1
|
Abd El-Hamid MI, El-Malt RMS, Khater SI, Abdelwarith AA, Khamis T, Abd El-Wahab RA, Younis EM, Davies SJ, Mohamed DI, Mohamed RI, Zayed S, Abdelrahman MA, Ibrahim D. Impact of liposomal hesperetin in broilers: prospects for improving performance, antioxidant potential, immunity, and resistance against Listeria monocytogenes. Avian Pathol 2025; 54:120-148. [PMID: 39169883 DOI: 10.1080/03079457.2024.2395357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broiler industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broiler growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broiler groups were fed 0, 150, 250, or 400 mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400 mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and expression levels of its virulence-related genes (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes-infected broilers were restored post-inclusion at higher levels of liposomal hesperetin, which reflects increase of the birds' resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1β, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancement of the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broiler diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, Zagazig, Egypt
| | - Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute, Mansoura Provincial Laboratory (AHRI-Mansoura), Cairo, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud A Abdelrahman
- Bacteriology Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Su L, Wang S, Li Q, Guo P, Wu Y, Zhao L, Hu L, Li Y, Guo J, Zhang H, Pan J, Tang Z, Liao J. Hesperidin alleviates ZBP1-drived PANoptosis induced by copper nanoparticles in immune organs of gallus. J Trace Elem Med Biol 2024; 87:127575. [PMID: 39637734 DOI: 10.1016/j.jtemb.2024.127575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
With the application of copper nanoparticles (nano-Cu) in livestock and poultry feed addition, their biotoxicity has been gradually recognized. Therefore, it has become an urgent problem to find the effective natural antagonists to reduce the toxicity of copper nanoparticles. Here, we found that hesperidin could alleviate nano-Cu-induced pathological injury in the immune organs of chickens via the histopathological examination of the spleen, thymus, and bursa of Fabricius. Additionally, the results of western blot showed that nano-Cu exposure activated ZBP1-mediated PANoptosis in immune organs, with evidenced by the significant up-regulation of ZBP1 signal molecule and PANoptosis-related proteins (apoptosis: Caspase-7, Caspase-3, Caspase-8; pyroptosis: Caspase-1, GSDMD, GSDME; necroptosis: RIPK1 and MLKL). Besides that, immunohistochemistry and immunofluorescence also showed that the staining intensity of Caspase-9 and Caspase-8 proteins was observably elevated in nano-Cu group compared to control group, and the staining intensity of the hesperidin mixed nano-copper group was markedly lower than that of the nano-Cu group. Meanwhile, hesperidin effectively attenuated the ZBP1 expression and PANoptosis under nano-Cu exposure. These findings suggested that excessive nano-Cu could cause ZBP1-drived PANoptosis in immune organs, while hesperidin could alleviate toxic damage induced by nano-Cu exposure.
Collapse
Affiliation(s)
- Luna Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lijiao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Liu X, Dong W, Zhang Y, Tian Y, Xiao Y, Yang M, Yuan X, Li G, Liu J, Kai M. In vitro and in vivo evaluation of antibacterial activity and mechanism of luteolin from Humulus scandens against Escherichia coli from chicken. Poult Sci 2024; 103:104132. [PMID: 39208485 PMCID: PMC11399789 DOI: 10.1016/j.psj.2024.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance of Escherichia coli (E.coli) to antibiotics has steadily increased over time; hence, there is an urgent need to develop safer alternatives to antibiotics. The present study aimed to evaluate the effect of luteolin (Lut) on E. coli from chicken. The bioactive compound Lut from Humulus scandens was selected by network pharmacology and molecular docking analyses. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) were used to observe the effects of Lut on the morphology and structure of E. coli cells. The data-independent acquisition (DIA) method was used to analyze protein expression level of E. coli before and after Lut treatment. The in vivo evaluation of the antibacterial, anti-inflammatory, and oxidative effects of Lut on E.coli was conducted using E.coli isolated strains infected the SPF chicken model. The network pharmacology analysis revealed 19 distinctive bioactive compounds such as Lut and β-sitosterol in H. scandens; furthermore, 30 core targets were selected from H. scandens. The KEGG enrichment analysis showed that the PI3K-Akt, TNF, MAPK, IL-17, JAK-STAT, and HIF-1 pathways were related from H. scandens. Based on the results of the network pharmacology analysis, Lut was subjected to screening by molecular docking analysis to determine its antibacterial effect on E. coli and the associated mechanism of action. The minimum inhibitory concentration (MIC) of Lut against E. coli standard strains was 500 µg/mL. SEM, TEM, and CLSM results indicated that Lut damaged the cell wall and cell membrane of E. coli strains and destroyed the cell structure, leading to cell death.The expression level of membrane structure, Phenylalanine metabolism and some other metabolic pathways in E.coli changed after treatment with Lut (P < 0.05). In vivo experiments in the SPF chicken model showed that Lut treatment alleviated the decline in the growth performance of chickens (P < 0.05), prevented pathological changes in the correspond ding organs and suppressed the inflammatory response induced by E. coli infection (P < 0.05), improved the immunity and antioxidant capacity of chickens (P < 0.05), and protected them against infection with E. coli strains. To summarize, Lut from H. scandens can inhibit E. coli growth by damaging the cell membrane structureand affecting the expression level of some metabolic proteins. In vivo experiments also showed that Lut can significantly reduce the damage caused by E. coli isolates on SPF chickens, improve their antioxidant capacity and immunity, and reduce inflammatory responses following E. coli infection.
Collapse
Affiliation(s)
- Xia Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Wenwen Dong
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Yuxia Zhang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Ye Tian
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Yaqing Xiao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Menghao Yang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Xiaoyuan Yuan
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Guiming Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Shandong Blue Sea ecological agriculture Co., LTD, Dongying 257100, China
| | - Jianzhu Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Meng Kai
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China.
| |
Collapse
|
4
|
Yu F, Shi X, Li K, Yin Y, Xu S. Naringenin counteracts LPS-induced inflammation and immune deficits in chicken thymus by alleviating mtROS/ferroptosis levels. Poult Sci 2024; 103:104179. [PMID: 39154609 PMCID: PMC11381744 DOI: 10.1016/j.psj.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
Naringenin is a flavonoid with significant anti-inflammatory and antioxidant properties. Mitochondrial dynamics, the mitochondrial respiratory chain, and mtROS are closely related to each other and regulate various biological processes. Ferroptosis is closely related to inflammatory responses and immune function in multiple tissues and organs. However, whether naringenin can alleviate LPS-induced inflammation and immune disorders in the chicken thymus via mtROS/ferroptosis has not been reported. Therefore, in this study, we constructed chicken thymus and MSB-1 cell models of LPS and naringenin based on screening for naringenin concentrations that have positive effects on inflammation and immune function to further investigate the anti-inflammatory, antiferroptosis, and maintenance of the immune function of naringenin. The results showed that 40 mg/kg naringenin alleviated LPS-induced tissue damage, elevated serum inflammatory factors, and decreased serum immune factors. The mechanism by which naringenin attenuates mtROS release by alleviating the imbalance of mitochondrial dynamics and the blockage of the respiratory chain. The effect of naringenin on alleviating LPS-induced lipid peroxidation, disruption of the GSH/GSSG system, iron overload, and GPx4 inactivation, thereby attenuating ferroptosis in thymus tissue, was inhibited by the addition of mtROS activators. In conclusion, naringenin alleviates LPS-induced ferroptosis in chicken thymus by attenuating mtROS release.
