1
|
Miano S, Kheirandish-Gozal L, De Pieri M. Comorbidity of obstructive sleep apnea and narcolepsy: A challenging diagnosis and complex management. Sleep Med X 2024; 8:100126. [PMID: 39386319 PMCID: PMC11462365 DOI: 10.1016/j.sleepx.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Narcolepsy and obstructive sleep apnea syndrome (OSA) are relevant causes of excessive daytime sleepiness (EDS); although different for etiopathogenesis and symptoms, differential diagnosis is sometimes difficult, and guidelines are lacking concerning their management when coexisting in a same patient. Methods A narrative review of the literature was realized including PubMed, Scopus and Embase, aimed to regroup studies and case reports evaluating epidemiology, clinical and instrumental features and treatment of patients presenting comorbid NT1 and OSA. Moreover, a snowball search on the pathophysiology underpinnings of the association of the two disorder was realized. Results For adults, the prevalence of OSA in NT1 ranged from 24.8 % to 51.4 %. No studies were found concerning the treatment of EDS in double-diagnosis patients, but only case reports; these latter and the experience on patients with either NT or OSA suggest that modafinil, methylphenidate, pitolisant and solriamfetol are effective. Discussion Adults with NT1 showed a higher prevalence of OSA compared to the general population, but the reach of the results reviewed here is limited by the retrospective design of most of the studies and by the inhomogeneous utilization of diagnostic criteria. The association with OSA is likely to be explained by the involvement of orexin in hypercapnic-hypoxic responses: a deficit of orexin may promote obstructive events during sleep. Open questions warrant further investigation, especially orexin's involvement in other sleep disorders associated with EDS, and the more appropriate treatment for the OSA-narcolepsy comorbidity.
Collapse
Affiliation(s)
- Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Civic Hospital, EOC, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | | | - Marco De Pieri
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2 Chemin du Petit-Bel-Air, CH-1226, Thonex, Switzerland
| |
Collapse
|
2
|
Rivera A, Framnes-DeBoer SN, Arble DM. The MC4R agonist, setmelanotide, is associated with an improvement in hypercapnic chemosensitivity and weight loss in male mice. Respir Physiol Neurobiol 2024; 332:104370. [PMID: 39542230 DOI: 10.1016/j.resp.2024.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity increases the risk of respiratory diseases that reduce respiratory chemosensitivity, such as Obesity Hypoventilation Syndrome and sleep apnea. Recent evidence suggests that obesity-related changes in the brain, including alterations in melanocortin signaling via the melanocortin-4 receptor (MC4R), may underly altered chemosensitivity. Setmelanotide, an MC4R agonist, causes weight loss in both humans and animal models. However, it is unknown the extent to which setmelanotide affects respiratory chemosensitivity independent of body weight loss. The present study uses diet-induced obese, male C57bl/6J mice to determine the extent to which acute setmelanotide treatment affects the hypercapnic ventilatory response (HCVR). We find that ten days of daily setmelanotide treatment at 1mg/kg, but not 0.2mg/kg, is sufficient to cause weight loss and increase HCVR. In a separate group of animals, we find that we can emulate setmelanotide's effect on weight loss by restricting daily calories to match the hypophagia triggered by setmelanotide. These pair-fed animals exhibit improvements in HCVR similar to those who receive setmelanotide. We conclude that acute treatment with setmelanotide is as effective as weight loss at improving respiratory hypercapnic chemosensitivity.
Collapse
Affiliation(s)
- Athena Rivera
- Department of Biological Sciences, Marquette University, WI USA
| | | | - Deanna M Arble
- Department of Biological Sciences, Marquette University, WI USA
| |
Collapse
|
3
|
Goel M, Mittal A, Jain VR, Bharadwaj A, Modi S, Ahuja G, Jain A, Kumar K. Integrative Functions of the Hypothalamus: Linking Cognition, Emotion and Physiology for Well-being and Adaptability. Ann Neurosci 2024:09727531241255492. [PMID: 39544638 PMCID: PMC11559822 DOI: 10.1177/09727531241255492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Background The hypothalamus, a small yet crucial neuroanatomical structure, integrates external (e.g., environmental) and internal (e.g., physiological/hormonal) stimuli. This integration governs various physiological processes and influences cognitive, emotional, and behavioral outcomes. It serves as a functional bridge between the nervous and endocrine systems, maintaining homeostasis and coordinating bodily functions. Summary Recent advancements in the neurobiology of the hypothalamus have elucidated its functional map, establishing a causal relationship between its responses-such as respiration, sleep, and stress-and various physiological processes. The hypothalamus facilitates and coordinates these complex processes by processing diverse stimuli, enabling the body to maintain internal balance and respond effectively to external demands. This review delves into the hypothalamus's intricate connections with cognition, emotion, and physiology, exploring how these interactions promote overall well-being and adaptability. Key Message Targeted external stimuli can modulate hypothalamic neuronal activities, impacting the physiological, cognitive, and emotional landscape. The review highlights non-invasive techniques, such as controlled breathing exercises, optimized sleep architecture, and stress management, as potential methods to enhance hypothalamic function. Ultimately, this comprehensive review underscores the multifaceted role of the hypothalamus in integrating signals, maintaining homeostasis, and influencing cognition, emotion, and physiology.
Collapse
Affiliation(s)
- Mansi Goel
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | - Vijaya Raje Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | | | - Shivani Modi
- Ceekr Concepts Private Limited, New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | - Ankur Jain
- Ceekr Concepts Private Limited, New Delhi, India
| | | |
Collapse
|
4
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
5
|
Andrisani G, Andrisani G. Sleep apnea pathophysiology. Sleep Breath 2023; 27:2111-2122. [PMID: 36976413 PMCID: PMC10656321 DOI: 10.1007/s11325-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The purpose of this study is to examine the pathophysiology underlying sleep apnea (SA). BACKGROUND We consider several critical features of SA including the roles played by the ascending reticular activating system (ARAS) that controls vegetative functions and electroencephalographic findings associated with both SA and normal sleep. We evaluate this knowledge together with our current understanding of the anatomy, histology, and physiology of the mesencephalic trigeminal nucleus (MTN) and mechanisms that contribute directly to normal and disordered sleep. MTN neurons express γ-aminobutyric acid (GABA) receptors which activate them (make chlorine come out of the cells) and that can be activated by GABA released from the hypothalamic preoptic area. METHOD We reviewed the published literature focused on sleep apnea (SA) reported in Google Scholar, Scopus, and PubMed databases. RESULTS The MTN neurons respond to the hypothalamic GABA release by releasing glutamate that activates neurons in the ARAS. Based on these findings, we conclude that a dysfunctional MTN may be incapable of activating neurons in the ARAS, notably those in the parabrachial nucleus, and that this will ultimately lead to SA. Despite its name, obstructive sleep apnea (OSA) is not caused by an airway obstruction that prevents breathing. CONCLUSIONS While obstruction may contribute to the overall pathology, the primary factor involved in this scenario is the lack of neurotransmitters.
Collapse
Affiliation(s)
- Giovanni Andrisani
- Matera Via Della Croce 47, 75100, Matera, Italy.
