1
|
Wang J, Wang Y, Chen Y, Zhang J, Zhang Y, Li S, Zhu H, Song X, Hou L, Wang L, Wang Y, Zhang Z, Rong P. Transcutaneous Auricular Vagus Stimulation Attenuates LPS-Induced Depression-Like Behavior by Regulating Central α7nAChR/JAK2 Signaling. Mol Neurobiol 2025; 62:3011-3023. [PMID: 39212875 DOI: 10.1007/s12035-024-04438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Depression is a serious disabling disease worldwide. Accumulating evidence supports that there is a close relationship between depression and inflammation, and then inhibition of neuroinflammation may be another mechanism for the treatment of depression. Transcutaneous auricular vagus stimulation (taVNS), as a noninvasive transcutaneous electrical stimulation, could effectively treat depression, but its mechanism is unclear. In this study, rats with depression-like behavior were induced by intraperitoneal injection of lipopolysaccharide (LPS). The rats were randomly divided to control group, LPS group, taVNS + LPS group, and the same as the α7 nicotinic acetylcholine chloride receptor (α7nAChR) (- / -) gene knockout rats. The expressions of tumor necrosis factor alpha (TNF-ɑ) and phosphorylated-Janus kinase2 (p-JAK2), phosphorylated-signal transducer and activator of transcription3(p-STAT3) in the hypothalamus, amygdala, and hippocampus were detected by Western blot. We observed that LPS significantly decreased the sucrose preference, the time of into the open arms in the elevated plus maze, and the number of crossing and reaping in the open field test. TaVNS treatment improves these depression-like behaviors, but taVNS is not effective in α7nAChR (- / -) gene knockout rats. The expression of TNF-ɑ significantly increased, and the expression of p-Jak2 and p-STAT3 markedly decreased in the hypothalamus and amygdala induced by LPS. TaVNS could significantly reverse the abovementioned phenomena but had rare improvement effect for α7nAChR (- / -) rats. We conclude that the antidepressant effect of taVNS for LPS-induced depressive rats is related to α7nAchR/JAK2 signal pathway in the hypothalamus and amygdala.
Collapse
Affiliation(s)
- Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haohan Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingke Song
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liwei Hou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Piacentini R, Grassi C. Interleukin 1β receptor and synaptic dysfunction in recurrent brain infection with Herpes simplex virus type-1. Neural Regen Res 2025; 20:416-423. [PMID: 38819045 PMCID: PMC11317954 DOI: 10.4103/nrr.nrr-d-23-01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024] Open
Abstract
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer's disease. However, the molecular mechanisms underlying this association are not completely understood. Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role. Here, we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain, highlighting the role of interleukins and, in particular, interleukin 1β as a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.
Collapse
Affiliation(s)
- Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Yu J, Xie W, Wang P. Inflammatory bowel disease and white matter microstructure: A bidirectional Mendelian randomization study. Brain Res 2024; 1845:149206. [PMID: 39208967 DOI: 10.1016/j.brainres.2024.149206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Observational studies have reported changes in the brain white matter (WM) microstructure in patients with inflammatory bowel disease (IBD); however, it remains uncertain whether the relationship between them is causative. The aim of this study is to reveal the potential causal relationship between IBD and WM microstructure through a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS We extracted genome-wide association study (GWAS) summary statistics for IBD and WM microstructure from published GWASs. Two-sample MR analysis was conducted to explore the bidirectional causal associations between IBD and WM microstructure, followed by a series of sensitivity analyses to assess the robustness of the results. RESULTS Although forward MR analysis results showed no evidence of causality from microstructural WM to IBD, reverse MR showed that genetically predicted IBD, consisting of ulcerative colitis and Crohn's disease, has a significant causal effect on the orientation dispersion index (OD) of the right tapetum (β = -0.029, 95% CI = -0.045 to -0.013, p = 3.63 × 10-4). Further sensitivity analysis confirmed the robustness of the association. CONCLUSION Our results suggested the potentially causal association of IBD with reduced OD in the right tapetum.
Collapse
Affiliation(s)
- Jie Yu
- School of Medical Technology, School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Wanyu Xie
- School of Medical Technology, School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- School of Medical Technology, School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Shao L, Li Y, Yuan Z, Guo X, Zeng G, Liu J. The effect of clozapine on immune-related biomarkers in schizophrenia patients. Brain Res Bull 2024; 218:111104. [PMID: 39424000 DOI: 10.1016/j.brainresbull.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Globally, schizophrenia is one of the main causes of disability. Approximately 1 % of the general population suffers from schizophrenia, and 30 % of cases are unresponsive to therapy. Clozapine is the gold standard for therapy-resistant schizophrenia (TRS), yet it has limited effectiveness and serious adverse events in some patients. Because of the possibility of severe neutropenia, clozapine administration requires monthly hematological monitoring in the first four months. Previous investigations have demonstrated the immune system alteration after clozapine treatment in schizophrenia patients. Besides, it has been proposed that clozapine changes the cytokines profile in schizophrenia patients. These findings highlighted the need to learn more about the disease's etiology and investigate the relationship between peripheral immune system markers and clozapine response to support strategies for better treatment outcomes. The time decision-making to start clozapine could be significantly decreased if some biomarkers were developed to assist physicians in anticipating whether a particular patient will respond to the medication. Therefore, this study aimed to comprehensively review the effect of clozapine on immune-related biomarkers in schizophrenia patients.
Collapse
Affiliation(s)
- Lu Shao
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - Yu Li
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - ZhiYao Yuan
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - XiYu Guo
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - GuoJi Zeng
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - JunPeng Liu
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| |
Collapse
|
5
|
Muhammad AJ, Al-Baqami FF, Alanazi FE, Alattar A, Alshaman R, Rehman NU, Riadi Y, Shah FA. The Interplay of Carveol and All-Trans Retinoic Acid (ATRA) in Experimental Parkinson's Disease: Role of Inflammasome-Mediated Pyroptosis and Nrf2. Neurochem Res 2024; 49:3118-3130. [PMID: 39190122 DOI: 10.1007/s11064-024-04226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a debilitating and the second most common neurodegenerative disorder with a high prevalence. PD has a multifaceted etiology characterized by an altered redox state and an excessive inflammatory response. Extensive research has consistently demonstrated the role of the nuclear factor E2-related factor (Nrf2) and inflammasomes, notably NLRP3 in neurodegenerative diseases. In this study, our focus was on exploring the potential neuroprotective properties of carveol in Parkinson's disease. Our findings suggest that carveol may exhibit these effects through Nrf2 and by suppressing pyroptosis. Male albino mice were treated with carveol, and the animal PD model was induced through a single intranigral dose of 2 µg/2µl lipopolysaccharide (LPS). To further demonstrate the essential role of the Nrf2 pathway, we utilized all-trans retinoic acid (ATRA) to inhibit the Nrf2. Our finding showed the induction of pyroptosis as evidenced by increased levels of NLRP3 and other inflammatory mediators, including IL-1β, iNOS, p-NFKB, and apoptotic cell death indicated by positive fluoro Jade B (FJB) staining. Moreover, increased levels of lipid peroxides and reactive oxygen species indicated a significant rise in oxidative stress due to LPS. The administration of carveol mitigates oxidative stress and suppresses inflammatory pathways through the augmentation of intrinsic antioxidant defenses, primarily via the activation of the Nrf2. Conversely, ATRA reversed carveol protective effects by increasing FJB-positive cells, inflammatory and oxidative biomarkers. Taken together, our findings suggest that carveol mitigated LPS-induced Parkinson-like symptoms, partially through the activation of the Nrf2 and downregulation of pyroptosis notably NLRP3.
Collapse
Affiliation(s)
- Asmaa Jan Muhammad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Faisal F Al-Baqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Najeeb Ur Rehman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Fawad Ali Shah
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 16242, Saudi Arabia.
| |
Collapse
|
6
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Remali J, Aizat WM. Medicinal plants and plant-based traditional medicine: Alternative treatments for depression and their potential mechanisms of action. Heliyon 2024; 10:e38986. [PMID: 39640650 PMCID: PMC11620067 DOI: 10.1016/j.heliyon.2024.e38986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Background Clinical depression is a serious public health issue that affects 4.7 % of the world's population and can lead to suicide tendencies. Although drug medications are available, only 60 % of the depressed patients respond positively to the treatments, while the rest experience side effects that resulted in the discontinuation of their medication. Thus, there is an urgent need for developing a new anti-depressant with a distinct mode of action and manageable side effects. One of the options is using medicinal plants or plant-based traditional medicine as alternative therapies for psychiatric disorders. Objectives Therefore, the objective of this review was twofold; to identify and critically evaluate anti-depressant properties of medicinal plants or those incorporated in traditional medicine; and to discuss their possible mechanism of action as well as challenges and way forward for this alternative treatment approach. Methods Relevant research articles were retrieved from various databases, including Scopus, PubMed, and Web of Science, for the period from 2018 to 2020, and the search was updated in September 2024. The inclusion criterion was relevance to antidepressants, while the exclusion criteria included duplicates, lack of full-text availability, and non-English publications. Results Through an extensive literature review, more than 40 medicinal plant species with antidepressant effects were identified, some of which are part of traditional medicine. The list of the said plant species included Albizia zygia (DC.) J.F.Macbr., Calculus bovis Sativus, Celastrus paniculatus Willd., Cinnamomum sp., Erythrina velutina Willd., Ficus platyphylla Delile, Garcinia mangostana Linn., Hyptis martiusii Benth, and Polygonum multiflorum Thunb. Anti-depressant mechanisms associated with those plants were further characterised based on their modes of action such as anti-oxidation system, anti-inflammation action, modulation of various neurotransmitters, neuroprotective effect, the regulation of hypothalamic-pituitary-adrenal (HPA) axis and anti-depressant mechanism. The challenges and future outlook of this alternative and complementary medicine are also explored and discussed. Conclusion This pool of identified plant species is hoped to offer health care professionals the best possible alternatives of anti-depressants from natural phytocompounds that are efficacious, safe and affordable for applications in future clinical settings.