Collapse
Affiliation(s)
- Fei Yu
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xu Shi
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ke Li
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilin Yin
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Laboratory of Embryo Biotechnology, College of Life Science, Department of Biotechnology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Riva F, McGuinness DH, McKeegan DEF, Peinado-Izaguerri J, Bruggeman G, Hermans D, Eckersall PD, McLaughlin M, Bain M. Measuring the impact of dietary supplementation with citrus or cucumber extract on chicken gut microbiota using 16s rRNA gene sequencing. Vet Res Commun 2024; 48:2369-2384. [PMID: 38780824 PMCID: PMC11315731 DOI: 10.1007/s11259-024-10417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
This study investigated the effects of dietary supplements, citrus (CTS) and cucumber (CMB), on the jejunum and cecum microbiota of 14- and 28-days old broiler chickens to evaluate their impact on the gut health and assess their role as alternatives to antibiotic growth promoters (ABGPs). 16SrRNA gene sequencing revealed the overall bacterial microbiota composition was significantly affected by the gut site (p?0.001) but not by either of the dietary supplements, CTS and CMB, at both 14 and 28 days of age. However, as a result of Linear discriminant analysis (LDA) effect size (LEfSE), CTS dietary supplements significantly increased the counts of Lactobacillus (p?0.01) and decreased the counts of Enterococcus (p?0.01) and Clostridium (p?0.05) in the jejunum, whereas the counts of Blautia were increased (p?0.01) and Enterococcus were decreased (p?0.05) in the cecum at both ages. Only minor CMB effects were identified in the cecum and non in the jejunum. The use of CTS dietary supplements has been shown to be associated to the reduction of potentially pathogenic bacteria (Enterococcus and Clostridium) and to the growth of beneficial bacteria (Lactobacillus and Blautia) which are known to have positive effects on chicken health in terms of nutrients absorption, stimulation and production of short chain fatty acids (SCFAs). Therefore, this study suggests that the use of a CTS supplemented diet could promote gut health while no clear advantages have been identified with the use of CMB as a dietary supplement.
Collapse
Affiliation(s)
- Francesca Riva
- School of Health and Life Sciences, University of the West of Scotland, High St, PA1 2BE, Paisley, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, G61 1QH, Glasgow, UK
- Faculty of Veterinary Medicine, University of Zagreb, Radoslava Cimermana, 10000, Zagreb, Croatia
| | - David H McGuinness
- Glasgow Polyomics, University of Glasgow, Switchback Rd, G61 1BD, Bearsden, Glasgow, UK
| | - Dorothy E F McKeegan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, G61 1QH, Glasgow, UK
| | - Jorge Peinado-Izaguerri
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, G61 1QH, Glasgow, UK
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Ko?ice, Komensk?ho, 041 81, Ko?ice, Slovakia
- School of Biological Sciences, The University of Manchester, Oxford Rd, M13 9PT, Manchester, UK
| | | | - David Hermans
- Nutrition Sciences N. V, B-9031, Booiebos, Ghent, Belgium
| | - Peter D Eckersall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, G61 1QH, Glasgow, UK
| | - Mark McLaughlin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, G61 1QH, Glasgow, UK.
| | - Maureen Bain
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, G61 1QH, Glasgow, UK
| |
Collapse
|
6
|
Ngum NH, Masakebenagha NE, Mahamat O. Antimalarial and Immunomodulatory Activities of Tithonia diversifolia (Asteraceae) Leave Flafonoids-Rich Extract Used in Cameroonian Traditional Medecine. SCIENTIFICA 2024; 2024:8645178. [PMID: 38962528 PMCID: PMC11221963 DOI: 10.1155/2024/8645178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Background Phytochemicals are considered the reliable source for the treatment of infection including malaria. Especially, phenols are known as potentially toxic to the growth and development of pathogens, among which flavonoids are the most extensively studied and play more intensive roles in ethnopharmacology. The immunological effect and role of T. diversifolia flavonoids-rich extract in treatment of malaria have therefore been examined in this study. Methods In vitro test against Plasmodium falciparum and 4-day suppressive and Rane's tests against Plasmodium berghei in mice were used to evaluate the antimalarial activities. TNF-α and INF-γ levels, phagocytic tests, and production of oxygen and nitrogen radical were assessed to appreciate the immunomodulatory activity. One-way analysis of variance followed by post hoc Student's t tests was used for data analysis. Results T. diversifolia flavonoids-rich extract at the concentrations ranging from 0.0004 mg/ml significantly (p < 0.05) inhibited in a concentration-dependent manner the growth of trophozoite up to 100% inhibition with 0.025 mg/ml at 24 and 48 hrs. Moreover, T. diversifolia flavonoids-rich extract reduced the level of parasitemia and improved in a dose-dependent manner the survival time of infected mice significantly (p < 0.05) compared to their control in 4-day suppressive test as well as in Rane's test. Additionally, T. diversifolia flavonoids-rich extract increased the TNF-α and INF-γ levels in rats infected by P. berghei. Furthermore, the flavonoid-rich extract enhanced weight of spleen in the rats, the metabolic and phagocytic activities of the peritoneal cells, and the concentration of nitric oxide and oxygen radicals in methylprednisolone-immunocompromised rats compared to the control (p < 0.05). Conclusion The study has revealed that T. diversifolia flavonoids-rich extract through its antiplasmodial and phagocytic activities is a promising treatment of malaria.
Collapse
Affiliation(s)
- Ntonifor Helen Ngum
- Department of ZoologyFaculty of SciencesUniversity of Bamenda, North West, Bamenda, Cameroon
| | - Ndoah Ellen Masakebenagha
- Department of Microbiology and ParasitologyFaculty of SciencesUniversity of Bamenda, North West, Bamenda, Cameroon
| | - Oumar Mahamat
- Department of ZoologyFaculty of SciencesUniversity of Bamenda, North West, Bamenda, Cameroon
| |
Collapse
|
7
|
Quan S, Huang J, Chen G, Zhang A, Yang Y, Wu Z. Genistein Promotes M2 Macrophage Polarization via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Broilers with Necrotic Enteritis. Int J Mol Sci 2024; 25:6656. [PMID: 38928362 PMCID: PMC11203855 DOI: 10.3390/ijms25126656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates the immune system through complicated transcriptional programs. Genistein, an AhR ligand, exhibits anti-inflammatory properties. However, its role in modulating immune responses via the AhR signaling pathway remains unclear. In this study, 360 male Arbor Acre broilers (1-day-old) were fed a basal diet supplemented with 40 or 80 mg/kg genistein and infected with or without Clostridium perfringens (Cp). Our results demonstrated that genistein ameliorated Cp-induced intestinal damage, as reflected by the reduced intestinal lesion scores and improved intestinal morphology and feed-to-gain ratio. Moreover, genistein increased intestinal sIgA, TGF-β, and IL-10, along with elevated serum IgG, IgA, and lysozyme levels. Genistein improved intestinal AhR and cytochrome P450 family 1 subfamily A member 1 (CYP1A1) protein levels and AhR+ cell numbers in Cp-challenged broilers. The increased number of AhR+CD163+ cells in the jejunum suggested a potential association between genistein-induced AhR activation and anti-inflammatory effects mediated through M2 macrophage polarization. In IL-4-treated RAW264.7 cells, genistein increased the levels of AhR, CYP1A1, CD163, and arginase (Arg)-1 proteins, as well as IL-10 mRNA levels. This increase was attenuated by the AhR antagonist CH223191. In summary, genistein activated the AhR signaling pathway in M2 macrophages, which enhanced the secretion of anti-inflammatory cytokines and attenuated intestinal damage in Cp-infected broilers Cp.