- Università Degli Studi Di Bari, Aldo Moro, Bari, Italy.
| | - Giorgia Andrisani
- Ezelsveldlaan 2, 2611 rv, Delft, Netherlands
- Universidad Alfonso X, El Sabio Villanueva de La Canada, Madrid, Spain
| |
Collapse
|
6
|
Kim LJ, Pho H, Anokye-Danso F, Ahima RS, Pham LV, Polotsky VY. The effect of diet-induced obesity on sleep and breathing in female mice. Sleep 2023; 46:zsad158. [PMID: 37262435 PMCID: PMC10424169 DOI: 10.1093/sleep/zsad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity and male sex are main risk factors for sleep-disordered breathing (SDB). We have shown that male diet-induced obesity (DIO) mice develop hypoventilation, sleep apnea, and sleep fragmentation. The effects of DIO on breathing and sleep architecture in females have not been investigated. We hypothesized that female mice are less susceptible to the detrimental effects of DIO on sleep and SDB compared to males. Female DIO-C57BL/6J and lean C57BL/6J mice underwent 24-hour metabolic studies and were exposed to 8% CO2 to measure the hypercapnic ventilatory response (HCVR), and sleep studies. Ventilatory response to arousals was calculated as ratio of the average and peak minute ventilation (VE) during each arousal relative to the baseline VE. Breathing stability was measured with Poincaré plots of VE. Female obesity was associated with decreased metabolism, indicated by reduced oxygen consumption (VO2) and CO2 production (VCO2). VE in 8% CO2 and HCVR were significantly attenuated during wakefulness. NREM sleep duration was reduced in DIO mice, but REM sleep was preserved. Ventilation during NREM and REM sleep was augmented compared to lean mice. Arousal frequency was similar between groups. Obesity increased the frequency of spontaneous arousals, whereas the apnea index was 4-fold reduced in DIO compared to lean mice. Obesity decreased pre- and post-apnea arousals. Obese mice had more stable breathing with reduced ventilatory response to arousals, compared to lean females. We conclude that obese female mice are protected against SDB, which appears to be related to an attenuated CO2 responsiveness, compared to the lean state.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Sithirungson S, Sonsuwan N, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Functional roles of orexin in obstructive sleep apnea: From clinical observation to mechanistic insights. Sleep Med 2023; 101:40-49. [PMID: 36334500 DOI: 10.1016/j.sleep.2022.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Obstructive sleep apnea is the most common sleep-related breathing disorder. Repetitive episodes of the obstructive respiratory events lead to arousal, sleep fragmentation, and excessive daytime sleepiness. Orexin, also known as hypocretin, is one of the most important neurotransmitters responsible for sleep and arousal regulation. Deficiency of orexin has been shown to be involved in the pathogenesis of narcolepsy, which shares cardinal symptoms of sleep apnea and excessive daytime sleep with obstructive sleep apnea. However, the relationship between orexin and obstructive sleep apnea is not well defined. In this review, we summarize the current evidence, from in vitro, in vivo, and clinical data, regarding the association between orexin and obstructive sleep apnea. The effects of orexin on sleep apnea, as well as how the consequences of obstructive sleep apnea affect the orexin system function are also discussed. Additionally, the contrary findings are also included and discussed.
Collapse
Affiliation(s)
- Suchanya Sithirungson
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuntigar Sonsuwan
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Smits JAJ, Monfils MH, Otto MW, Telch MJ, Shumake J, Feinstein JS, Khalsa SS, Cobb AR, Parsons EM, Long LJ, McSpadden B, Johnson D, Greenberg A. CO 2 reactivity as a biomarker of exposure-based therapy non-response: study protocol. BMC Psychiatry 2022; 22:831. [PMID: 36575425 PMCID: PMC9793569 DOI: 10.1186/s12888-022-04478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Exposure-based therapy is an effective first-line treatment for anxiety-, obsessive-compulsive, and trauma- and stressor-related disorders; however, many patients do not improve, resulting in prolonged suffering and poorly used resources. Basic research on fear extinction may inform the development of a biomarker for the selection of exposure-based therapy. Growing evidence links orexin system activity to deficits in fear extinction and we have demonstrated that reactivity to an inhaled carbon dioxide (CO2) challenge-a safe, affordable, and easy-to-implement procedure-can serve as a proxy for orexin system activity and predicts fear extinction deficits in rodents. Building upon this basic research, the goal for the proposed study is to validate CO2 reactivity as a biomarker of exposure-based therapy non-response. METHODS We will assess CO2 reactivity in 600 adults meeting criteria for one or more fear- or anxiety-related disorders prior to providing open exposure-based therapy. By incorporating CO2 reactivity into a multivariate model predicting treatment non-response that also includes reactivity to hyperventilation as well as a number of related predictor variables, we will establish the mechanistic specificity and the additive predictive utility of the potential CO2 reactivity biomarker. By developing models independently within two study sites (University of Texas at Austin and Boston University) and predicting the other site's data, we will validate that the results are likely to generalize to future clinical samples. DISCUSSION Representing a necessary stage in translating basic research, this investigation addresses an important public health issue by testing an accessible clinical assessment strategy that may lead to a more effective treatment selection (personalized medicine) for patients with anxiety- and fear-related disorders, and enhanced understanding of the mechanisms governing exposure-based therapy. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05467683 (20/07/2022).
Collapse
Affiliation(s)
- Jasper A. J. Smits
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Marie-H. Monfils
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Michael W. Otto
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | - Michael J. Telch
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Jason Shumake
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Justin S. Feinstein
- grid.417423.70000 0004 0512 88633The Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, Oklahoma 74136 USA
| | - Sahib S. Khalsa
- grid.417423.70000 0004 0512 88633The Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, Oklahoma 74136 USA
| | - Adam R. Cobb
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA ,grid.259828.c0000 0001 2189 3475Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina and Ralph H. Johnson VAHCS, 67 President Street MSC 862, Charleston, SC 29425 USA
| | - E. Marie Parsons
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | - Laura J. Long
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | - Bryan McSpadden
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - David Johnson
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Alma Greenberg
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | | |
Collapse
|
9
|
Kim LJ, Alexandre C, Pho H, Latremoliere A, Polotsky VY, Pham LV. Diet-induced obesity leads to sleep fragmentation independently of the severity of sleep-disordered breathing. J Appl Physiol (1985) 2022; 133:1284-1294. [PMID: 36201322 PMCID: PMC9678416 DOI: 10.1152/japplphysiol.00386.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with sleep-disordered breathing (SDB) and unrefreshing sleep. Residual daytime sleepiness and sleep impairments often persist after SDB treatment in patients with obesity, which suggests an independent effect of obesity on breathing and sleep. However, examining the relationship between sleep architecture and SDB in patients with obesity is complex and can be confounded by multiple factors. The main goal of this study was to examine the relationship between obesity-related changes in sleep architecture and SDB. Sleep recordings were performed in 15 lean C57BL/6J and 17 diet-induced obesity (DIO) mice of the same genetic background. Arousals from sleep and apneas were manually scored. Respiratory arousals were classified as events associated with ≥30% drops in minute ventilation (VE) from baseline. We applied Poincaré analysis of VE during sleep to estimate breathing variability. Obesity augmented the frequency of arousals by 45% and this increase was independent of apneas. Respiratory arousals comprised only 15% of the arousals in both groups of mice. Breathing variability during non-rapid-eye-movment (NREM) sleep was significantly higher in DIO mice, but it was not associated with arousal frequency. Our results suggest that obesity induces sleep fragmentation independently of SDB severity.NEW & NOTEWORTHY Our diet-induced obesity (DIO) model reproduces sleep features of human obesity, including sleep fragmentation, increased apnea frequency, and larger breathing variability. DIO induces sleep fragmentation independently of apnea severity. Sleep fragmentation in DIO mice is mainly attributed to non-respiratory arousals. Increased breathing variability during sleep did not account for the higher arousal frequency in DIO. Our results provide a rationale to examine sleep in patients with obesity even when they are adequately treated for sleep-disordered breathing.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chloe Alexandre
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alban Latremoliere
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Varga AG, Whitaker-Fornek JR, Maletz SN, Levitt ES. Activation of orexin-2 receptors in the Kӧlliker-Fuse nucleus of anesthetized mice leads to transient slowing of respiratory rate. Front Physiol 2022; 13:977569. [PMID: 36406987 PMCID: PMC9667107 DOI: 10.3389/fphys.2022.977569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Orexins are neuropeptides originating from the hypothalamus that serve broad physiological roles, including the regulation of autonomic function, sleep-wake states, arousal and breathing. Lack of orexins may lead to narcolepsy and sleep disordered breathing. Orexinergic hypothalamic neurons send fibers to Kӧlliker-Fuse (KF) neurons that directly project to the rostroventral respiratory group, and phrenic and hypoglossal motor neurons. These connections indicate a potential role of orexin-modulated KF neurons in functionally linking the control of wakefulness/arousal and respiration. In a reduced preparation of juvenile rats Orexin B microinjected into the KF led to a transient increase in respiratory rate and hypoglossal output, however Orexin B modulation of the KF in intact preparations has not been explored. Here, we performed microinjections of the Orexin B mouse peptide and the synthetic Orexin 2 receptor agonist, MDK 5220, in the KF of spontaneously breathing, isoflurane anesthetized wild type mice. Microinjection of Orexin-2 receptor agonists into the KF led to transient slowing of respiratory rate, which was more exaggerated in response to Orexin-B than MDK 5220 injections. Our data suggest that Orexin B signaling in the KF may contribute to arousal-mediated respiratory responses.