Collapse
Affiliation(s)
- Juwairiah Remali
- Department of Pathology, Hospital Pulau Pinang, Jalan Residensi, 10450, George Town, Pulau Pinang, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Mohammadkhanizadeh A, Hosseini Y, Nikbakht F, Parvizi M, Khodabandehloo F. Evaluating the potential effects of apigenin on memory, anxiety, and social interaction amelioration after social isolation stress. Int J Dev Neurosci 2024. [PMID: 39367711 DOI: 10.1002/jdn.10380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Vigorous research confirmed the anti-inflammatory, antioxidant, and antidementia effects of apigenin (Api). The present study evaluated the beneficial impacts of Api administration on behaviour, brain-derived neurotrophic factor (BDNF), Interleukin 6 (IL-6), oxidative stress, and inflammation induced by social isolation (SI) stress in rats. For this purpose, rats underwent a 28-day SI period followed by a 4-week oral Api treatment (50 mg/kg/day, PO). On Day 56, behaviour tests were performed, including an elevated plus maze (EPM), Morris water maze (MWM), and three-chamber social tests. The oxidative stress markers, IL-6, and BDNF levels were measured in the hippocampus. Our results showed that SI stress caused an increase in anxiety and a decrease in spatial memory, sociability, and social preference index. In addition, SI stress increased hippocampal levels of IL-6 and malondialdehyde (MDA) content, whereas it reduced the hippocampal BDNF level and superoxide dismutase (SOD) activities. Our study indicated that Api attenuates anxiety and causes improvements in spatial memory and social interaction. These desirable effects of Api might be related to amelioration in the BDNF level, IL-6, and oxidative stress biomarkers in the hippocampus.
Collapse
Affiliation(s)
- Ali Mohammadkhanizadeh
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Parvizi
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
- Department of Physiology, faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetic and Advanced Medicine Technology, faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yadav A, Tiwari P, Dada R. Yoga: As a Transformative Approach to Addressing Male Infertility and Enhancing Reproductive Health in Men: A Narrative Review. J Hum Reprod Sci 2024; 17:224-231. [PMID: 39831098 PMCID: PMC11741127 DOI: 10.4103/jhrs.jhrs_147_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Infertility presents multifaceted challenges that encompass both physical and emotional burdens. Yoga, as a comprehensive system of mind-body medicine, serves as an effective intervention for managing male factor infertility, a complex lifestyle disorder with significant psychosomatic elements. This review explores the transformative role of yoga in addressing both the emotional and physical dimensions of infertility. By incorporating physical postures, breath control and meditation, yoga promotes emotional well-being and enhances reproductive health by improving the integrity of nuclear and mitochondrial genomes as well as the epigenome. In addition, yoga contributes to maintaining sperm telomere length through the regulation of seminal free radical levels and increased telomerase activity, which are crucial for optimal embryo cleavage and the development of high-quality blastocysts. Integrating yoga as an adjunctive therapeutic approach fosters a supportive intrauterine environment and facilitates physiological homoeostasis, thereby increasing the likelihood of successful fertilisation and implantation. Gentle asanas and flowing sequences promote relaxation, alleviate tension and cultivate emotional stability, while meditation aids in emotional healing and resilience during the infertility journey. Specific asanas, such as Baddha Konasana (bound angle pose), Bhujangasana (cobra pose) and Sarvangasana (shoulder stand), stimulate reproductive organs, enhance blood circulation and regulate hormone production. Pranayama techniques further support endocrine balance and overall vitality. Moreover, yoga provides a non-invasive strategy for managing fertility-related conditions leading to improved reproductive health and overall well-being. This review aims to elucidate the comprehensive role of yoga in improving male infertility, focusing on its impact on sperm nuclear and mitochondrial genomes, the epigenome and telomere health. In addition, it underscores the importance of self-care, open communication and shared experiences with partners. Practicing yoga regularly supports psychosocial well-being, promotes holistic healing, enhances physical and mental health and probably helps in improving reproductive health, thereby fostering resilience and self-efficacy throughout the journey of fertility and reproduction.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhakar Tiwari
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Cavalu S, Saber S, Ramadan A, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Youssef ME. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders. FASEB J 2024; 38:e70030. [PMID: 39221499 DOI: 10.1096/fj.202400823r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
11
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
12
|
Guo Y, Li J, Hu R, Tan J, Luo H, Zhang Z, Luo Q, Xia X. Adalimumab-induced manic episode in an adolescent with juvenile idiopathic arthritis. BMC Psychiatry 2024; 24:596. [PMID: 39232752 PMCID: PMC11373102 DOI: 10.1186/s12888-024-06037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most common chronic inflammatory rheumatic disease in children, and adalimumab is one of the primary treatment options. Although it is widely used for inflammatory diseases, there is limited research on its safety and efficacy in patients with psychiatric disorders or in those with inflammatory diseases who also have comorbid psychiatric conditions. CASE REPORT We report a 12-year-old adolescent boy who presented with emotional instability for 1 year, exacerbated leading to hospital admission in the past month. Upon detailed evaluation after admission, it was found that the patient's emotional fluctuations may be related to the use of Adalimumab. Follow-up after psychiatric inpatient treatment revealed that the patient did not experience emotional excitement again after discontinuing Adalimumab. CONCLUSIONS Although tumor necrosis factor-α inhibitors have positive effects on the emotional, cognitive, and physical functions of patients with inflammatory diseases, their use may induce mood swings in patients with comorbid mood disorders. This is particularly important for adolescents with rapid mood changes, where greater caution is required. Further research is necessary to clarify the correlation between the adverse effects of these drugs and their impact on patients with bipolar disorder.
Collapse
Affiliation(s)
- Yanwei Guo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junyao Li
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renqin Hu
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinglan Tan
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huirong Luo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Zhang
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qinghua Luo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xuetao Xia
- Yongchuan District Mental Health Center, Chongqing, China.
| |
Collapse
|
13
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
14
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
15
|
Zabot GC, Medeiros EB, Macarini BMN, Peruchi BB, Keller GS, Lídio AV, Boaventura A, de Jesus LC, de Bem Silveira G, Silveira PCL, Chede BC, Réus GZ, Budni J. The involvement of neuroinflammation in an animal model of dementia and depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:110999. [PMID: 38552774 DOI: 10.1016/j.pnpbp.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) and depression are inflammatory pathologies, leading to increased inflammatory response and neurotoxicity. Therefore, this study aimed to evaluate the effect of the treatment with fluoxetine and/or galantamine and/or donepezil on the levels of proinflammatory and anti-inflammatory cytokines in a mixed animal model of depression and dementia. Adult male Wistar rats underwent chronic mild stress (CMS) protocol for 40 days and were subjected to stereotaxic surgery for intra-hippocampal administration of amyloid-beta (Aꞵ) peptide or artificial cerebrospinal fluid (ACSF) to mimic the dementia animal model. On the 42nd day, animals were treated with water, galantamine, donepezil, and/or fluoxetine, orally for 17 days. On the 57th and 58th days, the Splash and Y-maze tests for behavior analysis were performed. The frontal cortex and hippocampus were used to analyze the tumor necrosis factor alfa (TNF-α), interleukin 1 beta (IL-1ꞵ), IL-6, and IL-10 levels. The results of this study show that animals subjected to CMS and administration of Aꞵ had anhedonia, cognitive impairment, increased TNF-α and IL-1ꞵ levels in the frontal cortex, and reduced IL-10 levels in the hippocampus. All treatment groups were able to reverse the cognitive impairment. Only donepezil did not decrease the TNF-α levels in the hippocampus. Fluoxetine + galantamine and fluoxetine + donepezil reversed the anhedonia. Fluoxetine reversed the anhedonia and IL-1ꞵ levels in the frontal cortex. In addition, fluoxetine + donepezil reversed the reduction of IL-10 levels in the hippocampus. The results indicate a pathophysiological interaction between AD and depression, and the association of medications in the future may be a possible therapeutic strategy to reduce inflammation, especially the fluoxetine-associated treatments.
Collapse
Affiliation(s)
- Gabriel Casagrande Zabot
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bárbara Machado Naspolini Macarini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bruno Búrigo Peruchi
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela Serafim Keller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Adrielly Vargas Lídio
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Amanda Boaventura
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Laura Ceolin de Jesus
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Beatriz Costa Chede
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
16
|
Xie Q, Namba MD, Buck LA, Park K, Jackson JG, Barker JM. Effects of Antiretroviral Treatment on Central and Peripheral Immune Response in Mice with EcoHIV Infection. Cells 2024; 13:882. [PMID: 38786105 PMCID: PMC11120433 DOI: 10.3390/cells13100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
HIV infection is an ongoing global health issue, despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently or in combination with HIV infection to alter the immune state, though this is difficult to disentangle in the clinical population. Thus, these experiments used multiplexed chemokine/cytokine arrays to assess peripheral (plasma) and brain (nucleus accumbens; NAc) expression of immune targets in the presence and absence of ART treatment in the EcoHIV mouse model. The findings identify the effects of EcoHIV infection and of treatment with bictegravir (B), emtricitabine (F), and tenofovir alafenamide (TAF) on the expression of numerous immune targets. In the NAc, this included EcoHIV-induced increases in IL-1α and IL-13 expression and B/F/TAF-induced reductions in KC/CXCL1. In the periphery, EcoHIV suppressed IL-6 and LIF expression, while B/F/TAF reduced IL-12p40 expression. In the absence of ART, IBA-1 expression was negatively correlated with CX3CL1 expression in the NAc of EcoHIV-infected mice. These findings identify distinct effects of ART and EcoHIV infection on peripheral and central immune factors and emphasize the need to consider ART effects on neural and immune outcomes.