Collapse
Affiliation(s)
| | | | | | | | - Ying Yang
- College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (J.H.); (G.C.); (A.Z.); (Z.W.)
| | | |
Collapse
|
8
|
Riva F, Eckersall PD, Chadwick CC, Chadwick LC, McKeegan DEF, Peinado-Izaguerri J, Bruggeman G, Hermans D, McLaughlin M, Bain M. Identification of novel biomarkers of acute phase response in chickens challenged with Escherichia coli lipopolysaccharide endotoxin. BMC Vet Res 2024; 20:236. [PMID: 38824607 PMCID: PMC11143708 DOI: 10.1186/s12917-024-04062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The chicken's inflammatory response is an essential part of the bird's response to infection. A single dose of Escherichia coli (E. coli) lipopolysaccharide (LPS) endotoxin can activate the acute phase response (APR) and lead to the production of acute phase proteins (APPs). In this study, the responses of established chicken APPs, Serum amyloid A (SAA) and Alpha-1-acid-glycoprotein (AGP), were compared to two novel APPs, Hemopexin (Hpx) and Extracellular fatty acid binding protein (Ex-FABP), in 15-day old broilers over a time course of 48 h post E.coli LPS challenge. We aimed to investigate and validate their role as biomarkers of an APR. Novel plant extracts, Citrus (CTS) and cucumber (CMB), were used as dietary supplements to investigate their ability to reduce the inflammatory response initiated by the endotoxin. RESULTS A significant increase of established (SAA, AGP) and novel (Ex-FABP, Hpx) APPs was detected post E.coli LPS challenge. Extracellular fatty acid binding protein (Ex-FABP) showed a similar early response to SAA post LPS challenge by increasing ~ 20-fold at 12 h post challenge (P < 0.001). Hemopexin (Hpx) showed a later response by increasing ∼5-fold at 24 h post challenge (P < 0.001) with a similar trend to AGP. No differences in APP responses were identified between diets (CTS and CMB) using any of the established or novel biomarkers. CONCLUSIONS Hpx and Ex-FABP were confirmed as potential biomarkers of APR in broilers when using an E. coli LPS model along with SAA and AGP. However, no clear advantage for using either of dietary supplements to modulate the APR was identified at the dosage used.
Collapse
Affiliation(s)
- Francesca Riva
- School of Health and Life Sciences, University of the West of Scotland, High St, Paisley, PA1 2BE, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK
- Faculty of Veterinary Medicine, University of Zagreb, Radoslava Cimermana, Zagreb, 10000, Croatia
| | - Peter D Eckersall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK
| | | | - Laura C Chadwick
- Life Diagnostics, P124 Turner Lane, West Chester, PA, 19380, USA
| | - Dorothy E F McKeegan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK
| | - Jorge Peinado-Izaguerri
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského, Košice, 041 81, Slovakia
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | | - David Hermans
- Nutrition Sciences N. V, Booiebos, Ghent, B-9031, Belgium
| | - Mark McLaughlin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK.
| | - Maureen Bain
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK
| |
Collapse
|
9
|
Peinado-Izaguerri J, Corbishley A, Zarzuela E, Pina-Beltrán B, Riva F, McKeegan DEF, Bain M, Muñoz J, Bhide M, McLaughlin M, Preston T. Effect of an immune challenge and two feed supplements on broiler chicken individual breast muscle protein synthesis rate. J Proteomics 2024; 299:105158. [PMID: 38484873 DOI: 10.1016/j.jprot.2024.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken's growth. Despite its importance, research on broiler chicken muscle protein dynamics has mostly been limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of citrus and cucumber extracts on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. Twenty-one day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analysed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein synthesis which could be essential for improving the efficiency of broiler chicken meat production. SIGNIFICANCE: The present study constitutes the first dynamic proteomics study conducted in a farm animal species which has characterized FSR in a large number of proteins, establishing a precedent for biomarker discovery and assessment of health and growth status. Moreover, it has been evidenced that the decrease in broiler chicken breast muscle protein following an immune challenge is a coordinated event which seems to be the main cause of the decreased growth observed in these animals.
Collapse
Affiliation(s)
- Jorge Peinado-Izaguerri
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom; University of Veterinary Medicine and Pharmacy in Košice, Laboratory of biomedical microbiology and immunology, Komenskeho 73, Košice 04001, Slovakia.
| | - Alexander Corbishley
- University of Edinburgh, Roslin Institute, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom.
| | - Eduardo Zarzuela
- Spanish National Cancer Research Center, Proteomics Unit, Calle de Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | - Blanca Pina-Beltrán
- Aix-Marseille Université, Marseille, Centre de Recherche en Cardiovasculaire et Nutrition, Bd Jean Moulin 27, Marseille 13385, France.
| | - Francesca Riva
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom; University of Zagreb, Clinic for Internal Diseases faculty of Veterinary Medicine, Heinzelova 55, Zagreb 10000, Croatia.
| | - Dorothy E F McKeegan
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Maureen Bain
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Javier Muñoz
- Spanish National Cancer Research Center, Proteomics Unit, Calle de Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Laboratory of biomedical microbiology and immunology, Komenskeho 73, Košice 04001, Slovakia.
| | - Mark McLaughlin
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Tom Preston
- University of Glasgow, SUERC, Stable Isotope Biochemistry Laboratory, East Kilbride, Glasgow G75 0QF, United Kingdom.