Collapse
Affiliation(s)
- Adrienn G. Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
| | - Jessica R. Whitaker-Fornek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
| | - Sebastian N. Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Erica S. Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Schottelkotte KM, Crone SA. Forebrain control of breathing: Anatomy and potential functions. Front Neurol 2022; 13:1041887. [PMID: 36388186 PMCID: PMC9663927 DOI: 10.3389/fneur.2022.1041887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
The forebrain plays important roles in many critical functions, including the control of breathing. We propose that the forebrain is important for ensuring that breathing matches current and anticipated behavioral, emotional, and physiological needs. This review will summarize anatomical and functional evidence implicating forebrain regions in the control of breathing. These regions include the cerebral cortex, extended amygdala, hippocampus, hypothalamus, and thalamus. We will also point out areas where additional research is needed to better understand the specific roles of forebrain regions in the control of breathing.
Collapse
Affiliation(s)
- Karl M. Schottelkotte
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steven A. Crone
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Smith JC. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:1-35. [PMID: 35965022 DOI: 10.1016/b978-0-323-91534-2.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breathing movements in mammals are driven by rhythmic neural activity automatically generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This chapter reviews up-to-date experimental information and theoretical studies of the cellular and circuit mechanisms of respiratory rhythm and pattern generation operating within critical components of this CPG in the lower brainstem. Over the past several decades, there have been substantial advances in delineating the spatial architecture of essential medullary regions and their regional cellular and circuit properties required to understand rhythm and pattern generation mechanisms. A fundamental concept is that the circuits in these regions have rhythm-generating capabilities at multiple cellular and circuit organization levels. The regional cellular properties, circuit organization, and control mechanisms allow flexible expression of neural activity patterns for a repertoire of respiratory behaviors under various physiologic conditions that are dictated by requirements for homeostatic regulation and behavioral integration. Many mechanistic insights have been provided by computational modeling studies driven by experimental results and have advanced understanding in the field. These conceptual and theoretical developments are discussed.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
13
|
Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022; 127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.
Collapse
Affiliation(s)
- Yasmin C Aquino
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Bárbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021; 145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022]
Abstract
Hypothalamic neurons that produce the peptide transmitters orexins/hypocretins (HONs) broadcast their predominantly neuroexcitatory outputs to the entire brain via their extremely wide axonal projections. HONs were originally reported to be activated by food deprivation, and to stimulate arousal, energy expenditure, and eating. This led to extensive studies of HONs in the context of nutrient-sensing and energy balance control. While activation of HONs by body energy depletion continues to be supported by experimental evidence, it has also become clear that HONs are robustly activated not only by nutrient depletion, but also by diverse sensory stimuli (both neutral and those associated with rewarding or aversive events), seemingly unrelated to each other or to energy balance. One theory that could unify these findings is that all these stimuli signal "stress" - defined either as a potentially harmful state, or an awareness of reward deficiency. If HON activity is conceptualized as a cumulative representation of stress, then many of the reported HONs outputs - including EEG arousal, sympathetic activation, place avoidance, and exploratory behaviours - could be viewed as logical stress-counteracting responses. We discuss evidence for and against this unifying theory of HON function, including the alterations in HON activity observed in anxiety and depression disorders. We propose that, in order to orchestrate stress-countering responses, HONs need to coactivate motivation and aversion brain systems, and the impact of HON stimulation on affective states may be perceived as rewarding or aversive depending on the baseline HON activity.
Collapse
Affiliation(s)
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Switzerland.
| |
Collapse
|
15
|
Wang X, Guan R, Zhao X, Chen J, Zhu D, Shen L, Song N. TASK1 and TASK3 in orexin neuron of lateral hypothalamus contribute to respiratory chemoreflex by projecting to nucleus tractus solitarius. FASEB J 2021; 35:e21532. [PMID: 33817828 DOI: 10.1096/fj.202002189r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
TWIK-related acid-sensitive potassium channels (TASKs)-like current was recorded in orexin neurons in the lateral hypothalamus (LH), which are essential in respiratory chemoreflex. However, the specific mechanism responsible for the pH-sensitivity remains elusive. Thus, we hypothesized that TASKs contribute to respiratory chemoreflex. In the present study, we found that TASK1 and TASK3 were expressed in orexin neurons. Blocking TASKs or microinjecting acid artificial cerebrospinal fluid (ACSF) in the LH stimulated breathing. In contrast, alkaline ACSF inhibited breathing, which was attenuated by blocking TASK1. Damage of orexin neurons attenuated the stimulatory effect on respiration caused by microinjection of acid ACSF (at a pH of 6.5) or TASKs antagonists. The orexinA-positive fiber and orexin type 1 receptor (OX1R) neurons were located in the nucleus tractus solitarius (NTS). The exciting effect of acidosis in the LH on respiration was inhibited by blocking OX1R of the NTS. Taken together, we conclude that orexin neurons sense the extracellular pH change through TASKs and regulate respiration by projecting to the NTS.
Collapse
Affiliation(s)
- Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaomei Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Pathology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Boof ML, Dingemanse J, Lederer K, Fietze I, Ufer M. Effect of the new dual orexin receptor antagonist daridorexant on nighttime respiratory function and sleep in patients with mild and moderate obstructive sleep apnea. Sleep 2021; 44:6030922. [PMID: 33305817 DOI: 10.1093/sleep/zsaa275] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/30/2020] [Indexed: 11/14/2022] Open
Abstract
In this randomized, double-blind, placebo-controlled, two-period crossover study, the effect of the dual orexin receptor antagonist daridorexant was evaluated on nighttime respiratory function and sleep in 28 patients with mild and moderate obstructive sleep apnea (OSA). In each period, 50 mg daridorexant or placebo was administered every evening for 5 days. The primary endpoint was apnea/hypopnea index (AHI) during total sleep time (TST) after the last dosing. Other endpoints included peripheral oxygen saturation (SpO2), sleep duration, latency to persistent sleep (LPS), wake after sleep onset (WASO), and sleep efficiency index (SEI). Pharmacokinetics, safety, and tolerability were also assessed. The mean treatment difference for AHI during TST (i.e. daridorexant - placebo) after the last dosing was 0.74 events/hour (90% confidence interval [CI]: -1.43, 2.92). The corresponding treatment difference for SpO2 during TST was 0.16% [90% CI: -0.21, 0.53]. Overall, there was no clinically relevant effect of daridorexant on AHI or SpO2-related data after single and repeated dosing irrespective of sleep phase (i.e. rapid eye movement [REM] vs non-REM). Moreover, after single and repeated dosing, daridorexant prolonged TST by 39.6 minutes (90% CI: 16.9, 62.3) and 38.8 minutes (19.7, 57.9), respectively, compared with placebo and favorably modulated other sleep-related endpoints (i.e. increased SEI, decreased WASO, and shortened LPS). It attained expected plasma concentrations and was well tolerated in patients with mild and moderate OSA. These results indicate that single and repeated doses of 50 mg daridorexant do not impair nighttime respiratory function and improve sleep in patients with mild and moderate OSA. Clinical Trial Registration: ClinicalTrials.gov NCT03765294. A study to investigate the effects of ACT-541468 on nighttime respiratory function in patients with mild to moderate obstructive sleep apnea. https://clinicaltrials.gov/ct2/show/ NCT03765294.
