1
|
Li Q, Bai H, Pan Y, Liao Y, Pei Z, Wu C, Ma C, Chen Z, Li C, Gong Y, Liu J, Yin Y, Teng L, Wang L, Zhang E, Wei T, Peng H. Genome-Wide Genomic Analysis and Evolutionary Insights into Bovine Coronavirus Strains in Southwest China. Vet Sci 2024; 12:9. [PMID: 39852884 PMCID: PMC11769207 DOI: 10.3390/vetsci12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
The global epidemic of bovine coronavirus (BCoV) has caused enormous economic losses. The characterisation and genetic composition of endemic strains in Southwest China remain elusive. This study aimed to fill this gap by isolating three BCoV strains from this region and sequencing their whole genomes. To elucidate the genetic evolution and characterisation of the prevalent strains, the results of BCoV sequences were compared in GenBank, with a focus on genetic evolution, mutation, and recombination patterns. The results showed close homology between strains NN190313 and NN230328, while strain NN221214 showed less similarity to these two strains but clustered with the French strain of the European branch. Intriguingly, NN190313 and NN230328 were grouped with goat-derived BCoV strains from Jiangsu Province in Eastern China in the Asian-American branch. In addition, recombination analyses revealed significant signals between NN230328 and either a Chinese goat-derived strain (XJCJ2301G) or a Shandong strain (ShX310). This study highlights the importance of monitoring cross-species transmission between cattle and goats, especially in the mountainous areas of Southwest China where mixed farming occurs, and thus, the monitoring of cross-species transmission between cattle and goats is important for preventing new public health challenges, providing important insights for research on cross-species transmission, early prevention, and control measures, with potential applications in vaccine development.
Collapse
Grants
- Guangxi Key Research and Development Program,AB21238003 Hao Peng
- Laibin Key Research and Development Programme,220819, 240113 Hao Peng
- Guangxi Agriculture Technology Program,z202228 Hao Peng
- Guangxi Innovation Team Construction Project of National Modern Agricultural Industry Technology System,nycytxgxcxtd20210905 Hao Peng
- Guangxi Basic Scientific Research Project,22-6, 24-2 Hao Peng
- Liangqing Key Research and Development Program,202118 Hao Peng
- Guizhou Science and Technology Program,20201Y075, 20203009-3 Yu Gong
- Guizhou agricultural animal and plant breeding project,NY [2018]016 Yu Gong
- Guizhou Beef Cattle Industry Technology System Construction Project,GZCYTX-03 Yu Gong
Collapse
Affiliation(s)
- Qingqing Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
| | - Huili Bai
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Yan Pan
- College of Animal Science and Technology, Guangxi Agricultural Vocational and Technical University, Nanning 530007, China;
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhe Pei
- School of Neuroscience, The City College of New York, New York, NY 10031, USA;
| | - Cuilan Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Chunxia Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhongwei Chen
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Yu Gong
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China; (Y.G.); (J.L.)
| | - Jing Liu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China; (Y.G.); (J.L.)
| | - Yangyan Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Ling Teng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Leping Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Ezhen Zhang
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Tianchao Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| |
Collapse
|
2
|
Kostanić V, Kunić V, Prišlin Šimac M, Lolić M, Sukalić T, Brnić D. Comparative Insights into Acute Gastroenteritis in Cattle Caused by Bovine Rotavirus A and Bovine Coronavirus. Vet Sci 2024; 11:671. [PMID: 39729011 DOI: 10.3390/vetsci11120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle. These viruses infect intestinal enterocytes, leading to cell damage and consequently to malabsorption and diarrhea. BoRVA primarily affects calves under 14 days old with gastrointestinal clinical signs, while BCoV affects all ages, causing gastrointestinal and respiratory distress. The economic impact of BoRVA and BCoV, along with their interspecies transmission potential, warrants attention. This concise review discusses the molecular structure, epidemiology, pathogenesis, clinical signs, diagnosis, treatment, and preventive measures of BoRVA and BCoV while providing a comparative analysis. By offering practical guidance on managing such viral infections in cattle, these comparative insights may prove valuable for veterinarians in clinical practice.
Collapse
Affiliation(s)
- Vjekoslava Kostanić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Valentina Kunić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | | | - Marica Lolić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 32100 Vinkovci, Croatia
| | - Tomislav Sukalić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 48260 Križevci, Croatia
| | - Dragan Brnić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Cossu C, Franceschi V, Di Lorenzo A, Bolli E, Minesso S, Cotti C, Conti L, Donofrio G. Cross-Reactive Immune Response of Bovine Coronavirus Spike Glycoprotein to SARS-CoV-2 Variants of Concern. Int J Mol Sci 2024; 25:11509. [PMID: 39519062 PMCID: PMC11546235 DOI: 10.3390/ijms252111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The high variability observed in the clinical symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been attributed to the presence, in a proportion of infection-naive subjects, of pre-existing cross-reactive immune responses. Here, we demonstrate that the bovine coronavirus spike protein (BoS) may represent a source of protective immunity to SARS-CoV-2. Indeed, vaccination of BALB/c mice with a Bovine herpesvirus 4 (BoHV-4)-based vector expressing BoS induced both cell-mediated and humoral immune responses that cross-react with SARS-CoV-2 spike protein. Although the spike-specific antibodies induced by BoS did not neutralize SARS-CoV-2, the T lymphocytes activated by BoS were able to induce cytotoxicity of cells expressing spike proteins derived from several SARS-CoV-2 variants. These results demonstrate that immunization with BoS may represent a source of cross-reactive immunity to SARS-CoV-2, and that these cross-reactive immune responses may exert protective functions. These results contribute to deciphering the mechanisms responsible for lack or mildness of symptoms observed in many individuals upon SARS-CoV-2 infection and may open new ways for the development of new vaccines for coronaviruses.
Collapse
Affiliation(s)
- Chiara Cossu
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Valentina Franceschi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| | - Antonino Di Lorenzo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Sergio Minesso
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| | - Camilla Cotti
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| | - Laura Conti
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| |
Collapse
|
4
|
Yu Q, Zhu Q, Huang X, Wu J, Zhou Q, Chen T, Zhu C, Ding L, Deng G, Wang Y, Zhang Z, Zhang B. Preparation of bovine coronavirus virus-like particles and its immunogenicity in mice and cattle. Microb Pathog 2024; 197:107062. [PMID: 39442811 DOI: 10.1016/j.micpath.2024.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The widespread prevalence of bovine coronavirus (BCoV) disease worldwide has impacted the livestock industry economically. No effective vaccine is available in China. In this study, we produced BCoV virus-like particles (VLPs) containing E, M, N, S, and hemagglutinin-esterase (HE) proteins using a baculovirus expression system. Five recombinant baculoviruses were co-infected with Sf9 cells, and the VLPs were assembled and characterized. Mice and cattle were immunized by VLPs mixed with MF59 and CpG 55.2 adjuvants. Two doses of the VLPs/MF59/CpG vaccine were administered in mice and cattle. The immune effect of the VLPs/MF59/CpG vaccine was measured using indirect ELISA and neutralization assays. After immunization, the serum IgG-specific antibody titer against S protein and neutralization antibody titer increased to 1:1.28 × 104 (p < 0.01) and 1:128 (p < 0.01) in mice, respectively. Interestingly, the high IgG antibody and neutralizing antibody titers were maintained for seven days in mice. In addition, the serum IgG-specific antibody titer against S proteins and neutralization antibody titer increased to 1:1.024 × 105 and 1:512 (p < 0.05) in cattle, respectively. The high IgG antibody and neutralizing antibody titers were maintained for 21 days in cattle. Notably, BCoV VLPs group interferon-gamma (IFN-γ) lymphocytes in spleens were significantly increased (p < 0.01). These findings suggest that BCoV VLPs induced strong cellular and humoral immune responses in mice and cattle. These findings suggest that BCoV VLPs could serve as a potent immunogen for vaccine development.
Collapse
Affiliation(s)
- Qisheng Yu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qing Zhu
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefecture, Kangding, 626000, China.
| | - Xiangyue Huang
- Animal Husbandry Science Institute of Aba Autonomous Prefecture, Hongyuan, 624400, China.
| | - Jinbo Wu
- Animal Husbandry Science Institute of Aba Autonomous Prefecture, Hongyuan, 624400, China.
| | - Qun Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Taoyun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Chenxi Zhu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Lu Ding
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Gunan Deng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Yi Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Zhaohui Zhang
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefecture, Kangding, 626000, China.
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
5
|
Pratelli A, Capozza P, Minesso S, Lucente MS, Pellegrini F, Tempesta M, Franceschi V, Buonavoglia C, Donofrio G. Humoral Immune Response in Immunized Sheep with Bovine Coronavirus Glycoproteins Delivered via an Adenoviral Vector. Pathogens 2024; 13:523. [PMID: 39057750 PMCID: PMC11280461 DOI: 10.3390/pathogens13070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bovine coronavirus (BCoV) is distributed globally and mainly causes different clinical manifestations: enteric diarrhea in calves, winter dysentery in adults, and respiratory symptoms in cattle of all ages. Low mortality and high morbidity are the hallmarks of BCoV infection, usually associated with substantial economic losses for the livestock industry. Vaccination, combined with the implementation of biosecurity measures, is the key strategy for the prevention of infections. This pilot study evaluates the immunogenicity of a recombinant vaccine containing two BCoV antigens (S and M) in sheep, compared to vaccines containing only the M or S protein. Three groups of sheep were inoculated intramuscularly at day 0 and day 21 with recombinant adenoviruses expressing BCoV S protein (AdV-BCoV-S), BCoV M protein (AdV-BCoV-M), or both proteins (AdV-BCoV-S + M). Serum antibodies were evaluated using immunofluorescence (IF) and serum neutralization (SN) tests. Moderate seroconversion was observed by day 21, but serum antibodies detected via SN increased from 1:27.5 (day 21) to 1:90 (day 28) in sheep inoculated with the recombinant AdV expressing both the S- and M-BCoV proteins. Based on the SN results, a repeated-measures ANOVA test indicated a more significant difference in immune response between the three groups (F = 20.47; p < 0.001). The experimental investigation produced satisfactory results, highlighting that the S + M recombinant vaccine was immunogenic, stimulating a valid immune response. Despite some inherent limitations, including a small sample size and the absence of challenge tests, the study demonstrated the efficacy of the immune response induced via the recombinant vaccine containing both S and M proteins compared to that induced via the individual proteins S or M.