| |
Collapse
|
10
|
Hou J, Lu L, Lian L, Tian Y, Zeng T, Ma Y, Li S, Chen L, Xu W, Gu T, Li G, Liu X. Effects of coated sodium butyrate on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and intestinal microbiota of broiler chickens. Front Microbiol 2024; 15:1368736. [PMID: 38650870 PMCID: PMC11033381 DOI: 10.3389/fmicb.2024.1368736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction This study examined the impact of adding coated sodium butyrate (CSB) to the diet on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broiler chickens. Methods In this study, 240 yellow-feathered broiler chickens at 26 days old were divided into two groups: the control group (CON group) received a standard diet, and the experimental group (CSB group) received a diet with 0.5 g/kg of a supplement called CSB. Each group had 6 replicates, with 20 chickens in each replicate, and the experiment lasted for 36 days. Results Compared to the CON group, the CSB group showed a slight but insignificant increase in average daily weight gain during the 26-62 day period, while feed intake significantly decreased. The CSB group exhibited significant increases in serum superoxide dismutase, catalase, and total antioxidant capacity. Additionally, the CSB group had significant increases in total protein and albumin content, as well as a significant decrease in blood ammonia levels. Compared to the CON group, the CSB group had significantly increased small intestine villus height and significantly decreased jejunal crypt depth. The abundance of Bacteroidetes and Bacteroides in the cecal microbiota of the CSB group was significantly higher than that of the CON group, while the abundance of Proteobacteria, Deferribacteres, and Epsilonbacteraeota was significantly lower than that of the CON group. Conclusion These results suggest that adding CSB to the diet can improve the growth performance and antioxidant capacity of yellow-feathered broiler chickens while maintaining intestinal health.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanfen Ma
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sisi Li
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Liu
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
11
|
Souza SCR, Pinheiro RR, Peixoto RM, de Sousa ALM, Andrioli A, Lima AMC, Mendes BKM, Magalhães NMDA, Amaral GP, Teixeira MFDS. In vivo evaluation of the antiretroviral activity of Melia azedarach against small ruminant lentiviruses in goat colostrum and milk. Braz J Microbiol 2024; 55:875-887. [PMID: 38010582 PMCID: PMC10920544 DOI: 10.1007/s42770-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to evaluate in vivo the use of the extract from the leaves of Melia azedarach in the ethyl acetate fraction at a concentration of 150 µg/mL as an antiretroviral treatment against small ruminant lentiviruses (SRLV) in goat colostrum, and milk with a 90-min action. Two groups of six kids were treated with the extract. One group received three supplies of colostrum from does naturally positive for SRLV, treated with the ethyl acetate fraction of M. azedarach (EAF-MA) for three days, while the other group consumed milk from does also carrying the virus with the respective extract twice a day for five days. After undergoing treatment, all animals began to receive thermized milk until weaning (60 days) and were monitored for six months using nested polymerase chain reaction (nPCR) and western blot (WB) tests. The study revealed cumulative percentages of positive animals in WB or nPCR in the milk group of 66.66% on the seventh day, 83.33% in the following week, and 100% at 120 days, while the colostrum group showed values of 66.66% at 14 days, 83.33% at 90 days, and 100% at 120 days. Variation and intermittency were observed in viral detection, but all animals tested positive in WB or nPCR at some point. A potential delay in infection was observed, which was more significant in the colostrum group. The need for the combination of serological and molecular tests for a more efficient detection of the disease is also emphasized.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Milena César Lima
- Regional Scientific Development Fellowship of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats & Sheep, Sobral, Ceará, Brazil
| | | | | | - Gabriel Paula Amaral
- Graduate Program in Animal Science, Vale Do Acaraú State University, Sobral, Ceará, Brazil
| | | |
Collapse
|
12
|
Wei Y, Liu Y, Li G, Guo Y, Zhang B. Effects of quercetin and genistein on egg quality, lipid profiles, and immunity in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:207-214. [PMID: 37552763 DOI: 10.1002/jsfa.12910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND After the peak laying stage, laying hens become susceptible to lipid accumulation and inflammatory reactions. The objective of this experiment was to examine the impact of quercetin and genistein on egg quality and lipid profiles in laying hens. A total of 240 Hy-Line Brown hens were randomly assigned to three dietary treatments. Each treatment had eight replicates, with ten hens in each replicate, and the hens were aged between 46 and 56 weeks. The test diets consisted of a corn-soybean meal-based basal diet, a basal diet supplemented with 300 mg kg-1 quercetin, and a basal diet supplemented with 300 mg kg-1 quercetin and 40 mg kg-1 genistein. RESULTS Results showed that, separately, supplemental quercetin significantly improved egg quality (eggshell strength, albumen height, and Haugh unit, P < 0.05) and reduced the deposition of abdominal fat (P < 0.05). Our findings also showed that, separately or as a combination, supplemental quercetin and genistein significantly increased eggshell thickness (P < 0.05), decreased the levels of lipids in serum (low-density lipoprotein cholesterol, total cholesterol, total triglycerides, and non-esterified fatty acids, P < 0.05) and significantly increased serum immunoglobulins A and G (P < 0.05), and promoted the expression of splenic immune-related genes (IgA and IL-4, P < 0.05). CONCLUSION This study confirmed that supplemental quercetin and genistein, either separately or in combination, can enhance eggshell thickness, lipid profiles, and immune function in aging hens. Moreover, both quercetin alone and quercetin + genistein exhibited similar abilities to lower lipid levels and improve immune function. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Wei
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yongfa Liu
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Guang Li
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yuming Guo
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Choudhary S, Khan S, Rustagi S, Rajpal VR, Khan NS, Kumar N, Thomas G, Pandey A, Hamurcu M, Gezgin S, Zargar SM, Khan MK. Immunomodulatory Effect of Phytoactive Compounds on Human Health: A Narrative Review Integrated with Bioinformatics Approach. Curr Top Med Chem 2024; 24:1075-1100. [PMID: 38551050 DOI: 10.2174/0115680266274272240321065039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Immunomodulation is the modification of immune responses to control disease progression. While the synthetic immunomodulators have proven efficacy, they are coupled with toxicity and other adverse effects, and hence, the efforts were to identify natural phytochemicals with immunomodulatory potential. OBJECTIVE To understand the immunomodulatory properties of various phytochemicals and investigate them in Echinacea species extracts using an in silico approach. METHODOLOGY Several scientific database repositories were searched using different keywords: "Phytochemicals," "Alkaloids," "Polyphenols," "Flavonoids," "Lectins," "Glycosides," "Tannins," "Terpenoids," "Sterols," "Immunomodulators," and "Human Immune System" without any language restriction. Additionally, the study specifically investigated the immunomodulatory properties of Echinacea species extracts using gene expression analysis of GSE12259 from NCBI-GEO through the Bioconductor package GEOquery and limma. RESULTS A total of 182 studies were comprehensively analyzed to understand immunomodulatory phytochemicals. The in silico analysis highlighted key biological processes (positive regulation of cytokine production, response to tumor necrosis factor) and molecular functions (cytokine receptor binding, receptor-ligand activity, and cytokine activity) among Echinacea species extracts contributing to immune responses. Further, it also indicated the association of various metabolic pathways, i.e., pathways in cancer, cytokine-cytokine receptor interaction, NF-kappa B, PI3K-Akt, TNF, MAPK, and NOD-like receptor signaling pathways, with immune responses. The study revealed various hub targets, including CCL20, CCL4, GCH1, SLC7A11, SOD2, EPB41L3, TNFAIP6, GCLM, EGR1, and FOS. CONCLUSION The present study presents a cumulative picture of phytochemicals with therapeutic benefits. Additionally, the study also reported a few novel genes and pathways in Echinacea extracts by re-analyzing GSE 12259 indicating its anti-inflammatory, anti-viral, and immunomodulatory properties.