Collapse
Affiliation(s)
- Marie-Laure Boof
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Ingo Fietze
- Advanced Sleep Research GmbH, Berlin, Germany
| | - Mike Ufer
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
17
|
Masini D, Plewnia C, Bertho M, Scalbert N, Caggiano V, Fisone G. A Guide to the Generation of a 6-Hydroxydopamine Mouse Model of Parkinson's Disease for the Study of Non-Motor Symptoms. Biomedicines 2021; 9:biomedicines9060598. [PMID: 34070345 PMCID: PMC8227396 DOI: 10.3390/biomedicines9060598] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
In Parkinson’s disease (PD), a large number of symptoms affecting the peripheral and central nervous system precede, develop in parallel to, the cardinal motor symptoms of the disease. The study of these conditions, which are often refractory to and may even be exacerbated by standard dopamine replacement therapies, relies on the availability of appropriate animal models. Previous work in rodents showed that injection of the neurotoxin 6-hydroxydopamine (6-OHDA) in discrete brain regions reproduces several non-motor comorbidities commonly associated with PD, including cognitive deficits, depression, anxiety, as well as disruption of olfactory discrimination and circadian rhythm. However, the use of 6-OHDA is frequently associated with significant post-surgical mortality. Here, we describe the generation of a mouse model of PD based on bilateral injection of 6-OHDA in the dorsal striatum. We show that the survival rates of males and females subjected to this lesion differ significantly, with a much higher mortality among males, and provide a protocol of enhanced pre- and post-operative care, which nearly eliminates animal loss. We also briefly discuss the utility of this model for the study of non-motor comorbidities of PD.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Department of Neuroscience Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3B, 2200 Copenhagen, Denmark
| | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Maëlle Bertho
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Department of Neuroscience Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3B, 2200 Copenhagen, Denmark
| | - Nicolas Scalbert
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Vittorio Caggiano
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Correspondence:
| |
Collapse
|
18
|
Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021; 15:639313. [PMID: 33828450 PMCID: PMC8019792 DOI: 10.3389/fnins.2021.639313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
The lateral hypothalamus (LH) is classically implicated in sleep-wake control. It is the main source of orexin/hypocretin and melanin-concentrating hormone (MCH) neuropeptides in the brain, which have been both implicated in arousal state switching. These neuropeptides are produced by non-overlapping LH neurons, which both project widely throughout the brain, where release of orexin and MCH activates specific postsynaptic G-protein-coupled receptors. Optogenetic manipulations of orexin and MCH neurons during sleep indicate that they promote awakening and REM sleep, respectively. However, recordings from orexin and MCH neurons in awake, moving animals suggest that they also act outside sleep/wake switching. Here, we review recent studies showing that both orexin and MCH neurons can rapidly (sub-second-timescale) change their firing when awake animals experience external stimuli, or during self-paced exploration of objects and places. However, the sensory-behavioral correlates of orexin and MCH neural activation can be quite different. Orexin neurons are generally more dynamic, with about 2/3rds of them activated before and during self-initiated running, and most activated by sensory stimulation across sensory modalities. MCH neurons are activated in a more select manner, for example upon self-paced investigation of novel objects and by certain other novel stimuli. We discuss optogenetic and chemogenetic manipulations of orexin and MCH neurons, which combined with pharmacological blockade of orexin and MCH receptors, imply that these rapid LH dynamics shape fundamental cognitive and motor processes due to orexin and MCH neuropeptide actions in the awake brain. Finally, we contemplate whether the awake control of psychomotor brain functions by orexin and MCH are distinct from their “arousal” effects.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
19
|
Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021; 15:644313. [PMID: 33776641 PMCID: PMC7991401 DOI: 10.3389/fnins.2021.644313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain–the slow-acting peptide transmitters–remain relatively overlooked, or described as “modulatory.” Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as “eligibility traces” for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness.
Collapse
Affiliation(s)
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
20
|
Boof ML, Dingemanse J, Brunke M, Esselmann A, Heymer P, Kestermann O, Lederer K, Fietze I, Ufer M. Effect of the novel dual orexin receptor antagonist daridorexant on night-time respiratory function and sleep in patients with moderate chronic obstructive pulmonary disease. J Sleep Res 2021; 30:e13248. [PMID: 33417730 DOI: 10.1111/jsr.13248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/29/2023]
Abstract
In patients with chronic obstructive pulmonary disease (COPD), sleep is often fragmented while, conversely, the use of sleep medications is of concern in these patients due to potential impairment of nocturnal breathing. This randomised, double-blind, placebo-controlled, two-period crossover study was conducted to evaluate the effect of the new dual orexin receptor antagonist daridorexant on night-time respiratory function and sleep in patients with moderate COPD. In each period, the highest Phase-III dose of 50 mg daridorexant or placebo was administered once daily in the evening for 5 consecutive days. The primary endpoint was peripheral oxygen saturation (SpO2 ) during total sleep time (TST) after last dosing. Night-time respiratory function and sleep were further evaluated based on the apnea-hypopnea index (AHI), sleep duration, and objective sleep parameters. Pharmacokinetics, safety, and tolerability were also assessed. Primary endpoint analysis revealed no significant mean treatment difference (i.e. daridorexant - placebo) for SpO2 during TST as it was 0.18% (90% confidence interval: -0.21 to 0.57). There was also no difference from placebo for SpO2 during non-rapid eye movement (REM) and REM sleep at Night 5 and after first dosing. The AHI was slightly increased compared to placebo, but not to a clinically meaningful extent. In addition, daridorexant improved objective sleep parameters (i.e. prolonged TST, increased sleep efficiency, and decreased wake after sleep onset), reached expected plasma concentrations, and was safe and well tolerated. In conclusion, single and multiple doses of 50 mg daridorexant do not impair night-time respiratory function and improves sleep in patients with moderate COPD.
Collapse
Affiliation(s)
- Marie-Laure Boof
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Mareile Brunke
- Klinische Forschung Hannover-Mitte GmbH, Hannover, Germany
| | | | - Peter Heymer
- Klinische Forschung Dresden GmbH, Dresden, Germany
| | | | | | | | - Mike Ufer
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
21
|
Fonseca EM, Vicente MC, Fournier S, Kinkead R, Bícego KC, Gargaglioni LH. Influence of light/dark cycle and orexins on breathing control in green iguanas (Iguana iguana). Sci Rep 2020; 10:22105. [PMID: 33328521 PMCID: PMC7744544 DOI: 10.1038/s41598-020-79107-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Light/dark cycle affects the physiology of vertebrates and hypothalamic orexin neurons (ORX) are involved in this function. The breathing pattern of the green iguana changes from continuous to episodic across the light/dark phases. Since the stimulatory actions of ORX on breathing are most important during arousal, we hypothesized that ORX regulates changes of breathing pattern in iguanas. Thus, we: (1) Localized ORX neurons with immunohistochemistry; (2) Quantified cyclic changes in plasma orexin-A levels by ELISA; (3) Compared breathing pattern at rest and during hypoxia and hypercarbia; (4) Evaluated the participation of the ORX receptors in ventilation with intracerebroventricular microinjections of ORX antagonists during light and dark phases. We show that the ORX neurons of I. iguana are located in the periventricular hypothalamic nucleus. Orexin-A peaks during the light/active phase and breathing parallels these cyclic changes: ventilation is higher during the light phase than during the dark phase. However, inactivation of ORX-receptors does not affect the breathing pattern. Iguanas increase ventilation during hypoxia only during the light phase. Conversely, CO2 promotes post-hypercarbic hyperpnea during both phases. We conclude that ORXs potentiate the post-hypercarbic (but not the hypoxic)-drive to breathe and are not involved in light/dark changes in the breathing pattern.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Stephanie Fournier
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Richard Kinkead
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil.