Collapse
Affiliation(s)
- Qiaowei Xie
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
- Graduate Program in Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mark D. Namba
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| | - Lauren A. Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| | - Kyewon Park
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Joshua G. Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| | - Jacqueline M. Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| |
Collapse
|
17
|
Xie Q, Namba MD, Buck LA, Park K, Jackson JG, Barker JM. Effects of antiretroviral treatment on central and peripheral immune response in mice with EcoHIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589109. [PMID: 38645059 PMCID: PMC11030421 DOI: 10.1101/2024.04.11.589109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
HIV infection is an ongoing global health issue despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently or in combination with HIV infection to alter immune state, though this is difficult to disentangle in the clinical population. Thus, these experiments used multiplexed chemokine/cytokine arrays to assess peripheral (plasma) and brain (nucleus accumbens; NAc) expression of immune targets in the presence and absence of ART treatment in the EcoHIV mouse model. The findings identify effects of EcoHIV infection and of treatment with bictegravir (B), emtricitabine (F) and tenofovir alafenamide (TAF) on expression of numerous immune targets. In the NAc, this included EcoHIV-induced increases in IL-1α and IL-13 expression and B/F/TAF-induced reductions in KC/CXCL1. In the periphery, EcoHIV suppressed IL-6 and LIF expression, while B/F/TAF reduced IL-12p40 expression. In absence of ART, IBA-1 expression was negatively correlated with CX3CL1 expression in the NAc of EcoHIV-infected mice. These findings identify distinct effects of ART and EcoHIV infection on peripheral and central immune factors and emphasize the need to consider ART effects on neural and immune outcomes.
Collapse
|
18
|
Davalos-Guzman AP, Vegas-Rodriguez FJ, Ramirez-Rodriguez GB, Flores-Ramos M, Romero-Luevano PV, Gonzalez-Olvera JJ, Saracco-Alvarez RA. Human olfactory neural progenitor cells reveal differences in IL-6, IL-8, thrombospondin-1, and MCP-1 in major depression disorder and borderline personality disorder. Front Psychiatry 2024; 15:1283406. [PMID: 38654728 PMCID: PMC11035822 DOI: 10.3389/fpsyt.2024.1283406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Background Discovering biological markers is essential for understanding and treating mental disorders. Despite the limitations of current non-invasive methods, neural progenitor cells from the olfactory epithelium (hNPCs-OE) have been emphasized as potential biomarker sources. This study measured soluble factors in these cells in Major Depressive Disorder (MDD), Borderline Personality Disorder (BPD), and healthy controls (HC). Methods We assessed thirty-five participants divided into MDD (n=14), BPD (n=14), and HC (n=7). MDD was assessed using the Hamilton Depression Rating Scale. BPD was evaluated using the DSM-5 criteria and the Structured Clinical Interview for Personality Disorders. We isolated hNPCs-OE, collected intracellular proteins and conditioned medium, and quantified markers and soluble factors, including Interleukin-6, interleukin-8, and others. Analysis was conducted using one-way ANOVA or Kruskal-Wallis test and linear regression. Results We found that hNPCs-OE of MDD and BPD decreased Sox2 and laminin receptor-67 kDa levels. MASH-1 decreased in BPD, while tubulin beta-III decreased in MDD compared to controls and BPD. Also, we found significant differences in IL-6, IL-8, MCP-1, and thrombospondin-1 levels between controls and MDD, or BPD, but not between MDD and BPD. Conclusions Altered protein markers are evident in the nhNPCs-OE in MDD and BPD patients. These cells also secrete higher concentrations of inflammatory cytokines than HC cells. The results suggest the potential utility of hNPCs-OE as an in vitro model for researching biological protein markers in psychiatric disorders. However, more extensive validation studies are needed to confirm their effectiveness and specificity in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alan Patrick Davalos-Guzman
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Javier Vegas-Rodriguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gerardo Bernabe Ramirez-Rodriguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Monica Flores-Ramos
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| | - Perla Vanessa Romero-Luevano
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Jorge Julio Gonzalez-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| | - Ricardo Arturo Saracco-Alvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| |
Collapse
|
19
|
Sangma JT, Renthlei Z, Trivedi AK. Bright daylight produces negative effects on affective and cognitive outcomes in nocturnal rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112885. [PMID: 38460431 DOI: 10.1016/j.jphotobiol.2024.112885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The daily light/dark cycle affects animals' learning, memory, and cognition. Exposure to insufficient daylight illumination negatively impacts emotion and cognition, leading to seasonal affective disorder characterized by depression, anxiety, low motivation, and cognitive impairment in diurnal animals. However, how this affects memory, learning, and cognition in nocturnal rodents is largely unknown. Here, we studied the effect of daytime light illuminance on memory, learning, cognition, and expression of mRNA levels in the hippocampus, thalamus, and cortex, the higher-order learning centers. Two experiments were performed. In experiment one, rats were exposed to 12 L:12D (12 h light and 12 h dark) with a 10, 100, or 1000 lx daytime light illuminance. After 30 days, various behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, and passive avoidance test) were performed. In experiment 2, rats since birth were raised either under constant bright light (250 lx; LL) or a daily light-dark cycle (12 L:12D). After four months, behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, passive avoidance test, Morris water maze, and Y-maze tests) were performed. At the end of experiments, rats were sampled, and mRNA expression of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (Trk), microRNA132 (miR132), Neurogranin (Ng), Growth Associated Protein 43 (Gap-43), cAMP Response Element-Binding Protein (Crebp), Glycogen synthase kinase-3β (Gsk3β), and Tumour necrosis factor-α (Tnf-α) were measured in the hippocampus, cortex, and thalamus of individual rats. Our results show that exposure to bright daylight (100 and 1000 lx; experiment 1) or constant light (experiment 2) compromises memory, learning, and cognition. Suppressed expression levels of these mRNA were also observed in the hypothalamus, cortex, and thalamus. These results suggest that light affects differently to different groups of animals.
Collapse
Affiliation(s)
- James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
20
|
Pereira ADS, Bottari NB, Nauderer JN, Assmann CE, Copetti PM, Reichert KP, Mostardeiro VB, da Silveira MV, Morsch VMM, Schetinger MRC. Purinergic signaling influences the neuroinflammatory outcomes of a testosterone-derived synthetic in female rats: Resistance training protective effects on brain health. Steroids 2024; 203:109352. [PMID: 38128896 DOI: 10.1016/j.steroids.2023.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1β, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1β and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Nathieli Bianchin Bottari
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Priscila Marquezan Copetti
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Qian X, Zhong ZD, Zhang Y, Qiu LQ, Tan HJ. Fluoxetine mitigates depressive-like behaviors in mice via anti-inflammation and enhancing neuroplasticity. Brain Res 2024; 1825:148723. [PMID: 38101693 DOI: 10.1016/j.brainres.2023.148723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Neuroplasticity and inflammation represent a common final pathway for effective antidepressant treatment. SSRIs are the most commonly prescribed medications for depression and have demonstrated efficacy in reducing depressive symptoms. However, the precise impact of SSRIs on neuroplasticity and inflammation remains unclear. In this study, we aimed to investigate the influence of long-term treatment with SSRIs on hippocampal neuron, inflammation, synaptic function and morphology. Our findings revealed that fluoxetine treatment significantly alleviated behavioral despair, anhedonia, and anxiety in reserpine-treated mice. Moreover, fluoxetine mitigated hippocampal neuron impairment, inhibited inflammatory release, and increased the expression of synaptic proteins markers (SYP and PSD95) in mice. Notably, fluoxetine also suppressed reserpine-induced synapse loss in the hippocampus. Based on these results, fluoxetine has been demonstrated effectively to ameliorate depressive mood and cognitive dysfunction, possibly through the enhancement of synaptic plasticity. Overall, our study contributes to a further understanding of the mechanisms underlying the therapeutic effects of fluoxetine and its potential role in improving depressive symptoms and cognitive impairments.
Collapse
Affiliation(s)
- Xu Qian
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zuo-Dong Zhong
- School of Pharmacy, Guangzhou Medical University, Guangzhou 510275, China
| | - Yao Zhang
- Department of Respiratory and Critical Medicine, General Hospital of Eastern Theater Command, Nanjing 210016, China
| | - Li-Qin Qiu
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui-Jun Tan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
22
|
Citera G, Jain R, Irazoque F, Madariaga H, Gruben D, Wang L, Stockert L, Santana K, Ebrahim A, Ponce de Leon D. Tofacitinib Efficacy in Patients with Rheumatoid Arthritis and Probable Depression/Anxiety: Post Hoc Analysis of Phase 3 and 3b/4 Randomized Controlled Trials. Rheumatol Ther 2024; 11:35-50. [PMID: 37925660 PMCID: PMC10796892 DOI: 10.1007/s40744-023-00612-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION The aim of our work is to assess the prevalence of probable major depressive disorder and/or probable generalized anxiety disorder (pMDD/pGAD) in patients with moderate to severe rheumatoid arthritis (RA), and to evaluate the efficacy of tofacitinib on RA symptoms stratified by baseline pMDD/pGAD status. METHODS Data were pooled from five phase 3 randomized controlled trials (RCTs) and one phase 3b/4 RCT, assessing tofacitinib 5 or 10 mg twice daily (BID), adalimumab (two RCTs), or placebo. pMDD/pGAD was defined as Short Form-36 Health Survey (SF-36) Mental Component Summary (MCS) score ≤ 38. Efficacy outcomes over 12 months included least squares mean change from baseline in SF-36 MCS score and Health Assessment Questionnaire-Disability Index, proportions of patients with pMDD/pGAD in those with baseline pMDD/pGAD, and American College of Rheumatology 20/50/70 response, and Disease Activity Score in 28 joints, erythrocyte sedimentation rate remission (< 2.6) rates. RESULTS A total of 4404 patients with non-missing baseline values were included. Baseline pMDD/pGAD was reported by 44.5%, 39.8%, 45.4%, and 39.1% of patients receiving tofacitinib 5 mg BID, tofacitinib 10 mg BID, adalimumab, and placebo, respectively. SF-36 MCS improvements were greater for tofacitinib versus adalimumab/placebo through month 6, with numerical improvements for tofacitinib versus adalimumab sustained through month 12, when the proportions of patients with baseline pMDD/pGAD who continued to have pMDD/pGAD were reduced. RA efficacy outcomes were generally similar in patients with/without baseline pMDD/pGAD. CONCLUSIONS The percentage of patients with pMDD/pGAD reduced from baseline over 1 year of treatment with tofacitinib or adalimumab. Effective treatment of underlying RA may lead to improvements in depression and anxiety, based on the SF-36 MCS. Specially designed studies using gold-standard diagnostic tools would be warranted to investigate this further. Video Abstract available for this article. TRIAL REGISTRATION NCT00960440, NCT00847613, NCT00814307, NCT00856544, NCT00853385, NCT02187055. Video Abstract (MP4 204475 KB).
