1
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2025; 203:1016-1034. [PMID: 38703309 PMCID: PMC11750906 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Elbaz AM, El-Sonousy NK, Arafa AS, Sallam MG, Ateya A, Abdelhady AY. Oregano essential oil and Bacillus subtilis role in enhancing broiler's growth, stress indicators, intestinal integrity, and gene expression under high stocking density. Sci Rep 2024; 14:25411. [PMID: 39455628 PMCID: PMC11511934 DOI: 10.1038/s41598-024-75533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the role of dietary Bacillus subtilis and oregano essential oil in mitigating the effects of high stocking density on growth performance, carcass traits, physiological stress indicators, gene expression, and intestinal integrity in broiler chickens. A total of, 1250 one-day-old Ross 308 male broiler chicks were randomly allocated to five experimental groups, where each group had five replicates of 50 chicks. Group 1 (control, LSD): 15 chicks/m2 fed a basal diet without feed additive, group 2 (HSD): 20 chicks/m2 fed a basal diet without feed additive, group 3 (BHSD): 20 chicks/m2 fed a basal diet supplemented with B. subtilis (500 mg/kg diet), group 4 (OHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil (300 mg/kg diet), group 5 (CHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil and B. subtilis. At 35 days of age, there was a noticeable improvement in the growth performance of broilers fed CHSD under high stocking density through the increase in body weight gain, dressing percentage, and crude protein digestibility with a decrease in feed conversion rate compared to other groups. Adding CHSD enhanced the state of oxidation and immunity through increasing superoxide dismutase, glutathione peroxidase, and the relative weight of bursa of Fabricius, while decreasing malondialdehyde, in addition to increasing plasma triiodothyronine levels. The microbial structure and morphometric parameters improved in the group that received the CHSD compared to the other groups, where villus height and Lactobacillus population increased, whereas Escherichia coli and Clostridium perfringens population decreased. Glucose transporter 2 (GLUT2), fatty acid transporter 1 (FABP1), and amino acid transferase 1 (CAT1) gene expression levels significantly increased when feeding on oregano essential oil with B. subtilis. In conclusion, combining oregano essential oil and B. subtilis supplements mitigated the effects of high stocking density by enhancing growth performance, antioxidative status, and intestinal integrity, in addition to modifying the genetic expression of genes related to nutrient absorption.
Collapse
Affiliation(s)
- Ahmed M Elbaz
- Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt.
| | - Neima K El-Sonousy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - A Sabry Arafa
- Poultry Nutrition Department, Animal Production Research Institute, Agricultural Research Center, Ministry Of Agriculture, Giza, Egypt
| | - M G Sallam
- Animal Production Department, Agricultural and Biology Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
3
|
Khukhodziinai JS, Das PK, Mukherjee J, Banerjee D, Ghosh PR, Das AK, Samanta I, Jas R, Mondal S, Patra AK. Effect of Dietary Benzoic Acid and Oregano Essential Oil as a Substitute for an Anti-Coccidial Agent on Growth Performance and Physiological and Immunological Responses in Broiler Chickens Challenged with Eimeria Species. Animals (Basel) 2024; 14:3008. [PMID: 39457937 PMCID: PMC11504159 DOI: 10.3390/ani14203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
To overcome the antimicrobial residues in food, benzoic acid (BA) and oregano essential oil (OEO) are used in the broiler chicken industry. Independently, both exerted anticoccidial and antimicrobial actions and improved growth performance in broiler chickens. Their effect may be multiplied when they are used in combination. This present study was carried out to evaluate the efficacy of dietary BA and OEO alone or in combination as a substitute for a commercial coccidiostatic drug on growth performance and physiological and immunological responses in broiler chickens challenged with Eimeria species. A total of 252 unsexed 1-day-old broiler chicks were equally allotted to 36 pens, each pen containing seven chicks. The pens were randomly assigned to six treatments with six pens (replicates) for each treatment (n = 6)-(i) negative control, (ii) positive control, coccidia-challenged and non-treated, (iii) supplemented with salinomycin (an anti-coccidial drug) at 60 mg/kg of feed and coccidia-challenged, (iv) supplemented with BA at 500 mg/kg of feed and coccidia-challenged, (v) supplemented with OEOat 500 mg/kg of feed and coccidia-challenged (OEO), and (vi) supplemented with BA at 500 mg/kg of feed and OEO at 500 mg/kg of feed and coccidia-challenged (B&O). The liver enzymes and thyroxine and creatinine levels were not affected (p > 0.05) both in coccidia-challenged and supplemented chickens. The BA and OEO applied separately or in combination (B&O) significantly (p < 0.05) reduced gut pathogenic bacteria (Salmonella and Escherichia coli) and Eimeria spp., and concurrently enhanced (p > 0.05) the Lactobacillus population with better body weight gain, improved feed utilization, and superior hematological values. It also up-regulated (p > 0.05) the interferon-γ gene expression and down-regulated (p < 0.05) the interleukin-10 and Toll-like receptor-4 gene expression to protect the chickens from inflammatory reactions, which were not demonstrated in salinomycin-treated birds. The B&O supplementation increased (p < 0.05) the immune system by enhancing Eimeria-specific immunoglobulin Y titer and lymphocyte proliferation response. This study suggests that the combined application of OEO and BA can substitute for a commercial anti-coccidial agent (salinomycin) in controlling coccidiosis as well as improving growth performance, gut health, and immune responses in broiler chickens with a means of antimicrobial-resistant free food products.
Collapse
Affiliation(s)
- Joycy Seiba Khukhodziinai
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Pradip Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Joydip Mukherjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Dipak Banerjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Anil Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India;
| | - Ruma Jas
- Department of Veterinary Parasitology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Samiran Mondal
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| |
Collapse
|
4
|
Wahed NM, Abomosallam M, Hendam BM, Shouman Z, Hashem NM, Sakr SA. Economic and Productive Comparison of Rutin and Rutin-Loaded Chitosan Alginate Nanoparticles Against Lead-Induced Oxidative Stress in Cobb and Arbor Broiler Breeds. Biol Trace Elem Res 2024; 202:4715-4734. [PMID: 38153670 PMCID: PMC11338976 DOI: 10.1007/s12011-023-04019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Rutin, a natural bioflavonoid compound, is one of the best-known antioxidants. This study aimed to investigate the protective effect of rutin-loaded chitosan alginate nanoparticles (RCA NPs) against lead (Pb)-induced oxidative stress in two different broiler breeds. A total number of 240 chicks from Cobb (CB) and Arbor Acres (AR) breeds were randomly allocated into 4 groups/breed. The 1st group received standard basal diet (SD) and drinking water (DW) while the 2nd group received SD and Pb-incorporated DW (350 mg/L). The 3rd group treated with both rutin-supplemented SD (50 mg/kg feed), and DW contain Pb (350 mg/L). Finally, the 4th group administered RCA NPs-supplemented SD (50 mg/kg feed) and Pb-incorporated DW (350 mg/L). On the 40th day of experiment, broilers weighed, and blood samples collected for biochemical and hematological analysis then slaughtered. Economic efficiency, growth performance, and oxidative stress biomarkers were evaluated. Gene expression level of growth-associated genes as insulin-like growth factor-I (IGF-1) and histopathological changes were assessed in liver and intestinal tissue of both breeds. Our results revealed that Pb-treated birds exhibited the lowest average body weight gain (BWG) and economic efficiency measures in both breeds while RCA NPs-treated groups revealed enhanced growth and economic performance. Furthermore, diet supplementation with RCA NPs considerably enhanced the antioxidant enzymes activity and expression of growth-associated genes than groups treated with rutin alone specifically in AR breed. In conclusion, RCA NPs supplementation could be a promising nanoformulation in poultry production through enhancing the antioxidant capacity and bioavailability of rutin.
Collapse
Affiliation(s)
- Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nada Ma Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Mahgoub SA, Qattan SYA, AlMalki F, Kamal M, Alqurashi AF, Almuraee AA, Alhassani WE, Abu-Hiamed HA, Almarkhan WD, Alsanei WA, Alfassam HE, Rudayni HA, Allam AA, Moustafa M, Alshaharni MO, Taha AE. Impact of packaging atmosphere, oregano essential oil, and storage temperature on cold-adapted Salmonella Enteritidis and Salmonella Typhimurium on ready-to-eat smoked turkey. Poult Sci 2024; 103:103846. [PMID: 38796987 PMCID: PMC11152719 DOI: 10.1016/j.psj.2024.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The hazard of diseases created by S. Enteritidis and S. Typhimurium is relatively high in turkey meat products. Combinations of preservation methods are utilized in many strategies, such as mild heat with decreased water activity, a changed atmosphere, refrigerated storage, and decreased heat treatment with some acidification. Within the domain of ready-to-eat food technology, a range of preservation methods are typically utilized to enhance shelf life, such as applying mild heat in tandem with reduced water activity, employing modified atmosphere packaging, utilizing refrigerated storage, and utilizing reduced heat treatment combined with acidification. This investigation aimed to determine how S. Enteritidis and S. Typhimurium grew when sliced ready-to-eat smoked turkey (RTE-SM) was stored at 0, 5, 10, and 15°C for various periods. The study also examined the effects of modified atmosphere packaging (MAP) (40% CO2 and 60% N2) and VP on these growth patterns. Total viable count (TVC), lactic acid bacteria (LAB), pH, and redox potential levels were determined. The control experiment on RTE-SM showed no Salmonella growth within 30 d of storage at any temperature. This indicated that the RTE-SM in use did not initially contain S. Typhimurium and S. Enteritidis. Results indicated that the storage of RTE-SM using a combination of VP, MAP, and MAPEO with storage at 0 and 5°C did not allow for the pathogen to grow throughout storage. In comparison, at 10 and 15°C after one day, which allowed for minor growth (0.17-0.5 log CFU/g)? In contrast, at 0 and 5°C, Salmonella survives until the end of storage (173 d). However, the combination of MAPEO with the same storage temperatures achieved the elimination of the pathogen in the meat after 80 d. The combination of both packaging systems with high temperatures (10 or 15°C) allowed for the multiplication and growth of the bacterium through the product's shelf life of more than 1 log CFU/g. Thus, a combination of MAP or MAPEO with low storage temperatures (0 or 5°C) inhibited the growth of the pathogen.
