD to disentangle genetic susceptibilities of immune abnormalities in SMD. We included 1004 patients with SMD and 947 healthy controls (HC) and measured plasma levels of IL-1Ra, sIL-2R, gp130, sTNFR-1, IL-18, APRIL, and ICAM-1. Polygenic risk scores (PRS) of six autoimmune disorders, CRP, and 10 SMD-related mental phenotypes were calculated from GWAS. General linear models were applied to assess the association of PRS with immune marker abnormalities. We found negative associations between PRS of educational attainment and IL-1Ra (P = 0.01) and IL-18 (P = 0.01). There were nominal positive associations between PRS of psoriasis and sgp130 (P = 0.02) and PRS of anxiety and IL-18 (P = 0.03), and nominal negative associations between PRS of anxiety and sIL-2R (P = 0.02) and PRS of educational attainment and sIL-2R (P = 0.03). Associations explained minor amounts of the immune marker plasma-level difference between SMD and HC. Different PRS and immune marker associations in the SMD group compared to HC were shown for PRS of extraversion and IL-1Ra ([interaction effect (IE), P = 0.002), and nominally for PRS of openness and IL-1Ra (IE, P = 0.02) and sTNFR-1 (IE, P = 0.04). Our findings indicate polygenic susceptibilities to immune abnormalities in SMD involving genetic overlap with SMD-related mental phenotypes and psoriasis. Associations might suggest immune genetic factors of SMD subgroups characterized by autoimmune or specific mental features.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Safadi JM, Quinton AMG, Lennox BR, Burnet PWJ, Minichino A. Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Mol Psychiatry 2022; 27:141-153. [PMID: 33558650 PMCID: PMC8960409 DOI: 10.1038/s41380-021-01032-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Reduced gut-microbial diversity ("gut dysbiosis") has been associated with an anhedonic/amotivational syndrome ("sickness behavior") that manifests across severe mental disorders and represent the key clinical feature of chronic fatigue. In this systematic review and meta-analysis, we investigated differences in proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue vs. controls and the association of these biomarkers with sickness behavior across diagnostic categories. Following PRISMA guidelines, we searched from inception to April 2020 for all the studies investigating proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue. Data were independently extracted by multiple observers, and a random-mixed model was used for the analysis. Heterogeneity was assessed with the I2 index. Thirty-three studies were included in the systematic review; nineteen in the meta-analysis (N = 2758 patients and N = 1847 healthy controls). When compared to controls, patients showed increased levels of zonulin (four studies reporting data on bipolar disorder and depression, SMD = 0.97; 95% Cl = 0.10-1.85; P = 0.03, I2 = 86.61%), lipopolysaccharide (two studies reporting data on chronic fatigue and depression, SMD = 0.77; 95% Cl = 0.42-1.12; P < 0.01; I2 = 0%), antibodies against endotoxin (seven studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.99; 95% CI = 0.27-1.70; P < 0.01, I2 = 97.14%), sCD14 (six studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.54; 95% Cl 0.16-0.81; P < 0.01, I2 = 90.68%), LBP (LBP, two studies reporting data on chronic fatigue and depression, SMD = 0.87; 95% Cl = 0.25-1.48; P < 0.01; I2 = 56.80%), alpha-1-antitripsin (six studies reporting data on bipolar disorder, depression, and schizophrenia, SMD = 1.23; 95% Cl = 0.57-1.88; P < 0.01, I2: 89.25%). Elevated levels of gut dysbiosis markers positively correlated with severity of sickness behavior in patients with severe mental illness and chronic fatigue. Our findings suggest that gut dysbiosis may underlie symptoms of sickness behavior across traditional diagnostic boundaries. Future investigations should validate these findings comparing the performances of the trans-diagnostic vs. categorical approach. This will facilitate treatment breakthrough in an area of unmet clinical need.