| |
Collapse
|
22
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
23
|
Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiol Behav 2020; 222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 01/12/2023]
|
24
|
Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2020; 156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The Kölliker-Fuse nucleus (KF) is a functionally distinct component of the parabrachial complex, located in the dorsolateral pons of mammals. The KF has a major role in respiration and upper airway control. A comprehensive understanding of the KF and its contributions to respiratory function and dysfunction requires an appreciation for its neurochemical characteristics. The goal of this review is to summarize the diverse neurochemical composition of the KF, focusing on the neurotransmitters, neuromodulators, and neuropeptides present. We also include a description of the receptors expressed on KF neurons and transporters involved in each system, as well as their putative roles in respiratory physiology. Finally, we provide a short section reviewing the literature regarding neurochemical changes in the KF in the context of respiratory dysfunction observed in SIDS and Rett syndrome. By over-viewing the current literature on the neurochemical composition of the KF, this review will serve to aid a wide range of topics in the future research into the neural control of respiration in health and disease.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Pokusa M, Hajduchova D, Budaj T, Kralova Trancikova A. Respiratory Function and Dysfunction in Parkinson-Type Neurodegeneration. Physiol Res 2020; 69:S69-S79. [DOI: 10.33549/physiolres.934405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is most commonly manifested by the presence of motor symptoms. However, non-motor symptoms occur several years before the onset of motor symptoms themselves. Hallmarks of dysfunction of the respiratory system are still outside the main focus of interest, whether by clinicians or scientists, despite their indisputable contribution to the morbidity and mortality of patients suffering from PD. In addition, many of the respiratory symptoms are already present in the early stages of the disease and efforts to utilize these parameters in the early diagnosis of PD are now intensifying. Mechanisms that lead to the development and progression of respiratory symptoms are only partially understood. This review focuses mainly on the comparison of respiratory problems observed in clinical studies with available findings obtained from experimental animal models. It also explains pathological changes observed in non-neuronal tissues in subjects with PD.
Collapse
Affiliation(s)
| | | | | | - A. Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovak Republic.
| |
Collapse
|
26
|
Orexinergic neurons are involved in the chemosensory control of breathing during the dark phase in a Parkinson's disease model. Exp Neurol 2018; 309:107-118. [PMID: 30110606 DOI: 10.1016/j.expneurol.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra compacta (SNpc) and the only risk factor is aging. We showed that in 6-hydroxydopamine (6-OHDA)-model of PD there is a reduction in the neuronal profile within the brainstem ventral respiratory column with a decrease in the hypercapnic ventilatory response. Here we tested the involvement of orexin cells from the lateral hypothalamus/perifornical area (LH/PeF) on breathing in a 6-OHDA PD model. In this model of PD, there is a reduction in the total number of orexinergic neurons and in the number of orexinergic neurons that project to the RTN, without changing the number of CO2-activated orexinergic neurons during the dark phase. The ventilation at rest and in response to hypercapnia (7% CO2) was assessed in animals that received 6-OHDA or vehicle injections into the striatum and saporin anti-Orexin-B or IgG saporin into the LH/PeF during the sleep and awake states. The experiments showed a reduction of respiratory frequency (fR) at rest during the light phase in PD animals only during sleep. During the dark phase, there was an impaired fR response to hypercapnia in PD animals with depletion of orexinergic neurons in awake and sleeping rats. In conclusion, the degeneration of orexinergic neurons in this model of PD can be related to impaired chemoreceptor function in the dark phase.
Collapse
|
27
|
Fukushi I, Yokota S, Okada Y. The role of the hypothalamus in modulation of respiration. Respir Physiol Neurobiol 2018; 265:172-179. [PMID: 30009993 DOI: 10.1016/j.resp.2018.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
The hypothalamus is a higher center of the autonomic nervous system and maintains essential body homeostasis including respiration. The paraventricular nucleus, perifornical area, dorsomedial hypothalamus, and lateral and posterior hypothalamus are the primary nuclei of the hypothalamus critically involved in respiratory control. These hypothalamic nuclei are interconnected with respiratory nuclei located in the midbrain, pons, medulla and spinal cord. We provide an extensive review of the role of the above hypothalamic nuclei in the maintenance of basal ventilation, and modulation of respiration in hypoxic and hypercapnic conditions, during dynamic exercise, in awake and sleep states, and under stress. Dysfunction of the hypothalamus causes abnormal breathing and hypoventilation. However, the cellular and molecular mechanisms how the hypothalamus integrates and modulates autonomic and respiratory functions remain to be elucidated.
Collapse
Affiliation(s)
- Isato Fukushi
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
28
|
Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1663-1680. [PMID: 29508004 PMCID: PMC5949267 DOI: 10.1007/s00213-018-4871-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The hypocretin/orexin (ORX) system has been repeatedly demonstrated to regulate motivation for drugs of abuse, including alcohol. In particular, ORX seems to be critically involved in highly motivated behaviors, as is observed in high-seeking individuals in a population, in the seeking of highly palatable substances, and in models of dependence. It seems logical that this system could be considered as a potential target for treatment for addiction, particularly alcohol addiction, as ORX pharmacological manipulations significantly reduce drinking. However, the ORX system also plays a role in a wide range of other behaviors, emotions, and physiological functions and is disrupted in a number of non-dependence-associated disorders. It is therefore important to consider how the ORX system might be optimally targeted for potential treatment for alcohol use disorders either in combination with or separate from its role in other functions or diseases. This review will focus on the role of ORX in alcohol-associated behaviors and whether and how this system could be targeted to treat alcohol use disorders while avoiding impacts on other ORX-relevant functions. A brief overview of the ORX system will be followed by a discussion of some of the factors that makes it particularly intriguing as a target for alcohol addiction treatment, a consideration of some potential challenges associated with targeting this system and, finally, some future directions to optimize new treatments.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 528 Tobin Hall, 135 Hicks Way, Amherst, MA, 01003, USA.
| |
Collapse
|
29
|
Zhang XF, Qin Q, Geng WY, Jiang CW, Liu Y, Liu XL, Li J, Liu ZB. Electroacupuncture reduces hypothalamic and medullary expression of orexins and their receptors in a rat model of chronic obstructive pulmonary disease. Acupunct Med 2018; 36:312-318. [PMID: 29669795 DOI: 10.1136/acupmed-2017-011391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Decreased lung function in chronic obstructive pulmonary disease (COPD) is correlated with abnormal excitability of the respiratory centre where orexin neuropeptides from the hypothalamus are responsible for regulating respiration. We hypothesised that improvements in pulmonary function with electroacupuncture (EA) may be related to orexins in a rat model of COPD. METHODS The COPD model was established by cigarette smoke exposure and lipopolysaccharide injection. Modelled rats received EA at BL13 and ST36 for two weeks, after which lung function was tested. Orexin levels in the hypothalamus and medulla were detected by ELISA, while mRNA/protein expression and localisation of orexins and their receptors were investigated using real time PCR, Western blotting and immunohistochemistry, respectively. RESULTS The decrease in lung function observed in COPD rats was improved after EA treatment. Orexin levels in the hypothalamus and medulla were significantly higher in COPD rats than in normal rats, but were significantly reduced in the EA-treated group. There was a negative correlation between orexin content and lung function. In the hypothalamus, mRNA and protein expression and immunoreactivity of orexins were significantly higher in the COPD group than in the normal group, but a significant decrease was observed after EA. In the medulla, the expression and immunoreactivity of orexin receptors were significantly higher in the COPD group than in the normal group, but a significant decrease was observed after EA. CONCLUSIONS The positive effect of EA on pulmonary function in COPD rats may be related to downregulation of orexins and their receptors in the medulla.