Collapse
Affiliation(s)
- Gustavo Citera
- Instituto de Rehabilitación Psicofísica, Buenos Aires, Argentina
| | - Rakesh Jain
- Texas Tech University School of Medicine, Permian Basin, Midland, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mokhtari T, Uludag K. Role of NLRP3 Inflammasome in Post-Spinal-Cord-Injury Anxiety and Depression: Molecular Mechanisms and Therapeutic Implications. ACS Chem Neurosci 2024; 15:56-70. [PMID: 38109051 DOI: 10.1021/acschemneuro.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The majority of research on the long-term effects of spinal cord injury (SCI) has primarily focused on neuropathic pain (NP), psychological issues, and sensorimotor impairments. Among SCI patients, mood disorders, such as anxiety and depression, have been extensively studied. It has been found that chronic stress and NP have negative consequences and reduce the quality of life for individuals living with SCI. Our review examined both human and experimental evidence to explore the connection between mood changes following SCI and inflammatory pathways, with a specific focus on NLRP3 inflammasome signaling. We observed increased proinflammatory factors in the blood, as well as in the brain and spinal cord tissues of SCI models. The NLRP3 inflammasome plays a crucial role in various diseases by controlling the release of proinflammatory molecules like interleukin 1β (IL-1β) and IL-18. Dysregulation of the NLRP3 inflammasome in key brain regions associated with pain processing, such as the prefrontal cortex and hippocampus, contributes to the development of mood disorders following SCI. In this review, we summarized recent research on the expression and regulation of components related to NLRP3 inflammasome signaling in mood disorders following SCI. Finally, we discussed potential therapeutic approaches that target the NLRP3 inflammasome and regulate proinflammatory cytokines as a way to treat mood disorders following SCI.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Kadir Uludag
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| |
Collapse
|
24
|
Huang HY, Yu RL, Tsai WF, Chuang WL, Huang JF, Dai CY, Tan CH. Impact of interleukin-1β single nucleotide polymorphisms and depressive symptoms in individuals with chronic viral hepatitis. Kaohsiung J Med Sci 2024; 40:94-104. [PMID: 37937732 DOI: 10.1002/kjm2.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Elevated levels of interleukin 1β (IL-1β) have been identified in patients with chronic viral hepatitis and have been associated with depressive symptoms. Given the high prevalence of depression in this patient population, this study sought to explore the potential influence of IL-1β genetic variations on the severity of depressive symptoms. In a cohort of 181 Taiwanese patients with chronic viral hepatitis, we investigated the impact of five common IL-1β single nucleotide polymorphisms (SNPs), including rs16944, rs1143627, rs1143630, rs1143643, and rs3136558, on depressive symptoms using the Beck's Depression Inventory-II. Additionally, we analyzed the primary domains of IL-1β-related depressive symptoms according to Beck's six symptom categories of depression. Our analysis revealed significant associations between depressive symptoms and three intronic IL-1β SNPs. After controlling for age, sex, marital status, and education level, patients with the rs1143630 GG, rs1143643 CC, and rs3136558 AA genotypes demonstrated higher severity of depressive symptoms in the domains of indecision (p = 0.004), agitation (p = 0.001), and feelings of punishment (p = 0.005), respectively, compared to rs1143630 GA+AA, rs1143643 CT, and rs3136558 AG+GG genotypes. According to Beck's categorization, these symptoms can be classified into three dimensions: disturbances in emotion regulation, energy, and cognition. Our findings demonstrate the association between IL-1β polymorphisms and depressive symptoms and suggest a potential underlying mechanism for specific depressive symptoms within the chronic viral hepatitis population. These insights could improve our understanding and treatment of depressive symptoms in individuals with viral hepatitis.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rwei-Ling Yu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Fang Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hsiang Tan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
26
|
Mason NL, Szabo A, Kuypers KPC, Mallaroni PA, de la Torre Fornell R, Reckweg JT, Tse DHY, Hutten NRPW, Feilding A, Ramaekers JG. Psilocybin induces acute and persisting alterations in immune status in healthy volunteers: An experimental, placebo-controlled study. Brain Behav Immun 2023; 114:299-310. [PMID: 37689275 DOI: 10.1016/j.bbi.2023.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Patients characterized by stress-related disorders such as depression display elevated circulating concentrations of pro-inflammatory cytokines and a hyperactive HPA axis. Psychedelics are demonstrating promising results in treatment of such disorders, however the mechanisms of their therapeutic effects are still unknown. To date the evidence of acute and persisting effects of psychedelics on immune functioning, HPA axis activity in response to stress, and associated psychological outcomes is preliminary. To address this, we conducted a placebo-controlled, parallel group design comprising of 60 healthy participants who received either placebo (n = 30) or 0.17 mg/kg psilocybin (n = 30). Blood samples were taken to assess acute and persisting (7 day) changes in immune status. Seven days' post-administration, participants in each treatment group were further subdivided: 15 underwent a stress induction protocol, and 15 underwent a control protocol. Ultra-high field (7-Tesla) magnetic resonance spectroscopy was used to assess whether acute changes in glutamate or glial activity were associated with changes in immune functioning. Finally, questionnaires assessed persisting self-report changes in mood and social behavior. Psilocybin immediately reduced concentrations of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), while other inflammatory markers (interleukin (IL)- 1β, IL-6, and C-reactive protein (CRP)) remained unchanged. Seven days later, TNF-α concentrations returned to baseline, while IL-6 and CRP concentrations were persistently reduced in the psilocybin group. Changes in the immune profile were related to acute neurometabolic activity as acute reductions in TNF-α were linked to lower concentrations of glutamate in the hippocampus. Additionally, the more of a reduction in IL-6 and CRP seven days after psilocybin, the more persisting positive mood and social effects participants reported. Regarding the stress response, after a psychosocial stressor, psilocybin did not significantly alter the stress response. Results are discussed in regards to the psychological and therapeutic effects of psilocybin demonstrated in ongoing patient trials.
Collapse
Affiliation(s)
- N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - A Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - P A Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - R de la Torre Fornell
- Integrative Pharmacology and Systems Neurosciences Research Group. Neurosciences Program. Hospital del Mar Medical Research Institute. Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra. Dr. Aiguader 88, 08003 Barcelona, Spain
| | - J T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - A Feilding
- The Beckley Foundation, Beckley Park, Oxford, OX3 9SY, United Kingdom
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
27
|
Walker SL, Sud N, Beyene R, Palin N, Glasper ER. Paternal deprivation induces vigilance-avoidant behavior and accompanies sex-specific alterations in stress reactivity and central proinflammatory cytokine response in California mice (Peromyscus californicus). Psychopharmacology (Berl) 2023; 240:2317-2334. [PMID: 36988696 PMCID: PMC10599166 DOI: 10.1007/s00213-023-06354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
RATIONALE Early-life stress (ELS) can increase anxiety, reduce prosocial behaviors, and impair brain regions that facilitate emotional and social development. This knowledge greatly stems from assessing disrupted mother-child relationships, while studies investigating the long-term effects of father-child relationships on behavioral development in children are scarce. However, available evidence suggests that fathers may uniquely influence a child's behavioral development in a sex-specific manner. Rodent models examining mother-offspring interaction demonstrate relationships among ELS, neuroinflammatory mediators, and behavioral development; yet, the role paternal care may play in neuroimmune functioning remains unreported. OBJECTIVES Using the biparental California mouse (Peromyscus californicus), we examined to what extent paternal deprivation impairs social and anxiety-like behaviors, augments peripheral corticosterone (CORT) response, and alters central proinflammatory cytokine production following an acute stressor in adulthood. METHODS Biparentally reared and paternally deprived (permanent removal of the sire 24 h post-birth) adult mice were assessed for sociability, preference for social novelty, social vigilance, and social avoidance behaviors, followed by novelty-suppressed feeding (NSF) testing for general anxiety-like behavior. Following an acute stressor, circulating CORT concentrations and region-specific proinflammatory cytokine concentrations were determined via radioimmunoassay and Luminex multianalyte analysis, respectively. RESULTS In response to a novel same-sex conspecific, social vigilance behavior was associated with reduced sociability and increased avoidance in paternally deprived mice-an effect not observed in biparentally reared counterparts. Yet, in response to a familiar same-sex conspecific, social vigilance persisted but only in paternally deprived females. The latency to consume during NSF testing was not significantly altered by paternal deprivation. In response to an acute physical stressor, lower circulating CORT concentrations were observed in paternally deprived females. Compared to control-reared males, paternal deprivation increased hypothalamic interleukin-1β, but decreased hippocampal IL-6 protein concentration. CONCLUSION Greater social vigilance behavior was demonstrated in paternally deprived mice while they avoided social interaction with a novel same-sex conspecific; however, in response to a familiar same-sex conspecific, paternal deprivation increased social vigilance behavior but only in females. It is possible that different neurobiological mechanisms underlie these observed behavioral outcomes as sex-specific central proinflammatory cytokine and stress responsivity were observed in paternally deprived offspring.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA
| | - Neilesh Sud
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Rita Beyene
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole Palin
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, USA.
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA.
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
28
|
Jiang Y, Yin H, Wang H, Tao T, Zhang Y. Erythritol aggravates gut inflammation and anxiety-like behavioral disorders induced by acute dextran sulfate sodium administration in mice. Biosci Biotechnol Biochem 2023; 87:1354-1363. [PMID: 37604788 DOI: 10.1093/bbb/zbad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Erythritol is a widely used sugar substitute in food and beverages with beneficial and detrimental roles in obesity and cardiovascular diseases, respectively; however, its influence on inflammatory bowel disease (IBD) and related behavioral disorders is not well understood. Here, we found that erythritol exacerbated gut inflammation by promoting macrophage infiltration and inducing M1 macrophage polarization, thus increasing gut leakage during colitis triggered by acute dextran sulfate sodium (DSS) treatment. Increased gut permeability can cause neuroinflammation and anxiety-like behavioral disorders. In conclusion, our results revealed a negative role for erythritol in gut inflammation and anxiety-like behavioral disorders induced by erythritol administration in a mouse model of acute colitis, suggesting that erythritol intake control may be necessary for IBD treatment.