Collapse
Affiliation(s)
- Jenelle Marcelle Safadi
- grid.5386.8000000041936877XCornell University, Ithaca, NY USA ,grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alice M. G. Quinton
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Belinda R. Lennox
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Philip W. J. Burnet
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | | |
Collapse
|
20
|
A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia. Transl Psychiatry 2021; 11:554. [PMID: 34716291 PMCID: PMC8556332 DOI: 10.1038/s41398-021-01681-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
While neurodevelopmental abnormalities have been associated with schizophrenia (SCZ), the role of astroglia in disease pathophysiology remains poorly understood. In the present study, we used a human induced pluripotent stem cell (iPSC)-derived astrocyte model to investigate the temporal patterns of astroglia differentiation during developmental stages critical for SCZ using RNA sequencing. The model generated astrocyte-specific gene expression patterns during differentiation that corresponded well to astroglia-specific expression signatures of in vivo cortical fetal development. Using this model we identified SCZ-specific expression dynamics, and found that SCZ-associated differentially expressed genes were significantly enriched in the medial prefrontal cortex, striatum, and temporal lobe, targeting VWA5A and ADAMTS19. In addition, SCZ astrocytes displayed alterations in calcium signaling, and significantly decreased glutamate uptake and metalloproteinase activity relative to controls. These results implicate novel transcriptional dynamics in astrocyte differentiation in SCZ together with functional changes that are potentially important biological components of SCZ pathology.
Collapse
|
21
|
Bigseth TT, Engh JA, Egeland J, Andersen E, Andreassen OA, Bang-Kittilsen G, Falk RS, Holmen TL, Lindberg M, Mordal J, Nielsen J, Steen NE, Ueland T, Vang T, Fredriksen M. Exploring low grade inflammation by soluble urokinase plasminogen activator receptor levels in schizophrenia: a sex-dependent association with depressive symptoms. BMC Psychiatry 2021; 21:527. [PMID: 34702245 PMCID: PMC8547032 DOI: 10.1186/s12888-021-03522-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is evidence of increased low grade inflammation (LGI) in schizophrenia patients. However, the inter-individual variation is large and the association with demographic, somatic and psychiatric factors remains unclear. Our aim was to explore whether levels of the novel LGI marker soluble urokinase plasminogen activator receptor (suPAR) were associated with clinical factors in schizophrenia and if such associations were sex-dependent. METHOD In this observational study a total of 187 participants with schizophrenia (108 males, 79 females) underwent physical examination and assessment with clinical interviews (Positive and Negative Syndrome Scale (PANSS), Calgary Depression Scale for Schizophrenia (CDSS), Alcohol Use Disorder Identification Test (AUDIT), and Drug Use Disorder Identification Test (DUDIT)). Blood levels of suPAR, glucose, lipids, and high sensitivity C-reactive protein (hsCRP) were determined and body mass index (BMI) calculated. Multivariable linear regression analyses were used adjusting for confounders, and sex interaction tested in significant variables. RESULTS Adjusting for sex, age, current tobacco smoking and BMI, we found that levels of hsCRP and depressive symptoms (CDSS) were positively associated with levels of suPAR (p < 0.001). The association between suPAR and CDSS score was significant in females (p < 0.001) but not in males. Immune activation measured by hsCRP was not associated with depressive symptoms after adjusting for BMI. CONCLUSION Our findings indicate that increased suPAR levels are associated with depressive symptoms in females with schizophrenia, suggesting aberrant immune activation in this subgroup. Our results warrant further studies, including longitudinal follow-up of suPAR levels in schizophrenia and experimental studies of mechanisms.
Collapse
Affiliation(s)
- Therese Torgersen Bigseth
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103, Tonsberg, Norway.