Collapse
Affiliation(s)
- Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (P.C.); (M.S.L.); (F.P.); (M.T.); (C.B.)
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (P.C.); (M.S.L.); (F.P.); (M.T.); (C.B.)
| | - Sergio Minesso
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (S.M.); (V.F.); (G.D.)
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (P.C.); (M.S.L.); (F.P.); (M.T.); (C.B.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (P.C.); (M.S.L.); (F.P.); (M.T.); (C.B.)
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (P.C.); (M.S.L.); (F.P.); (M.T.); (C.B.)
| | - Valentina Franceschi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (S.M.); (V.F.); (G.D.)
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (P.C.); (M.S.L.); (F.P.); (M.T.); (C.B.)
| | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (S.M.); (V.F.); (G.D.)
| |
Collapse
|
6
|
van den Hurk S, Regmi G, Naikare HK, Velayudhan BT. Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle. Pathogens 2024; 13:524. [PMID: 39057751 PMCID: PMC11279749 DOI: 10.3390/pathogens13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
Collapse
Affiliation(s)
- Shaun van den Hurk
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Girija Regmi
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 30602, USA;
| | - Hemant K. Naikare
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN 55108, USA;
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
7
|
Larska M, Tomana J, Krzysiak MK, Pomorska-Mól M, Socha W. Prevalence of coronaviruses in European bison (Bison bonasus) in Poland. Sci Rep 2024; 14:12928. [PMID: 38839918 PMCID: PMC11153543 DOI: 10.1038/s41598-024-63717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.
Collapse
Affiliation(s)
- Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | | | - Michał K Krzysiak
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznan, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
8
|
Ujike M, Suzuki T. Progress of research on coronaviruses and toroviruses in large domestic animals using reverse genetics systems. Vet J 2024; 305:106122. [PMID: 38641200 DOI: 10.1016/j.tvjl.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
9
|
Li S, Huang J, Cai X, Mao L, Xie L, Wang F, Zhou H, Yuan X, Sun X, Fu X, Fan B, Xu X, Li J, Li B. Prevalence and Evolutionary Characteristics of Bovine Coronavirus in China. Vet Sci 2024; 11:230. [PMID: 38921977 PMCID: PMC11209178 DOI: 10.3390/vetsci11060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a positive rate of 34.02% (560/1646). Of the 670 diarrheal samples and 976 asymptomatic samples, 209 and 351 were BCoV-positive, respectively. Studying the relevance of diarrhea associated with BCoV has shown that the onset of diarrheal symptoms post-infection is strongly correlated with the cattle's age and may also be related to the breed. We amplified and sequenced the hemagglutinin esterase (HE), spike protein, and whole genomes of the partially positive samples and obtained six complete HE sequences, seven complete spike sequences, and six whole genomes. Molecular characterization revealed that six strains were branched Chinese strains, Japanese strains, and partial American strains from the GⅡb subgroup. Strains HBSJZ2202 and JSYZ2209 had four amino acid insertions on HE. We also analyzed ORF1a and found disparities across various regions within GIIb, which were positioned on separate branches within the phylogenetic tree. This work provides data for further investigating the epidemiology of BCoV and for understanding and analyzing BCoV distribution and dynamics.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Lingling Xie
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Fu Wang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Hua Zhou
- Qianxi Animal Disease Control Center, Qianxi 551500, China;
| | - Xuesong Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Xincheng Fu
- Langfang Municipal Bureau of Agriculture and Rural Affairs, Langfang 065000, China;
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Zhang F, Chai C, Niu R, Diao Y, Zhou Y, Zhang J, Feng L, Yao C, Wu Y, Ma Y, Zan X, Wang W. Genetic characterization of bovine coronavirus strain isolated in Inner Mongolia of China. BMC Vet Res 2024; 20:209. [PMID: 38760785 PMCID: PMC11102244 DOI: 10.1186/s12917-024-04046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Chunxia Chai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Rui Niu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yun Diao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yanyan Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Jinlong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Lin Feng
- Helinger County Bureau of Agriculture and Animal Husbandry, Hohhot, 011500, China
| | - Chunming Yao
- Helinger County Bureau of Agriculture and Animal Husbandry, Hohhot, 011500, China
| | - Youzhi Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yanhua Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Xiaohui Zan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Wei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China.
| |
Collapse
|
11
|
Mombo IM, Rieu O, Fritz M, Boundenga L, Mebaley TN, Mbou-Boutambe C, Lenguiya LH, Maganga GD, Rougeron V, Prugnolle F, Thomas F, Leroy EM. Absence of Coronavirus RNA in Faecal Samples from Wild Primates in Gabon, Central Africa. Pathogens 2023; 12:1272. [PMID: 37887788 PMCID: PMC10610257 DOI: 10.3390/pathogens12101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Coronaviruses (CoVs, Coronaviridae) are a diverse group of viruses that infect mammals, birds, and fish. Seven CoVs infect humans, among which Severe Acute Respiratory Syndrome CoVs-1 and -2 and Middle East respiratory syndrome CoVs have shown how they can impact global health and the economy. Their spillover from bats-the natural reservoir-to humans has required intermediary hosts. Prevention requires that active surveillance be conducted on animals. Today, there is no data concerning the genetic diversity of CoVs naturally circulating in wild primates. This study aimed to screen wild great apes and mandrills in Gabon for CoVs. A total of 229 faecal samples of great apes and mandrills collected from 2009 to 2012 in forests and national parks were used for the detection of CoVs by nested PCR using primers targeting a conserved region of the RNA-dependent RNA polymerase. While all samples were negative, this lack of detection could be related to sample size, the transient nature of the infection, or because faecal samples are not suitable for detecting CoVs in primates. A longitudinal study should be performed and other non-invasive methods used to collect respiratory samples to better evaluate the circulation of CoVs in these primates.
Collapse
Affiliation(s)
- Illich Manfred Mombo
- Centre International de Recherches Médicales de Franceville, Franceville BP 769, Gabon; (L.B.); (C.M.-B.); (G.D.M.)
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier-IRD 224-CNRS 5290, 34394 Montpellier, France; (O.R.); (M.F.); (T.N.M.); (F.T.); (E.M.L.)
| | - Océane Rieu
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier-IRD 224-CNRS 5290, 34394 Montpellier, France; (O.R.); (M.F.); (T.N.M.); (F.T.); (E.M.L.)
| | - Matthieu Fritz
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier-IRD 224-CNRS 5290, 34394 Montpellier, France; (O.R.); (M.F.); (T.N.M.); (F.T.); (E.M.L.)
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville, Franceville BP 769, Gabon; (L.B.); (C.M.-B.); (G.D.M.)
| | - Telstar Ndong Mebaley
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier-IRD 224-CNRS 5290, 34394 Montpellier, France; (O.R.); (M.F.); (T.N.M.); (F.T.); (E.M.L.)
| | - Clark Mbou-Boutambe
- Centre International de Recherches Médicales de Franceville, Franceville BP 769, Gabon; (L.B.); (C.M.-B.); (G.D.M.)
| | | | - Gael Darren Maganga
- Centre International de Recherches Médicales de Franceville, Franceville BP 769, Gabon; (L.B.); (C.M.-B.); (G.D.M.)
| | - Virginie Rougeron
- International Research Laboratory-REHABS, CNRS-Université Lyon 1-Nelson Mandela University, Nelson Mandela University George Campus, George 6531, South Africa; (V.R.); (F.P.)
| | - Franck Prugnolle
- International Research Laboratory-REHABS, CNRS-Université Lyon 1-Nelson Mandela University, Nelson Mandela University George Campus, George 6531, South Africa; (V.R.); (F.P.)
| | - Fredéric Thomas
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier-IRD 224-CNRS 5290, 34394 Montpellier, France; (O.R.); (M.F.); (T.N.M.); (F.T.); (E.M.L.)
| | - Eric M. Leroy
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier-IRD 224-CNRS 5290, 34394 Montpellier, France; (O.R.); (M.F.); (T.N.M.); (F.T.); (E.M.L.)
| |
Collapse
|
12
|
Llanco L, Retamozo K, Oviedo N, Manchego A, Lázaro C, Navarro-Mamani DA, Santos N, Rojas M. Co-Circulation of Multiple Coronavirus Genera and Subgenera during an Epizootic of Lethal Respiratory Disease in Newborn Alpacas ( Vicugna pacos) in Peru: First Report of Bat-like Coronaviruses in Alpacas. Animals (Basel) 2023; 13:2983. [PMID: 37760383 PMCID: PMC10525639 DOI: 10.3390/ani13182983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Coronaviruses (CoVs) infect a wide range of hosts, including humans, domestic animals, and wildlife, typically causing mild-to-severe respiratory or enteric disease. The main objective of this study was to identify CoV genera and subgenera detected in Peruvian alpacas. Lung lavage specimens were collected from 32 animals aged 1 to 6 weeks. CoVs were identified by using RT-PCR to amplify a pan-CoV conserved region of the RNA-dependent RNA polymerase-encoding gene. A nested PCR was performed to identify β-CoVs. Then, β-CoV-positive samples were subjected to RT-PCR using specific primers to identify the Embecovirus subgenus. Out of 32 analyzed samples, 30 (93.8%) tested positive for at least one CoV genus. β-, α-, or unclassified CoVs were identified in 24 (80%), 1 (3.3%), and 1 (3.3%) of the positive samples, respectively. A CoV genus could not be identified in two (6.7%) samples. A mixture of different CoV genera was detected in two (6.7%) samples: one was co-infected with β- and α-CoVs, and the other contained a β- and an unclassified CoV. A sequence analysis of the amplicons generated by the PCR identified 17 β-CoV strains belonging to the subgenus Embecovirus and two α-CoV strains belonging to Decacovirus. A phylogenetic analysis of two strains revealed a relationship with an unclassified Megaderma BatCoV strain. A subgenus could not be identified in nine β-CoV samples. Our data show a high prevalence and a high genetic diversity of CoV genera and subgenera that infect alpacas, in which the β-CoV subgenus Embecovirus predominated. Our data also suggest a new role for bats in the dissemination and transmission of uncommon CoVs to alpacas raised in rural Peru.