Collapse
Affiliation(s)
- Yuzhi Jiang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hailing Yin
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongyu Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ting Tao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yong Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
29
|
Sangma JT, Trivedi AK. Light at night: effect on the daily clock, learning, memory, cognition, and expression of transcripts in different brain regions of rat. Photochem Photobiol Sci 2023; 22:2297-2314. [PMID: 37337065 DOI: 10.1007/s43630-023-00451-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The rapid increase in urbanization is altering the natural composition of the day-night light ratio. The light/dark cycle regulates animal learning, memory, and mood swings. A study was conducted to examine the effect of different quantity and quality of light at night on the daily clock, learning, memory, cognition, and expression of transcripts in key learning centers. Treatment was similar for experiments one to three. Rats were exposed for 30 days to 12 h light and 12 h dark with a night light of 2 lx (dLAN group), 250 lx (LL), or without night light (LD). In experiment one, after 28 days, blood samples were collected and 2 days later, animals were exposed to constant darkness. In experiment two, after 30 days of treatment, animals were subjected to various tests involving learning, memory, and cognition. In experiment three, after 30 days of treatment, animals were sampled, and transcript levels of brain-derived neurotrophic factor, tyrosine kinase, Growth-Associated Protein 43, Neurogranin, microRNA-132, cAMP Response Element-Binding Protein, Glycogen synthase kinase-3β, and Tumor necrosis factor α were measured in hippocampus, thalamus, and cortex tissues. In experiment four, animals were exposed to night light of 0.019 W/m2 but of either red (640 nm), green (540 nm), or blue (450 nm) wavelength for 30 days, and similar tests were performed as mentioned in experiment 2. While in experiment five, after 30 days of respective wavelength treatments, all animals were sampled for gene expression studies. Our results show that exposure to dLAN and LL affects the daily clock as reflected by altered melatonin secretion and locomotor activity, compromises the learning, memory, and cognitive ability, and alterations in the expression levels of transcripts in the hypothalamus, cortex, and thalamus. The effect is night light intensity dependent. Further, blue light at night has less drastic effects than green and red light. These results could be of the potential use of framing the policies for the use of light at night.
Collapse
Affiliation(s)
- James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
30
|
Sun S, Wilson CM, Alter S, Ge Y, Hazlett EA, Goodman M, Yehuda R, Galfalvy H, Haghighi F. Association of interleukin-6 with suicidal ideation in veterans: a longitudinal perspective. Front Psychiatry 2023; 14:1231031. [PMID: 37779624 PMCID: PMC10540304 DOI: 10.3389/fpsyt.2023.1231031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Studies showing associations between inflammation in suicide are typically cross-sectional. Present study investigated how cytokine levels track with suicidal ideation and severity longitudinally. Methods Veterans with a diagnosis of major depressive disorder (MDD) with or without suicide attempt history (MDD/SA n = 38, MDD/NS n = 41) and non-psychiatric non-attempter controls (HC n = 33) were recruited, MDD/SA and HC groups were followed longitudinally at 3 months and 6 months. Blood plasma was collected and processed using Luminex Immunology Multiplex technology. Results Significant differences in depression severity (BDI) and suicidal ideation severity (SSI) were observed across all groups at study entry, wherein MDD/SA group had the highest scores followed by MDD/NS and HC, respectively. Cytokines IL-1β, IL-4, TNF-α, IFN-γ, and IL-6 were examined at study entry and longitudinally, with IL6 levels differing significantly across the groups (p = 0.0123) at study entry. Significant differences in changes in cytokine levels between depressed attempters and the control group were detected for IL-6 (interaction F1,91.77 = 5.58, p = 0.0203) and TNF-α (F1,101.73 = 4.69, p = 0.0327). However, only depressed attempters showed a significant change, in IL-6 and TNF-α levels, decreasing over time [IL-6: b = -0.04, 95% CI = (-0.08, -0.01), p = 0.0245 and TNF-α: b = -0.02, 95% CI = (-0.04, -0.01), p = 0.0196]. Although IL-6 levels were not predictive of suicidal ideation presence [OR = 1.34, 95% CI = (0.77, 2.33), p = 0.3067], IL-6 levels were significantly associated with suicidal ideation severity (b = 0.19, p = 0.0422). Discussion IL-6 was not associated with presence of suicidal ideation. IL-6 however, was associated with severity of ideation, suggesting that IL-6 may be useful in clinical practice, as an objective marker of heightened suicide risk.
Collapse
Affiliation(s)
- Shengnan Sun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VAMC, Bronx, NY, United States
| | - Caroline M. Wilson
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VAMC, Bronx, NY, United States
| | | | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Erin A. Hazlett
- James J. Peters VAMC, Bronx, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marianne Goodman
- James J. Peters VAMC, Bronx, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rachel Yehuda
- James J. Peters VAMC, Bronx, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hanga Galfalvy
- James J. Peters VAMC, Bronx, NY, United States
- Department of Psychiatry and Department of Biostatistics, Columbia University, New York, NY, United States
| | - Fatemeh Haghighi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VAMC, Bronx, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
31
|
Goh XX, Tang PY, Tee SF. Meta-analysis of soluble tumour necrosis factor receptors in severe mental illnesses. J Psychiatr Res 2023; 165:180-190. [PMID: 37515950 DOI: 10.1016/j.jpsychires.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Tumour necrosis factor (TNF), as an innate immune defense molecule, functions through binding to TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2). Peripheral levels of soluble TNFR1 (sTNFR1) and soluble TNFR2 (sTNFR2) were widely measured in severe mental illnesses (SMIs) including schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD) but inconsistencies existed. Hence, the present meta-analysis was conducted to identify the overall association between plasma/serum sTNFR1 and sTNFR2 levels and SMIs. Published studies were searched using Pubmed and Scopus. Data were analysed using Comprehensive Meta-Analysis version 2. Hedges's g effect sizes and 95% confidence intervals were pooled using fixed-effect or random-effects models. Heterogeneity, publication bias and study quality were assessed. Sensitivity analysis and subgroup analysis were performed. Our findings revealed that sTNFR1 level was significantly higher in SMI, particularly in BD. The sTNFR2 level significantly elevated in SMI but with smaller effect size. These findings further support the association between altered immune system and inflammatory abnormalities in SMI, especially in patients with BD. Subgroup analysis showed that younger age of onset, longer illness duration and psychotropic medication raised both sTNFR levels, especially sTNFR1, as these factors may contribute to the activation of inflammation. Future studies were suggested to identify the causality between TNFR pathway and SCZ, BD and MDD respectively using homogenous group of each SMI, and to determine the longitudinal effect of each psychotropic medication on TNFR pathway.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia.
| |
Collapse
|
32
|
Cremone IM, Nardi B, Amatori G, Palego L, Baroni D, Casagrande D, Massimetti E, Betti L, Giannaccini G, Dell'Osso L, Carpita B. Unlocking the Secrets: Exploring the Biochemical Correlates of Suicidal Thoughts and Behaviors in Adults with Autism Spectrum Conditions. Biomedicines 2023; 11:1600. [PMID: 37371695 DOI: 10.3390/biomedicines11061600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Involving 1 million people a year, suicide represents one of the major topics of psychiatric research. Despite the focus in recent years on neurobiological underpinnings, understanding and predicting suicide remains a challenge. Many sociodemographical risk factors and prognostic markers have been proposed but they have poor predictive accuracy. Biomarkers can provide essential information acting as predictive indicators, providing proof of treatment response and proposing potential targets while offering more assurance than psychological measures. In this framework, the aim of this study is to open the way in this field and evaluate the correlation between blood levels of serotonin, brain derived neurotrophic factor, tryptophan and its metabolites, IL-6 and homocysteine levels and suicidality. Blood samples were taken from 24 adults with autism, their first-degree relatives, and 24 controls. Biochemical parameters were measured with enzyme-linked immunosorbent assays. Suicidality was measured through selected items of the MOODS-SR. Here we confirm the link between suicidality and autism and provide more evidence regarding the association of suicidality with increased homocysteine (0.278) and IL-6 (0.487) levels and decreased tryptophan (-0.132) and kynurenic acid (-0.253) ones. Our results suggest a possible transnosographic association between these biochemical parameters and increased suicide risk.
Collapse
Affiliation(s)
- Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Giulia Amatori
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Lionella Palego
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Dario Baroni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Danila Casagrande
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Enrico Massimetti
- ASST Bergamo Ovest, SSD Psychiatric Diagnosis and Treatment Service, 24047 Treviglio, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
33
|
Low RN, Low RJ, Akrami A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front Med (Lausanne) 2023; 10:1011936. [PMID: 37064029 PMCID: PMC10103649 DOI: 10.3389/fmed.2023.1011936] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production. In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with "brain fog," arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines. There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS.
Collapse
Affiliation(s)
| | - Ryan J. Low
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
34
|
Identification of LRRK2 gene related to sarcopenia and neuroticism using weighted gene co-expression network analysis. J Affect Disord 2023; 325:675-681. [PMID: 36690080 DOI: 10.1016/j.jad.2023.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sarcopenia is reported to be associated with neuroticism, but the mechanisms are not fully understood. Thus, it's of vital importance to elucidate the molecular mechanism of sarcopenia and neuroticism and to explore the potential molecular target of medical therapies for sarcopenia and neuroticism. METHODS The expression datasets (sarcopenia: GSE111006 and neuroticism: GSE60491) were downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) was used to build the gene co-expression network, screen important modules, and filter the hub genes. Genes with significance over 0.2 and a module membership over 0.8 were hub genes. The overlapped hub genes between sarcopenia and neuroticism were defined as key genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the genes in modules with clinical interest. RESULTS In this study, we identified 28 gene modules for sarcopenia and 7 for neuroticism by WGCNA. The key modules of sarcopenia and neuroticism were the tan and turquoise modules, respectively. Hub genes of sarcopenia and neuroticism were 20 genes and 107 genes, respectively. The function enrichment found that apoptosis was the common pathway for sarcopenia and neuroticism. Finally, LRRK2 was identified as key genes. LIMITATIONS The sarcopenia dataset contained fewer samples. CONCLUSION Based on WGCNA, our study identified apoptosis pathway and LRRK2 that acted as essential components in the etiology of sarcopenia and neuroticism, which may enhance our fundamental knowledge of the molecular mechanisms underlying the disease.