| | - John Abel Engh
- grid.417292.b0000 0004 0627 3659Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103 Tonsberg, Norway
| | - Jens Egeland
- grid.417292.b0000 0004 0627 3659Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103 Tonsberg, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, PO Box 1094, Blindern 0317 Oslo, Norway
| | - Eivind Andersen
- grid.463530.70000 0004 7417 509XFaculty of Humanities, Sports and Educational Science, University of South-Eastern Norway, PO Box 235, 3603 Kongsberg, Norway
| | - Ole Andreas Andreassen
- grid.5510.10000 0004 1936 8921NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Psychosis Research Unit/TOP, Ullevaal Hospital, building 49, PO Box 4956, Nydalen 0424 Oslo, Norway
| | - Gry Bang-Kittilsen
- grid.417292.b0000 0004 0627 3659Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103 Tonsberg, Norway
| | - Ragnhild Sørum Falk
- grid.55325.340000 0004 0389 8485Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, PO Box 4950, Nydalen 0424 Oslo, Norway
| | - Tom Langerud Holmen
- grid.417292.b0000 0004 0627 3659Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103 Tonsberg, Norway
| | - Morten Lindberg
- grid.417292.b0000 0004 0627 3659Department of Laboratory Medicine, Vestfold Hospital Trust, PO Box 2168, 3103 Tonsberg, Norway
| | - Jon Mordal
- grid.417292.b0000 0004 0627 3659Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103 Tonsberg, Norway
| | - Jimmi Nielsen
- grid.4973.90000 0004 0646 7373Mental Health Centre Glostrup, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nils Eiel Steen
- grid.5510.10000 0004 1936 8921NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Psychosis Research Unit/TOP, Ullevaal Hospital, building 49, PO Box 4956, Nydalen 0424 Oslo, Norway
| | - Thor Ueland
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, PO Box 4950, Nydalen 0424 Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo Faculty of Health Sciences, PO Box 1171, Blindern 0318 Oslo, Norway ,grid.10919.300000000122595234K.G. Jebsen TREC, University of Tromso, 9037 Tromso, Norway
| | - Torkel Vang
- grid.417292.b0000 0004 0627 3659Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103 Tonsberg, Norway ,grid.4973.90000 0004 0646 7373Mental Health Centre Glostrup, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mats Fredriksen
- grid.417292.b0000 0004 0627 3659Division of Mental Health and Addiction, Vestfold Hospital Trust, Sykehuset i Vestfold, PO Box 2168, 3103 Tonsberg, Norway
| |
Collapse
|
22
|
Engh JA, Ueland T, Agartz I, Andreou D, Aukrust P, Boye B, Bøen E, Drange OK, Elvsåshagen T, Hope S, Høegh MC, Joa I, Johnsen E, Kroken RA, Lagerberg TV, Lekva T, Malt UF, Melle I, Morken G, Nærland T, Steen VM, Wedervang-Resell K, Weibell MA, Westlye LT, Djurovic S, Steen NE, Andreassen OA. Plasma Levels of the Cytokines B Cell-Activating Factor (BAFF) and A Proliferation-Inducing Ligand (APRIL) in Schizophrenia, Bipolar, and Major Depressive Disorder: A Cross Sectional, Multisite Study. Schizophr Bull 2021; 48:37-46. [PMID: 34499169 PMCID: PMC8781325 DOI: 10.1093/schbul/sbab106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Immune dysfunction has been implicated in the pathogenesis of schizophrenia and other nonaffective psychosis (SCZ), bipolar spectrum disorder (BIP) and major depressive disorder (MDD). The cytokines B cell-activating factor (BAFF) and A proliferation-inducing ligand (APRIL) belong to the tumor necrosis factor (TNF) super family and are essential in orchestrating immune responses. Abnormal levels of BAFF and APRIL have been found in autoimmune diseases with CNS affection. METHODS We investigated if plasma levels of BAFF and APRIL differed between patients with SCZ, BIP, and MDD with psychotic symptoms (n = 2009) and healthy control subjects (HC, n = 1212), and tested for associations with psychotic symptom load, controlling for sociodemographic status, antipsychotic and other psychotropic medication, smoking, body-mass-index, and high sensitivity CRP. RESULTS Plasma APRIL level was significantly lower across all patient groups compared to HC (P < .001; Cohen's d = 0.33), and in SCZ compared to HC (P < .001; d = 0.28) and in BIP compared to HC (P < .001; d = 0.37). Lower plasma APRIL was associated with higher psychotic symptom load with nominal significance (P = .017), but not with any other clinical characteristics. Plasma BAFF was not significantly different across patient groups vs HC, but significantly higher in BIP compared to HC (P = .040; d = 0.12) and SCZ (P = .027; d = 0.10). CONCLUSIONS These results show aberrant levels of BAFF and APRIL and association with psychotic symptoms in patients with SCZ and BIP. This suggest that dysregulation of the TNF system, mediated by BAFF and APRIL, is involved in the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- John Abel Engh
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Vestfold Hospital Trust, Division of Mental health and Addiction, Tønsberg, Norway,To whom correspondence should be addressed; Norwegian Centre for Mental Disorders Research, NORMENT, Oslo, Norway; tel: 023-02-73-50 (022-11-78-43 dir), fax: 023-02-73-33,