Collapse
Affiliation(s)
- Xin-Fang Zhang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Qin
- College of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Wen-Ye Geng
- Department of Pharmacology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chuan-Wei Jiang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yong Liu
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-Li Liu
- Institute of Acu-Moxibustion and Meridian, College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- Institute of Acu-Moxibustion and Meridian, College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Zi-Bing Liu
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Acu-Moxibustion and Meridian, College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
30
|
Yang CF, Feldman JL. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J Comp Neurol 2018; 526:1389-1402. [PMID: 29473167 DOI: 10.1002/cne.24415] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
The preBötzinger Complex (preBötC), a compact medullary region essential for generating normal breathing rhythm and pattern, is the kernel of the breathing central pattern generator (CPG). Excitatory preBötC neurons in rats project to major breathing-related brainstem regions. Here, we provide a brainstem connectivity map in mice for both excitatory and inhibitory preBötC neurons. Using a genetic strategy to label preBötC neurons, we confirmed extensive projections of preBötC excitatory neurons within the brainstem breathing CPG including the contralateral preBötC, Bötzinger Complex (BötC), ventral respiratory group, nucleus of the solitary tract, parahypoglossal nucleus, parafacial region (RTN/pFRG or alternatively, pFL /pFV ), parabrachial and Kölliker-Füse nuclei, as well as major projections to the midbrain periaqueductal gray. Interestingly, preBötC inhibitory projections paralleled the excitatory projections. Moreover, we examined overlapping projections in the pons in detail and found that they targeted the same neurons. We further explored the direct anatomical link between the preBötC and suprapontine brain regions that may govern emotion and other complex behaviors that can affect or be affected by breathing. Forebrain efferent projections were sparse and restricted to specific nuclei within the thalamus and hypothalamus, with processes rarely observed in cortex, basal ganglia, or other limbic regions, e.g., amygdala or hippocampus. We conclude that the preBötC sends direct, presumably inspiratory-modulated, excitatory and inhibitory projections in parallel to distinct targets throughout the brain that generate and modulate breathing pattern and/or coordinate breathing with other behaviors, physiology, cognition, or emotional state.
Collapse
Affiliation(s)
- Cindy F Yang
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| |
Collapse
|
31
|
Yokota S, Oka T, Asano H, Yasui Y. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat. Brain Res 2016; 1648:512-523. [PMID: 27544422 DOI: 10.1016/j.brainres.2016.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
Abstract
The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration.
Collapse
Affiliation(s)
- Shigefumi Yokota
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Tatsuro Oka
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hirohiko Asano
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Yukihiko Yasui
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan.
| |
Collapse
|
32
|
Amador A, Wang Y, Banerjee S, Kameneka TM, Solt LA, Burris TP. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression. PLoS One 2016; 11:e0151014. [PMID: 26963516 PMCID: PMC4786293 DOI: 10.1371/journal.pone.0151014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression.
Collapse
Affiliation(s)
- Ariadna Amador
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Yongjun Wang
- Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Subhashis Banerjee
- Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Theodore M. Kameneka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Laura A. Solt
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Thomas P. Burris
- Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
33
|
Orexinergic system in the locus coeruleus modulates the CO2 ventilatory response. Pflugers Arch 2016; 468:763-74. [DOI: 10.1007/s00424-016-1793-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/29/2023]
|
34
|
Franco P, Junqua A, Guignard-Perret A, Raoux A, Perier M, Raverot V, Claustrat B, Gustin MP, Inocente CO, Lin JS. High bicarbonate levels in narcoleptic children. J Sleep Res 2015; 25:194-202. [PMID: 26574184 DOI: 10.1111/jsr.12357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/08/2015] [Indexed: 12/01/2022]
Abstract
The objective of this study was to evaluate the levels of plasma bicarbonate levels in narcoleptic children. Clinical, electrophysiological data and bicarbonate levels were evaluated retrospectively in children seen in our paediatric national reference centre for hypersomnia. The cohort included 23 control subjects (11.5 ± 4 years, 43% boys) and 51 patients presenting de-novo narcolepsy (N) (12.7 ± 3.7 years, 47% boys). In narcoleptic children, cataplexy was present in 78% and DQB1*0602 was positive in 96%. The control children were less obese (2 versus 47%, P = 0.001). Compared with control subjects, narcoleptic children had higher bicarbonate levels (P = 0.02) as well as higher PCO2 (P < 0.01) and lower venous pH gas (P < 0.01). Bicarbonate levels higher than 27 mmol L(-1) were found in 41.2% of the narcoleptic children and 4.2% of the controls (P = 0.001). Bicarbonate levels were correlated with the Adapted Epworth Sleepiness Scale (P = 0.01). Narcoleptic patients without obesity often had bicarbonate levels higher than 27 mmol L (-1) (55 versus 25%, P = 0.025). No differences were found between children with and without cataplexy. In conclusion, narcoleptic patients had higher bicarbonate plasma levels compared to control children. This result could be a marker of hypoventilation in this pathology, provoking an increase in PCO2 and therefore a respiratory acidosis, compensated by an increase in plasma bicarbonates. This simple screening tool could be useful for prioritizing children for sleep laboratory evaluation in practice.