Collapse
Affiliation(s)
- Luis Llanco
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Apartado, Chincha 15067, Peru;
| | - Karubya Retamozo
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| | - Noriko Oviedo
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| | - Alberto Manchego
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| | - César Lázaro
- Laboratório de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru;
| | - Dennis A. Navarro-Mamani
- Laboratório de Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru;
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Miguel Rojas
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| |
Collapse
|
13
|
David D, Asiku J, Storm N, Lapin K, Berkowitz A, Kovtunenko A, Edery N, King R, Sol A. Identification, Isolation, and Molecular Characterization of Betacoronavirus in Oryx leucoryx. Microbiol Spectr 2023; 11:e0484822. [PMID: 37428095 PMCID: PMC10433975 DOI: 10.1128/spectrum.04848-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped viruses with a large RNA genome (26 to 32 kb) and are classified into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. CoV infections cause respiratory, enteric, and neurologic disorders in mammalian and avian species. In 2019, Oryx leucoryx animals suffered from severe hemorrhagic diarrhea and high morbidity rates. Upon initial diagnosis, we found that the infected animals were positive for coronavirus by pancoronavirus reverse transcriptase RT-PCR. Next, we detected the presence of CoV particles in these samples by electron microscopy and immunohistochemistry. CoV was isolated and propagated on the HRT-18G cell line, and its full genome was sequenced. Full-genome characterization and amino acid comparisons of this viral agent demonstrated that this virus is an evolutionarily distinct Betacoronavirus belonging to the subgenus Embecovirus and the Betacoronavirus 1 species. Furthermore, we found that it is most similar to the subspecies dromedary camel coronavirus HKU23 by phylogenetic analysis. Here, we present the first report of isolation and characterization of Betacoronavirus associated with enteric disease in Oryx leucoryx. IMPORTANCE CoVs cause enteric and respiratory infections in humans and animal hosts. The ability of CoVs to cross interspecies barriers is well recognized, as emphasized by the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of novel CoV strains and surveillance of CoVs in both humans and animals are relevant and important to global health. In this study, we isolated and characterized a newly identified Betacoronavirus that causes enteric disease in a wild animal, Oryx leucoryx (the Arabian oryx). This work is the first report describing CoV infection in Oryx leucoryx and provides insights into its origin.
Collapse
Affiliation(s)
- Dan David
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Jimmy Asiku
- Kimron Veterinary Institute, Beit Dagan, Israel
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nick Storm
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Katya Lapin
- Kimron Veterinary Institute, Beit Dagan, Israel
| | | | | | - Nir Edery
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Roni King
- Israel Nature and Parks Authority, Jerusalem, Israel
| | - Asaf Sol
- Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
14
|
Stummer M, Frisch V, Glitz F, Hinney B, Spergser J, Krücken J, Diekmann I, Dimmel K, Riedel C, Cavalleri JMV, Rümenapf T, Joachim A, Lyrakis M, Auer A. Presence of Equine and Bovine Coronaviruses, Endoparasites, and Bacteria in Fecal Samples of Horses with Colic. Pathogens 2023; 12:1043. [PMID: 37624003 PMCID: PMC10458731 DOI: 10.3390/pathogens12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Acute abdominal pain (colic) is one of the major equine health threats worldwide and often necessitates intensive veterinary medical care and surgical intervention. Equine coronavirus (ECoV) infections can cause colic in horses but are rarely considered as a differential diagnosis. To determine the frequency of otherwise undetected ECoV infections in horses with acute colic, fresh fecal samples of 105 horses with acute colic and 36 healthy control horses were screened for viruses belonging to the Betacoronavirus 1 species by RT-PCR as well as for gastrointestinal helminths and bacteria commonly associated with colic. Horses with colic excreted significantly fewer strongyle eggs than horses without colic. The prevalence of anaerobic, spore-forming, gram-positive bacteria (Clostridium perfringens and Clostridioides difficile) was significantly higher in the feces of horses with colic. Six horses with colic (5.7%) and one horse from the control group (2.8%) tested positive for Betacoronaviruses. Coronavirus-positive samples were sequenced to classify the virus by molecular phylogeny (N gene). Interestingly, in three out of six coronavirus-positive horses with colic, sequences closely related to bovine coronaviruses (BCoV) were found. The pathogenic potential of BCoV in horses remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Moritz Stummer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Vicky Frisch
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (V.F.); (J.-M.V.C.)
| | | | - Barbara Hinney
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Katharina Dimmel
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, 69364 Lyon, France;
| | | | - Till Rümenapf
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Anja Joachim
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Manolis Lyrakis
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Angelika Auer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| |
Collapse
|
15
|
Didkowska A, Klich D, Nowak M, Wojciechowska M, Prolejko K, Kwiecień E, Rzewuska M, Olech W, Anusz K. A serological survey of pathogens associated with the respiratory and digestive system in the Polish European bison (Bison bonasus) population in 2017-2022. BMC Vet Res 2023; 19:74. [PMID: 37264393 DOI: 10.1186/s12917-023-03627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The European bison (Bison bonasus) is a near threatened species and requires health monitoring. The aim of the present study was to determine the prevalence of antibodies to pathogens known to cause respiratory and digestive illness in ruminants. RESULTS In the studied 328 European bison, the highest seroprevalence was observed for Bovine herpesvirus-1 (BoHV-1) (50.27%), Bovine Coronavirus (BCoV) (26.36%), and Bluetongue Virus (BTV) (12.83%). For Mycoplasma bovis strains and Bovine Viral Diarrhea Virus (BVDV), positive results were rare. Interestingly, a higher prevalence of BTV antibodies was noted in the northeastern populations and older animals. CONCLUSIONS Our findings indicate that the Polish European bison population appears to have considerable contact with BoHV-1; however, this does not appear to be of great significance, as clinical symptoms and post-mortem lesions are rarely noted in Polish European bison population. The high seroprevalence of BTV in the north-east of Poland is an ongoing trend, also noted in previous studies. It is possible that European bison may perpetuate the virus in this region. This is the first report of antibodies for BCoV in European bison.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland.
| | - Daniel Klich
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Magdalena Nowak
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Marlena Wojciechowska
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Kinga Prolejko
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| |
Collapse
|
16
|
Dunowska M. Cross-species transmission of coronaviruses with a focus on severe acute respiratory syndrome coronavirus 2 infection in animals: a review for the veterinary practitioner. N Z Vet J 2023:1-13. [PMID: 36927253 DOI: 10.1080/00480169.2023.2191349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractIn 2019 a novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from an unidentified source and spread rapidly among humans worldwide. While many human infections are mild, some result in severe clinical disease that in a small proportion of infected people is fatal. The pandemic spread of SARS-CoV-2 has been facilitated by efficient human-to-human transmission of the virus, with no data to indicate that animals contributed to this global health crisis. However, a range of domesticated and wild animals are also susceptible to SARS-CoV-2 infection under both experimental and natural conditions. Humans are presumed to be the source of most animal infections thus far, although natural transmission between mink and between free-ranging deer has occurred, and occasional natural transmission between cats cannot be fully excluded. Considering the ongoing circulation of the virus among people, together with its capacity to evolve through mutation and recombination, the risk of the emergence of animal-adapted variants is not negligible. If such variants remain infectious to humans, this could lead to the establishment of an animal reservoir for the virus, which would complicate control efforts. As such, minimising human-to-animal transmission of SARS-CoV-2 should be considered as part of infection control efforts. The aim of this review is to summarise what is currently known about the species specificity of animal coronaviruses, with an emphasis on SARS-CoV-2, in the broader context of factors that facilitate cross-species transmission of viruses.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
Kwon T, Gaudreault NN, Cool K, McDowell CD, Morozov I, Richt JA. Stability of SARS-CoV-2 in Biological Fluids of Animals. Viruses 2023; 15:v15030761. [PMID: 36992470 PMCID: PMC10058514 DOI: 10.3390/v15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Since its first emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve genetically, jump species barriers, and expand its host range. There is growing evidence of interspecies transmission including infection of domestic animals and widespread circulation in wildlife. However, knowledge of SARS-CoV-2 stability in animal biological fluids and their role in transmission is still limited as previous studies focused on human biological fluids. Therefore, this study aimed to determine the SARS-CoV-2 stability in biological fluids from three animal species, cats, sheep and white-tailed deer (WTD). Saliva, feces, 10% fecal suspensions, and urine of cats, sheep, and WTD were mixed with a known concentration of virus and incubated under indoor and three different climatic conditions. Our results show that the virus was stable for up to 1 day in the saliva of cats, sheep, and WTD regardless of the environmental conditions. The virus remained infectious for up to 6 days in feces and 15 days in fecal suspension of WTD, whereas the virus was rather unstable in cat and sheep feces and fecal suspensions. We found the longest survival of SARS-CoV-2 in the urine of cats, sheep, and WTD. Furthermore, side-by-side comparison with different SARS-CoV-2 strains showed that the Alpha, Delta, and Omicron variants of concern were less stable than the ancestral Wuhan-like strain in WTD fecal suspension. The results of our study provide valuable information for assessing the potential role of various animal biological fluids in SARS-CoV-2 transmission.