Collapse
Affiliation(s)
- Samir A Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Shaza Y A Qattan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Fatemah AlMalki
- Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra Universit, Al Quwaiiyah 19257, Saudi Arabia
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Amal F Alqurashi
- Clinical Nutrition Department , Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Areej A Almuraee
- Clinical Nutrition Department , Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Walaa E Alhassani
- Clinical Nutrition Department , Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Hind A Abu-Hiamed
- Assistant professor of Applied Nutrition, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Wafa D Almarkhan
- Assistant professor of Applied Nutrition, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Woroud A Alsanei
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Apis 21944, Egypt.
| |
Collapse
|
6
|
Fonseca A, Kenney S, Van Syoc E, Bierly S, Dini-Andreote F, Silverman J, Boney J, Ganda E. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota. Poult Sci 2024; 103:103604. [PMID: 38484563 PMCID: PMC10951610 DOI: 10.1016/j.psj.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.g., probiotics and phytobiotics) are promising alternatives to substitute antimicrobial growth promoters. The goal of our study was to characterize the effects of a Probiotic and an Essential Oils blend on broilers' performance and perform a time-series analysis to describe their excreta microbiome. A total of 320 Cobb 500 (1-day-old) chicks were raised for 21 d in 32 randomly allocated cages. Treatments consisted of 4 experimental diets: a basal diet, and a basal diet mixed with an Antibiotic (bacitracin methylene disalicylate), an essential oils blend (oregano oil, rosemary, and red pepper), or a Probiotic (Bacillus subtilis). Body weight (on 1, 10, and 21d), and feed intake (10d and 21d) were recorded and feed conversion ratio was calculated. Droppings were collected daily (1-21d) to characterize broilers' excreta microbiota by targeted sequencing of the bacterial 16S rRNA gene. The Probiotic significantly improved feed conversion ratio for starter phase 1 to 10d (P = 0.03), grower phase 10 to 21d (P = 0.05), and total period 1 to 21d (P = 0.01) compared to the Antibiotic. Feed supplements did not affect alpha diversity but did impact microbial beta diversity (P < 0.01). Age also impacted microbiome turnover as differences in alpha and beta diversity were detected. Furthermore, when compared to the basal diet, the probiotic and antibiotic significantly impacted relative abundance of Bifidobacterium (log2 fold change -1.44, P = 0.03), Intestinimonas (log2 fold change 0.560, P < 0.01) and Ligilactobacillus (log2 fold change -1.600, P < 0.01). Overall, Probiotic supplementation but not essential oils supplementation positively impacted broilers' growth performance by directly causing directional shifts in broilers' excreta microbiota structure.
Collapse
Affiliation(s)
- Ana Fonseca
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Sophia Kenney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Emily Van Syoc
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephanie Bierly
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Francisco Dini-Andreote
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Justin Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; Department of Statistics, The Pennsylvania State University, University Park, PA, USA; Department of Medicine, The Pennsylvania State University, University Park, PA, USA; Institute for Computational and Data Science, The Pennsylvania State University, University Park, PA, USA
| | - John Boney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
7
|
Gracia MI, Vazquez P, Ibáñez-Pernía Y, Pos J, Tawde S. Performance Evaluation of a Novel Combination of Four- and Five-Carbon [Butyric and Valeric] Short-Chain Fatty Acid Glyceride Esters in Broilers. Animals (Basel) 2024; 14:617. [PMID: 38396585 PMCID: PMC10885893 DOI: 10.3390/ani14040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
A novel combination of Butyric and Valeric acid glycerol esters with oregano oil in a dry powder form was evaluated for performance improvements in broilers. The dosing regimen (500 g/Ton feed in starter and grower; 250 g/Ton in finisher feed) was considered low compared to conventional practices using non-esterified Butyric and Valeric short-chain fatty acids (SCFA). Six trials were conducted at various trial facilities in Italy, United Kingdom, Spain, and Poland. Supplemented broilers weighed significantly more than the control birds at 28 days of age (+3.4%; 1459 g vs. 1412 g; p = 0.0006) and at 42 days of age (+2.5%; 2834 g vs. 2763 g; p = 0.0030). Supplementation significantly reduced mortality from 1.9% to 0.8% during the finisher phase (from 29 to 42 days of age); however, average mortality was 3.2% for the whole 42-day growth period and was not affected. Further, supplemented broilers grew more (66.4 vs. 64.5 g/day; p = 0.0005), ate more feed (104.7 vs. 103.1 g/day; p = 0.0473), converted feed significantly more efficiently (1.58 vs. 1.60; p = 0.0072), leading to better EPEF value (410 vs. 389; p = 0.0006) than the control broilers. Meta-analysed trial performance data for novel SCFA formulations such as these are not commonly available, and serve to facilitate efficacy determination from an end-user perspective. The use of short- and medium-chain fatty acid esters in optimal low-dose combinations to reliably augment gut health and performance appears promising in commercial broiler production, and may lead to further improvements in industry practices and reduced antibiotic use.
Collapse
Affiliation(s)
- Marta I. Gracia
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Patricia Vazquez
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Yolanda Ibáñez-Pernía
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Jeroen Pos
- Perstorp Animal Nutrition, Perstorp Waspik BV, 5165 NH Waspik, The Netherlands; (J.P.); (S.T.)
| | - Snehal Tawde
- Perstorp Animal Nutrition, Perstorp Waspik BV, 5165 NH Waspik, The Netherlands; (J.P.); (S.T.)
| |
Collapse
|
8
|
Abdel-Latif MA, El-Hamid HSA, Emam M, Noreldin AE, Helmy YA, El-Far AH, Elbestawy AR. Dietary lysozyme and avilamycin modulate gut health, immunity, and growth rate in broilers. BMC Vet Res 2024; 20:28. [PMID: 38245745 PMCID: PMC10799510 DOI: 10.1186/s12917-023-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Attempts to use dietary lysozyme (LYZ) as an alternative to antibiotics in broilers have been successful, but further research is needed for effective use. Here, we compared the differences between LYZ and avilamycin (AVI) feed additives for growth performance, gut health and immunity of broilers. One-day old, one hundred and twenty broiler chicks (Ross 308) were randomly allocated into three groups consisting forty birds in each group. Standard diet without supplementation was applied as the control group (I), while the chicks of the other groups were supplemented with 100 mg of AVI per kg diet (AVI, group II), and 90 mg LYZ per kg diet (LYZ, group III) for five consecutive weeks. RESULTS Body weight, feed conversion ratio, body weight gain, and European production efficiency factor were markedly (p < 0.05) increased in both AVI and LYZ groups in relation to CON group, but the feed intake and protein efficiency ratio were not affected. Both AVI and LYZ significantly (p < 0.001) upregulated the mRNA expression of ileal interleukin-18 (IL-18), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), interleukin-2 (IL-2), and glutathione peroxidase (GSH-PX) genes compared to CON group. However, IL-2, IL-10, IL-18, and GSH-PX genes were markedly (p < 0.01) upregulated in LYZ compared to the AVI group. LYZ treated group had a significant increase (p < 0.05) in the serological haemagglutination inhibition titers of H5N1 vaccination and a significant decrease (p < 0.0001) in coliform counts compared to control and AVI groups, but all growth parameters were nearly similar between AVI and LYZ groups. The VH and VH/CD were markedly higher in LYZ than AVI and control groups. CONCLUSION Exogenous dietary lysozyme supplementation by a dose of 90 mg/kg broilers' diet induced better effects on intestinal integrity, fecal bacterial counts, immune response, and growth performance which were comparable to avilamycin. Therefore, dietary lysozyme could safely replace avilamycin in the broiler chickens' diet. However, further experimental studies regarding the use of lysozyme in commercial broilers, both in vitro and in vivo, targeting more communities of intestinal microbiome and explaining more details about its beneficial effects need to be conducted.