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,K.G. Jebsen Thrombosis Research and Expertise Center, University of Troms, Tromsø, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Birgitte Boye
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,Psychosomatic and Consultation-liason Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erlend Bøen
- Psychosomatic and Consultation-liason Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, NTNU, Trondheim, Norway,Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway,Department of Psychiatry, St Olav University Hospital, Trondheim, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway
| | - Margrethe Collier Høegh
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- TIPS, Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway,Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway,University of Bergen, Bergen, Norway,Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rune Andreas Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway,University of Bergen, Bergen, Norway,Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trine Vik Lagerberg
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, NTNU, Trondheim, Norway,Department of Psychiatry, St Olav University Hospital, Trondheim, Norway
| | - Terje Nærland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,K.G. Jebsen Center for Neurodevelopmental Disorders, Oslo, Norway,Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
| | - Vidar Martin Steen
- University of Bergen, Bergen, Norway,Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway,Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Melissa Auten Weibell
- TIPS, Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway,Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Lars Tjelta Westlye
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Andreas Andreassen
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Rukavishnikov GV, Kasyanov ED, Zhilyaeva TV, Mazo GE. [Schizophrenia and cardiometabolic disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:132-138. [PMID: 34283543 DOI: 10.17116/jnevro2021121061132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this review is to analyze the basic biological mechanisms of comorbidity of schizophrenia and metabolic, cardiovascular diseases, which are not directly associated with external risk factors. The study of the general pathophysiological mechanisms of schizophrenia and metabolic disorders can provide a significant basis not only for the fundamentally novel therapeutic, preventive and diagnostic measures, but also for a better understanding of the etiopathogenesis of these diseases. It seems likely that schizophrenia represents a heterogeneous group with a varying genetic basis for both mental symptoms and neuroendocrine, inflammatory processes that form concomitant somatic disorders. Thus, the new integrated approaches to the study of this problem with the latest methods of genetic and molecular research are relevant.
Collapse
Affiliation(s)
- G V Rukavishnikov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - E D Kasyanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - T V Zhilyaeva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
24
|
Vujnovic M, Manukhina O, Reed GM, Theodorakis PN, Fountoulakis KN. ICD-11 Revision of Mental Disorders: the Global Standard for Health Data, Clinical Documentation, and Statistical Aggregation. CONSORTIUM PSYCHIATRICUM 2021; 2:3-6. [PMID: 39070737 PMCID: PMC11272312 DOI: 10.17816/cp74] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mental health conditions in the World Health Organization (WHO) European Region affect more than 10% of the population, with 140,000 lives lost annually to suicide. Comorbidity with other diseases is high. However, basic mental health care is received by less than a third of patients. The COVID-19 pandemic has revealed the vulnerability of mental health services to disruptions and underscored the need to integrate mental health into response strategies. One of the flagship initiatives of the WHO European Programme of Work (EPW), 2020-2025: 'United Action for Better Health in Europe' is the establishment of a Mental Health Coalition at the European level. In this framework, reporting of health statistics using the International Classification of Diseases 11th Revision (ICD-11) will begin on 1st January 2022. Clinical utility, scientific rigour and wider cultural applicability were all of prime importance in the development of the ICD-11. The 11th Revision was the end product of the most extensive global, multilingual, multidisciplinary and participative process ever undertaken for this task, involving more than 15,000 experts from 155 countries, representing approximately 80% of the world's population. With the adoption of the ICD-11 and the priority being given to mental health, new ideas based on the 30 years of research since the approval of the ICD-10 will be widely adopted and applied.