Collapse
|
18
|
Wang L. Diagnostics for Viral Pathogens in Veterinary Diagnostic Laboratories. Vet Clin North Am Food Anim Pract 2023; 39:129-140. [PMID: 36731993 DOI: 10.1016/j.cvfa.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Laboratory testing is one part of clinical diagnosis, and quick and reliable testing results provide important data to support treatment decision and develop control strategies. Clinical viral testing has been shifting from traditional virus isolation and electron microscopy to molecular polymerase chain reaction and point-of-care antigen tests. This shift in diagnostic methodology also means change from looking for infectious virions or viral particles to hunting viral antigens and genomes. With technological development, it is predicted that metagenomic sequencing will be commonly used in veterinary clinical diagnosis for unveiling the whole picture of microbes involved in diseases in the future.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Veterinary Clinical Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, VMBSB Room 1222A, Urbana, IL 61802, USA.
| |
Collapse
|
19
|
Seroprevalence and Risk Factors for Bovine Coronavirus Infection among Dairy Cattle and Water Buffalo in Campania Region, Southern Italy. Animals (Basel) 2023; 13:ani13050772. [PMID: 36899629 PMCID: PMC10000194 DOI: 10.3390/ani13050772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Cattle and water buffalo are the main livestock species that are raised in the Campania region, southern Italy, and they contribute significantly to the regional rural economy. Currently there are limited data on the prevalence of relevant impact infections, such as bovine coronavirus (BCov), an RNA virus that causes acute enteric and respiratory disease. Although these diseases are described primarily in cattle, there have been reports of spillovers to other ruminants, including water buffalo. Here, we determined the seroprevalence of BCoV in cattle and water buffalo in the Campania region of southern Italy. An overall seroprevalence of 30.8% was determined after testing 720 sampled animals with a commercial enzyme-linked immunosorbent assay. A risk factor analysis revealed that the seropositivity rates in cattle (49.2%) were higher than in water buffalo (5.3%). In addition, higher seroprevalence rates were observed in older and purchased animals. In cattle, housing type and location were not associated with higher seroprevalence. The presence of BCoV antibodies in water buffalo was associated with the practice of co-inhabiting with cattle, demonstrating that this practice is incorrect and promotes the transmission of pathogens between different species. Our study found a considerable seroprevalence, which is consistent with previous research from other countries. Our results provide information on the widespread distribution of this pathogen as well as the risk factors that are involved in its transmission. This information could be useful in the control and surveillance of this infection.
Collapse
|
20
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
21
|
COVID-19 Heart Lesions in Children: Clinical, Diagnostic and Immunological Changes. Int J Mol Sci 2023; 24:ijms24021147. [PMID: 36674665 PMCID: PMC9866514 DOI: 10.3390/ijms24021147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In the beginning of COVID-19, the proportion of confirmed cases in the pediatric population was relatively small and there was an opinion that children often had a mild or asymptomatic course of infection. Our understanding of the immune response, diagnosis and treatment of COVID-19 is highly oriented towards the adult population. At the same time, despite the fact that COVID-19 in children usually occurs in a mild form, there is an incomplete understanding of the course as an acute infection and its subsequent manifestations such as Long-COVID-19 or Post-COVID-19, PASC in the pediatric population, correlations with comorbidities and immunological changes. In mild COVID-19 in childhood, some authors explain the absence of population decreasing T and B lymphocytes. Regardless of the patient's condition, they can have the second phase, related to the exacerbation of inflammation in the heart tissue even if the viral infection was completely eliminated-post infectious myocarditis. Mechanism of myocardial dysfunction development in MIS-C are not fully understood. It is known that various immunocompetent cells, including both resident inflammatory cells of peripheral tissues (for example macrophages, dendritic cells, resident memory T-lymphocytes and so on) and also circulating in the peripheral blood immune cells play an important role in the immunopathogenesis of myocarditis. It is expected that hyperproduction of interferons and the enhanced cytokine response of T cells 1 and 2 types contribute to dysfunction of the myocardium. However, the role of Th1 in the pathogenesis of myocarditis remains highly controversial. At the same time, the clinical manifestations and mechanisms of damage, including the heart, both against the background and after COVID-19, in children differ from adults. Further studies are needed to evaluate whether transient or persistent cardiac complications are associated with long-term adverse cardiac events.
Collapse
|
22
|
Bahoussi AN, Shah PT, Guo YY, Liu Y, Wu C, Xing L. Evolutionary adaptation of bovine coronavirus (BCoV): Screening of natural recombinations across the complete genomes. J Basic Microbiol 2022; 63:519-529. [PMID: 36538736 DOI: 10.1002/jobm.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Bovine coronavirus (BCoV) is a member of pathogenic Betacoronaviruses that has been circulating for several decades in multiple host species. Given the similarity between BCoV and human coronaviruses, the current study aimed to review the complete genomes of 107 BCoV strains available on the GenBank database, collected between 1983 and 2017 from different countries. The maximum-likelihood based phylogenetic analysis revealed three main BCoV genogroups: GI, GII, and GIII. GI is further divided into nine subgenogroups: GI-a to GI-i. The GI-a to GI-d are restricted to Japan, and GI-e to GI-i to the USA. The evolutionary relationships were also inferred using phylogenetic network analysis, revealing two major distinct networks dominated by viruses identified in the USA and Japan, respectively. The USA strains-dominated Network Cluster includes two sub-branches: France/Germany and Japan/China in addition to the United States, while Japan strains-dominated Network Cluster is limited to Japan. Twelve recombination events were determined, including 11 intragenogroup (GI) and one intergenogroup (GII vs. GI-g). The breakpoints of the recombination events were mainly located in ORF1ab and the spike glycoprotein ORF. Interestingly, 10 of 12 recombination events occurred between Japan strains, one between the USA strains, and one from intercontinental recombination (Japan vs. USA). These findings suggest that geographical characteristics, and population density with closer contact, might significantly impact the BCoV infection and co-infection and boost the emergence of more complex virus lineages.
Collapse
Affiliation(s)
- Amina N Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Pir T Shah
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yue Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
23
|
Dastjerdi A, Floyd T, Swinson V, Davies H, Barber A, Wight A. Parainfluenza and corona viruses in a fallow deer ( Dama dama) with fatal respiratory disease. Front Vet Sci 2022; 9:1059681. [PMID: 36561391 PMCID: PMC9763933 DOI: 10.3389/fvets.2022.1059681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Parainfluenza virus type 3 (PIV-3) and coronaviruses (CoV) are commonly found in respiratory tracts of ruminants and capable of causing clinical disease. Here, we investigated the cause of ill-thrift and sudden death in a five-month-old male fallow deer which occurred in December 2019. The calf was one of the five calves in a herd of 170 deer that, along with three adult hinds, died during a 2-week period. The deer calves were in a shed, sharing airspace with young cattle that had been reported to be coughing. Significant gross pathology was observed in the respiratory and alimentary tracts of the deer calf and histopathology of the lung and trachea was suggestive of likely involvement of PIV-3. Strong and specific cytoplasmic labeling of bronchiolar epithelium and terminal airway, alike those seen with PIV-3 pneumonia in cattle, was observed using a polyclonal bovine PIV-3 antibody. Metagenomic analysis detected a PIV-3 and a CoV in the lung tissue. The PIV-3 L protein gene had the highest sequence identity with those of bovine PIV-3 (83.1 to 98.4%) and phylogenetically clustered with bovine PIV-3 in the genotype C. The CoV spike protein gene shared 96.7% to 97.9% sequence identity with those of bovine CoVs, but only 53.1% identity with SARS-CoV-2 reference virus. We believe this is the first report of PIV-3 and CoV co-infection in fallow deer and their association with fatal pneumonia; major pathology caused by PIV-3.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Animal and Plant Health Agency (APHA)–Weybridge, Addlestone, United Kingdom,*Correspondence: Akbar Dastjerdi
| | - Tobias Floyd
- Animal and Plant Health Agency (APHA)–Weybridge, Addlestone, United Kingdom
| | | | - Hannah Davies
- Animal and Plant Health Agency (APHA)–Weybridge, Addlestone, United Kingdom
| | - Andrew Barber
- Clevedale Vets, Upleatham Veterinary Surgery, Home Farm, Redcar, United Kingdom
| | | |
Collapse
|
24
|
Phillips CJC. Zoonotic Disease Risks of Live Export of Cattle and Sheep, with a Focus on Australian Shipments to Asia and the Middle East. Animals (Basel) 2022; 12:3425. [PMID: 36496946 PMCID: PMC9738783 DOI: 10.3390/ani12233425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The growing human and livestock populations in the world today and increased international transport of livestock is increasing the risk of both emerging and endemic zoonotic diseases. This review focuses on the potential for the live export trade to transmit zoonotic diseases. Both cattle and sheep are exposed to major stresses during the transport process, which are described, together with the impact of these stresses on the immune function of transported animals. Heat stress, overcrowding, inanition, ship and vehicle motion and accumulation of noxious gases are analysed for their ability to potentiate infectious diseases. The major zoonoses are described: pustular dermatitis, pneumonia, salmonellosis, as well as some common conditions, such as conjunctivitis, with specific reference to stressors associated with each disorder. Historical precedents exist for restriction of the trade based on disease risks. Finally, the economic and regulatory frameworks are considered to evaluate ways in which the spread of zoonotic diseases can be controlled.
Collapse
Affiliation(s)
- Clive J. C. Phillips
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia;
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Kent St., Bentley, WA 6102, Australia
| |
Collapse
|
25
|
Agusi ER, Allendorf V, Eze EA, Asala O, Shittu I, Dietze K, Busch F, Globig A, Meseko CA. SARS-CoV-2 at the Human-Animal Interface: Implication for Global Public Health from an African Perspective. Viruses 2022; 14:2473. [PMID: 36366571 PMCID: PMC9696393 DOI: 10.3390/v14112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most far-reaching public health crisis of modern times. Several efforts are underway to unravel its root cause as well as to proffer adequate preventive or inhibitive measures. Zoonotic spillover of the causative virus from an animal reservoir to the human population is being studied as the most likely event leading to the pandemic. Consequently, it is important to consider viral evolution and the process of spread within zoonotic anthropogenic transmission cycles as a global public health impact. The diverse routes of interspecies transmission of SARS-CoV-2 offer great potential for a future reservoir of pandemic viruses evolving from the current SARS-CoV-2 pandemic circulation. To mitigate possible future infectious disease outbreaks in Africa and elsewhere, there is an urgent need for adequate global surveillance, prevention, and control measures that must include a focus on known and novel emerging zoonotic pathogens through a one health approach. Human immunization efforts should be approached equally through the transfer of cutting-edge technology for vaccine manufacturing throughout the world to ensure global public health and one health.