Collapse
Affiliation(s)
- Patricia Franco
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Aurelie Junqua
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France.,Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Anne Guignard-Perret
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Aude Raoux
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Magali Perier
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| | - Veronique Raverot
- Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Bruno Claustrat
- Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Marie-Paule Gustin
- Department of Public Health, Institute of Pharmacy and Service de Biostatistique, University Lyon1, Lyon, France
| | - Clara Odilia Inocente
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| | - Jian-Sheng Lin
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| |
Collapse
|
35
|
Hunt NJ, Waters KA, Rodriguez ML, Machaalani R. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 2015; 130:185-98. [PMID: 25953524 DOI: 10.1007/s00401-015-1437-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022]
Abstract
Infants at risk of sudden infant death syndrome (SIDS) have been shown to have dysfunctional sleep and poor arousal thresholds. In animal studies, both these attributes have been linked to impaired signalling of the neuropeptide orexin. This study examined the immunoreactivity of orexin (OxA and OxB) in the tuberal hypothalamus (n = 27) and the pons (n = 15) of infants (1-10 months) who died from SIDS compared to age-matched non-SIDS infants. The percentage of orexin immunoreactive neurons and the total number of neurons were quantified in the dorsomedial, perifornical and lateral hypothalamus at three levels of the tuberal hypothalamus. In the pons, the area of orexin immunoreactive fibres were quantified in the locus coeruleus (LC), dorsal raphe (DR), laterodorsal tegmental (LDT), medial parabrachial, dorsal tegmental (DTg) and pontine nuclei (Pn) using automated methods. OxA and OxB were co-expressed in all hypothalamic and pontine nuclei examined. In SIDS infants, orexin immunoreactivity was decreased by up to 21 % within each of the three levels of the hypothalamus compared to non-SIDS (p ≤ 0.050). In the pons, a 40-50 % decrease in OxA occurred in the all pontine nuclei, while a similar decrease in OxB immunoreactivity was observed in the LC, LDT, DTg and Pn (p ≤ 0.025). No correlations were found between the decreased orexin immunoreactivity and previously identified risk factors for SIDS, including prone sleeping position and cigarette smoke exposure. This finding of reduced orexin immunoreactivity in SIDS infants may be associated with sleep dysfunction and impaired arousal.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Medicine, Room 206, SIDS and Sleep Apnoea Laboratory, Sydney Medical School, University of Sydney, Blackburn Building, D06, Sydney, NSW, 2006, Australia
| | | | | | | |
Collapse
|
36
|
Uemura N, McCrea J, Sun H, Donikyan M, Zammit G, Liu R, Louridas B, Marsilio S, Lines C, Troyer MD, Wagner J. Effects of the orexin receptor antagonist suvorexant on respiration during sleep in healthy subjects. J Clin Pharmacol 2015; 55:1093-100. [PMID: 25903940 DOI: 10.1002/jcph.523] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/15/2015] [Indexed: 11/09/2022]
Abstract
Suvorexant is an orexin receptor antagonist for treating insomnia. The maximum approved dose in the United States and Japan is 20 mg. We evaluated suvorexant effects on respiration during sleep in a randomized, double-blind, 3-period crossover study of healthy adult men (n = 8) and women (n = 4) ≤ 50 years old who received single-dose suvorexant 40 mg, 150 mg, and placebo. Respiration during sleep was measured by oxygen saturation (SpO2 , primary end point) and the Apnea Hypopnea Index (AHI). The study was powered to detect a reduction greater than 5% in SpO2 . There was no effect of suvorexant on mean SpO2 during sleep. The mean (90%CI) treatment differences versus placebo were -0.3 (-1.2-0.6) for 40 mg and 0.0 (-0.9-0.9) for 150 mg. There were no dose-related trends in individual SpO2 values. Mean SpO2 was >96% for all treatments during total sleep time and during both non-REM and REM sleep. There was no effect of either suvorexant dose on AHI. The mean (90%CI) treatment differences versus placebo were 0.8 (-0.7-2.3) for 40 mg and -0.2 (-1.7-1.3) for 150 mg. Suvorexant was generally well tolerated; there were no serious adverse experiences or discontinuations. These data from healthy subjects suggest that suvorexant lacks clinically important respiratory effects during sleep at doses greater than the maximum recommended dose for treating insomnia.
Collapse
Affiliation(s)
| | | | - Hong Sun
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Rong Liu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | |
Collapse
|
37
|
Effects of suvorexant, an orexin receptor antagonist, on breathing during sleep in patients with chronic obstructive pulmonary disease. Respir Med 2015; 109:416-26. [PMID: 25661282 DOI: 10.1016/j.rmed.2014.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/16/2014] [Accepted: 12/25/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVES There is a general concern that hypnotic medications in patients with respiratory disorders have the potential to decrease respiratory effort and blunt the arousal response to hypoxemia which may lead to sleep breathing disorders. We investigated whether suvorexant, an orexin receptor antagonist approved for treatment of insomnia at a maximum daily dose of 20 mg in the US, causes sleep breathing disorders in patients with chronic obstructive pulmonary disease (COPD). DESIGN This was a randomized, double-blind, placebo-controlled, 2-period, cross-over, study performed in 9 sleep laboratories/clinical research units in the United States. The participants were 25 COPD patients aged 39-72 y with mild-to-moderate airflow limitation based on GOLD spirometry criteria. In each period, patients received suvorexant (40 mg in <65 y-olds; 30 mg in ≥65 y-olds) or placebo for four consecutive nights. Respiratory function during sleep was measured by oxygen saturation using pulse oximetry (SpO2, primary endpoint) and Apnea Hypopnea Index (AHI, secondary endpoint). The study was powered to rule out a difference between treatments of -2 percentage points in SpO2 on Day 4. RESULTS There was no treatment effect following single and multiple doses of suvorexant on mean SpO2 during total sleep time (Day 1: suvorexant = 93.14%, placebo = 93.24%, difference = -0.10 [90% CI: -0.50, 0.31]; Day 4: suvorexant = 93.38%, placebo = 92.99%, difference = 0.39 [90% CI: -0.12, 0.91]). There was no clinically meaningful increase in mean AHI by suvorexant compared with placebo on Day 1 (difference = 0.72 [90% CI: -0.60, 2.04]) or Day 4 (difference = 2.05 [90% CI: 0.33, 3.77]). CONCLUSIONS These data do not suggest an overt respiratory depressant effect with 30-40 mg daily doses of suvorexant, up to twice the maximum recommended dose for treating insomnia in the US, in patients with mild-to-moderate COPD. Trial registration Clinicaltrials.gov identifier: NCT01293006.
Collapse
|
38
|
Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2014; 49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.
Collapse
Affiliation(s)
- Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Nian Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Qi-Cheng Qiao
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jun Zhang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
39
|
Fonseca EM, Dias MB, Bícego KC, Gargaglioni LH. Orexin in the toad Rhinella schneideri: The location of orexinergic neurons and the role of orexin in ventilatory responses to hypercarbia and hypoxia. Respir Physiol Neurobiol 2014; 224:90-9. [PMID: 25434286 DOI: 10.1016/j.resp.2014.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 01/24/2023]
Abstract
Recent reports have suggested that orexins, also known as hypocretins, play an important role in the modulation of respiratory control in mammals, but there are no data available describing the role of the orexinergic system in the peripheral and central chemoreception of non-mammalian vertebrates. Therefore, the present study was designed to examine the localization of orexin-immunoreactive neurons in the brain of toads (Rhinella schneideri) and to investigate the contribution of orexin receptor-1 (OX1R) to the hypoxic and hypercarbic ventilatory responses of these animals during light and dark phases. Our results demonstrated that the orexinergic neurons of R. schneideri are located in the suprachiasmatic nucleus of the diencephalon. Additionally, the intracerebroventricular injection of SB-334867 (OX1R selective antagonist) attenuated the ventilatory response to hypercarbia during the dark phase by acting on tidal volume and breathing frequency, while during the light phase, SB-334867 attenuated the ventilatory response to hypoxia by acting on tidal volume only. We conclude that in the toad R. schneideri, orexinergic neurons are located in the suprachiasmatic nucleus and that OX1R contributes to hypercarbic and hypoxic chemoreflexes.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP FCAV at Jaboticabal, SP, Brazil
| | - Mirela B Dias
- Department of Physiology, Institute of Bioscience, Sao Paulo State University-UNESP, Botucatu, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP FCAV at Jaboticabal, SP, Brazil.
| |
Collapse
|
40
|
van der Meijden WP, Fronczek R, Reijntjes RHAM, Corssmit EPM, Biermasz NR, Lammers GJ, van Dijk JG, Thijs RD. Time- and state-dependent analysis of autonomic control in narcolepsy: higher heart rate with normal heart rate variability independent of sleep fragmentation. J Sleep Res 2014; 24:206-14. [DOI: 10.1111/jsr.12253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/21/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Wisse P. van der Meijden
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- Department of Sleep and Cognition; Netherlands Institute for Neuroscience; Royal Netherlands Academy of Arts and Sciences; Amsterdam The Netherlands
| | - Rolf Fronczek
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
| | | | - Eleonora P. M. Corssmit
- Department of Endocrinology and Metabolic Diseases; Leiden University Medical Center; Leiden The Netherlands
| | - Nienke R. Biermasz
- Department of Endocrinology and Metabolic Diseases; Leiden University Medical Center; Leiden The Netherlands
| | - Gert Jan. Lammers
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- Sleep Wake Center SEIN; Heemstede The Netherlands
| | - J. Gert van Dijk
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
| | - Roland D. Thijs
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- SEIN - Stichting Epilepsie Instellingen Nederland; Heemstede The Netherlands
| |
Collapse
|
41
|
Abstract
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms.