Collapse
Affiliation(s)
- Mervat A Abdel-Latif
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Hatem S Abd El-Hamid
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yosra A Helmy
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
9
|
Madkour M, Alaqaly AM, Soliman SS, Ali SI, Aboelazab O. Growth performance, blood biochemistry, and mRNA expression of hepatic heat shock proteins of heat-stressed broilers in response to rosemary and oregano extracts. J Therm Biol 2024; 119:103791. [PMID: 38281316 DOI: 10.1016/j.jtherbio.2024.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/25/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024]
Abstract
The growing interest in countering the adverse effects of heat stress in poultry using phytogenic feed additives has garnered considerable attention in recent times, this research sought to examine the impact of rosemary leaves extract (RLE) and oregano leaves extract (OLE) on the growth performance, physiological responses, and hepatic mRNA expression of heat shock proteins in broiler chickens exposed to heat stress. A total of 150 male Indian River chicks, aged one day, were randomly allocated into five equally sized groups, each consisting of six replicates. The initial group was designated as the control and was provided with the basal diet. The second and third groups (R1 and R2) were administered the basal diet enriched with 50 and 100 mg/kg of rosemary leaves extract (RLE), respectively. The fourth and fifth groups (O1 and O2) were fed the basal diet supplemented with 50 and 100 mg/kg of oregano leaves extract (OLE), respectively. These chicks were reared in a controlled environmental chamber maintained at a temperature of 32±2 °C and relative humidity of 50 ± 5 %. Ferruginol was the leading component in RLE, whereas thymol was the prevalent constituent in OLE. RLE and OLE both have high DPPH• and ABTS•+ antioxidant potential. Among the experimental groups, the fourth group (O1) showed the heaviest live body weight and the lowest feed conversion ratio, indicating improved growth performance. There was a significant reduction in plasma total lipids and LDL-cholesterol levels within the R2 and O2 groups, respectively. Enhanced total antioxidant capacity and an improvement in the T3 hormone were observed in the R1 and R2 groups. In the second and fourth groups, the mRNA expression of hsp70 and 90A were both found to be significantly downregulated, respectively. In conclusion, the addition of 50 mg/kg of oregano leaves extract (OLE) to the diets of heat-stressed broilers resulted in improved hepatic heat shock proteins, along with certain physiological responses, ultimately contributing to enhanced growth performance.
Collapse
Affiliation(s)
- Mahmoud Madkour
- Animal Production Department, National Research Centre, Giza, 12622, Egypt
| | - Ahmed M Alaqaly
- Natural Resources Department, Institute of African and Nile States Researches and Studies, Aswan University, Aswan, 81528, Egypt
| | - Said S Soliman
- Natural Resources Department, Institute of African and Nile States Researches and Studies, Aswan University, Aswan, 81528, Egypt
| | - Sami I Ali
- Plant Biochemistry Department, National Research Centre, Giza, 12622, Egypt
| | - Osama Aboelazab
- Animal Production Department, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
10
|
Paneru D, Tellez-Isaias G, Arreguin-Nava MA, Romano N, Bottje WG, Asiamah E, Abdel-Wareth AAA, Lohakare J. Effect of fenugreek seeds and Bacillus-based direct-fed microbials on the growth performance, blood biochemicals, and intestinal histomorphology of broiler chickens. Front Vet Sci 2023; 10:1298587. [PMID: 38089709 PMCID: PMC10713732 DOI: 10.3389/fvets.2023.1298587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The objective of the present study was to evaluate the potential synergistic impact of the combination of fenugreek seeds (FS) and Bacillus-based direct-fed microbials (DFM) on growth performance, intestinal health, and hematological parameters of broiler chickens. METHODS A total of 160 one-day-old (Ross 308) broiler chicks were randomly assigned to a 2 × 2 factorial arrangement, with two levels of FS (0 and 5 g/kg) and two levels of Bacillus-DFM (0 and 0.1 g/kg), with five replicates of 8 birds each. RESULTS The result showed that dietary supplementation of FS at 5 g/kg did not improve the growth performance of broilers but impaired the early growth performance by reducing body weight gain and increasing feed conversion ratio, which was recovered during finisher phase. Dietary supplementation of Bacillus-based DFM at 0.1 g/kg did not affect the performance variables but increased the feed conversion ratio. The interaction of fenugreek seeds and Bacillus-based DFM showed synergistic effects on growth performance during the later stages of production. However, antagonistic effects were observed on the blood parameters and the gut morphology. CONCLUSION This study demonstrated that FS and DFM had different effects on the broiler health and production depending on the phase of production. The interaction between FS and DFM revealed synergistic effects on growth performance during the finisher phase, but antagonistic effects on blood parameters and gut morphology. Further studies are needed to elucidate the underlying mechanisms and optimize the dosage and combination of FS and DFM for broiler health and production.
Collapse
Affiliation(s)
- Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | | | - Nicholas Romano
- Virginia Cooperative Extension, College of Agriculture, Virginia State University, Petersburg, VA, United States
| | - Walter G. Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Emmanuel Asiamah
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Ahmed A. A. Abdel-Wareth
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, Egypt
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
11
|
Hassan S, Hassan M, Soliman F, Safwat A. Influence of hot red pepper oil in broiler diets on blood, antioxidant, immunological parameters and intestinal bacteria counts. Anim Biotechnol 2023; 34:1295-1304. [PMID: 34974793 DOI: 10.1080/10495398.2021.2020132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study aimed to examine the impacts of supplementing hot red pepper oil (HRPO) to broiler diets. One hundred and twenty Arbor Acres chicks were divided randomly into four experimental groups as three supplementation levels of HRPO (0.25, 0.5 and 1.0 mL/kg diet) and the control group. Results showed that HRPO supplementation exhibited significantly (p < 0.001) higher red blood cells (RBCs) count, hemoglobin (Hb) and packed cells volume (PCV) percentage, while insignificant effects were shown for white blood cells (WBCs) count or its differentiation. Diets supplemented with different levels of HRPO influenced significantly (p < 0.001) the total protein (TP), albumin (Alb) and glucose (Glo) values of the studied birds. Results also indicated that different levels of HRPO supplementations significantly (p < 0.01) decreased total lipid, triglycerides (Trig), cholesterol (Cho) and low-density lipoprotein (LDL), but did not affect high density lipoprotein (HDL) values. Data revealed that supplementing broiler diets with different levels of HRPO enhanced their liver function. The bactericidal activity index was significantly increased (p < 0.02) compared with control. HRPO supplemented groups had beneficial effects (p < 0.02) on cecal microbiota count. It could be concluded that dietary HRPO supplementation could improve the general internal health status of Arbor Acres broiler chicks.
Collapse
Affiliation(s)
- Saber Hassan
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mohamed Hassan
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRAT- City), Alexandria, Egypt
| | - Farid Soliman
- Poultry Production Dept., Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Assem Safwat
- Poultry Production Dept., Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Vasilopoulou K, Papadopoulos GA, Lioliopoulou S, Pyrka I, Nenadis N, Savvidou S, Symeon G, Dotas V, Panitsidis I, Arsenos G, Giannenas I. Effects of Dietary Supplementation of a Resin-Purified Aqueous-Isopropanol Olive Leaf Extract on Meat and Liver Antioxidant Parameters in Broilers. Antioxidants (Basel) 2023; 12:1723. [PMID: 37760026 PMCID: PMC10525201 DOI: 10.3390/antiox12091723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Olive leaves are byproducts οf the agro-industrial sector and are rich in bioactive compounds with antioxidant properties. They could be supplemented in poultry diets powdered or less frequently as extracts to improve performance, health and product quality. The objective of this study was to investigate the possible beneficial effects of an aqueous isopropanol olive leaf extract-purified through filtration (250-25 µm) and a resin (XAD-4)-when supplemented in broiler chickens' diets, on meat quality parameters, focusing mainly on antioxidant parameters as there is limited published information. For this purpose, four-hundred-and-eighty-day-old broilers were randomly assigned to four dietary treatments: T1 (control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (positive control: 0.1% encapsulated oregano oil commercially used as feed additive). At the end of the experimental period (day 42), the birds were slaughtered, and samples from breast, thigh meat and liver were collected for antioxidant parameters evaluation. On day 1, after slaughter, in thigh meat, Malondialdehyde (MDA) was lower in T2 compared to T3, and total phenolic content (TPC) was higher in T2 compared to T3 and T4. Total antioxidant capacity (TAC) was increased in T2 and T4 breast meat compared to the control. In liver, T4 treatment resulted in higher TPC. The lack of dose-dependent effect for olive leaf extract may be attributed to the pro-oxidant effects of some bioactive compounds found in olive leaves, such as oleuropein, when supplemented at higher levels. In summary, it can be inferred that the inclusion of 1% olive leaf extract in the feed of broilers has the potential to mitigate oxidation in broiler meat and maybe enhance its quality.