Collapse
Affiliation(s)
- Ebere Roseann Agusi
- National Veterinary Research Institute, Vom 930001, Nigeria
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Department of Microbiology, University of Nigeria Nsukka, Enugu 410001, Nigeria
| | - Valerie Allendorf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Olayinka Asala
- National Veterinary Research Institute, Vom 930001, Nigeria
| | - Ismaila Shittu
- National Veterinary Research Institute, Vom 930001, Nigeria
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Clement Adebajo Meseko
- National Veterinary Research Institute, Vom 930001, Nigeria
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Harm TA, Radke SL, Burns LE, Schrunk DE. Enteropathy and bone marrow hypoplasia associated with presumptive albendazole toxicosis in a juvenile Boer goat. J Vet Diagn Invest 2022; 34:1015-1019. [PMID: 36039773 PMCID: PMC9597350 DOI: 10.1177/10406387221121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Albendazole is a widely used anthelmintic drug that is labeled for the treatment of specific nematodes and flukes in ruminants. Albendazole is approved for the treatment of liver flukes in goats (10 mg/kg PO for a single dose), but is commonly used extra-label in situations in which parasite resistance is an issue. Albendazole toxicosis has been reported in pigeons, doves, alpacas, humans, dogs, and cats. Here we report an adverse event in a 6-mo-old goat associated with extra-label use of albendazole (35.7 mg/kg PO daily for 3 d). Clinicopathologic findings included severe diarrhea and death, with small intestinal crypt necrosis and dysplasia, and severe bone marrow hypoplasia. Microbial and molecular testing and transmission electron microscopy ruled out infectious organisms. The described pathologic changes are similar to those reported in other species that have experienced toxicosis associated with albendazole. To our knowledge, bone marrow and intestinal lesions associated with albendazole use in the goat have not been reported previously. Veterinarians should be aware of potential adverse events and toxicoses associated with anthelmintic drugs, especially as parasite resistance increases, and extra-label usage, and the use of such drugs without veterinary supervision, becomes more common.
Collapse
Affiliation(s)
- Tyler A. Harm
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Scott L. Radke
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Laura E. Burns
- Veterinary Diagnostic Laboratory, College of Veterinary
Medicine, Iowa State University, Ames, IA, USA
| | - Dwayne E. Schrunk
- Veterinary Diagnostic Laboratory, College of Veterinary
Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
27
|
Lin CY, Su SB, Chen KT. An overview of gastrointestinal diseases in patients with COVID-19: A narrative review. Medicine (Baltimore) 2022; 101:e30297. [PMID: 36086768 PMCID: PMC10980500 DOI: 10.1097/md.0000000000030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/01/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has emerged as a global health concern. This study aimed to review the epidemiology and pathophysiology of COVID-19 and provide evidence for the implementation of control measures. We utilized several online databases, including MEDLINE (National Library of Medicine, Bethesda, Maryland, USA), PubMed, EMBASE, Web of Science, and Google Scholar, to collect relevant published papers using a combination of the following keywords: "COVID-19," "SARS-CoV-2," "novel coronavirus," "epidemiology," and "pathophysiology." The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used in this study. Globally, approximately 3-46% of patients with SARS-CoV-2 infection experience gastrointestinal symptoms. The clinical spectrum of COVID-19 is wide, ranging from mild to severe, and even fatal. COVID-19 was initially reported as a respiratory tract disease; however, gastrointestinal symptoms have only recently been reported. COVID-19 Patients with gastrointestinal symptoms may have more severe clinical manifestations and poor prognosis. This study highlights the need to better understand the mechanisms involved in the development of gastrointestinal symptoms in patients with COVID-19 to prevent the further spread of this pathogen.
Collapse
Affiliation(s)
- Cheng-Yao Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Taiwan
- Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Savard C, Provost C, Ariel O, Morin S, Fredrickson R, Gagnon CA, Broes A, Wang L. First report and genomic characterization of a bovine-like coronavirus causing enteric infection in an odd-toed non-ruminant species (Indonesian tapir, Acrocodia indica) during an outbreak of winter dysentery in a zoo. Transbound Emerg Dis 2022; 69:3056-3065. [PMID: 34427399 PMCID: PMC8943714 DOI: 10.1111/tbed.14300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 02/05/2023]
Abstract
Bovine coronavirus (BCoV) is associated with three distinct clinical syndromes in cattle that is, neonatal diarrhoea, haemorrhagic diarrhoea in adults (the so-called winter dysentery syndrome, WD) and respiratory infections in cattle of different ages. In addition, bovine-like CoVs have been detected in various species including domestic and wild ruminants. However, bovine-like CoVs have not been reported so far in odd-toed ungulates. We describe an outbreak of WD associated with a bovine-like CoV affecting several captive wild ungulates, including Indonesian tapirs (Acrocodia indica) an odd-toed ungulate species (Perissodactyla) which, with even-toed ungulates species (Artiodactyla) form the clade Euungulata. Genomic characterization of the CoV revealed that it was closely related to BCoVs previously reported in America. This case illustrates the adaptability of bovine-like CoVs to new species and the necessity of continued surveillance of bovine-like CoVs in various species.
Collapse
Affiliation(s)
| | - Chantale Provost
- Molecular diagnostic laboratory, Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Samuel Morin
- Bureau vétérinaire Iberville, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Carl A. Gagnon
- Molecular diagnostic laboratory, Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - André Broes
- Biovet Inc., Saint-Hyacinthe, Québec, Canada
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
29
|
Zhu Q, Li B, Sun D. Advances in Bovine Coronavirus Epidemiology. Viruses 2022; 14:v14051109. [PMID: 35632850 PMCID: PMC9147158 DOI: 10.3390/v14051109] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| |
Collapse
|
30
|
Wernike K, Fischer L, Holsteg M, Aebischer A, Petrov A, Marquart K, Schotte U, Schön J, Hoffmann D, Hechinger S, Neubauer-Juric A, Blicke J, Mettenleiter TC, Beer M. Serological screening in wild ruminants in Germany, 2021/22: No evidence of SARS-CoV-2, bluetongue virus or pestivirus spread but high seroprevalences against Schmallenberg virus. Transbound Emerg Dis 2022; 69:e3289-e3296. [PMID: 35585653 PMCID: PMC9348064 DOI: 10.1111/tbed.14600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022]
Abstract
Wildlife animals may be susceptible to multiple infectious agents of public health or veterinary relevance, thereby potentially forming a reservoir that bears the constant risk of re‐introduction into the human or livestock population. Here, we serologically investigated 493 wild ruminant samples collected in the 2021/2022 hunting season in Germany for the presence of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and four viruses pathogenic to domestic ruminants, namely, the orthobunyavirus Schmallenberg virus (SBV), the reovirus bluetongue virus (BTV) and ruminant pestiviruses like bovine viral diarrhoea virus or border disease virus. The animal species comprised fallow deer, red deer, roe deer, mouflon and wisent. For coronavirus serology, additional 307 fallow, roe and red deer samples collected between 2017 and 2020 at three military training areas were included. While antibodies against SBV could be detected in about 13.6% of the samples collected in 2021/2022, only one fallow deer of unknown age tested positive for anti‐BTV antibodies, and all samples reacted negative for antibodies against ruminant pestiviruses. In an ELISA based on the receptor‐binding domain (RBD) of SARS‐CoV‐2, 25 out of 493 (5.1%) samples collected in autumn and winter 2021/2022 scored positive. This sero‐reactivity could not be confirmed by the highly specific virus neutralisation test, occurred also in 2017, 2018 and 2019, that is, prior to the human SARS‐CoV‐2 pandemic, and was likewise observed against the RBD of the related SARS‐CoV‐1. Therefore, the SARS‐CoV‐2 sero‐reactivity was most likely induced by another hitherto unknown deer virus belonging to the subgenus Sarbecovirus of betacoronaviruses.
Collapse
Affiliation(s)
- Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Luisa Fischer
- State Agency for Nature, Environment and Consumer Protection North Rhine-Westphalia, Wildlife Research Institute, Bonn, Germany
| | - Mark Holsteg
- Chamber of Agriculture for North Rhine-Westphalia, Bovine Health Service, Bad Sassendorf, Germany
| | | | - Anja Petrov
- Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Katharina Marquart
- Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Ulrich Schotte
- Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Jacob Schön
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | | | - Julia Blicke
- Ministry of Climate Protection, Environment, Energy and Mobility, Mainz, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
31
|
Smith FL, Heller MC, Crossley BM, Clothier KA, Anderson ML, Barnum SS, Pusterla N, Rowe JD. Diarrhea outbreak associated with coronavirus infection in adult dairy goats. J Vet Intern Med 2022; 36:805-811. [PMID: 35165938 PMCID: PMC8965271 DOI: 10.1111/jvim.16354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Background Infection by coronaviruses cause gastrointestinal disease in many species. Little is known about its prevalence and importance in goats. Objective Identify the etiology, demographics, and clinical features of an outbreak of diarrhea in adult goats. Hypothesis Bovine coronavirus (BCoV) PCR would detect viral material in feces of goats in the herds involved in the diarrhea outbreak. Animals Twelve herds with 4 to 230 adult goats were affected. Goats sampled for fecal PCR were ≥1‐year‐old: 25 from affected herds and 6 from a control herd. Methods This is a cross‐sectional descriptive study of an outbreak of diarrheal disease in adult goats. BCoV PCR primers for the spike (S) or nucleocapsid (N) proteins were used to test fecal material from affected goats. The N protein sequencing and phylogenetic analysis was performed. Herd records and owner surveys were used to characterize morbidity, clinical signs, and treatment. Results In 2 affected herds 18/25 of animals had at least 1 positive BCoV PCR test. Goats from affected herds were significantly more likely to be PCR positive than the control herd (OR 8.75, 95% CI 1.11‐104, P = .05). The most common clinical signs were change in fecal consistency (19/20) and decreased milk production (14/15). Phylogenetic analysis of the N protein showed this virus was closely related to a bovine‐like coronavirus isolated from a giraffe. Conclusions and Clinical Importance Bovine coronavirus primers detected nucleic acids of the N and S proteins in feces of goats in affected herds. Coronavirus shedding frequency was temporally associated with the outbreak.