Collapse
|
35
|
Baghaei Naeini F, Hassanpour S, Asghari A. Resveratrol exerts anxiolytic-like effects through anti-inflammatory and antioxidant activities in rats exposed to chronic social isolation. Behav Brain Res 2023; 438:114201. [PMID: 36334782 DOI: 10.1016/j.bbr.2022.114201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Emerging evidence has confirmed resveratrol's (RES) antioxidant, anti-inflammatory, and antidepressant effects. The beneficial effects of RES were confirmed for several emotional and cognitive deficits. This research aimed to assess the impacts of RES on behavior and hippocampal levels of anti-inflammatory and pro-inflammatory factors in rats exposed to chronic social isolation (SI) stress, which is known to induce mental disorders such as depressive-like behavior. The animals were treated by RES (20, 40, or 80 mg/kg/intraperitoneally) for 28 days following a 28-day exposure to stress. Behavioral tests, including the forced swim test (FST), open-field test (OFT), tail suspension test (TST), and sucrose preference test (SPT), assessed depressive symptoms. Finally, the animals were sacrificed, and molecular studies (qPCR and ELISA) were performed. Exposure of animals to SI dramatically increased the immobility of animals in TST and FST, enhanced the time spent in the open-field peripheral zone of the OFT, and reduced the sucrose preference rate. In addition, SI increased serum levels of corticosterone and hippocampal content of MDA, whereas it reduced hippocampal SOD and CAT activities. Moreover, SI upregulated the expression of IL-10, IL-18, and IL-1β and downregulated the expression of TGF-β in the hippocampus. RES treatment (40 & 80 mg/kg) significantly improved the behavioral alterations through the modulation of neuroinflammation and oxidative stress. The 20 mg/kg RES dose was inefficient for treating SI-induced depressive-like behavior. These results indicated that RES attenuated depressive-like behavior in prolonged stressed animals. These properties might be associated with RES-mediated improvements in serum corticosterone and hippocampal inflammatory and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Farinaz Baghaei Naeini
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| |
Collapse
|
36
|
Abdi IY, Bartl M, Dakna M, Abdesselem H, Majbour N, Trenkwalder C, El-Agnaf O, Mollenhauer B. Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up. Neurobiol Dis 2023; 177:105997. [PMID: 36634823 DOI: 10.1016/j.nbd.2023.105997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins-ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK- significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.
Collapse
Affiliation(s)
- Ilham Yahya Abdi
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar; Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Houari Abdesselem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Nour Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Klinikstrasse, Kassel, Germany; Department of Neurosurgery, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Omar El-Agnaf
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar; Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany; Paracelsus-Elena-Klinik, Klinikstrasse, Kassel, Germany.
| |
Collapse
|
37
|
Lumateperone Normalizes Pathological Levels of Acute Inflammation through Important Pathways Known to Be Involved in Mood Regulation. J Neurosci 2023; 43:863-877. [PMID: 36549907 PMCID: PMC9899083 DOI: 10.1523/jneurosci.0984-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Lumateperone is indicated for the treatment of schizophrenia in adults and for depressive episodes associated with bipolar I or II disorder (bipolar depression) in adults, as monotherapy and as adjunctive therapy with lithium or valproate (Calabrese et al., 2021). It is currently under evaluation for the treatment of major depressive disorder (www.ClinicalTrials.gov). Lumateperone acts by selectively modulating serotonin, dopamine, and glutamate neurotransmission in the brain. However, other mechanisms could be involved in the actions of lumateperone, and because of the connection between the immune system and psychiatric health, we hypothesized that lumateperone might improve symptoms of depression, at least in part, by normalizing pathologic inflammation. Here, we show that in male and female C57BL/6 mice subjected to an acute immune challenge, lumateperone reduced aberrantly elevated levels of key proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) in both brain and serum; lumateperone also reduced proinflammatory cytokines in male mice under acute behavioral stress. Further, we demonstrate that lumateperone altered key genes/pathways involved in maintaining tissue integrity and supporting blood-brain barrier function, such as claudin-5 and intercellular adhesion molecule 1. In addition, in acutely stressed male Sprague Dawley rats, lumateperone conferred anxiolytic- and antianhedonic-like properties while enhancing activity in the mammalian target of rapamycin complex 1 pathway in the PFC. Together, our preclinical findings indicate that lumateperone, in addition to its ability to modulate multiple neurotransmitter systems, could also act by reducing the impact of acute inflammatory challenges.SIGNIFICANCE STATEMENT Lumateperone is indicated in adults to treat schizophrenia and depressive episodes associated with bipolar I or II disorder, as monotherapy and adjunctive therapy with lithium or valproate. Because aberrant immune system activity is associated with increased depressive symptoms, the relationship between lumateperone and immune function was studied. Here, lumateperone reduced the levels of proinflammatory cytokines that were increased following an immune challenge or stress in mice. Additionally, lumateperone altered genes and pathways that maintain blood-brain barrier integrity, restored an index of blood-brain barrier function, reduced anxiety-like behavior in rodents, and enhanced mammalian target of rapamycin complex 1 pathway signaling in the PFC. These results highlight the anti-inflammatory actions of lumateperone and describe how lumateperone may reduce immune pathophysiology, which is associated with depressive symptoms.
Collapse
|
38
|
Xu H, Du Y, Wang Q, Chen L, Huang J, Liu Y, Zhou C, Du B. Comparative efficacy, acceptability, and tolerability of adjunctive anti-inflammatory agents on bipolar disorder: A systemic review and network meta-analysis. Asian J Psychiatr 2023; 80:103394. [PMID: 36525766 DOI: 10.1016/j.ajp.2022.103394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We performed a network meta-analysis (NMA) with up-to-date evidence to compare different anti-inflammatory agents to improve the treatment of bipolar disorder (BD) patients. METHODS Four databases (i.e., the Cochrane Library, Web of Science, PubMed, and Embase) were searched for randomized controlled trials (RCTs) published between 1995 and 2022 on the use of anti-inflammatory agents in the treatment of BD. A systematic review and NMA were conducted. RESULTS Adjunctive N-acetylcysteine (NAC) was superior to placebo for the treatment of BD according to the endpoint scale score (SMD -0.65, 95% confidence interval (CI): - 0.99 to - 0.31), response rate (odds ratio (OR) 3.42, 95% CI: 1.23-9.52), remission rate (OR 4.94, 95% CI: 1.03-41.38) and surface under the cumulative ranking curve (SUCRA) value of the endpoint scale score (0.84). Adjunctive nonsteroidal anti-inflammatory drugs (NSAIDs) were more favorable than placebo based on the remission rate (OR 3.93, 95% CI: 1.15-13.43) and were significantly more acceptable than other treatments (OR 0.60, 95% CI: 0.36-0.99). Adjunctive coenzyme Q10 (CoQ10) was superior to other agents in terms of the response rate (OR 18.85, 95% CI: 2.63-135.00), with a SUCRA value for the response rate of 0.90 and that for the remission rate of 0.71. CONCLUSION Adjunctive NAC is recommended for the treatment of BD. Adjunctive NSAIDs and CoQ10 are still seen as effective, but more high-quality clinical studies are needed to verify their efficacy. Other anti-inflammatory agents may not be recommended for clinical use at present. All anti-inflammatory agents demonstrated a good safety profile. We call for further research on the combined treatment of BD with different anti-inflammatory agents to be included in future trials.
Collapse
Affiliation(s)
- Han Xu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yang Du
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qiong Wang
- Department of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Lizhi Chen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Juan Huang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yin Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Chunyang Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Biao Du
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Pharmacy, Chongqing University Three Gorges Hospital, Chongqing 404000, China.
| |
Collapse
|
39
|
Bellettini-Santos T, Garcez ML, Mina F, Magnus NQ, Pereira NDS, Marques ADO, Keller GS, Zabot GC, do Nascimento NB, Medeiros EB, Rempel LCT, Kucharska E, Frizon TEA, Dal-Bó AG, Budni J. Vitamin D3 improves spatial memory and modulates cytokine levels in aged rats. Metab Brain Dis 2023; 38:1155-1166. [PMID: 36689104 DOI: 10.1007/s11011-022-01152-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Vitamin D3 deficiency is associated with an increased risk of dementia. An association between vitamin D3 deficiency and subjective cognitive complaints in geriatric patients has been previously reported. This study aimed to evaluate the effects of two doses of vitamin D3 on spatial memory (using the Radial Maze) and cytokine levels [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10)] on 2-, 6-, 13-, 22-, and 31-month-old male Wistar rats. Animals were supplemented with vitamin D3 at doses of 42 IU/kg and 420 IU/kg for 21 days. A radial maze test was performed to evaluate spatial memory. After the behavioral test, the frontal cortex and hippocampus were dissected for enzyme immunoassay analyses to measure the cytokine levels (TNFα, IL-1β, IL-6, and IL-10). Our results showed that vitamin D3 supplementation reversed spatial memory impairment at the supplemented doses (42 and 420 IU/kg) in 6-, 13-, and 22-month-old animals and at a dose of 420 IU/kg in 31-month-old animals. The lower dose (42 IU/kg) regulates both pro- and anti-inflammatory cytokines mainly in the frontal cortex. Our results suggest that vitamin D3 has a modulatory action on pro- and anti-inflammatory cytokines, since older animals showed increased cytokine levels compared to 2-month-old animals, and that vitamin D3 may exert an immunomodulatory effect on aging.