Collapse
Affiliation(s)
- Konstantina Vasilopoulou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Styliani Lioliopoulou
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Soumela Savvidou
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - George Symeon
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - Vassilios Dotas
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Panitsidis
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Mohamed MA, El-Mleeh AA, Hamad RT, Abu-Alya IS, El-Hewaity MH, Elbestawy AR, Elbagory AM, Sayed-Ahmed AS, Abd Eldaim MA, Elshabrawy OI. Immunostimulant potential of Moringa Oleifera leaves alcoholic extract versus Oregano Essential Oil (OEO) against cyclophosphamide-induced immunosuppression in broilers chicks. Trop Anim Health Prod 2023; 55:209. [PMID: 37202581 DOI: 10.1007/s11250-023-03620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The current study was conducted to evaluate the immunoenhancement effect of Moringa oleifera leaves alcoholic extract (MOLE) versus Oregano essential oil (OEO) against cyclophosphamide induced immunosuppression in broilers chicks. A total of a three hundred one-day-old chicks were assigned randomly into three main dietary groups, control, MOLE, and OEO for 14 days. After 14 days the three main experimental groups were subdivided into six groups, control, cyclophosphamide, MOLE, MOLE and Cyclophosphamide, OEO, and OEO and cyclophosphamide. Each group of these six groups was subdivided into three subgroups. Supplementation of broiler chicks with MOLE and OEO for 14 days significantly increased body weight compared to the control group. However, injection of broiler chicks with cyclophosphamide significantly induced body weight loss, impaired immunological response represented by decreasing total leukocytic count, differential leukocytic count, phagocytic activity, phagocytic index, and hemagglutinin inhibition titer for New Castle disease virus, lymphoid organs depletion, and increased the mortality rate. In contrast, supplementation of cyclophosphamide treated chicks with MOLE and OEO significantly reduced cyclophosphamide induced body weight loss and impaired immunological responses, as it showed significant increase in body weight, total leukocytic count, differential leukocytic count, phagocytic activity, phagocytic index, and hemagglutinin inhibition titer for New Castle disease virus, lymphoid organs proliferation, and reduced the mortality rate. This study indicated that MOLE and OEO supplementation ameliorated cyclophosphamide induced body weight loss and impaired immunological responses.
Collapse
Affiliation(s)
- Mostafa Abdelgaber Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Amany Abdelbaky El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Rania Talat Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Ibrahim Said Abu-Alya
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 23897, Egypt
| | - Mohamed Hamdy El-Hewaity
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Ahmed Ragab Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, El Beheira, 22511, Egypt
| | | | - Ahmed Saber Sayed-Ahmed
- Department of Anatomy and Embryology Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt.
| | - Omnia Ibrahim Elshabrawy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| |
Collapse
|
14
|
Gul I, Hassan A, Haq E, Ahmad SM, Shah RA, Ganai NA, Chikan NA, Abdul-Careem MF, Shabir N. An Investigation of the Antiviral Potential of Phytocompounds against Avian Infectious Bronchitis Virus through Template-Based Molecular Docking and Molecular Dynamics Simulation Analysis. Viruses 2023; 15:v15040847. [PMID: 37112828 PMCID: PMC10144825 DOI: 10.3390/v15040847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Vaccination is widely used to control Infectious Bronchitis in poultry; however, the limited cross-protection and safety issues associated with these vaccines can lead to vaccination failures. Keeping these limitations in mind, the current study explored the antiviral potential of phytocompounds against the Infectious Bronchitis virus using in silico approaches. A total of 1300 phytocompounds derived from fourteen botanicals were screened for their potential ability to inhibit the main protease, papain-like protease or RNA-dependent RNA–polymerase of the virus. The study identified Methyl Rosmarinate, Cianidanol, Royleanone, and 6,7-Dehydroroyleanone as dual-target inhibitors against any two of the key proteins. At the same time, 7-alpha-Acetoxyroyleanone from Rosmarinus officinalis was found to be a multi-target protein inhibitor against all three proteins. The potential multi-target inhibitor was subjected to molecular dynamics simulations to assess the stability of the protein–ligand complexes along with the corresponding reference ligands. The findings specified stable interactions of 7-alpha-Acetoxyroyleanone with the protein targets. The results based on the in silico study indicate that the phytocompounds can potentially inhibit the essential proteins of the Infectious Bronchitis virus; however, in vitro and in vivo studies are required for validation. Nevertheless, this study is a significant step in exploring the use of botanicals in feed to control Infectious Bronchitis infections in poultry.
Collapse
Affiliation(s)
- Irfan Gul
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Amreena Hassan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
| | - Nazir Ahmad Ganai
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
| | - Naveed Anjum Chikan
- Division of Computational Biology, Daskdan Innovations, Pvt. Ltd., Kashmir 190006, India
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence: (M.F.A.-C.); (N.S.)
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India; (I.G.)
- Correspondence: (M.F.A.-C.); (N.S.)
| |
Collapse
|
15
|
Effect of botanical composition of free-range areas on production results and selected meat quality parameters of organic Yellowleg Partridge chickens. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
The aim of the conducted research was to assess the impact of the botanical composition of free-range areas on the production results and selected quality parameters of the meat of fattening chickens of the Polish Yellowleg Partridge (Ż-33) breed in organic farming. Three hundred mixed-sex Ż-33 chicks were assigned to three groups: RP1 – free-range area with natural meadow vegetation, RP2 – free-range area sown with a mixture of plants containing ingredients stimulating growth, RP3 – free-range area sown with a mixture of plants rich in carotene. During the experiment, the production results (the weight of the birds, feed consumption, feed conversion ratio per g of weight gain, and mortality) were monitored. Observations were also performed on the behaviour in the free-range areas. On the 140th day of the experiment, a simplified slaughter analysis was carried out, the meat pH was measured, the colour of the muscles was also determined, as well as the water holding capacity and drip loss of the meat. In the meat samples, the content of nutrients and fatty acids was determined, and the peroxidizability index (PI) was calculated. Birds feeding in the RP2 free-range areas were characterised by higher body weight, better feed conversion, and higher dressing percentage compared to birds having access to the RP1 and RP3 free-range areas. On the other hand, the RP3 group Ż-33 chickens were characterised by a higher share of leg muscles and a tendency towards lower fat content in the carcass. It was also found that the meat of birds from the RP2 and RP3 groups was characterised by a higher pH24 compared to Ż-33 chickens from the RP1 group. Access to the RP2 free-range area modified the fatty acid profile, mainly in the leg muscles, reducing the palmitic acid and MUFA content and increasing the PUFA content. It can therefore be assumed that the plant species sown in the RP2 free-range area positively influenced the production results and the quality of the meat of fattening chickens feeding on them. It is therefore appropriate to carry out further studies on the type of vegetation sown in free-range areas in order to improve the efficiency and quality of the meat of organic fattening chickens.
Collapse
|
16
|
Chowdhury MAH, Ashrafudoulla M, Mevo SIU, Mizan MFR, Park SH, Ha SD. Current and future interventions for improving poultry health and poultry food safety and security: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:1555-1596. [PMID: 36815737 DOI: 10.1111/1541-4337.13121] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 02/24/2023]
Abstract
Poultry is thriving across the globe. Chicken meat is the most preferred poultry worldwide, and its popularity is increasing. However, poultry also threatens human hygiene, especially as a fomite of infectious diseases caused by the major foodborne pathogens (Campylobacter, Salmonella, and Listeria). Preventing pathogenic bacterial biofilm is crucial in the chicken industry due to increasing food safety hazards caused by recurring contamination and the rapid degradation of meat, as well as the increased resistance of bacteria to cleaning and disinfection procedures commonly used in chicken processing plants. To address this, various innovative and promising strategies to combat bacterial resistance and biofilm are emerging to improve food safety and quality and extend shelf-life. In particular, natural compounds are attractive because of their potential antimicrobial activities. Natural compounds can also boost the immune system and improve poultry health and performance. In addition to phytochemicals, bacteriophages, nanoparticles, coatings, enzymes, and probiotics represent unique and environmentally friendly strategies in the poultry processing industry to prevent foodborne pathogens from reaching the consumer. Lactoferrin, bacteriocin, antimicrobial peptides, cell-free supernatants, and biosurfactants are also of considerable interest for their prospective application as natural antimicrobials for improving the safety of raw poultry meat. This review aims to describe the feasibility of these proposed strategies and provide an overview of recent published evidences to control microorganisms in the poultry industry, considering the human health, food safety, and economic aspects of poultry production.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
17
|
Hassan MA, Abo-Elmaaty AMA, Zaglool AW, Mohamed SAM, Abou-Zeid SM, Farag MR, Alagawany M, Di Cerbo A, Azzam MM, Alhotan R, EL-Hady E. Origanum vulgare Essential Oil Modulates the AFB1-Induced Oxidative Damages, Nephropathy, and Altered Inflammatory Responses in Growing Rabbits. Toxins (Basel) 2023; 15:69. [PMID: 36668888 PMCID: PMC9864656 DOI: 10.3390/toxins15010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The current study was performed to investigate the toxic effects of aflatoxin B1 (AFB1) through the evaluation of kidney function tests and histopathological examination of renal tissues, targeting the therapeutic role of Marjoram (Origanum vulgare essential oil-OEO) in improving health status. Forty-eight New Zealand Whites growing rabbits (four weeks old) weighing on average 660.5 ± 2.33 g were randomly and equally distributed into four groups, each of which had four replicas of three animals as the following: Control group (only basal diet), AFB1 group (0.3 mg AFB1/kg diet), OEO group (1 g OEO/kg diet) and co-exposed group (1 g OEO/kg + 0.3 mg AF/kg diet). Our study lasted eight weeks and was completed at 12 weeks of age. The results revealed that OEO decreased the toxic effects of AFB1 in rabbit kidneys by substantially reducing the cystatin C levels in the AFB1 group. Additionally, OEO decreased oxidative stress and lipid peroxidation levels in the co-exposed group. Moreover, OEO reduced DNA damage and inflammatory response in addition to the down-regulation of stress and inflammatory cytokines-encoding genes. Besides, OEO preserved the cytoarchitecture of rabbits' kidneys treated with AFB1. In conclusion, O. vulgare essential oil supplementation ameliorated the deleterious effects of AFB1 on the rabbits' kidneys by raising antioxidant levels, decreasing inflammation, and reversing oxidative DNA damage.