Collapse
|
25
|
Akkouh IA, Hughes T, Steen VM, Glover JC, Andreassen OA, Djurovic S, Szabo A. Transcriptome analysis reveals disparate expression of inflammation-related miRNAs and their gene targets in iPSC-astrocytes from people with schizophrenia. Brain Behav Immun 2021; 94:235-244. [PMID: 33571628 DOI: 10.1016/j.bbi.2021.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the high heritability of schizophrenia (SCZ), details of its pathophysiology and etiology are still unknown. Recent findings suggest that aberrant inflammatory regulation and microRNAs (miRNAs) are involved. Here we performed a comparative analysis of the global miRNome of human induced pluripotent stem cell (iPSC)-astrocytes, derived from SCZ patients and healthy controls (CTRLs), at baseline and following inflammatory modulation using IL-1β. We identified four differentially expressed miRNAs (miR-337-3p, miR-127-5p, miR-206, miR-1185-1-3p) in SCZ astrocytes that exhibited significantly lower baseline expression relative to CTRLs. Group-specific differential expression (DE) analyses exploring possible distinctions in the modulatory capacity of IL-1β on miRNA expression in SCZ versus CTRL astroglia revealed trends toward altered miRNA expressions. In addition, we analyzed peripheral blood samples from a large cohort of SCZ patients (n = 484) and CTRLs (n = 496) screening for the expression of specific gene targets of the four DE miRNAs that were identified in our baseline astrocyte setup. Three of these genes, LAMTOR4, IL23R, and ERBB3, had a significantly lower expression in the blood of SCZ patients compared to CTRLs after multiple testing correction. We also found nominally significant differences for ERBB2 and IRAK1, which similarly displayed lower expressions in SCZ versus CTRL. Furthermore, we found matching patterns between the expressions of identified miRNAs and their target genes when comparing our in vitro and in vivo results. The current results further our understanding of the pathobiological basis of SCZ.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Section for Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
26
|
Malashenkova IK, Krynskiy SA, Ogurtsov DP, Hailov NA, Zakharova NV, Bravve LV, Kaydan MA, Chekulaeva EI, Andreyuk DS, Ushakov VL, Didkovsky NA, Kostyuk GP. Immunoinflammatory Profile in Patients with Episodic and Continuous Paranoid Schizophrenia. CONSORTIUM PSYCHIATRICUM 2021; 2:19-31. [PMID: 38601098 PMCID: PMC11003350 DOI: 10.17816/cp66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Introduction Associations of disturbances in innate and adaptive immunity during the clinical course of schizophrenia have been found in a number of studies. Yet, the relationship of immune parameters and systemic inflammation in relation to the clinical course of the disease and its prognosis, remains poorly understood, which highlights an interesting topic for further research. The goal of this study was to research the immuno-inflammatory changes in patients with clinical continuous and episodic paranoid schizophrenia, to assess the pathogenetic significance of these changes. Methods Thirty-six patients with paranoid schizophrenia, of which 20 had episodic symptoms and 16 had continuous symptoms, consented to participate in the study, together with 30 healthy volunteers. In the study we assessed the parameters of innate immune response (serum levels of key pro-inflammatory and anti-inflammatory cytokines, C-reactive protein) and the adaptive immune response, including humoral-mediated immunity (serum immunoglobulins IgA, IgM, IgG, circulating immune complexes), as well as the cell link of adaptive immunity (key lymphocyte subpopulations). Positive and negative symptoms were assessed with the positive and negative symptoms scale; frontal dysfunction was assessed by Frontal Assessment Battery (FAB). Results Both patient groups had higher than normal levels of C-reactive protein and IL-8. There was a significant elevation of circulating immune complexes among patients with continuous symptoms of schizophrenia, compared to patients with episodic symptoms and healthy controls. Levels of CD45+CD3+ lymphocytes (T-cells) differed between clinical groups, with higher values identified among patients with episodic symptoms and lower values among those with continuous symptoms. In addition, patients with episodic symptoms had significantly increased levels of CD45+CD3+CD4+CD25+CD127- regulatory T-cells. Finally, the level of CD45+CD3-CD19+ B-cells was significantly higher among patients with continuous symptoms vs. patients with episodic symptoms and the control groups. Markers of activation of humoral immunity were associated with the severity of frontal disorders in these patients. Discussion Comprehensive data on the serum level of cytokines and the parameters of adaptive immunity among individuals with continuous schizophrenia, by comparison with patients with episodic schizophrenia, are practically absent in the literature. We have shown that among those with continuous schizophrenia, there are signs of systemic inflammation and chronic activation of the adaptive humoral immune response, while among patients with episodic symptoms of the disease, there are signs of systemic inflammation and certain activation of cell-mediated immunity, without significant changes in the humoral link of adaptive immunity. Conclusion More studies are needed, but the data obtained in this study are important for subsequent clinical studies of new treatment methods, based on various immunophenotypes of schizophrenia.