Collapse
Affiliation(s)
| | - Sheeba Khan
- Department of Food Technology, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, 21107, India
| | - Shivani Rustagi
- Department of Food Processing and Technology, Gautam Buddha University, Greater Noida, 201312, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Noor Saba Khan
- ICMR-National Institute of Pathology, New Delhi, 110091, India
| | - Neeraj Kumar
- ICMR-National Institute of Pathology, New Delhi, 110091, India
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, 21107, India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190025, India
| | - Mohd Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| |
Collapse
|
14
|
Zhi Y, Li T, Li Y, Zhang T, Du M, Zhang Q, Wang X, Hu G. Protective role of Cecropin AD against LPS-induced intestinal mucosal injury in chickens. Front Immunol 2023; 14:1290182. [PMID: 38162646 PMCID: PMC10757607 DOI: 10.3389/fimmu.2023.1290182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Cecropin AD (CAD), a renowned antimicrobial peptide, has shown promising potential in treating various bacterial infections. This study investigates the protective effects of CAD against lipopolysaccharide (LPS)-induced intestinal adversities in chickens. Methods Sixty SPF-grade chicks were divided into groups and exposed to different dosages of CAD, followed by LPS administration. The study assessed the impact of CAD on intestinal mucosal injury markers, oxidative stress, and inflammation. Results LPS significantly increased Diamine oxidase (DAO) and D-lactate (D-LA) levels, both indicators of intestinal mucosal injury. CAD treatment substantially attenuated these elevations, particularly at higher dosages. Additionally, CAD markedly reduced oxidative stress in intestinal tissues, as shown by normalized antioxidant levels and decreased reactive oxygen species. Histological analysis supported these findings, showing better-preserved villi structures in CAD-treated groups. Furthermore, CAD significantly reduced IL-6 and IL-8 expression post-LPS stimulation and effectively regulated the NLRP3 inflammasome pathway, decreasing associated factors like NLRP3, Caspase-1, IL-1b, and IL-18. Discussion The study demonstrates CAD's therapeutic potential in alleviating LPS-induced intestinal injuries. The protective effects are primarily attributed to its anti-inflammatory and antioxidative actions and modulation of the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Yan Zhi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tingyu Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaxuan Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tao Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mengze Du
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qian Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, the Key Laboratory of Otolaryngology-Head and Neck Surgery (Ministry of Education of China), Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ge Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
15
|
Hou J, Lian L, Lu L, Gu T, Zeng T, Chen L, Xu W, Li G, Wu H, Tian Y. Effects of Dietary Bacillus coagulans and Tributyrin on Growth Performance, Serum Antioxidants, Intestinal Morphology, and Cecal Microbiota of Growing Yellow-Feathered Broilers. Animals (Basel) 2023; 13:3534. [PMID: 38003151 PMCID: PMC10668748 DOI: 10.3390/ani13223534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the impact of Bacillus coagulans (BC) and tributyrin (TB) supplementation on the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broilers. Using a 2 × 2 factorial design, 480 broilers were randomly assigned to four experimental diets, comprising two levels of BC (0 and 1 g/kg) and two levels of TB (0 and 1 g/kg), over a 36-day period. A significant interaction was observed between BC and TB, impacting the average daily feed intake (ADFI) of broilers aged between 26 and 40 days (p < 0.01). BC and TB also displayed a significant interaction in relation to serum malondialdehyde levels and total antioxidant capacity (p < 0.05). Additionally, there was a significant interaction between BC and TB concerning the duodenal villus-to-crypt ratio, crypt depth, and jejunal villus-to-crypt ratio (p < 0.05). The addition of BC and TB significantly enhanced the richness and diversity of cecal microbiota, with a notable interactive effect observed for the abundance of Faecalibacterium, Ruminococcus_torques_group, and Phascolarctobacterium. In conclusion, supplementation with BC and TB can effectively improve the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota composition of yellow-feathered broilers, indicating the presence of an interactive effect.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| |
Collapse
|
16
|
Hu W, He Z, Du L, Zhang L, Li J, Ma Y, Bi S. Biomarkers of oxidative stress in broiler chickens attacked by lipopolysaccharide: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115606. [PMID: 37866038 DOI: 10.1016/j.ecoenv.2023.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Oxidative stress (OS) constitutes a pivotal factor in the initiation and progression of lipopolysaccharide (LPS) challenges in broiler chickens. Increasing studies have demonstrated that Alleviation of oxidative stress seems to be a reasonable strategy to alleviate LPS-mediated afflictions in broilers. Nonetheless, the relationship between OS-related indicators and exposure to LPS remains a topic of debate. The aim of this investigation was to precisely and holistically evaluate the effect of LPS exposure on OS-associated markers. We conducted a systematic search of four electronic databases-PubMed, Web of Science, Scopus, and Cochrane for relevant studies, and a total of 31 studies were included. The overall results showed that the LPS treatment significantly increased the levels of oxygen radicals and their products, such as malondialdehydes (MDA), reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG), while significantly reduced the levels of antioxidants, such as total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH), in the chickens. Intriguingly, though the observed trends in alterations were not strictly correlated with LPS concentrations, the enzyme activity levels were indeed influenced by the concentration of LPS. This observation highlights the complex relationship between LPS exposure and the body's antioxidant response. Despite some limitations, all the included studies were deemed credible. Subgroup evaluations revealed that the jejunum and duodenum has demonstrated stronger antioxidant capability compared to other tissues. Overall, our study presents compelling evidence that exposure to LPS induces significant OS in chickens. And we also found that the extent of OS was related to LPS doses, target tissues, and dietary ingredients.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Yue Ma
- Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
17
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
18
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
19
|
Li X, Sun R, Liu Q, Gong Y, Ou Y, Qi Q, Xie Y, Wang X, Hu C, Jiang S, Zhao G, Wei L. Effects of dietary supplementation with dandelion tannins or soybean isoflavones on growth performance, antioxidant function, intestinal morphology, and microbiota composition in Wenchang chickens. Front Vet Sci 2023; 9:1073659. [PMID: 36686185 PMCID: PMC9846561 DOI: 10.3389/fvets.2022.1073659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Many benefits have been found in supplementing tannins or soybean isoflavones to poultry, including increased body weight gain, antioxidant activity, and better intestinal morphology. However, few studies tested the influence of dandelion tannins or soybean isoflavones supplementation on Wenchang chickens. This study investigates the effects of dietary supplementation with dandelion tannins or soybean isoflavones on the growth performance, antioxidant function, and intestinal health of female Wenchang chickens. A total of 300 chickens were randomly divided into five groups, with six replicates per group and 10 broilers per replicate. The chickens in the control group (Con) were fed a basal diet; the four experimental groups were fed a basal diet with different supplements: 300 mg/kg of dandelion tannin (DT1), 500 mg/kg of dandelion tannin (DT2), 300 mg/kg of soybean isoflavone (SI1), or 500 mg/kg of soybean isoflavone (SI2). The experiment lasted 40 days. The results showed that the final body weight (BW) and average daily gain (ADG) were higher in the DT2 and SI1 groups than in the Con group (P < 0.05). In addition, dietary supplementation with dandelion tannin or soybean isoflavone increased the level of serum albumin (P <0.05); the concentrations of serum aspartate aminotransferase and glucose were significantly higher in the SI1 group (P < 0.05) than in the Con group and the concentration of triglycerides in the DT1 group (P < 0.05). The serum catalase (CAT) level was higher in the DT1 and SI1 groups than in the Con group (P < 0.05). The ileum pH value was lower in the DT2 or SI1 group than in the Con group (P < 0.05). The jejunum villus height and mucosal muscularis thickness were increased in the DT2 and SI1 groups (P < 0.05), whereas the jejunum crypt depth was decreased in the DT1 or DT2 group compared to the Con group (P < 0.05). In addition, the messenger RNA (mRNA) expression level of zonula occludens 1 (ZO-1) in the duodenum of the SI1 group and those of occludin, ZO-1, and claudin-1 in the ileum of the DT2 and SI1 groups were upregulated (P < 0.05) compared to the Con group. Moreover, the DT2 and SI1 groups exhibited reduced intestinal microbiota diversity relative to the Con group, as evidenced by decreased Simpson and Shannon indexes. Compared to the Con group, the relative abundance of Proteobacteria was lower and that of Barnesiella was higher in the DT2 group (P < 0.05). Overall, dietary supplementation with 500 mg/kg of dandelion tannin or 300 mg/kg of soybean isoflavone improved the growth performance, serum biochemical indexes, antioxidant function, and intestinal morphology and modulated the cecal microbiota composition of Wenchang chickens.