Collapse
|
42
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
43
|
Kernder A, De Luca R, Yanovsky Y, Haas HL, Sergeeva OA. Acid-sensing hypothalamic neurons controlling arousal. Cell Mol Neurobiol 2014; 34:777-89. [PMID: 24798513 DOI: 10.1007/s10571-014-0065-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/16/2014] [Indexed: 12/30/2022]
Abstract
Breathing and vigilance are regulated by pH and CO2 levels in the central nervous system. The hypocretin/orexin (Hcrt/Orx)- and histamine (HA)-containing hypothalamic neurons synergistically control different aspects of the waking state. Acidification inhibits firing of most neurons but these two groups in the caudal hypothalamus are excited by hypercapnia and protons, similar to the chemosensory neurons in the brain stem. Activation of hypothalamic wake-on neurons in response to hypercapnia, seen with the c-Fos assay, is supported by patch-clamp recordings in rodent brain slices: Hcrt/Orx and HA neurons are excited by acidification in the physiological range (pH from 7.4 to 7.0). Multiple molecular mechanisms mediate wake-promoting effects of protons in HA neurons in the tuberomamillary nucleus (TMN): among them are acid-sensing ion channels, Na(+),K(+)-ATPase, group I metabotropic glutamate receptors (mGluRI). HA neurons are remarkably sensitive to the mGluRI agonist DHPG (threshold concentration 0.5 µM) and mGluRI antagonists abolish proton-induced excitation of HA neurons. Hcrt/Orx neurons are excited through block of a potassium conductance and release glutamate with their peptides in TMN. The two hypothalamic nuclei and the serotonergic dorsal raphe cooperate toward CO2/acid-induced arousal. Their interactions and molecular mechanisms of H(+)/CO2-induced activation are relevant for the understanding and treatment of respiratory and metabolic disorders related to sleep-waking such as obstructive sleep apnea and sudden infant death syndrome.
Collapse
Affiliation(s)
- Anna Kernder
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
44
|
Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front Neurosci 2014; 8:57. [PMID: 24834023 PMCID: PMC4018553 DOI: 10.3389/fnins.2014.00057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/12/2014] [Indexed: 01/01/2023] Open
Abstract
Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts the involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are discussed. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated—with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency—leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics) is also discussed in the review.
Collapse
Affiliation(s)
- Miles D Thompson
- University of Toronto Epilepsy Research Program, Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Henri Xhaard
- Faculty of Pharmacy, Centre for Drug Research, University of Helsinki Helsinki, Finland
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | | | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki Helsinki, Finland
| |
Collapse
|
45
|
Landry JP, Hawkins C, Wiebe S, Balaban E, Pompeiano M. Opposing effects of hypoxia on catecholaminergic locus coeruleus and hypocretin/orexin neurons in chick embryos. Dev Neurobiol 2014; 74:1030-7. [PMID: 24753448 DOI: 10.1002/dneu.22182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/06/2014] [Accepted: 04/14/2014] [Indexed: 02/01/2023]
Abstract
Terrestrial vertebrate embryos face a risk of low oxygen availability (hypoxia) that is especially great during their transition to air-breathing. To better understand how fetal brains respond to hypoxia, we examined the effects of low oxygen availability on brain activity in late-stage chick embryos (day 18 out of a 21-day incubation period). Using cFos protein expression as a marker for neuronal activity, we focused on two specific, immunohistochemically identified cell groups known to play an important role in regulating adult brain states (sleep and waking): the noradrenergic neurons of the Locus Coeruleus (NA-LC), and the Hypocretin/Orexin (H/O) neurons of the hypothalamus. cFos expression was also examined in the Pallium (the avian analog of the cerebral cortex). In adult mammalian brains, cFos expression changes in a coordinated way in these areas. In chick embryos, oxygen deprivation simultaneously activated NA-LC while deactivating H/O-producing neurons; it also increased cFos expression in the Pallium. Activity in one pallial primary sensory area was significantly related to NA-LC activity. These data reveal that at least some of the same neural systems involved in brain-state control in adults may play a central role in orchestrating prenatal hypoxic responses, and that these circuits may show different patterns of coordination than seen in adults.
Collapse
Affiliation(s)
- Jeremy P Landry
- Department of Psychology, McGill University, Montreal, Quebec, Canada, H3A 1B1
| | | | | | | | | |
Collapse
|
46
|
Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014; 7:19-29. [PMID: 26483897 PMCID: PMC4521687 DOI: 10.1016/j.slsci.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
In 1998, a group of phenotypically distinct neurons were discovered in the postero-lateral hypothalamus which contained the neuropeptides hypocretin 1 and hypocretin 2 (also called orexin A and orexin B), which are excitatory neuromodulators. Hypocretinergic neurons project throughout the central nervous system and have been involved in the generation and maintenance of wakefulness. The sleep disorder narcolepsy, characterized by hypersomnia and cataplexy, is produced by degeneration of these neurons. The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay
| | - Michael H. Chase
- WebSciences International, Los Angeles, USA
- UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|
47
|
Victoria HK, Caldwell C. Breathwork in body psychotherapy: Clinical applications. BODY MOVEMENT AND DANCE IN PSYCHOTHERAPY 2013. [DOI: 10.1080/17432979.2013.828657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Chase MH. A unified survival theory of the functioning of the hypocretinergic system. J Appl Physiol (1985) 2013; 115:954-71. [PMID: 23640599 DOI: 10.1152/japplphysiol.00700.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article advances the theory that the hypocretinergic (orexinergic) system initiates, coordinates, and maintains survival behaviors and survival-related processes (i.e., the Unified Survival Theory of the Functioning of the Hypocretinergic System or "Unified Hypocretinergic Survival Theory"). A priori presumptive support for the Unified Hypocretinergic Survival Theory emanates from the fact that neurons that contain hypocretin are located in the key executive central nervous system (CNS) site, the lateral hypothalamus, that for decades has been well-documented to govern core survival behaviors such as fight, flight, and food consumption. In addition, the hypocretinergic system exhibits the requisite morphological and electrophysiological capabilities to control survival behaviors and related processes. Complementary behavioral data demonstrate that all facets of "survival" are coordinated by the hypocretinergic system and that hypocretinergic directives are not promulgated except during survival behaviors. Importantly, it has been shown that survival behaviors are selectively impacted when the hypocretinergic system is impaired or rendered nonfunctional, whereas other behaviors are relatively unaffected. The Unified Hypocretinergic Survival Theory resolves the disparate, perplexing, and often paradoxical-appearing results of previous studies; it also provides a foundation for future hypothesis-driven basic science and clinical explorations of the hypocretinergic system.
Collapse
Affiliation(s)
- Michael H Chase
- WebSciences International, Veterans Affairs-Greater Los Angeles Healthcare System, University of California, Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
49
|
Smith JC, Abdala APL, Borgmann A, Rybak IA, Paton JFR. Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 2012; 36:152-62. [PMID: 23254296 DOI: 10.1016/j.tins.2012.11.004] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 01/18/2023]
Abstract
Breathing movements in mammals are driven by rhythmic neural activity generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This rhythmic activity provides homeostatic regulation of gases in blood and tissues and integrates breathing with other motor acts. We review new insights into the spatial-functional organization of key neural microcircuits of this CPG from recent multidisciplinary experimental and computational studies. The emerging view is that the microcircuit organization within the CPG allows the generation of multiple rhythmic breathing patterns and adaptive switching between them, depending on physiological or pathophysiological conditions. These insights open the possibility for site- and mechanism-specific interventions to treat various disorders of the neural control of breathing.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Fang Han
- Department of Respiratory Medicine, The Peking University People's Hospital, Beijing, China.
| |
Collapse
|