Collapse
Affiliation(s)
- Tatiani Bellettini-Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, ES, Brazil
| | - Michelle Lima Garcez
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, ES, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Natália Quadros Magnus
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Nathalia de Souza Pereira
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Ariandne de Oliveira Marques
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Gabriela Serafim Keller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Gabriel Casagrande Zabot
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Natália Baltazar do Nascimento
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Lisienny Campoli Tono Rempel
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil
| | - Ewa Kucharska
- Department of Health Education, Gerontology and Geriatrics, Jesuit University Ignatianum in Krakow, 31-501, Krakow, Poland
| | - Tiago Elias Allievi Frizon
- Laboratory of Advanced Polymer Processing, Universidade Do Extremo Sul Catarinense - UNESC, Criciúma, SC, Brazil
- Department of Energy and Sustainability, Federal University of Santa Catarina - UFSC, Araranguá, SC, Brazil
| | - Alexandre Gonçalves Dal-Bó
- Laboratory of Advanced Polymer Processing, Universidade Do Extremo Sul Catarinense - UNESC, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
40
|
Islam MR, Sohan M, Daria S, Masud AA, Ahmed MU, Roy A, Shahriar M. Evaluation of inflammatory cytokines in drug-naïve major depressive disorder: A systematic review and meta-analysis. Int J Immunopathol Pharmacol 2023; 37:3946320231198828. [PMID: 37625799 PMCID: PMC10467201 DOI: 10.1177/03946320231198828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Objective: Altered levels of peripheral inflammatory and proinflammatory cytokine markers affect the different clinical stages of major depressive disorder (MDD). A concrete understanding of the causal mechanism of MDD is a prerequisite in developing treatment strategies and preventive plans. Here we aimed to conduct an updated systematic review and meta-analysis of studies assessing the association of C-reactive protein (CRP), INF-γ, MCP-1, and TNF-α in the peripheral fluid of drug-naïve MDD patients and healthy controls (HCs). Methods: We extracted articles from PubMed, ProQuest, PsycINFO, Web of Science, and Scopus databases from inception until 14 February 2021, to find relevant studies. In this meta-analysis, we included a total of 23 eligible studies (1,366 MDD patients and 1,342 controls) in the final meta-analysis. The Cochran's chi-square Q-test and I2-index were applied to measure the heterogeneity and inconsistency of all combined results. We selected a random-effect model during the analysis and measured publication biases using the funnel plot. We performed Bonferroni adjustment for multiple testing. Results: We found a high level of TNF-α in MDD patients than in control subjects Standardized Mean Difference (SMD) with a random-effects model: 1.04, 95% CI: 0.69-1.39, z = 5.84, p < 0.001). The levels of CRP (SMD with a random-effects model: 0.18, 95% CI: -0.85-1.23, z = 0.35, p = 0.73), INF-ɤ (SMD with a random-effects model: -0.05, 95% CI: -2.72-2.62, z = 0.03, p = 0.97), and MCP-1 (SMD with a random-effects model: 0.70, 95% CI: -0.09-1.49, z = 1.73, p = 0.08) were not significantly varies between MDD patients and HCs. Conclusion: The present study findings suggest the upregulated level of peripheral TNF-α but not CRP, INF-γ, and MCP-1 involve in depression. The elevated inflammatory cytokines confirmed the inflammatory state of depression. Therefore, inflammatory cytokines might serve as potential risk assessment markers in MDD.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Md Sohan
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Sohel Daria
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | | | | | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Mohammad Shahriar
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
41
|
Wartchow KM, Scaini G, Quevedo J. Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:191-208. [PMID: 36949311 DOI: 10.1007/978-981-19-7376-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.
Collapse
Affiliation(s)
- Krista M Wartchow
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
42
|
Safari H, Mashayekhan S. Inflammation and Mental Health Disorders: Immunomodulation as a Potential Therapy for Psychiatric Conditions. Curr Pharm Des 2023; 29:2841-2852. [PMID: 37946352 DOI: 10.2174/0113816128251883231031054700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Mood disorders are the leading cause of disability worldwide and their incidence has significantly increased after the COVID-19 pandemic. Despite the continuous surge in the number of people diagnosed with psychiatric disorders, the treatment methods for these conditions remain limited. A significant number of people either do not respond to therapy or discontinue the drugs due to their severe side effects. Therefore, alternative therapeutic interventions are needed. Previous studies have shown a correlation between immunological alterations and the occurrence of mental health disorders, yet immunomodulatory therapies have been barely investigated for combating psychiatric conditions. In this article, we have reviewed the immunological alterations that occur during the onset of mental health disorders, including microglial activation, an increased number of circulating innate immune cells, reduced activity of natural killer cells, altered T cell morphology and functionality, and an increased secretion of pro-inflammatory cytokines. This article also examines key studies that demonstrate the therapeutic efficacy of anti-inflammatory medications in mental health disorders. These studies suggest that immunomodulation can potentially be used as a complementary therapy for controlling psychiatric conditions after careful screening of candidate drugs and consideration of their efficacy and side effects in clinical trials.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
43
|
Miljevic C, Munjiza-Jovanovic A, Jovanovic T. Impact of Childhood Adversity, as Early Life Distress, on Cytokine Alterations in Schizophrenia. Neuropsychiatr Dis Treat 2023; 19:579-586. [PMID: 36938321 PMCID: PMC10015972 DOI: 10.2147/ndt.s396168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
Even though inflammation theory has been introduced in the pathophysiology of psychosis almost a century ago, many of its aspects have remained unelucidated. Numerous studies have shown cytokine dysregulation in schizophrenia and a predominance of pro-inflammatory cytokines, but on another side, various cytokines in a pro-inflammatory group have different trends in all subtypes of schizophrenia. Alterations are also present in anti-inflammatory and regulatory cytokines, but findings are still not consistent. On the other hand, it is well known that abuse and neglect in childhood may be predictors of psychotic disorders, and childhood adversity is also associated with alterations of the immune and inflammatory response (through various mechanisms including HPA dysregulation as well). This review aims to analyze conducted studies and elucidate the link between childhood abuse, schizophrenia, and cytokine alterations. Putting together this complex psycho-immunological puzzle for the subgroup of schizophrenia-diagnosed patients with distinct immunological abnormalities and a history of childhood abuse can help us to answer the question about the future treatment of these patients.
Collapse
Affiliation(s)
- Cedo Miljevic
- Department of Psychiatry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinical Trial Unit, Institute of Mental Health, Belgrade, Serbia
- Correspondence: Cedo Miljevic, Department of Psychiatry, Faculty of Medicine, University of Belgrade, Milana Kasanina 3, Belgrade, 11 000, Serbia, Tel +381 11 3307500, Fax +381 33 40 629, Email
| | - Ana Munjiza-Jovanovic
- Department of Psychiatry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Day Hospital for Adolescents, Institute of Mental Health, Belgrade, Serbia
| | - Teodora Jovanovic
- Department for Psychotic Disorders, Institute of Mental Health, Belgrade, Serbia
| |
Collapse
|
44
|
Yuenyongchaiwat K, Akekawatchai C, Khattiya J. Effects of a Pedometer-Based Walking Home Program Plus Resistance Training on Inflammatory Cytokines and Depression in Thai Older People with Sarcopenia: A Three-Arm Randomized Controlled Trial. Clin Gerontol 2023; 46:717-728. [PMID: 36461909 DOI: 10.1080/07317115.2022.2150396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE To examine the effects of daily walking steps plus resistive exercise on chronic inflammatory markers and depressive symptoms in older adults with sarcopenia. METHODS Ninety men and women aged over 60 years were enrolled and divided into 60 and 30 adults with and without sarcopenia, respectively. Older individuals were screened for sarcopenia using the Asian Working Group for Sarcopenia in 2019. A simple random sample was conducted to divide the older adults with sarcopenia into two groups: control and intervention. Thirty older adults with sarcopenia were assigned to perform 12 weeks of step walking (>7500 steps) daily for 5 days/week plus resistance exercise with an elastic band twice/week; the control groups (i.e., no sarcopenia and sarcopenia) performed routine daily life Changes in depression and expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were measured before and after the 12-week intervention program. Two-way mixed ANOVA models were computed for group and interaction effects for each variable. RESULTS Changes in depressive symptom scores (Δ2.86 ± 0.92) and TNF-α levels (Δ22.16 ± 2.30) were observed in the intervention group after the 12-week program. In addition, an interaction effect between the intervention (Δ4.04 ± 3.10) and control groups (Δ8.10 ± 4.88) was found for the symptoms of depression. CONCLUSION Older people with sarcopenia who accumulated >7,500 steps/day, 5 days/week plus resistive elastic band twice /week show improvements in inflammation and depressive symptoms. CLINICAL IMPLICATIONS Encourage physical activity had a positive effect on reducing inflammation and depression among older people with sarcopenia.