Collapse
Affiliation(s)
- Irina K. Malashenkova
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency of Russia
| | - Sergey A. Krynskiy
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
| | - Daniil P. Ogurtsov
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency of Russia
| | - Nikita A. Hailov
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
| | | | | | | | - Ekaterina I. Chekulaeva
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
| | | | - Vadim L. Ushakov
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
- Mental-health Clinic No. 1, named after N.A. Alekseev
| | - Nikolay A. Didkovsky
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency of Russia
| | | |
Collapse
|
27
|
Lithium increases mitochondrial respiration in iPSC-derived neural precursor cells from lithium responders. Mol Psychiatry 2021; 26:6789-6805. [PMID: 34075196 PMCID: PMC8760072 DOI: 10.1038/s41380-021-01164-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Lithium (Li), valproate (VPA) and lamotrigine (LTG) are commonly used to treat bipolar disorder (BD). While their clinical efficacy is well established, the mechanisms of action at the molecular level are still incompletely understood. Here we investigated the molecular effects of Li, LTG and VPA treatment in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) generated from 3 healthy controls (CTRL), 3 affective disorder Li responsive patients (Li-R) and 3 Li non-treated patients (Li-N) after 6 h and 1 week of exposure. Differential expression (DE) analysis after 6 h of treatment revealed a transcriptional signature that was associated with all three drugs and most significantly enriched for ribosome and oxidative phosphorylation (OXPHOS) pathways. In addition to the shared DE genes, we found that Li exposure was associated with 554 genes uniquely regulated in Li-R NPCs and enriched for spliceosome, OXPHOS and thermogenesis pathways. In-depth analysis of the treatment-associated transcripts uncovered a significant decrease in intron retention rate, suggesting that the beneficial influence of these drugs might partly be related to splicing. We examined the mitochondrial respiratory function of the NPCs by exploring the drugs' effects on oxygen consumption rate (OCR) and glycolytic rate (ECAR). Li improved OCR levels only in Li-R NPCs by enhancing maximal respiration and reserve capacity, while VPA enhanced maximal respiration and reserve capacity in Li-N NPCs. Overall, our findings further support the involvement of mitochondrial functions in the molecular mechanisms of mood stabilizers and suggest novel mechanisms related to the spliceosome, which warrant further investigation.