Collapse
Affiliation(s)
- Fauna Leah Smith
- Graduate Group in Integrative Pathobiology, Center for Immunology and Infectious Disease, University of California, Davis, Davis, California, USA
| | - Meera C Heller
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Beate M Crossley
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA.,California Animal Health and Food Safety Laboratory System, Davis, California, USA
| | - Kristin A Clothier
- California Animal Health and Food Safety Laboratory System, Davis, California, USA.,Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Mark L Anderson
- California Animal Health and Food Safety Laboratory System, Davis, California, USA.,Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Samantha S Barnum
- School of Veterinary Medicine, University of California, Davis, California, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Joan D Rowe
- Department of Population, Health & Reproduction, University of California, Davis, California, USA
| |
Collapse
|
32
|
Shehata AA, Attia YA, Rahman MT, Basiouni S, El-Seedi HR, Azhar EI, Khafaga AF, Hafez HM. Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2. Animals (Basel) 2022; 12:ani12030378. [PMID: 35158701 PMCID: PMC8833600 DOI: 10.3390/ani12030378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Coronaviruses are a broad group of viruses that may infect a wide range of animals, including humans. Despite the fact that each coronavirus has a limited host range, frequent interspecies transmission of coronaviruses across diverse hosts has resulted in a complex ecology. The recently discovered SARS-CoV-2 virus is the clearest evidence of the danger of a global pandemic spreading. Natural infection with SARS-CoV-2 has been reported in a variety of domestic and wild animals, which may complicate the virus’s epidemiology and influence its development. In this review, we discussed the potential determinants of SARS-CoV-2 interspecies transmission. Additionally, despite the efforts that have been made to control this pandemic and to implement the One Health policy, several problems, such as the role of animals in SARS-CoV-2 evolution and the dynamics of interspecies transmission, are still unanswered. Abstract In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a narrowly restricted host range. Coronaviruses utilize different receptors to mediate membrane fusion and replication in the cell cytoplasm. The interplay between the receptor-binding domain (RBD) of coronaviruses and their coevolution are determinants for host susceptibility. The recently emerged SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic and has also been reported in domestic and wild animals, raising the question about the responsibility of animals in virus evolution. Additionally, the COVID-19 pandemic might also substantially have an impact on animal production for a long time. In the present review, we discussed the diversity of coronaviruses in animals and thus the diversity of their receptors. Moreover, the determinants of the susceptibility of SARS-CoV-2 in several animals, with special reference to the current evidence of SARS-CoV-2 in animals, were highlighted. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Awad A. Shehata
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia;
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Hesham R. El-Seedi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Esam I. Azhar
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center and Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany
- Correspondence:
| |
Collapse
|
33
|
Korath ADJ, Janda J, Untersmayr E, Sokolowska M, Feleszko W, Agache I, Adel Seida A, Hartmann K, Jensen‐Jarolim E, Pali‐Schöll I. One Health: EAACI Position Paper on coronaviruses at the human-animal interface, with a specific focus on comparative and zoonotic aspects of SARS-CoV-2. Allergy 2022; 77:55-71. [PMID: 34180546 PMCID: PMC8441637 DOI: 10.1111/all.14991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
The latest outbreak of a coronavirus disease in 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), evolved into a worldwide pandemic with massive effects on health, quality of life, and economy. Given the short period of time since the outbreak, there are several knowledge gaps on the comparative and zoonotic aspects of this new virus. Within the One Health concept, the current EAACI position paper dwells into the current knowledge on SARS-CoV-2's receptors, symptoms, transmission routes for human and animals living in close vicinity to each other, usefulness of animal models to study this disease and management options to avoid intra- and interspecies transmission. Similar pandemics might appear unexpectedly and more frequently in the near future due to climate change, consumption of exotic foods and drinks, globe-trotter travel possibilities, the growing world population, the decreasing production space, declining room for wildlife and free-ranging animals, and the changed lifestyle including living very close to animals. Therefore, both the society and the health authorities need to be aware and well prepared for similar future situations, and research needs to focus on prevention and fast development of treatment options (medications, vaccines).
Collapse
Affiliation(s)
- Anna D. J. Korath
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
| | - Jozef Janda
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF),University of ZurichZurichSwitzerland
| | - Wojciech Feleszko
- Department of Paediatric Allergy and PulmonologyThe Medical University of WarsawWarsawPoland
| | | | - Ahmed Adel Seida
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineCairo UniversityCairoEgypt
| | - Katrin Hartmann
- Medizinische KleintierklinikZentrum für Klinische TiermedizinLMUMunichGermany
| | - Erika Jensen‐Jarolim
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Isabella Pali‐Schöll
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
34
|
Bontzos G, Gkiala A, Karakosta C, Maliotis N, Detorakis ET. COVID-19 in Ophthalmology. Current Disease Status and Challenges during Clinical Practice. MAEDICA 2021; 16:668-680. [PMID: 35261670 PMCID: PMC8897783 DOI: 10.26574/maedica.2020.16.4.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose: The novel coronavirus disease 2019 (COVID-19) has raised a global public health concern. The purpose of this review is to summarize the evidence currently available on COVID-19 for its ocular implications and manifestations from both pathogenetic and clinical standpoints. Methods: For this narrative review, more than 100 relevant scientific articles were considered from various databases (PubMed, Google Scholar, and Science Direct) using keywords such as coronavirus outbreak, COVID-19, ophthalmology, ocular symptoms. Results:Daily healthcare both from patient and physician perspective, as well as on some guidelines regarding prevention and management have dramatically changed over the last few months. Although COVID-19 infection mainly affects the respiratory system as well as the gastrointestinal, cardiovascular, and urinary systems, it may cause a wide spectrum of ocular manifestations. Various challenges have to be faced to minimize exposure for both patients and physicians. Conclusion:The risk of COVID-19 infection should be considered and medical care should be prioritized for urgent cases. Appropriate management for patients with chronic cases that may result in adverse outcomes should not be neglected, while patients that can be monitored remotely should be identified.
Collapse
Affiliation(s)
- Georgios Bontzos
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Anastasia Gkiala
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Christina Karakosta
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Neofytos Maliotis
- Department of Ophthalmology, General Hospital of Nikaia "Agios Panteleimon", 18454 Athens, Greece
| | | |
Collapse
|
35
|
Zhu Q, Su M, Li Z, Wang X, Qi S, Zhao F, Li L, Guo D, Feng L, Li B, Sun D. Epidemiological survey and genetic diversity of bovine coronavirus in Northeast China. Virus Res 2021; 308:198632. [PMID: 34793872 DOI: 10.1016/j.virusres.2021.198632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
In 2020, to trace the prevalence and evolution of bovine coronavirus (BCoV) in China, a total of 1383 samples (1016 fecal samples and 367 nasal swab samples) were collected from 1016 cattle exhibiting diarrhea symptoms on dairy farms and beef cattle farms in Heilongjiang Province, Northeast China. All samples were subjected to reverse transcription-polymerase chain reaction (RT-PCR) detection of the BCoV N gene, followed by an analysis of its epidemiology and genetic evolution. The results indicated that of the 1016 diarrhea-affected cattle, 15.45% (157/1016) were positive for BCoV, in which positive rates of the fecal and nasal swab samples were 12.20% (124/1016) and 21.53% (79/367), respectively. Of the 367 cattle whose nasal swab samples were collected, the BCoV positive rate of the corresponding fecal samples was 15.26% (56/367). BCoV infection was significantly associated with age, farming pattern, cattle type, farm latitude, sample type, and clinical symptom (p < 0.05). Of the 203 BCoV-positive samples, 20 spike (S) genes were successfully sequenced. The 20 identified BCoV strains shared nucleotide homologies of 97.7-100.0%, and their N-terminal domain of S1 subunit (S1-NTD: residues 15-298) differed genetically from the reference strains of South Korea and Europe. The 20 identified BCoV strains were clustered in the Asia-North America group (GII group) in the global strain-based phylogenetic tree and formed three clades in the Chinese strain-based phylogenetic tree. The HLJ/HH-10/2020 strain was clustered into the Europe group (GI group) in the S1-NTD-based phylogenetic tree, exhibiting N146/I, D148/G, and L154/F mutations that affect the S protein structure. Of the identified BCoV strains, one potential recombination event occurred between the HLJ/HH-20/2020 and HLJ/HH-10/2020 strains, which led to the generation of the recombinant BCV-AKS-01 strain. A selective pressure analysis on the S protein revealed one positively selected site (Asn509) among the 20 identified BCoV strains located inside the putative receptor binding domain (residues 326-540). These data provide a greater understanding of the epidemiology and evolution of BCoV in China.
Collapse
Affiliation(s)
- Qinghe Zhu
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Zijian Li
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Xiaoran Wang
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Shanshan Qi
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Feiyu Zhao
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Lu Li
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China.
| |
Collapse
|
36
|
AlAzemi MS, Majeed QAH, Samy A, Henedi AA, Youssef W, Abdou NEMI. Evaluation of immunochromatography test for detection of four enteropathogens in the feces of sheep and goats in Kuwait. Open Vet J 2021; 11:500-507. [PMID: 34722215 PMCID: PMC8541720 DOI: 10.5455/ovj.2021.v11.i3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Diarrhea in newborn small ruminants continues to be the cause of significant financial loss in sheep and goat farms worldwide. Commercial immunochromatographic (IC) assays have been designed and evaluated to be used for the diagnosis of diarrhea in cattle; however, there are no trials to use rapid tests in small ruminants. Aim: This study was carried out in Kuwait to evaluate the performance of the rapid immunochromatography test (BoviD-4, BioNote, Inc, Korea) for diagnostics of Cryptosporidium, rotavirus A (RVA), bovine coronavirus (BCoV), and Escherichia coli K99 (E. coli K99) in fecal samples of sheep and goats. Methods: A total of 85 samples were examined using BoviD-4, and the results were compared with that of polymerase chain reaction for Cryptosporidium, RVA, and BCoV, whereas for E. coli K99 it was by isolation and identification as reference tests. Results: The kappa test agreement results between the BoviD-4 and reference tests were 0.870 (perfect), 0.783 (substantial), 0.728 (substantial), and 0.281 (fair) for the detection of E. coli K99, Cryptosporidium, RVA, and BCoV, respectively. The sensitivity of BoviD-4 kit was 91.2%, 80.0%, 90.0%, and 37.5% and the specificity was 88.2%, 96.0%, 96.4%, and 92.2% for Cryptosporidium, RVA, E. coli K99, and BCoV, respectively. Conclusion: The Bovid-4 kit can be used as a rapid pen-side test for Cryptosporidium spp., E. coli K99, and RVA in the field. Nonetheless, care must be taken while interpreting the BCoV results of the kit.