Collapse
Affiliation(s)
- Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Yangkun Ou
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuping Wang
- Hainan (Tanniu) Wenchang Chicken Co., Ltd., Haikou, China
| | - Chenjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,Guiping Zhao ✉
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,*Correspondence: Limin Wei ✉
| |
Collapse
|
20
|
Pang X, Miao Z, Dong Y, Cheng H, Xin X, Wu Y, Han M, Su Y, Yuan J, Shao Y, Yan L, Li J. Dietary methionine restriction alleviates oxidative stress and inflammatory responses in lipopolysaccharide-challenged broilers at early age. Front Pharmacol 2023; 14:1120718. [PMID: 36874014 PMCID: PMC9975741 DOI: 10.3389/fphar.2023.1120718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, we investigated the effect of dietary methionine restriction (MR) on the antioxidant function and inflammatory responses in lipopolysaccharide (LPS)-challenged broilers reared at high stocking density. A total of 504 one-day-old male Arbor Acre broiler chickens were randomly divided into four treatments: 1) CON group, broilers fed a basal diet; 2) LPS group, LPS-challenged broilers fed a basal diet; 3) MR1 group, LPS-challenged broilers fed a methionine-restricted diet (0.3% methionine); and 4) MR2 group, LPS-challenged broilers fed a methionine-restricted diet (0.4% methionine). LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 17, 19, and 21 days of age, whereas the CON group was injected with sterile saline. The results showed that: LPS significantly increased the liver histopathological score (p < 0.05); LPS significantly decreased the serum total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity at 3 h after injection (p < 0.05); the LPS group had a higher content of Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF)-α, but a lower content of IL-10 than the CON group in serum (p < 0.05). Compared with the LPS group, the MR1 diet increased catalase (CAT), SOD, and T-AOC, and the MR2 diet increased SOD and T-AOC at 3 h after injection in serum (p < 0.05). Only MR2 group displayed a significantly decreased liver histopathological score (p < 0.05) at 3 h, while MR1 and MR2 groups did so at 8 h. Both MR diets significantly decreased serum LPS, CORT, IL-1β, IL-6, and TNF-α contents, but increased IL-10 content (p < 0.05). Moreover, the MR1 group displayed significantly increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2), CAT, and GSH-Px at 3 h; the MR2 group had a higher expression of Kelch-like ECH-associated protein 1 (Keap1), SOD, and GSH-Px at 8 h (p < 0.05). In summary, MR can improve antioxidant capacity, immunological stress, and liver health in LPS-challenged broilers. The MR1 and MR2 groups experienced similar effects on relieving stress; however, MR1 alleviated oxidative stress more rapidly. It is suggested that precise regulation of methionine levels in poultry with stress may improve the immunity of broilers, reduce feed production costs, and increase production efficiency in the poultry industry.
Collapse
Affiliation(s)
- Xiyuan Pang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Miao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yuanyang Dong
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Huiyu Cheng
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xiangqi Xin
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yuan Wu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Han
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Jianmin Yuan
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Yan
- New Hope Liuhe Co.,Ltd., Beijing, China
| | - Jianhui Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
21
|
Dietary Phytogenic Extracts Favorably Influence Productivity, Egg Quality, Blood Constituents, Antioxidant and Immunological Parameters of Laying Hens: A Meta-Analysis. Animals (Basel) 2022; 12:ani12172278. [PMID: 36077998 PMCID: PMC9454511 DOI: 10.3390/ani12172278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
The present study aimed to assess the impact of dietary phytogenic extracts on laying hen productivity, egg quality, blood constituents, antioxidant, and immunological parameters through a meta-analytical approach. A total of 28 articles (119 data points) reporting the influence of dietary phytogenic extracts on the productive performance, egg quality, blood constituents, immunological, and antioxidant parameters of laying hens were embedded into a database. Statistical analysis was performed using a mixed model, with different studies treated as random effects and phytogenic extract levels treated as fixed effects. This meta-analysis revealed that dietary phytogenic extracts quadratically (p < 0.05) improved egg production and egg mass as well as decreased (p < 0.05) the feed conversion ratio (FCR) with no adverse effect on egg weight and egg quality. Feed intake and egg yolk percentage tended to increase linearly (p < 0.1). Total serum cholesterol and low-density lipoprotein (LDL) declined quadratically (p < 0.001 and p < 0.05, respectively), high-density lipoprotein (HDL) increased linearly (p < 0.001), and malondialdehyde (MDA) decreased linearly (p < 0.01), with increasing levels of dietary phytogenic extract. In addition, immunoglobulin G (IgG), immunoglobulin A (IgA), glutathione peroxidase (GSH-Px), and total superoxide dismutase (TSOD) increased linearly (p < 0.05) in line with the increase in dietary phytogenic extract level. It was concluded that the inclusion of phytogenic extracts in the diet of laying hens had a positive effect on productive performance, feed efficiency, egg mass, immunity, and antioxidant activity without interfering with egg quality. The optimum level of feed photogenic extract for egg production and feed efficiency was determined to be around 300 mg/kg feed.
Collapse
|
22
|
He Z, Li Y, Xiong T, Nie X, Zhang H, Zhu C. Effect of dietary resveratrol supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged with lipopolysaccharide. Front Microbiol 2022; 13:977087. [PMID: 36090096 PMCID: PMC9453244 DOI: 10.3389/fmicb.2022.977087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (RES) displays strong antioxidant and anti-inflammatory properties in protecting the animals from various stressors and inflammatory injuries, but its interrelationship with the gut microbiota remained largely unclear. This study was carried out to investigate the effects of dietary RES supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged by lipopolysaccharide (LPS). A total of 240 yellow-feathered broilers were randomly assigned to four treatment groups in a 2 × 2 factorial design. The broilers were fed with the control diet or control diet supplemented with 400 mg/kg RES, followed by challenge with LPS or the same amount of saline. Dietary RES supplementation significantly alleviated the decreases in the final body weight (BW), average daily gain (ADG), and ADFI induced by LPS (P < 0.05). LPS challenge significantly increased plasma concentrations of triglyceride, high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and cortisol levels, but decreased triiodothyronine (T3) and insulin levels (P < 0.05). Dietary supplementation with RES significantly reversed the elevated creatinine concentrations and the decreased concentrations of T3 and insulin caused by LPS (P < 0.05). Moreover, dietary RES supplementation significantly increased plasma total antioxidant capacity (T-AOC) and catalase (CAT) activities and superoxide dismutase (SOD) and T-AOC activities in jejunal mucosa and reduced malondialdehyde (MDA) concentration in the plasma (P < 0.05). The reduction in the villus height to crypt depth ratio in duodenum, jejunum and ileum and the shortening of villus height in jejunum and ileum caused by LPS were also alleviated by RES treatment (P < 0.05). Furthermore, the increased concentrations of intestinal tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β caused by LPS were significantly decreased by RES treatment (P < 0.05). Dietary RES treatment increased the mRNA expression of claudin-1, claudin-5, occludin, and zonula occludens-1 (ZO-1), and decreased mRNA expression of IL-1β, IL-8, IL-17, and TNF-α after LPS challenge (P < 0.05). Dietary RES treatments significantly decreased the dominance of cecal microbiota, and increased the Pieiou-e and Simpson index. Moreover, dietary RES supplementation increased relative abundance of UCG_ 009, Erysipelotrichaceae, Christensenellaceae_R-7_group, Anaerotruncus, RF39, and Ruminococcus while decreasing the abundance of Alistipes at genus level. Spearman correlation analysis revealed that the microbes at the order and genus levels significantly correlated with indicators of growth performance, antioxidant capacity, and intestinal health. Collectively, dietary supplementation with 400 mg/kg RES could improve growth performance and antioxidant capacity, and modulate intestinal immunity in yellow-feathered broilers challenged by LPS at early stage, which might be closely associated with the regulation of gut microbiota community composition.