Collapse
Affiliation(s)
- Mona A. Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Azza M. A. Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa W. Zaglool
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sally A. M. Mohamed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 6012201, Egypt
| | - Mayada R. Farag
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Enas EL-Hady
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
18
|
Johnson AM, Anderson G, Arguelles-Ramos M, Ali AAB. Effect of dietary essential oil of oregano on performance parameters, gastrointestinal traits, blood lipid profile, and antioxidant capacity of laying hens during the pullet phase. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1072712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many benefits have been found in supplementing essential oils such as oregano oil (EOO) to poultry, including increased body weight gain, antioxidant activity, and better gastrointestinal morphology. However, few studies tested the influence of EOO supplementation on laying hens and reported conflicting results regarding its efficacy in improving their health and performance. Therefore, we aimed to explore the effects of dietary EOO on performance, gastrointestinal (GIT) traits, blood lipid, and antioxidant capacity in laying hens during the rearing phase. A total of 300-day-old Hy-line-Brown chicks were used, and treatment diets consisted of corn-soybean based either without (CON) or with EOO (Ecodiar®, 0.275 g/kg diet). Birds were randomized across treatments with five pens/treatment and 30-birds/pen. Pen weights and feed rejected were recorded every two weeks (1-17 weeks of age), to calculate daily feed intake (ADFI), body weight (BW), and daily weight gain (ADWG). At 11 and 14 weeks of age, blood samples were collected from 3 birds/pen and analyzed for blood lipids and antioxidant levels, and 5-birds/treatment were euthanized, and GIT traits were tested. Differences in measured parameters across weeks and between treatments were assessed using GLMM with Tukey’s Post hoc test applied to significant results in R 3.3.1 (α set at 0.05). Body weights at weeks 3, 11, 13, and 17 were significantly higher in the EOO group compared to the CON group (all P ≤ 0.05), ADWG was significantly higher in EOO birds compared to CON birds at 9 and 13 weeks old (all P ≤ 0.05), while no significant differences in ADFI were observed between treatments across weeks of the trials. At both 11 and 17 weeks old, triglyceride levels were significantly lower, while high-density-lipoprotein levels were higher in EOO (all P ≤ 0.05). Malondialdehyde levels were lower in the EOO group versus CON (p=0.01), while EOO birds had higher glutathione levels (p=0.01) than CON. Finally, at 12 weeks old, the weight of the entire GIT and empty gizzard were higher in the EOO group versus CON (all P ≤ 0.05), while liver and spleen weights were not significantly different between groups. In conclusion, dietary oregano supplementation exerted promoting effects on the performance of Hy-Line Brown pullets.
Collapse
|
19
|
Zaazaa A, Mudalal S, Alzuheir I, Samara M, Jalboush N, Fayyad A, Petracci M. The Impact of Thyme and Oregano Essential Oils Dietary Supplementation on Broiler Health, Growth Performance, and Prevalence of Growth-Related Breast Muscle Abnormalities. Animals (Basel) 2022; 12:3065. [PMID: 36359189 PMCID: PMC9653697 DOI: 10.3390/ani12213065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 05/27/2024] Open
Abstract
The objective of this study was to investigate the effects of thyme and oregano essential oils (as growth promotors), individually and in combination, on the health, growth performance, and prevalence of muscle abnormalities in broiler chickens. Six hundred day-old Cobb 500 hybrid chickens were randomized into four dietary treatment groups with three replicates each. Chicks in the control group (C) received a basal diet, while the experimental treatment groups received basal diets containing 350 mg/kg of thyme oil (T1), 350 mg/kg of oregano oil (T2), and 350 mg/kg of thyme and oregano oil (T3). Growth performance parameters were evaluated at 14, 28, and 42 days. The broilers in treatments T1 and T2 had significantly higher body weights than the control group. The feed conversion ratio was the lowest in chicks who received oregano oil, followed by those fed thyme oil. The overall prevalence of growth-related breast muscle abnormalities (including white striping and white striping combined with wooden breast) in groups receiving essential oils (T1, T2, and T3) was significantly higher than in the control group (C). The thyme and oregano oil diets showed no significant differences in antibody titers against Newcastle disease or interferon-γ (INF-γ) serum levels. In conclusion, thyme and oregano oils had a positive impact on the growth performance of broiler chickens but increased the incidence of growth-related breast muscle abnormalities.
Collapse
Affiliation(s)
- Ahmed Zaazaa
- Department of Animal Production and Animal Health, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Samer Mudalal
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Ibrahim Alzuheir
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Maen Samara
- Department of Animal Production and Animal Health, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Nasr Jalboush
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Adnan Fayyad
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
20
|
Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Rafeeq M, Bilal RM, Alagawany M, Batool F, Yameen K, Farag MR, Ali S, Elnesr SS, El-Shall NA. The use of some herbal plants as effective alternatives to antibiotic growth enhancers in poultry nutrition. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Majid Rafeeq
- Center for Advanced Studies in Vaccinology and Biotechnology University of Balochistan, Quetta, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fiza Batool
- Faculty of Agriculture, Department of Forestry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif Yameen
- Department of Poultry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Sher Ali
- Faculty of Animal Production & Technology, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfna, Egypt
| |
Collapse
|
22
|
Sun J, Cheng Z, Zhao Y, Wang Y, Wang H, Ren Z. Influence of increasing levels of oregano essential oil on intestinal morphology, intestinal flora and performance of Sewa sheep. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2048208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jiale Sun
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Zhipeng Cheng
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Yanling Zhao
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Yaomei Wang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Honghui Wang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Zili Ren
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| |
Collapse
|
23
|
Antimicrobial and Antioxidant Potential of Scenedesmus obliquus Microalgae in the Context of Integral Biorefinery Concept. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020519. [PMID: 35056838 PMCID: PMC8778625 DOI: 10.3390/molecules27020519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Small-scale photobioreactors (PBRs) in the inoculum stage were designed with internal (red or green) and external white LED light as an initial step of a larger-scale installation aimed at fulfilling the integral biorefinery concept for maximum utilization of microalgal biomass in a multifunctional laboratory. The specific growth rate of Scenedesmus obliquus (Turpin) Kützing biomass for given cultural conditions was analyzed by using MAPLE software. For the determination of total polyphenols, flavonoids, chlorophyll “a” and “b”, carotenoids and lipids, UHPLC-HRMS, ISO-20776/1, ISO-10993-5 and CUPRAC tests were carried out. Under red light growing, a higher content of polyphenols was found, while the green light favoured the flavonoid accumulation in the biomass. Chlorophylls, carotenoids and lipids were in the same order of magnitude in both samples. The dichloromethane extracts obtained from the biomass of each PBR synergistically potentiated at low concentrations (0.01–0.05 mg/mL) the antibacterial activity of penicillin, fluoroquinolones or oregano essential oil against the selected food-borne pathogens (Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) without showing any in vitro cytotoxicity. Both extracts exhibited good cupric ion-reducing antioxidant capacity at concentrations above 0.042–0.08 mg/mL. The UHPLC-HRMS analysis revealed that both extracts contained long chain fatty acids and carotenoids thus explaining their antibacterial and antioxidant potential. The applied engineering approach showed a great potential to modify microalgae metabolism for the synthesis of target compounds by S. obliquus with capacity for the development of health-promoting nutraceuticals for poultry farming.