Collapse
|
28
|
Jegede O, Anand Raman A, Tiongson B, Garlapati PR, Hershberger J, Gayam V. Clinical characteristics, hospital course, and outcomes among COVID-19 positive patients with mental illness in a community hospital in New York City. INTERNATIONAL JOURNAL OF MENTAL HEALTH 2020. [DOI: 10.1080/00207411.2020.1845567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Oluwole Jegede
- Department of Psychiatry, Interfaith Medical Center, Brooklyn, New York, USA
| | | | - Benjamin Tiongson
- Department of Psychiatry, Interfaith Medical Center, Brooklyn, New York, USA
| | | | - Jason Hershberger
- Department of Psychiatry, Interfaith Medical Center, Brooklyn, New York, USA
| | - Vijay Gayam
- Department of Medicine, Interfaith Medical Center, Brooklyn, New York, USA
| |
Collapse
|
29
|
Kogan S, Ospina LH, Mittal VA, Kimhy D. The impact of inflammation on neurocognition and risk for psychosis: a critical review. Eur Arch Psychiatry Clin Neurosci 2020; 270:793-802. [PMID: 31620871 PMCID: PMC7160015 DOI: 10.1007/s00406-019-01073-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Neurocognitive difficulties are highly prevalent among people with schizophrenia and have been linked to increased inflammation, as well as dysfunction and disability. Poor neurocognitive functioning has also been documented in individuals at clinical high risk for psychosis (CHR) and a burgeoning literature point to alterations in inflammation markers in this population. However, there is limited information regarding the putative link between inflammation and neurocognition in CHR individuals, and the potential role of inflammation in the development of cognitive difficulties and psychosis. As previous reports indicate that early treatment in schizophrenia is associated with better outcomes, there is an urgent need to identify neurobiological mechanisms underlying cognitive deterioration and psychosis in CHR individuals to provide them with care prior to significant cognitive and functional declines. To address this gap in the literature, we review and summarize the relevant literatures on inflammation and neurocognitive dysfunction in schizophrenia and CHR individuals, point to remaining gaps, and suggest directions for future research.
Collapse
Affiliation(s)
- Sophia Kogan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1230, New York, NY, 10029, USA
| | - Luz H Ospina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1230, New York, NY, 10029, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - David Kimhy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1230, New York, NY, 10029, USA.
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
30
|
Reduced levels of circulating adhesion molecules in adolescents with early-onset psychosis. NPJ SCHIZOPHRENIA 2020; 6:20. [PMID: 32811840 PMCID: PMC7434772 DOI: 10.1038/s41537-020-00112-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
It is suggested that neurodevelopmental abnormalities are involved in the disease mechanisms of psychotic disorders. Although cellular adhesion molecules (CAMs) participate in neurodevelopment, modulate blood–brain barrier permeability, and facilitate leukocyte migration, findings concerning their systemic levels in adults with psychosis are inconsistent. We examined plasma levels and mRNA expression in peripheral blood mononuclear cells (PBMCs) of selected CAMs in adolescents with early-onset psychosis (EOP) aged 12–18 years (n = 37) and age-matched healthy controls (HC) (n = 68). EOP patients exhibited significantly lower circulating levels of soluble platelet selectin (~−22%) and soluble vascular cell adhesion molecule-1 (~−14%) than HC. We found no significant associations with symptom severity. PSEL mRNA expression was increased in PBMCs of patients and significantly negatively correlated to duration of illness. These findings suggest a role for CAMs in the pathophysiology of psychotic disorders.
Collapse
|
31
|
Reponen EJ, Dieset I, Tesli M, Mørch RH, Aas M, Vedal TSJ, Haug E, Drange OK, Steen NE, Hope S, Szabo A, Gohar SM, Wedervang-Resell K, Djurovic S, Melle I, Aukrust P, Andreassen OA, Ueland T. Atherogenic Lipid Ratios Related to Myeloperoxidase and C-Reactive Protein Levels in Psychotic Disorders. Front Psychiatry 2020; 11:672. [PMID: 32754070 PMCID: PMC7365890 DOI: 10.3389/fpsyt.2020.00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is a major cause of premature death in patients with psychotic disorders, where dyslipidemia occurs frequently. In the pathogenesis of these serious mental disorders, a low-grade inflammation seems to be a possible contributor. Concurrently, systemic inflammation and its interplay with dyslipidemia is a central driver in the pathogenesis of CVD. We hypothesize that evaluation of atherogenic lipid ratios together with inflammatory markers reflecting different inflammatory pathways with relevance for atherogenesis, could give novel information on immune-related