Collapse
|
23
|
Kalia VC, Shim WY, Patel SKS, Gong C, Lee JK. Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155300. [PMID: 35447189 DOI: 10.1016/j.scitotenv.2022.155300] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
With a continuously increasing human population is an increasing global demand for food. People in countries with a higher socioeconomic status tend to switch their preferences from grains to meat and high-value foods. Their preference for chicken as a source of protein has grown by 70% over the last three decades. Many studies have shown the role of feed in regulating the animal gut microbiome and its impact on host health. The microbiome absorbs nutrients, digests foods, induces a mucosal immune response, maintains homeostasis, and regulates bioactive metabolites. These metabolic activities are influenced by the microbiota and diet. An imbalance in microbiota affects host physiology and progressively causes disorders and diseases. With the use of antibiotics, a shift from dysbiosis with a higher density of pathogens to homeostasis can occur. However, the progressive use of higher doses of antibiotics proved harmful and resulted in the emergence of multidrug-resistant microbes. As a result, the use of antibiotics as feed additives has been banned. Researchers, regulatory authorities, and managers in the poultry industry have assessed the challenges associated with these restrictions. Research has sought to identify alternatives to antibiotic growth promoters for poultry that do not have any adverse effects. Modulating the host intestinal microbiome by regulating dietary factors is much easier than manipulating host genetics. Research efforts have led to the identification of feed additives, including bacteriocins, immunostimulants, organic acids, phytogenics, prebiotics, probiotics, phytoncides, and bacteriophages. In contrast to focusing on one or more of these alternative bioadditives, an improved feed conversion ratio with enhanced poultry products is possible by employing a combination of feed additives. This article may be helpful in future research towards developing a sustainable poultry industry through the use of the proposed alternatives.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Woo Yong Shim
- Samsung Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Chunjie Gong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Chen J, Wang H, Wu Z, Gu H, Li C, Wang S, Liu G. Effects of 5-aminolevulinic acid on the inflammatory responses and antioxidative capacity in broiler chickens challenged with lipopolysaccharide. Animal 2022; 16:100575. [DOI: 10.1016/j.animal.2022.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/01/2022] Open
|
25
|
Manyelo TG, Sebola NA, Hassan ZM, Ng’ambi JW, Weeks WJ, Mabelebele M. Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030623. [PMID: 35163888 PMCID: PMC8839114 DOI: 10.3390/molecules27030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
This study aimed at investigating the impact of early versus normal grain harvesting on the chemical composition and secondary metabolites of Amaranthus cruentus species grown in South Africa. Mature harvested grain had higher (p < 0.05) DM, CF, NDF and ADF content compared to prematurely harvested grain. There were no significant (p > 0.05) differences between CP, ADL and GE of premature and mature harvested grains. Mature harvesting resulted in higher grain Ca, P, Mg and K content. Essential amino acids spectrum and content remained similar regardless of maturity at harvest. The grains displayed an ample amount of unsaturated fatty acids; the highest percentage was linoleic acid: 38.75% and 39.74% in premature and mature grains, respectively. β-Tocotrienol was detected at 5.92 and 9.67 mg/kg in premature and mature grains, respectively. The lowest was δ-tocotrienol which was 0.01 and 0.54 mg/kg in premature and mature grains, respectively. Mature harvested grain had a higher secondary metabolite content compared to premature harvested grains. The results suggest that mature harvested Amaranthus cruentus grain contain more minerals and phytochemicals that have health benefits for human and livestock immunity and gut function, which ultimately improves performance. This study concludes that A. cruentus grown in South Africa is a potential alternative cereal to major conventional cereals.
Collapse
Affiliation(s)
- Tlou Grace Manyelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
- Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa;
| | - Nthabiseng Amenda Sebola
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
| | - Zahra Mohammed Hassan
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
| | - Jones Wilfred Ng’ambi
- Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa;
| | - William James Weeks
- Agricultural Research Services, Department of Agriculture and Rural Development, Potchefstroom 2520, South Africa;
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
- Correspondence: ; Tel.: +27-11-471-3983
| |
Collapse
|
26
|
Jiang L, Zhang G, Li Y, Shi G, Li M. Potential Application of Plant-Based Functional Foods in the Development of Immune Boosters. Front Pharmacol 2021; 12:637782. [PMID: 33959009 PMCID: PMC8096308 DOI: 10.3389/fphar.2021.637782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Immune dysfunction, which is responsible for the development of human diseases including cancer, is caused by a variety of factors. Therefore, regulation of the factors influencing the immune response is a potentially effective strategy to counter diseases. Presently, several immune adjuvants are used in clinical practice to enhance the immune response and host defense ability; however, synthetic drugs can exert negative side effects. Thus, the search for natural products of plant origin as new leads for the development of potent and safe immune boosters is gaining considerable research interest. Plant-based functional foods have been shown to exert several immunomodulatory effects in humans; therefore, the application of new agents to enhance immunological and specific host defenses is a promising approach. In this comprehensive review, we have provided an up-to-date report on the use as well as the known and potential mechanisms of bioactive compounds obtained from plant-based functional foods as natural immune boosters. Plant-based bioactive compounds promote immunity through multiple mechanisms, including influencing the immune organs, cellular immunity, humoral immunity, nonspecific immunity, and immune-related signal transduction pathways. Enhancement of the immune response in a natural manner represents an excellent prospect for disease prevention and treatment and is worthy of further research and development using approaches of modern science and technology.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Guoqing Zhang
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China.,Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ye Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| | | | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
27
|
Yang S, Zhang J, Jiang Y, Xu YQ, Jin X, Yan SM, Shi BL. Effects of Artemisia argyi flavonoids on growth performance and immune function in broilers challenged with lipopolysaccharide. Anim Biosci 2021; 34:1169-1180. [PMID: 33561921 PMCID: PMC8255877 DOI: 10.5713/ab.20.0656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022] Open
Abstract
Objective This research aimed to study the effects of Artemisia argyi flavonoids (AAF) supplemented in diets on the growth performance and immune function of broiler chickens challenged with lipopolysaccharide (LPS). Methods A total of one hundred and ninety-two 1-d-old broiler chicks were assigned into 4 treatment groups, which were, respectively, fed a basal diet (control), fed a diet with 750 mg/kg AAF, fed a basal diet, and challenged with LPS, fed a diet with 750 mg/kg AAF, and challenged with LPS. Each treatment had six pens with 8 chicks per pen. On days 14, 16, 18, 20 (stress phase I) and 28, 30, 32, 34 (stress phase II), broilers were injected with LPS (500 μg/kg body weight) or an equivalent amount of saline. Results The results demonstrated that dietary AAF significantly improved the body weight (d 21) and alleviated the decrease of average daily gain in broilers challenged with LPS on d 21 and d 35 (p<0.05). Dietary AAF increased bursa fabricius index, and dramatically attenuated the elevation of spleen index caused by LPS on d 35 (p<0.05). Furthermore, serum interleukin-6 (IL-6) concentration decreased with AAF supplementation on d 21 (p<0.05). Diet treatment and LPS challenge exhibited a significant interaction for the concentration of IL-1β (d 21) and IL-6 (d 35) in serum (p<0.05). Additionally, AAF supplementation mitigated the increase of IL-1β, IL-6 in liver and spleen induced by LPS on d 21 and 35 (p<0.05). This study also showed that AAF supplementation significantly reduced the expression of IL-1β (d 21) and nuclear transcription factor kappa-B p65 (d 21 and 35) in liver (p<0.05), and dietary AAF and LPS treatment exhibited significant interaction for the gene expression of IL-6 (d 21), toll like receptor 4 (d 35) and myeloid differentiation factor 88 (d 35) in spleen (p<0.05). Conclusion In conclusion, AAF could be used as a potential natural immunomodulator to improve growth performance and alleviate immune stress in broilers challenged with LPS.