Collapse
|
24
|
Seidavi A, Tavakoli M, Asroosh F, Scanes CG, Abd El-Hack ME, Naiel MAE, Taha AE, Aleya L, El-Tarabily KA, Swelum AA. Antioxidant and antimicrobial activities of phytonutrients as antibiotic substitutes in poultry feed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5006-5031. [PMID: 34811612 DOI: 10.1007/s11356-021-17401-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Globally, there is increasing demand for safe poultry food products free from antibiotic residues. There is thus a need to develop alternatives to antibiotics with safe nutritional feed derivatives that maximize performance, promote the intestinal immune status, enrich beneficial microbiota, promote health, and reduce the adverse effects of pathogenic infectious microorganisms. With the move away from including antibiotics in poultry diets, botanicals are among the most important alternatives to antibiotics. Some botanicals such as fennel, garlic, oregano, mint, and rosemary have been reported to increase the poultry's growth rate and/or feed to gain ratio. Botanicals' role is assumed to be mediated by improved immune responses and/or shifts in the microbial population in the intestine, with the elimination of pathogenic species. In addition, modulation of the gut microbiota resulted in various physiological and immunological responses and promoted beneficial bacterial strains that led to a healthy gut. There is thus a need to understand the relationship between poultry diets supplemented with botanicals and good health of the entire gastrointestinal tract if we intend to use these natural products to promote general health status and production. This current review provides an overview of current knowledge about certain botanicals that improve poultry productivity by modulating intestinal health and reducing the negative impacts of numerous pathogenic bacteria. This review also describes the efficacy, negative effects, and modes of action of some common herbal plants applied in poultry as alternatives to reduce the use of antibiotics.
Collapse
Affiliation(s)
- Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Masoomeh Tavakoli
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Fariborz Asroosh
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Colin G Scanes
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
25
|
Oladokun S, MacIsaac J, Rathgeber B, Adewole D. Essential Oil Delivery Route: Effect on Broiler Chicken's Growth Performance, Blood Biochemistry, Intestinal Morphology, Immune, and Antioxidant Status. Animals (Basel) 2021; 11:ani11123386. [PMID: 34944163 PMCID: PMC8697888 DOI: 10.3390/ani11123386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Much research is devoted to the search for potent alternatives to antibiotic growth promoters in the poultry industry. It is hypothesized that the efficacy of potential alternatives could be influenced by their type and the delivery strategy utilized. Consequently, this study evaluated the efficacy of a commercial essential oil blend across different delivery routes as a potent alternative to in-feed antibiotics in broiler chickens using selected biochemical, immune, and performance parameters. The results provide evidence that the successive delivery of essential oils via in ovo and in-water routes in broiler chickens offers the potential to improve broiler chicken biochemical and antioxidant status. However, the in ovo delivery of essential oil at 0.2 mL dosage (saline + essential oil, dilution ratio—2:1) suffers the limitations of reduced hatchability. Abstract This study evaluated the effect of an essential oil blend and its delivery routes on broiler chicken growth performance, blood biochemistry, intestinal morphology, and immune and antioxidant status. Eggs were incubated and allotted to 3 groups: non-injected group, in ovo saline group, and in ovo essential oil group. On day 18 of incubation, essential oil in saline or saline alone was injected into the amnion. At hatch, chicks were assigned to post-hatch treatment combinations (1) in ovo essential oil + in-water essential oil (in ovo + in-water EO); (2) in ovo essential oil (in ovo EO); (3) in ovo saline; (4) in-water essential oil; (5) in-feed antibiotics (Bacitracin methylene disalicylate) and (6) a negative control (NC; corn-wheat-soybean diet) in 8 replicate cages (6 birds/cage) and raised for 28 day. The in ovo EO group reduced (p < 0.05) chick length and hatchability, all groups recorded no difference in growth performance at 0–28 day. The in ovo + in-water EO treatment reduced (p < 0.05) blood creatine kinase and aspartate aminotransferase levels whilst increasing (p < 0.05) total antioxidant capacity in birds. The in ovo + in-water delivery of EO might represent a potential antibiotic reduction strategy for the poultry industry but more research is needed to address the concern of reduced hatchability.
Collapse
|
26
|
Kothalawala SG, Zhang J, Wang Y, Yu C. Submicron-Sized Vermiculite Assisted Oregano Oil for Controlled Release and Long-Term Bacterial Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10111324. [PMID: 34827262 PMCID: PMC8614931 DOI: 10.3390/antibiotics10111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Oregano essential oil (OEO) is a natural compound consisting of potent antibiotic molecules. Its volatility is the major obstacle against the transportation and anti-bacterial performance. In this work, submicron-sized vermiculite (SMV) particles were prepared from Australian vermiculite clay by ball milling, and tested as a potential particulate-carrier for OEO. The loading of OEO by SMV can be easily achieved by mechanical mixing. Compared to raw vermiculite and free OEO, the OEO-loaded SMV displayed sustained isothermal release behaviour of OEO and demonstrated enhanced antibacterial performance in in vitro antibacterial tests against Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). This study provides a facile and commercially viable approach in designing advantageous carriers for volatile actives in antimicrobial applications.
Collapse
Affiliation(s)
- Sukitha Geethma Kothalawala
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia; (S.G.K.); (Y.W.)
| | - Jun Zhang
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia; (S.G.K.); (Y.W.)
- Correspondence: (J.Z.); (C.Y.)
| | - Yue Wang
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia; (S.G.K.); (Y.W.)
| | - Chengzhong Yu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia; (S.G.K.); (Y.W.)
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Correspondence: (J.Z.); (C.Y.)
| |
Collapse
|
27
|
The Use of Selenium Yeast and Phytobiotic in Improving the Quality of Broiler Chicken Meat. Foods 2021; 10:foods10112558. [PMID: 34828838 PMCID: PMC8625940 DOI: 10.3390/foods10112558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to investigate the effect of selenium yeast and phytobiotic on the storage capacity, selected quality parameters of meat and content of selenium in muscles obtained from broilers. In the experiment, 1440 male broiler chickens (Ross 308) were randomly assigned to four research groups: group received no additive (G1), group received a supplement of 0.3 mg Se (as sodium selenite)/kg of feed mixture (G2), group received 0.2 g phytobiotic and 0.3 mg Se as 0.1 g selenium yeast per 1 kg of feed mixture (G3) and group received 0.3 mg Se as 0.1 g selenium yeast per 1 kg of feed mixture (G4). Measurement of pH, determination of water retention capacity, degree of advancement of oxidative changes and selenium content in muscles were performed. Samples of chickens’ breast and thigh muscles were microbiologically analyzed. The additives significantly influenced the level of oxidation in muscles and the incorporation of selenium. The meat of chickens receiving organic selenium was characterized by significantly lower dynamics of oxidative changes. The studies carried out showed that selenium in organic form had better absorption.
Collapse
|
28
|
Effect of functional oils or probiotics on performance and microbiota profile of newly weaned piglets. Sci Rep 2021; 11:19457. [PMID: 34593866 PMCID: PMC8484476 DOI: 10.1038/s41598-021-98549-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to evaluate a commercial blend of functional oils based on liquid from the cashew nutshell and castor oil as a growth promoter in newly weaned piglets. A total of 225 piglets, castrated males and females with 28 days of age were randomly distributed in pens with 15 animals composing three treatments and five repetitions. The treatments were: control (without the inclusion of additives), probiotics, or functional oils. The performance was evaluated. At 50 days of age, a pool of fresh feces from 3 animals/repetition was collected to perform the sequencing of microbiota using the Illumina MiSeq platform. Supplementation with functional oils improved the piglets' daily weight gain and feed conversion ratio (P < 0.05) in the first weeks of the experiment, which resulted in higher final live weight (P < 0.05) in the phase when compared to the control treatment (24.34 kg and 21.55 kg, respectively). The animals that received probiotics showed an intermediate performance (23.66 kg final live weight) at the end of the 38 experimental days. Both additives were effective in increasing groups essential for intestinal health, such as Ruminococcaceae and Lachnospiraceae. The functional oils were more effective in reducing pathogenic bacteria, such as Campylobacter and Escherichia coli. In conclusion, the use of functional oils optimized performance and effectively modulated the microbiota of newly weaned piglets.
Collapse
|
29
|
Bautista-Hernández I, Aguilar CN, Martínez-Ávila GCG, Torres-León C, Ilina A, Flores-Gallegos AC, Kumar Verma D, Chávez-González ML. Mexican Oregano ( Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules 2021; 26:molecules26175156. [PMID: 34500592 PMCID: PMC8434378 DOI: 10.3390/molecules26175156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 05/08/2023] Open
Abstract
Lippia graveolens is a traditional crop and a rich source of bioactive compounds with various properties (e.g., antioxidant, anti-inflammatory, antifungal, UV defense, anti-glycemic, and cytotoxicity) that is primarily cultivated for essential oil recovery. The isolated bioactive compounds could be useful as additives in the functional food, nutraceuticals, cosmetics, and pharmaceutical industries. Carvacrol, thymol, β-caryophyllene, and p-cymene are terpene compounds contained in oregano essential oil (OEO); flavonoids such as quercetin O-hexoside, pinocembrin, and galangin are flavonoids found in oregano extracts. Furthermore, thermoresistant compounds that remain in the plant matrix following a thermal process can be priced in terms of the circular economy. By using better and more selective extraction conditions, the bioactive compounds present in Mexican oregano can be studied as potential inhibitors of COVID-19. Also, research on extraction technologies should continue to ensure a higher quality of bioactive compounds while preventing an undesired chemical shift (e.g., hydrolysis). The oregano fractions can be used in the food, health, and agricultural industries.