Collapse
Affiliation(s)
- Kornanong Yuenyongchaiwat
- Physiotherapy Department, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
- Thammasat University Research Unit for Physical Therapy in Respiratory and Cardiovascular Systems, Thammasat University, Pathumthani, Thailand
| | - Chareeporn Akekawatchai
- Medical Technology Department, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
- Thammasat University Research Unit in Diagnostic Molecular Biology of Chronic Diseases related to Cancer (DMB-CDC), Pathumthani, Thailand
| | - Janya Khattiya
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| |
Collapse
|
45
|
De Felice E, Gonçalves de Andrade E, Golia MT, González Ibáñez F, Khakpour M, Di Castro MA, Garofalo S, Di Pietro E, Benatti C, Brunello N, Tascedda F, Kaminska B, Limatola C, Ragozzino D, Tremblay ME, Alboni S, Maggi L. Microglial diversity along the hippocampal longitudinal axis impacts synaptic plasticity in adult male mice under homeostatic conditions. J Neuroinflammation 2022; 19:292. [PMID: 36482444 PMCID: PMC9730634 DOI: 10.1186/s12974-022-02655-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is a plastic brain area that shows functional segregation along its longitudinal axis, reflected by a higher level of long-term potentiation (LTP) in the CA1 region of the dorsal hippocampus (DH) compared to the ventral hippocampus (VH), but the mechanisms underlying this difference remain elusive. Numerous studies have highlighted the importance of microglia-neuronal communication in modulating synaptic transmission and hippocampal plasticity, although its role in physiological contexts is still largely unknown. We characterized in depth the features of microglia in the two hippocampal poles and investigated their contribution to CA1 plasticity under physiological conditions. We unveiled the influence of microglia in differentially modulating the amplitude of LTP in the DH and VH, showing that minocycline or PLX5622 treatment reduced LTP amplitude in the DH, while increasing it in the VH. This was recapitulated in Cx3cr1 knockout mice, indicating that microglia have a key role in setting the conditions for plasticity processes in a region-specific manner, and that the CX3CL1-CX3CR1 pathway is a key element in determining the basal level of CA1 LTP in the two regions. The observed LTP differences at the two poles were associated with transcriptional changes in the expression of genes encoding for Il-1, Tnf-α, Il-6, and Bdnf, essential players of neuronal plasticity. Furthermore, microglia in the CA1 SR region showed an increase in soma and a more extensive arborization, an increased prevalence of immature lysosomes accompanied by an elevation in mRNA expression of phagocytic markers Mertk and Cd68 and a surge in the expression of microglial outward K+ currents in the VH compared to DH, suggesting a distinct basal phenotypic state of microglia across the two hippocampal poles. Overall, we characterized the molecular, morphological, ultrastructural, and functional profile of microglia at the two poles, suggesting that modifications in hippocampal subregions related to different microglial statuses can contribute to dissect the phenotypical aspects of many diseases in which microglia are known to be involved.
Collapse
Affiliation(s)
- E. De Felice
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E. Gonçalves de Andrade
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - M. T. Golia
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - F. González Ibáñez
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada ,grid.411081.d0000 0000 9471 1794Faculté de Médecine and Centre de Recherche, CHU de Québec-Université Laval, Quebec, Canada
| | - M. Khakpour
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - M. A. Di Castro
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - S. Garofalo
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E. Di Pietro
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - C. Benatti
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N. Brunello
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F. Tascedda
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - B. Kaminska
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - C. Limatola
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, Italy
| | - D. Ragozzino
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy ,grid.417778.a0000 0001 0692 3437Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - M. E. Tremblay
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada ,grid.411081.d0000 0000 9471 1794Faculté de Médecine and Centre de Recherche, CHU de Québec-Université Laval, Quebec, Canada
| | - S. Alboni
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - L. Maggi
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
46
|
Gureev AP, Khorolskaya VG, Sadovnikova IS, Shaforostova EA, Cherednichenko VR, Burakova IY, Plotnikov EY, Popov VN. Age-Related Decline in Nrf2/ARE Signaling Is Associated with the Mitochondrial DNA Damage and Cognitive Impairments. Int J Mol Sci 2022; 23:ijms232315197. [PMID: 36499517 PMCID: PMC9739464 DOI: 10.3390/ijms232315197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022] Open
Abstract
In this research, we compared the cognitive parameters of 2-, 7-, and 15-month-old mice, changes in mitochondrial DNA (mtDNA) integrity and expression of genes involved in the nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. We showed an age-related decrease in the Nfe2l2 expression in the cerebral cortex, not in the hippocampus. At the same time, we find an increase in the mtDNA copy number in the cerebral cortex, despite the lack of an increase in gene expression, which is involved in the mitochondrial biogenesis regulation. We suppose that increase in mtDNA content is associated with mitophagy downregulation. We supposed that mitophagy downregulation may be associated with an age-related increase in the mtDNA damage. In the hippocampus, we found a decrease in the Bdnf expression, which is involved in the pathways, which play an essential role in regulating long-term memory formation. We showed a deficit of working and reference memory in 15-month-old-mice in the water Morris maze, and a decrease in the exploratory behavior in the open field test. Cognitive impairments in 15-month-old mice correlated with a decrease in Bdnf expression in the hippocampus, Nfe2l2 expression, and an increase in the number of mtDNA damage in the cerebral cortex. Thus, these signaling pathways may be perspective targets for pharmacological intervention to maintain mitochondrial quality control, neuronal plasticity, and prevent the development of age-related cognitive impairment.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Victoria G. Khorolskaya
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina A. Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vadim R. Cherednichenko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Inna Y. Burakova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
47
|
Zhang X, Zhang Z, Diao W, Zhou C, Song Y, Wang R, Luo X, Liu G. Early-diagnosis of major depressive disorder: From biomarkers to point-of-care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Castillo-Avila RG, Genis-Mendoza AD, Juárez-Rojop IE, López-Narváez ML, Dionisio-García DM, Nolasco-Rosales GA, Ramos-Méndez MÁ, Hernández-Díaz Y, Tovilla-Zárate CA, González-Castro TB, Nicolini H. High Serum Levels of IL-6 Are Associated with Suicide Attempt but Not with High Lethality Suicide Attempts: A Preliminary Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14735. [PMID: 36429454 PMCID: PMC9690459 DOI: 10.3390/ijerph192214735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Suicide attempts are an emerging health problem around the world. Increased levels of IL-6 have been associated with suicidal behavior. Therefore, the aims of this study were to evaluate the serum levels of IL-6 in individuals with suicide attempts and a comparison group and to associate the IL-6 levels with the lethality of the suicide attempt. Additionally, we associated the rs2228145 polymorphism of the IL6R gene with suicide attempts or with the IL-6 serum levels. Suicide attempts and their lethality were evaluated using the Columbia Suicide Severity Rating Scale. The serum concentrations of IL-6 were measured by the ELISA technique in individuals with suicide attempts and then compared to a control group. The rs2228145 polymorphism of the IL6R gene was analyzed by real-time polymerase chain reaction. We found elevated serum levels of IL-6 in the suicide attempt group when compared to the control group (F = 10.37, p = 0.002). However, we found no differences of the IL-6 levels between high and low lethality. The IL6R gene polymorphism rs2479409 was not associated with suicide attempts. Our data suggest that IL-6 serum is increased in individuals with suicide attempts.
Collapse
Affiliation(s)
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de Mexico 14610, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | - María Lilia López-Narváez
- Hospital Chiapas Nos Une “Dr. Gilberto Gómez Maza”, Secretaría de Salud, Tuxtla Gutierrez 29045, Mexico
| | - Diana María Dionisio-García
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | | | - Miguel Ángel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Mendez 86040, Mexico
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86040, Mexico
| | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Mendez 86040, Mexico
| | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de Mexico 14610, Mexico
| |
Collapse
|
49
|
Chikatimalla R, Dasaradhan T, Koneti J, Cherukuri SP, Kalluru R, Gadde S. Depression in Parkinson's Disease: A Narrative Review. Cureus 2022; 14:e27750. [PMID: 36106206 PMCID: PMC9447473 DOI: 10.7759/cureus.27750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative age-related disorder that affects the central nervous system (CNS) and is characterized by uncontrollable movements such as shaking, stiffness, and loss of balance and coordination. Depression is a common non-motor manifestation of PD, but unfortunately, depression remains unrecognized and often undertreated. The underlying pathophysiology of depression in PD is complicated, and many studies have been conducted to know the exact cause, but the question remains unanswered. In this article, we discuss various pathophysiologies by which depression occurs in PD. The most widely accepted theories are neuroinflammation and monoamine oxidase theory. This article also explored the pharmacological treatment of depression in PD; this involves standard antidepressant therapy such as tricyclic antidepressants (TCA), serotonin-norepinephrine reuptake inhibitors (SNRI), selective serotonin reuptake inhibitors (SSRI), and monoamine oxidase inhibitors (MAO); non-pharmacological treatments such as electroconvulsive therapy (ECT), cognitive-behavioral therapy (CBT) have also been discussed. However, physicians hesitate to prescribe antidepressants to patients with PD due to concerns about harmful drug-drug interactions between antidepressants and antiparkinsonian drugs. Despite the complicated link between PD and depression, the co-administration of antidepressants and antiparkinsonian drugs is safe and beneficial when appropriately managed. However, early recognition and initiation of treatment of depression in PD reduces the longitudinal course and improves the cross-sectional picture. This review article also explored the clinical and diagnostic findings and impact on the quality of life of depression in PD.
Collapse
|
50
|
Guida F, Iannotta M, Misso G, Ricciardi F, Boccella S, Tirino V, Falco M, Desiderio V, Infantino R, Pieretti G, de Novellis V, Papaccio G, Luongo L, Caraglia M, Maione S. Long-term neuropathic pain behaviors correlate with synaptic plasticity and limbic circuit alteration: a comparative observational study in mice. Pain 2022; 163:1590-1602. [PMID: 34862336 PMCID: PMC9341227 DOI: 10.1097/j.pain.0000000000002549] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Neuropathic pain has long-term consequences in affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. In this study, we used the spared nerve injury (SNI) model to characterize the development of sensory and aversive components of neuropathic pain and to determine their electrophysiological impact across prefrontal cortex and limbic regions. Moreover, we evaluated the regulation of several genes involved in immune response and inflammation triggered by SNI. We showed that SNI led to sensorial hypersensitivity (cold and mechanical stimuli) and depressive-like behavior lasting 12 months after nerve injury. Of interest, changes in nonemotional cognitive tasks (novel object recognition and Y maze) showed in 1-month SNI mice were not evident normal in the 12-month SNI animals. In vivo electrophysiology revealed an impaired long-term potentiation at prefrontal cortex-nucleus accumbens core pathway in both the 1-month and 12-month SNI mice. On the other hand, a reduced neural activity was recorded in the lateral entorhinal cortex-dentate gyrus pathway in the 1-month SNI mice, but not in the 12-month SNI mice. Finally, we observed the upregulation of specific genes involved in immune response in the hippocampus of 1-month SNI mice, but not in the 12-month SNI mice, suggesting a neuroinflammatory response that may contribute to the SNI phenotype. These data suggest that distinct brain circuits may drive the psychiatric components of neuropathic pain and pave the way for better investigation of the long-term consequences of peripheral nerve injury for which most of the available drugs are to date unsatisfactory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gorizio Pieretti
- Plastic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | | | - Livio Luongo
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| | | | - Sabatino Maione
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| |
Collapse
|