mechanisms involved in early CVD risk in patients with psychotic disorders. METHODS As a measure for CVD risk we calculated atherogenic lipid ratios using established sex-specific cut-offs: Total cholesterol/high-density lipoprotein; HDL-c (TC/HDL) and triglyceride/HDL-c (TG/HDL) were evaluated in 571 schizophrenia (SCZ) and 247 bipolar disorder (BD) patients, and in 99 healthy controls (HC). In addition, as a measure of low-grade inflammation, we measured fasting plasma levels of nine stable atherogenic inflammatory markers in patients (SCZ, BD) and in HC. The elevated inflammatory markers and CVD risk in patients, as reflected by TC/HDL and TG/HDL, were further assessed in multivariable analyses adjusting for comorbid cardio-metabolic risk factors. RESULTS A markedly higher proportion (26%-31%) of patients had increased TC/HDL and TG/HDL ratios compared with HC. Plasma levels of high-sensitivity C-reactive protein (hs-CRP) and myeloperoxidase (MPO) were higher (p<0.05, p<0.001) in patients with psychotic disorders than in HC, and hs-CRP and MPO were independently associated with atherogenic lipid ratios in the multivariable analyses. CONCLUSIONS Our findings suggest that low-grade inflammation and abnormal neutrophil activation may cause increased CVD risk in patients with psychotic disorders. These mechanisms should be further examined to determine the potential for development of novel risk evaluation strategies.
Collapse
Affiliation(s)
- Elina J. Reponen
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingrid Dieset
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Acute Psychiatric Department, Oslo University Hospital, Oslo, Norway
| | - Martin Tesli
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragni H. Mørch
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Monica Aas
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Trude S. J. Vedal
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Haug
- Department of Acute Psychiatry and Psychosis Treatment, Innlandet Hospital Trust, Reinsvoll, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nils Eiel Steen
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sigrun Hope
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Neuro Habilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sherif M. Gohar
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Kirsten Wedervang-Resell
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Department of Psychiatric Research and Development, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Ole A. Andreassen
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
32
|
Szabo A, Akkouh IA, Ueland T, Lagerberg TV, Dieset I, Bjella T, Aukrust P, Le Hellard S, Stavrum AK, Melle I, Andreassen OA, Djurovic S. Cannabis Use Is Associated With Increased Levels of Soluble gp130 in Schizophrenia but Not in Bipolar Disorder. Front Psychiatry 2020; 11:642. [PMID: 32714224 PMCID: PMC7343889 DOI: 10.3389/fpsyt.2020.00642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
The complex effects of plant cannabinoids on human physiology is not yet fully understood, but include a wide spectrum of effects on immune modulation. The immune system and its inflammatory effector pathways are recently emerging as possible causative factors in psychotic disorders. The present study aimed to investigate whether self-administered Cannabis use was associated with changes in circulating immune and neuroendocrine markers in schizophrenia (SCZ) and bipolar disorder (BD) patients. A screening of 13 plasma markers reflecting different inflammatory pathways was performed in SCZ (n = 401) and BD patients (n = 242) after subdividing each group into Cannabis user and non-user subgroups. We found that i) soluble gp130 (sgp130) concentrations were significantly elevated among Cannabis users in the SCZ group (p = 0.002) after multiple testing correction, but not in BD. ii) Nominally significant differences were observed in the levels of IL-1RA (p = 0.0059), YKL40 (p = 0.0069), CatS (p = 0.013), sTNFR1 (p = 0.031), and BDNF (p = 0.020), where these factors exhibited higher plasma levels in Cannabis user SCZ patients than in non-users. iii) These differences in systemic levels were not reflected by altered mRNA expression of genes encoding sgp130, IL-1RA, YKL40, CatS, sTNFR1, and BDNF in whole blood. Our results show that Cannabis self-administration is associated with markedly higher sgp130 levels in SCZ, but not in BD, and that this phenomenon is independent of the modulation of peripheral immune cells. These findings warrant further investigation into the potential IL-6 trans-signaling modulatory, anti-inflammatory, neuroimmune, and biobehavioral-cognitive effects of Cannabis use in SCZ.
Collapse
Affiliation(s)
- Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thomas Bjella
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anne-Kristin Stavrum
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|