Collapse
Affiliation(s)
- Israel Bautista-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
- Correspondence: (M.L.C.-G.); (C.N.A.); Tel.: +52-844-4161238 (C.N.A.)
| | - Guillermo C. G. Martínez-Ávila
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo, Monterrey 66050, Mexico;
| | - Cristian Torres-León
- Ethnobiological Garden and Research Center-UadeC (CIJE), Universidad Autónoma de Coahuila, Saltillo 27480, Mexico;
| | - Anna Ilina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
| | - Adriana C. Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India;
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (I.B.-H.); (A.I.); or (A.C.F.-G.)
- Correspondence: (M.L.C.-G.); (C.N.A.); Tel.: +52-844-4161238 (C.N.A.)
| |
Collapse
|
30
|
Qaid MM, Al-Mufarrej SI, Azzam MM, Al-Garadi MA, Alqhtani AH, H. Fazea E, Suliman GM, Alhidary IA. Effect of Rumex nervosus Leaf Powder on the Breast Meat Quality, Carcass Traits, and Performance Indices of Eimeria tenella Oocyst-Infected Broiler Chickens. Animals (Basel) 2021; 11:1551. [PMID: 34073376 PMCID: PMC8228268 DOI: 10.3390/ani11061551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to assess the effect of using the RNL on performance indices, carcass trait, and meat quality of broiler chicken infected with Eimeria tenella compared with commercially used anticoccidials salinomycin. Moreover, we compare these selected variables between infected medicated groups and a non-infected unmedicated group (UUT) and an infected unmedicated group (IUT). A total of 150 1-day-old Ross 308 mixed-sex broilers were divided into 6 groups. Birds in groups 1, 2, and 3 were fed basic diets supplemented with 1, 3, and 5 g of RNL/kg diet, respectively. Group 4 received a basic diet with 66 mg of salinomycin. The control groups (5 and 6) were given a basic diet with no RNL or salinomycin added. All groups except the negative controls were challenged with Eimeria tenella at 21 days old. Birds in RNL groups outperformed those in the IUT group in performance indices, and they have a similar effect to the salinomycin group. Enhancement-infected birds with RNL affected some chickens' carcass traits. Drip loss, water-holding capacity, and meat tenderness were improved by RNL inclusion (1 g) in the diet. In conclusion, the meat of infected birds receiving 1 g RNL had increased quality attributes, with preferable tenderness and springiness when compared to the IUT group. RNL could therefore also be considered a promising non-conventional feed source in the future. Further research is needed to optimize the use of RNL to improve broilers production and meat quality in both infected and non-infected conditions.
Collapse
Affiliation(s)
- Mohammed M. Qaid
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
- Faculty of Veterinary Medicine, Thamar University, Dhamar 13020, Yemen
| | - Saud I. Al-Mufarrej
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
| | - Mahmoud M. Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Maged A. Al-Garadi
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
- Faculty of Veterinary Medicine, Thamar University, Dhamar 13020, Yemen
| | - Abdulmohsen H. Alqhtani
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
| | - Esam H. Fazea
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
| | - Gamaleldin M. Suliman
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
- Department of Meat Production, Faculty of Animal Production, University of Khartoum, Khartoum North 13314, Sudan
| | - Ibrahim A. Alhidary
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.A.-M.); (M.M.A.); (M.A.A.-G.); (A.H.A.); (E.H.F.); (G.M.S.); (I.A.A.)
| |
Collapse
|
31
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
32
|
Patra AK. Influence of Plant Bioactive Compounds on Intestinal Epithelial Barrier in Poultry. Mini Rev Med Chem 2020; 20:566-577. [PMID: 31878854 DOI: 10.2174/1389557520666191226111405] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/14/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Natural plant bioactive compounds (PBC) have recently been explored as feed additives to improve productivity, health and welfare of poultry following ban or restriction of in-feed antibiotic use. Depending upon the types of PBC, they possess antimicrobial, digestive enzyme secretion stimulation, antioxidant and many pharmacological properties, which are responsible for beneficial effects in poultry production. Moreover, they may also improve the intestinal barrier function and nutrient transport. In this review, the effects of different PBC on the barrier function, permeability of intestinal epithelia and their mechanism of actions are discussed, focusing on poultry feeding. Dietary PBC may regulate intestinal barrier function through several molecular mechanisms by interacting with different metabolic cascades and cellular transcription signals, which may then modulate expressions of genes and their proteins in the tight junction (e.g., claudins, occludin and junctional adhesion molecules), adherens junction (e.g., E-cadherin), other intercellular junctional proteins (e.g., zonula occludens and catenins), and regulatory proteins (e.g., kinases). Interactive effects of PBC on immunomodulation via expressions of several cytokines, chemokines, complement components, pattern recognition receptors and their transcription factors and cellular immune system, and alteration of mucin gene expressions and goblet cell abundances in the intestine may change barrier functions. The effects of PBC are not consistent among the studies depending upon the type and dose of PBC, physiological conditions and parts of the intestine in chickens. An effective concentration in diets and specific molecular mechanisms of PBC need to be elucidated to understand intestinal barrier functionality in a better way in poultry feeding.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, India
| |
Collapse
|
33
|
Feye KM, Swaggerty CL, Kogut MH, Ricke SC, Piva A, Grilli E. The biological effects of microencapsulated organic acids and botanicals induces tissue-specific and dose-dependent changes to the Gallus gallus microbiota. BMC Microbiol 2020; 20:332. [PMID: 33138790 PMCID: PMC7607615 DOI: 10.1186/s12866-020-02001-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Microencapsulated organic acids and botanicals have the potential to develop into important tools for the poultry industry. A blend of organic acids and botanicals (AviPlus®P) has previously shown to reduce Salmonella and Campylobacter in chickens; however, changes to the microbiota of the jejunum and ileum have not been evaluated. Microbiota diversity is linked to, but not correlated with, the efficacy of natural products; therefore, understanding the effects on the microbiota is necessary for evaluating their potential as an antibiotic alternative. Results Ileal and jejunal segments from control and supplement-fed chickens (300 and 500 g/metric ton [MT]) were subjected to alpha diversity analysis including Shannon’s diversity and Pielou’s Evenness. In both analytics, the diversity in the ileum was significantly decreased compared to the jejunum irrespective of treatment. Similarly, beta diversity metrics including Bray-Curtis dissimilarity index and Weighted Unifrac Distance Matrix, were significant (Q < 0.05) for both tissue and treatments comparisons. Alpha and beta diversity analytics indicated compartmentalization effects between the ileum and jejunum. Additionally, analysis of communities in the microbiota (ANCOM) analysis showed Lactobacilliaceae predominated the total operational taxonomic units (OTU), with a stepwise increase from 53% in the no treatment control (NTC) to 56% in the 300 g/MT and 67% in the 500 g/MT group. Staphylococcaceae were 2% in NTC and 2 and 0% in 300 and 500 g/MT groups. Enterobacteriaceae decreased in the 500 g/MT (31%) and increased in the 300 g/MT (37%) compared to the NTC (35%). Aerococcaceae was 0% for both doses and 7% in NTC. Ruminococcaceae were 0% in NTC and 2 and 1% in the 300 and 500 g/MT. These changes in the microbial consortia were statistically (Q < 0.05) associated with treatment groups in the jejunum that were not observed in the ileum. Least discriminant analysis effect size (LEfSE) indicated different changes directly corresponding to treatment. Enterobacteriaceae demonstrated a stepwise decrease (from NTC onward) while Clostridiaceae, were significantly increased in the 500 g/MT compared to NTC and 300 g/MT (P < 0.05). Conclusion The bioactive site for the microencapsulated blend of organic acids and botanicals was the jejunum, and dietary inclusion enhanced the GIT microbiota and may be a viable antibiotic alternative for the poultry industry.