Collapse
Affiliation(s)
- Maha S AlAzemi
- Department of Science, College of Basic Education, PAAET, Adailiya, Kuwait
| | - Qais A H Majeed
- Department of Science, College of Basic Education, PAAET, Adailiya, Kuwait
| | - Attia Samy
- Virology lab, Veterinary Laboratories, PAAFR, Rabia, Kuwait.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adawia A Henedi
- Parasitology lab. Veterinary Laboratories, PAAFR, Rabia, Kuwait
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute, Dokki, Egypt.,Molecular Biology Lab. Veterinary Laboratories, PAAFR, Rabia, Kuwait
| | - Nadra-Elwgoud M I Abdou
- GCC Early Warning Center for Transboundary Animal Diseases, PAAFR, Rabia, Kuwait.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
37
|
Nova N. Cross-Species Transmission of Coronaviruses in Humans and Domestic Mammals, What Are the Ecological Mechanisms Driving Transmission, Spillover, and Disease Emergence? Front Public Health 2021; 9:717941. [PMID: 34660513 PMCID: PMC8514784 DOI: 10.3389/fpubh.2021.717941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent pandemic, caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2, is taking a heavy toll on society and planetary health, and illustrates the threat emerging coronaviruses can pose to the well-being of humans and other animals. Coronaviruses are constantly evolving, crossing host species barriers, and expanding their host range. In the last few decades, several novel coronaviruses have emerged in humans and domestic animals. Novel coronaviruses have also been discovered in captive wildlife or wild populations, raising conservation concerns. The evolution and emergence of novel viruses is enabled by frequent cross-species transmission. It is thus crucial to determine emerging coronaviruses' potential for infecting different host species, and to identify the circumstances under which cross-species transmission occurs in order to mitigate the rate of disease emergence. Here, I review (broadly across several mammalian host species) up-to-date knowledge of host range and circumstances concerning reported cross-species transmission events of emerging coronaviruses in humans and common domestic mammals. All of these coronaviruses had similar host ranges, were closely related (indicative of rapid diversification and spread), and their emergence was likely associated with high-host-density environments facilitating multi-species interactions (e.g., shelters, farms, and markets) and the health or well-being of animals as end- and/or intermediate spillover hosts. Further research is needed to identify mechanisms of the cross-species transmission events that have ultimately led to a surge of emerging coronaviruses in multiple species in a relatively short period of time in a world undergoing rapid environmental change.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
38
|
Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain. Biochem J 2021; 478:3671-3684. [PMID: 34558627 DOI: 10.1042/bcj20200908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
COVID-19, the clinical syndrome caused by the SARS-CoV-2 virus, has rapidly spread globally causing hundreds of millions of infections and over two million deaths. The potential animal reservoirs for SARS-CoV-2 are currently unknown, however sequence analysis has provided plausible potential candidate species. SARS-CoV-2 binds to the angiotensin I converting enzyme 2 (ACE2) to enable its entry into host cells and establish infection. We analyzed the binding surface of ACE2 from several important animal species to begin to understand the parameters for the ACE2 recognition by the SARS-CoV-2 spike protein receptor binding domain (RBD). We employed Shannon entropy analysis to determine the variability of ACE2 across its sequence and particularly in its RBD interacting region, and assessed differences between various species' ACE2 and human ACE2. Recombinant ACE2 from human, hamster, horseshoe bat, cat, ferret, and cow were evaluated for RBD binding. A gradient of binding affinities were seen where human and hamster ACE2 were similarly in the low nanomolar range, followed by cat and cow. Surprisingly, horseshoe bat (Rhinolophus sinicus) and ferret (Mustela putorius) ACE2s had poor binding activity compared with the other species' ACE2. The residue differences and binding properties between the species' variants provide a framework for understanding ACE2-RBD binding and virus tropism.
Collapse
|
39
|
Ven S, Arunvipas P, Lertwatcharasarakul P, Ratanapob N. Seroprevalence of bovine coronavirus and factors associated with the serological status in dairy cattle in the western region of Thailand. Vet World 2021; 14:2041-2047. [PMID: 34566319 PMCID: PMC8448641 DOI: 10.14202/vetworld.2021.2041-2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Background and Aims: Bovine coronavirus (BCoV) is a pathogen affecting the productivities of dairy cattle worldwide. The present study aimed to determine the seroprevalence and factors associated with BCoV serological status using a commercial indirect enzyme-linked immunosorbent assay (ELISA). Materials and Methods: A cross-sectional study was conducted in the western region of Thailand. Blood samples were collected from 30 dairy herds. In total, 617 blood serum samples were tested using a commercial indirect ELISA for BCoV-specific immunoglobulin G antibodies. A questionnaire was used to collect data on the factors which have been identified as risk factors for BCoV antibody detection. The age and history of diarrhea of each animal were recorded. Fisher’s exact test was performed to univariately assess the association between BCoV serological status and possible risk factors. Variables with Fisher’s exact test p<0.10 were then evaluated using multivariate logistic regression to identify factors associated with BCoV serological status. The Bonferroni adjustment was used for multiple comparisons of significant variables in the final multivariate logistic regression model. Results: No herd was free from antibodies to BCoV. The individual seroprevalence of BCoV was 97.89% (604/617). The prevalence within herds was in the range of 45.45-100%. Cattle >3 years of age were more likely to be seropositive to BCoV compared to cattle <1 year of age (p=0.003), with the odds ratio being 81.96. Disinfecting diarrhea stools were a protective factor for being BCoV seropositive, with odds ratios of 0.08 and 0.06 compared to doing nothing (p=0.008) and to clean with water (p=0.002), respectively. Conclusion: BCoV seropositive dairy cattle were distributed throughout the western region of Thailand. The probability of being seropositive for BCoV increased with increasing animal age. Cleaning the contaminated stool with appropriate disinfectants should be recommended to farmers to minimize the spread of the virus.
Collapse
Affiliation(s)
- Samnang Ven
- Bio-Veterinary Science Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Niorn Ratanapob
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| |
Collapse
|
40
|
Islam A, Ferdous J, Islam S, Sayeed MA, Dutta Choudhury S, Saha O, Hassan MM, Shirin T. Evolutionary Dynamics and Epidemiology of Endemic and Emerging Coronaviruses in Humans, Domestic Animals, and Wildlife. Viruses 2021; 13:1908. [PMID: 34696338 PMCID: PMC8537103 DOI: 10.3390/v13101908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Diverse coronavirus (CoV) strains can infect both humans and animals and produce various diseases. CoVs have caused three epidemics and pandemics in the last two decades, and caused a severe impact on public health and the global economy. Therefore, it is of utmost importance to understand the emergence and evolution of endemic and emerging CoV diversity in humans and animals. For diverse bird species, the Infectious Bronchitis Virus is a significant one, whereas feline enteric and canine coronavirus, recombined to produce feline infectious peritonitis virus, infects wild cats. Bovine and canine CoVs have ancestral relationships, while porcine CoVs, especially SADS-CoV, can cross species barriers. Bats are considered as the natural host of diverse strains of alpha and beta coronaviruses. Though MERS-CoV is significant for both camels and humans, humans are nonetheless affected more severely. MERS-CoV cases have been reported mainly in the Arabic peninsula since 2012. To date, seven CoV strains have infected humans, all descended from animals. The severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) are presumed to be originated in Rhinolopoid bats that severely infect humans with spillover to multiple domestic and wild animals. Emerging alpha and delta variants of SARS-CoV-2 were detected in pets and wild animals. Still, the intermediate hosts and all susceptible animal species remain unknown. SARS-CoV-2 might not be the last CoV to cross the species barrier. Hence, we recommend developing a universal CoV vaccine for humans so that any future outbreak can be prevented effectively. Furthermore, a One Health approach coronavirus surveillance should be implemented at human-animal interfaces to detect novel coronaviruses before emerging to humans and to prevent future epidemics and pandemics.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, VIC 3216, Australia
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Md. Abu Sayeed
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Shusmita Dutta Choudhury
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| |
Collapse
|
41
|
Delaplace M, Huet H, Gambino A, Le Poder S. Feline Coronavirus Antivirals: A Review. Pathogens 2021; 10:1150. [PMID: 34578182 PMCID: PMC8469112 DOI: 10.3390/pathogens10091150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Collapse
Affiliation(s)
| | | | | | - Sophie Le Poder
- 1UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94704 Paris, France; (M.D.); (H.H.); (A.G.)
| |
Collapse
|
42
|
Molecular Epidemiology and Characterization of Picobirnavirus in Wild Deer and Cattle from Australia: Evidence of Genogroup I and II in the Upper Respiratory Tract. Viruses 2021; 13:v13081492. [PMID: 34452357 PMCID: PMC8402760 DOI: 10.3390/v13081492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Picobirnaviruses (PBVs) have been detected in several species of animals worldwide; however, data pertaining to their presence in Australian wild and domestic animals are limited. Although PBVs are mostly found in faecal samples, their detection in blood and respiratory tract samples raises questions concerning their tropism and pathogenicity. We report here PBV detection in wild deer and cattle from southeastern Australia. Through metagenomics, the presence of PBV genogroups I (GI) and II (GII) were detected in deer serum and plasma. Molecular epidemiology studies targeting the partial RNA-dependent RNA polymerase gene were performed in a wide range of specimens (serum, faeces, spleen, lung, nasal swabs, and trachea) collected from wild deer and cattle, with PCR amplification obtained in all specimen types except lung and spleen. Our results reveal the predominance of GI and concomitant detection of both genogroups in wild deer and cattle. In concordance with other studies, the detected GI sequences displayed high genetic diversity, however in contrast, GII sequences clustered into three distinct clades. Detection of both genogroups in the upper respiratory tract (trachea and nasal swab) of deer in the present study gives more evidence about the respiratory tract tropism of PBV. Although much remains unknown about the epidemiology and tropism of PBVs, our study suggests a wide distribution of these viruses in southeastern Australia.