Collapse
Affiliation(s)
- Kristina M Feye
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Service, 2881 F and B Road, College Station, TX, 77845, USA
| | - Christina L Swaggerty
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Service, 2881 F and B Road, College Station, TX, 77845, USA.
| | - Michael H Kogut
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Service, 2881 F and B Road, College Station, TX, 77845, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Andrea Piva
- DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.,Vetagro S.p.A, Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.,Vetagro Inc., Chicago, IL, USA
| |
Collapse
|
34
|
Mahgoub SA, Abd El-Hack ME, Mulla ZS, El-Ghareeb WR, Taha AE, Al-Ghadi MQ, Alhimaidi AR, Amran RA, Almutairi B, Tufarelli V, Swelum AA. Improving the Quality of Turkey Meat via Storage Temperature, Packaging Atmosphere, and Oregano (Origanum vulgare) Essential Oil Addition. AGRICULTURE 2020; 10:463. [DOI: 10.3390/agriculture10100463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The provision of plentiful good-quality food is a primary issue in the modern world. This work was planned to study the influence of packaging atmosphere and oregano (Origanum vulgare) essential oil addition [(vacuum packaging: T1 or modified atmosphere packaging or T2 (CO2/N2 = 4:6) or T3, T2 with oregano essential oil (T2 + EO)] under various storage temperatures (0, 5, 10, and 15 °C) on the control of survival of Escherichia coli O157:H7 and associated spoilage flora in sliced smoked turkey meat. The pathogen increased by only <1.0 log colony-forming unit (CFU)/g under all packaging and temperature combinations. Moreover, T1, T2, and T3 exerted practically similar inhibitory activity against the pathogen and dominating bacteria, with a relatively low growth of E. coli O157:H7 in sliced smoked turkey during the shelf life under all storage regimes compared to the control. However, the pathogen survival was highest on the sliced smoked turkey under T1, decreasing by only 0.67, 0.74, 0.63, and 1.30 log CFU/g within 37 days if kept at 0, 5, 10, and 15 °C, respectively. Under T2 and the same condition, E. coli O157:H7 in the product declined by only 0.31, 0.50, 0.72, and 1.10 log CFU/g within 37 days of storage, respectively. In the T3 samples, the pathogen was reduced by only 0.33, 0.67, 1.72, and 3.46 log CFU/g through 37 days of storage, respectively. Under T3 were E. coli O157:H7 populations in smoked turkey eliminated (negative by enrichment) under all conditions (after 129, 95, 95, and 43 days maintained at 0, 5, 10, and 15 °C, respectively) compared with other packaging temperature combinations. Thus, T3 contributed to developing ready-to-eat smoked turkey with enhanced product quality and eliminating the pathogen.
Collapse
|
35
|
The Applications of Origanum Vulgare and Its Derivatives in Human, Ruminant and Fish Nutrition – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Origanum vulgare L. is an aromatic enduring herb that belongs to Lamiaceae family. The bioactive constituents of this herb, such as carvacrol and thymol possess several medicinal properties, such as antioxidant, antidiabetic, anti-inflammatory, antimicrobial, antiviral, antiparasitic, anti-neoplastic, and immune modulatory. Moreover, it is considered a standard natural, less toxic, and residue free feed additive, that is successfully used in livestock and fish. Additionally, in human, Origanum vulgare is extensively used with promising health benefits against respiratory, digestive and urinary disorders. This review casts light on description, chemical composition and structure of Origanum vulgare, as well as its therapeutic applications in human and its biological activities in ruminants and fish, data that will be possibly useful for physiologists, nutritionists and veterinarians.
Collapse
|
36
|
Gruľová D, Caputo L, Elshafie HS, Baranová B, De Martino L, Sedlák V, Gogaľová Z, Poráčová J, Camele I, De Feo V. Thymol Chemotype Origanum vulgare L. Essential Oil as a Potential Selective Bio-Based Herbicide on Monocot Plant Species. Molecules 2020; 25:molecules25030595. [PMID: 32013272 PMCID: PMC7037002 DOI: 10.3390/molecules25030595] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Searching for new bio-based herbicides is crucial for decreasing chemical pollution, protecting the environment, and sustaining biodiversity. Origanum vulgare is considered a promising source of essential oil with herbicidal effect. The mode of action is not known. The present study focused on (1) comparison of phytotoxic activity of Origanum vulgare EO on monocot (Triticum aestivum and Hordeum vulgare) and dicot species (Lepidium sativum and Sinapis alba); (2) and evaluating other antimicrobial biological activities against phytopatogen bacteria (Clavibacter michiganensis, Pseudomonas syringae pv. phaseolicola, Pseudomonas savastanoi, and Xanthomonas campestris); antifungal activity against Monilinia fructicola, Aspergillus niger, Penicillium expansum, and Botrytis cinerea; cytotoxic activity and antioxidant activity. According to the GC/MS analyses, the EO belongs to the thymol chemotype O. vulgare with its high content of thymol (76%). Germination of all four species was not influenced by EO. The phytotoxic effect was statistically significant in the monocot species, while in the dicot species the opposite was observed-a stimulation effect, which was also statistically significant. Strong biological activity of O. vulgare EO was noted on all phytopatogen bacteria and fungi in the highest dose. Cytotoxic activity showed an IC50 = 50.5 μg/mL. Antioxidant activity showed an IC50 = 106.6 μg/mL after 45 min experimental time. Based on the presented results, it is possible to conclude that thymol chemotype O. vulgare essential oil could be potentially used as a herbicide with selective effects on monocot plant species.
Collapse
Affiliation(s)
- Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 08001 Prešov, Slovakia;
- Correspondence: ; Tel.: +421-948-030-412
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, Italy; (L.C.); (L.D.M.); (V.D.F.)
| | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (H.S.E.); (I.C.)
| | - Beáta Baranová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 08001 Prešov, Slovakia;
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, Italy; (L.C.); (L.D.M.); (V.D.F.)
| | - Vincent Sedlák
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 08001 Prešov, Slovakia; (V.S.); (Z.G.); (J.P.)
| | - Zuzana Gogaľová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 08001 Prešov, Slovakia; (V.S.); (Z.G.); (J.P.)
| | - Janka Poráčová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 08001 Prešov, Slovakia; (V.S.); (Z.G.); (J.P.)
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (H.S.E.); (I.C.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, Italy; (L.C.); (L.D.M.); (V.D.F.)
| |
Collapse
|
37
|
Haščík P, Pavelková A, Tkáčová J, Čuboň J, Bobko M, Kačániová M, Arpášová H, Čech M. The amino acid profile after addition of humic acids and phytobiotics into diet of broiler chicken. POTRAVINARSTVO 2019. [DOI: 10.5219/1237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was analysed the effect of humic acids separately and humic acids in combination with phytobiotic as garlic and oregano powder on amino acid (AA) profile of the most valuable parts of Ross 308 chicken. A total of 200 pcs Ross 308 broiler chickens of mixed sex were randomly divided into 4 groups (n=50): control group (C) without supplementation, experiment group E1 (2% humic acids), E2 (80% humic acids and 20% garlic powder) and E3 (90% humic acids and 10% oregano powder). Fattening period lasted for 42 days and all groups were kept under the same conditions. After slaughter, the AA profiles of breast and thigh samples were determined. In comparison with control group, 6 out of 10 AA was significantly affected (p ≤0.05) by used dietary supplementation - Met, Cys and His in thigh and Leu, Phe, His and Arg in breast muscle. AA composition of breast muscle was positively affected mainly by humic acids and 10% oregano powder supplementation (E3), while thigh muscle by humic acids and 20% garlic powder (E2). The highest obtained AA in breast muscle was Leu (2.02 g.100 g-1) in E3 group and thigh muscle His (1.15 g.100 g-1) in E2 group (p ≤0.05). In conclusion, humic acids and 10% oregano powder supplementation (E3) elicited to the best AA profile of chicken breast muscle but also the worst AA profile in thigh muscle so the effect of such a supplementation is disputable. On the other hand, humic acids and 20% garlic powder supplementation resulted into slight increase of AA in both breast and thigh muscle (E2).
Collapse
|
38
|
Use of liquorice (Glycyrrhiza glabra) in poultry nutrition: Global impacts on performance, carcass and meat quality. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933919000059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Abd El-Hack ME, Alagawany M, Abdelnour S. Responses of growing rabbits to supplementing diet with a mixture of black and red pepper oils as a natural growth promoter. J Anim Physiol Anim Nutr (Berl) 2018; 103:509-517. [PMID: 30593689 DOI: 10.1111/jpn.13045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/19/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022]
Abstract
The current study was explored to examine the impacts of dietary inclusion of mixture of black (BPO) and red pepper (RPO) oils as growth promoters on growth, carcass, blood haematology, serum chemistry, immunity and antioxidative status of New Zealand White rabbits (NZW). A number total of 100 5-week-old NZW growing weaned rabbits were randomly allocated into four treatment groups in a complete randomized experiment. The dietary treatment groups were as follows: control: basal diet; BRP0.5: basal diet + 0.25 g BPO + 0.25 g RPO/kg diet; BRP1.0: basal diet + 0.50 g BPO + 0.50 g RPO/kg diet; and BRP1.5: basal diet + 0.75 g BPO + 0.75 g RPO/kg diet. Rabbits fed the highest level of BRP mixture were the heaviest, while the control rabbits were the lightest. During 5-9 weeks of age, a gradual improvement in feed conversion ratio (FCR) was noticed with increasing BRP level. The control group excelled all BRP groups regarding the majority of blood haematological parameters. Liver function was better in rabbits fed BRP enriched diets than the control. A gradual depression (p < 0.05 or 0.01) in serum lipids regardless high-density lipoprotein (HDL) were recorded with elevating BRP level in the diet. The supplementation of BRP mixture enhanced the immune function and serum superoxide dismutase (SOD) activities and depressed serum malondialdehyde (MDA) in comparison with control. It could be concluded that dietary BRP mixture can affect some of growth traits, improve the immunity and antioxidant parameters, lower lipid profile and lipid peroxidation. Based on the study results, the recommended level of BRP mixture is 1.5 g/kg diet.
Collapse
Affiliation(s)
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|