Collapse
|
43
|
Reche A, Nandanwar A, Hedaoo A, Chhbra KG, Fulzele P, Nimbulkar G. The Novel Coronavirus in Pediatric and Geriatric Population- What We Know. Open Dent J 2021. [DOI: 10.2174/1874210602115010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)is a virus responsible for the coronavirus infection that is currently causing a severe outbreak of the disease in the world, infecting and killing thousands to lacs of people. The pediatric and geriatric population is no exception to this. Children and older adults have less immunity, which makes them more susceptible to infection than other populations. But still the number of cases of Children where less as compared to adults and those having underlying pulmonary pathology or immunocompromising conditions are more vulnerable to infection. Some studies have shown that this virus causes more death in the older age population as compared to adults or children. Patients having any systemic conditions like diabetes, raised blood pressure, heart diseases, lung diseases and chronic renal diseases were more vulnerable to this infection. In this article, we will outline the epidemiology, symptoms, diagnosis, and treatment modalities of the novel coronavirus-2019(COVID 19) infection in humans, with more focusing on infection in children as well as in older adults.
Collapse
|
44
|
Wernike K, Aebischer A, Michelitsch A, Hoffmann D, Freuling C, Balkema‐Buschmann A, Graaf A, Müller T, Osterrieder N, Rissmann M, Rubbenstroth D, Schön J, Schulz C, Trimpert J, Ulrich L, Volz A, Mettenleiter T, Beer M. Multi-species ELISA for the detection of antibodies against SARS-CoV-2 in animals. Transbound Emerg Dis 2021; 68:1779-1785. [PMID: 33191578 PMCID: PMC7753575 DOI: 10.1111/tbed.13926] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions. The extent of natural infections of animals, however, is still largely unknown. Serological methods will be useful tools for tracing SARS-CoV-2 infections in animals once test systems are evaluated for use in different species. Here, we developed an indirect multi-species ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The newly established ELISA was evaluated using 59 sera of infected or vaccinated animals, including ferrets, raccoon dogs, hamsters, rabbits, chickens, cattle and a cat, and a total of 220 antibody-negative sera of the same animal species. Overall, a diagnostic specificity of 100.0% and sensitivity of 98.31% were achieved, and the functionality with every species included in this study could be demonstrated. Hence, a versatile and reliable ELISA protocol was established that enables high-throughput antibody detection in a broad range of animal species, which may be used for outbreak investigations, to assess the seroprevalence in susceptible species or to screen for reservoir or intermediate hosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Annika Graaf
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Thomas Müller
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Nikolaus Osterrieder
- Institut für VirologieFreie Universität BerlinBerlinGermany
- Jockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloon TongHong Kong
| | | | | | - Jacob Schön
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Claudia Schulz
- University of Veterinary Medicine HannoverHanoverGermany
| | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinBerlinGermany
| | - Lorenz Ulrich
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Asisa Volz
- University of Veterinary Medicine HannoverHanoverGermany
| | | | - Martin Beer
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| |
Collapse
|
45
|
Rossi G, Galosi L, Gavazza A, Cerquetella M, Mangiaterra S. Therapeutic approaches to coronavirus infection according to "One Health" concept. Res Vet Sci 2021; 136:81-88. [PMID: 33588098 PMCID: PMC7871813 DOI: 10.1016/j.rvsc.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Coronaviridae constantly infect human and animals causing respiratory, gastroenteric or systemic diseases. Over time, these viruses have shown a marked ability to mutate, jumping over the human-animal barrier, thus becoming from enzootic to zoonotic. In the last years, numerous therapeutic protocols have been developed, mainly for severe acute respiratory syndromes in humans. The aim of this review is to summarize drugs or other approaches used in coronavirus infections focusing on different roles of these molecules or bacterial products on viral adhesion and replication or in modulating the host's immune system. Within the "One Health" concept, the study of viral pathogenic role and possible therapeutic approaches in both humans and animals is essential to protect public health.
Collapse
Affiliation(s)
- Giacomo Rossi
- Corresponding author at: School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95 – 62024, Matelica (MC), Italy
| | | | | | | | | |
Collapse
|
46
|
Pattnaik B, S Patil S, S C, G. Amachawadi R, Dash AP, Yadav MP, Prasad KS, P S, Jain AS, Shivamallu C. COVID-19 PANDEMIC: A SYSTEMATIC REVIEW ON THE CORONAVIRUSES OF ANIMALS AND SARS-CoV-2. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2021; 9:117-130. [DOI: 10.18006/2021.9(2).117.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta- CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans. Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV); both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses.
Collapse
|
47
|
Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide 2021; 111-112:64-71. [PMID: 33831567 PMCID: PMC8021449 DOI: 10.1016/j.niox.2021.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.
Collapse
|
48
|
Ghai RR, Carpenter A, Liew AY, Martin KB, Herring MK, Gerber SI, Hall AJ, Sleeman JM, VonDobschuetz S, Behravesh CB. Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses. Emerg Infect Dis 2021; 27:1015-1022. [PMID: 33770472 PMCID: PMC8007319 DOI: 10.3201/eid2704.203945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.
Collapse
|
49
|
Vlasova AN, Saif LJ. Bovine Coronavirus and the Associated Diseases. Front Vet Sci 2021; 8:643220. [PMID: 33869323 PMCID: PMC8044316 DOI: 10.3389/fvets.2021.643220] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) possess the largest and most complex RNA genome (up to 32 kb) that encodes for 16 non-structural proteins regulating RNA synthesis and modification. Coronaviruses are known to infect a wide range of mammalian and avian species causing remarkably diverse disease syndromes. Variable tissue tropism and the ability to easily cross interspecies barriers are the well-known characteristics of certain CoVs. The 21st century epidemics of severe acute respiratory CoV (SARS-CoV), Middle East respiratory CoV and the ongoing SARS-CoV-2 pandemic further highlight these characteristics and emphasize the relevance of CoVs to the global public health. Bovine CoVs (BCoVs) are betacoronaviruses associated with neonatal calf diarrhea, and with winter dysentery and shipping fever in older cattle. Of interest, no distinct genetic or antigenic markers have been identified in BCoVs associated with these distinct clinical syndromes. In contrast, like other CoVs, BCoVs exist as quasispecies. Besides cattle, BCoVs and bovine-like CoVs were identified in various domestic and wild ruminant species (water buffalo, sheep, goat, dromedary camel, llama, alpaca, deer, wild cattle, antelopes, giraffes, and wild goats), dogs and humans. Surprisingly, bovine-like CoVs also cannot be reliably distinguished from BCoVs using comparative genomics. Additionally, there are historical examples of zoonotic transmission of BCoVs. This article will discuss BCoV pathogenesis, epidemiology, interspecies transmission, immune responses, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
50
|
Benavides JA, Streicker DG, Gonzales MS, Rojas-Paniagua E, Shiva C. Knowledge and use of antibiotics among low-income small-scale farmers of Peru. Prev Vet Med 2021; 189:105287. [PMID: 33677408 PMCID: PMC8636688 DOI: 10.1016/j.prevetmed.2021.105287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 12/28/2022]
Abstract
The extensive use and misuse of antibiotics in the livestock sector is one of the main drivers of the emergence and spread of antimicrobial resistance. Although small-scale farms constitute most of the livestock production in low and middle-income countries, knowledge and use of antibiotics among these populations is sparse. We conducted 201 questionnaires to estimate the use and knowledge of antibiotics by small-scale farmers located in the coastal area of the Lima region of Peru. Our results show that farmers had a small number of livestock (e.g. average of 11 cows, 7 pigs and 19 chickens per farm) and 80 % earned less than minimum wage. More than half of farmers reported at least one episode of respiratory disease, diarrhea, mastitis, skin lesion or post-parturition infection in their animals during the previous year, and 40 % of these episodes were treated with antibiotics. Farmers reported using 14 different antibiotics, most commonly oxytetracycline (31 % of episodes treated with antibiotics), penicillin (21 %), gentamicin (19 %) and trimethoprim-sulfamethazine (18 %). The third-generation cephalosporin ceftiofur was occasionally used to treat mastitis. Most farmers relied on veterinarians to prescribe (95 % of respondents) and administer (59 %) antibiotics. Only half of farmers knew what micro-organisms can be treated with antibiotics and the degree of knowledge of antibiotics (based on a 5-question metric) was positively correlated with respondents’ educational level, monthly income, knowledge of the animal health authority, farm area, number of cows and knowledge of an antiparasitic drug. In contrast, knowledge of antibiotics was not correlated with respondents’ age, gender, main occupation, knowledge of a veterinarian or household size. Potential misuse of antibiotics was reported, including 21 % of framers reporting stopping the treatment when clinical signs disappear and infrequent use of antibiotics to treat parasites or animals not eating. Our study highlights poor knowledge and potential misuse of antibiotics among small-scale farmers in coastal Peru, but high reliance on veterinarians for prescription and administration. Strengthening farmers' relationships with veterinarians and improving the diagnostic capacity of the veterinary sector could result in more judicious antibiotic use on these farms.
Collapse
Affiliation(s)
- Julio A Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance MICROB-R, Santiago, Chile.
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Milagros S Gonzales
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elizabeth Rojas-Paniagua
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Shiva
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|