Collapse
Affiliation(s)
- Shuo Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yang Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Qing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Su Mei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Lin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
28
|
Patra AK. Influence of Plant Bioactive Compounds on Intestinal Epithelial Barrier in Poultry. Mini Rev Med Chem 2020; 20:566-577. [PMID: 31878854 DOI: 10.2174/1389557520666191226111405] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/14/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Natural plant bioactive compounds (PBC) have recently been explored as feed additives to improve productivity, health and welfare of poultry following ban or restriction of in-feed antibiotic use. Depending upon the types of PBC, they possess antimicrobial, digestive enzyme secretion stimulation, antioxidant and many pharmacological properties, which are responsible for beneficial effects in poultry production. Moreover, they may also improve the intestinal barrier function and nutrient transport. In this review, the effects of different PBC on the barrier function, permeability of intestinal epithelia and their mechanism of actions are discussed, focusing on poultry feeding. Dietary PBC may regulate intestinal barrier function through several molecular mechanisms by interacting with different metabolic cascades and cellular transcription signals, which may then modulate expressions of genes and their proteins in the tight junction (e.g., claudins, occludin and junctional adhesion molecules), adherens junction (e.g., E-cadherin), other intercellular junctional proteins (e.g., zonula occludens and catenins), and regulatory proteins (e.g., kinases). Interactive effects of PBC on immunomodulation via expressions of several cytokines, chemokines, complement components, pattern recognition receptors and their transcription factors and cellular immune system, and alteration of mucin gene expressions and goblet cell abundances in the intestine may change barrier functions. The effects of PBC are not consistent among the studies depending upon the type and dose of PBC, physiological conditions and parts of the intestine in chickens. An effective concentration in diets and specific molecular mechanisms of PBC need to be elucidated to understand intestinal barrier functionality in a better way in poultry feeding.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, India
| |
Collapse
|
29
|
Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother 2020; 133:110959. [PMID: 33197758 DOI: 10.1016/j.biopha.2020.110959] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
A well-functioning immune system of the host body plays pivotal role in the maintenance of ordinary physiological and immunological functions as well as internal environment. Balanced immunity enhances defense mechanism against infection, diseases and unwanted pathogens to avoid hypersensitivity reactions and immune related diseases. The ideal immune responses are the results of corrective interaction between the innate immune cells and acquired components of the immune system. Recently, the interest towards the immune system increased as significant target of toxicity due to exposure of chemicals, drugs and environmental pollutants. Numerous factors are involved in altering the immune responses of the host such as sex, age, stress, malnutrition, alcohol, genetic variability, life styles, environmental-pollutants and chemotherapy exposure. Immunomodulation is any modification of immune responses, often involved induction, amplification, attenuation or inhibition of immune responses. Several synthetic or traditional medicines are available in the market which promptly have many serious adverse effects and create pathogenic resistance. Phytochemicals are naturally occurring molecules, which significantly play an imperative role in modulating favorable immune responses. The present review emphasizes on the risk factors associated with alterations in immune responses, and immunomodulatory activity of phytochemicals specifically, glycosides, alkaloids, phenolic acids, flavonoids, saponins, tannins and sterols and sterolins.
Collapse
|
30
|
Iqbal Y, Cottrell JJ, Suleria HA, Dunshea FR. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals (Basel) 2020; 10:E1391. [PMID: 32796556 PMCID: PMC7460082 DOI: 10.3390/ani10081391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.
Collapse
Affiliation(s)
- Yasir Iqbal
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
31
|
Lv Z, Dai H, Wei Q, Jin S, Wang J, Wei X, Yuan Y, Yu D, Shi F. Dietary genistein supplementation protects against lipopolysaccharide-induced intestinal injury through altering transcriptomic profile. Poult Sci 2020; 99:3411-3427. [PMID: 32616235 PMCID: PMC7597844 DOI: 10.1016/j.psj.2020.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genistein is abundant in the corn-soybean meal feed. Little information is available about the effect of dietary genistein on the intestinal transcriptome of chicks, especially when suffering from intestinal injury. In this study, 180 one-day-old male ROSS 308 broiler chickens were randomly allocated to 3 groups, with 4 replicates (cages) of 15 birds each. The treatments were as follows: chicks received a basal diet (CON), a basal diet and underwent lipopolysaccharide-challenge (LPS), or a basal diet supplemented with 40 mg/kg genistein and underwent LPS-challenge (GEN). LPS injection induced intestinal injury and inflammatory reactions in the chicks. Transcriptomic analysis identified 7,131 differently expressed genes (3,281 upregulated and 3,851 downregulated) in the GEN group compared with the LPS group (P adjusted value < 0.05, |fold change| > 1.5), which revealed that dietary genistein exposure altered the gene expression profile and signaling pathways in the ileum of LPS-treated chicks. Furthermore, dietary genistein improved intestinal morphology, mucosal immune function, tight junction, antioxidant activity, apoptotic process, and growth performance, which were adversely damaged by LPS injection. Therefore, adding genistein into the diet of chicks can alter RNA expression profile and ameliorate intestinal injury in LPS-challenged chicks, thereby improving the growth performance of chicks with intestinal injury.
Collapse
Affiliation(s)
- Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Jin
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Jiao Wang
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Xihui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunwei Yuan
- Poultry Production Department, Jiangsu Hesheng Food Limited Company, Taizhou 225300, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Csernus B, Biró S, Babinszky L, Komlósi I, Jávor A, Stündl L, Remenyik J, Bai P, Oláh J, Pesti-Asbóth G, Czeglédi L. Effect of Carotenoids, Oligosaccharides and Anthocyanins on Growth Performance, Immunological Parameters and Intestinal Morphology in Broiler Chickens Challenged with Escherichia coli Lipopolysaccharide. Animals (Basel) 2020; 10:E347. [PMID: 32098265 PMCID: PMC7070938 DOI: 10.3390/ani10020347] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the effect of carotenoid, oligosaccharide and anthocyanin supplementation in broiler diets under Escherichia coli lipopolysaccharide (LPS) challenge. Ross 308 chickens were fed 5 diets: basal diet (control diet), diet supplemented with β-glucan in 0.05% (positive control) and diets with 0.5% carotenoid-, oligosaccharide- or anthocyanin contents. On the 26th days of age, chickens were challenged intraperitoneally 2 mg LPS per kg of body weight. 12 h after injection, birds were euthanized, then spleen and ileum samples were collected. LPS induced increased relative mRNA expression of splenic (p = 0.0445) and ileal (p = 0.0435) interleukin-1β (IL-1β), which was lower in the spleen in carotenoid (p = 0.0114), oligosaccharide (p = 0.0497) and anthocyanin (p = 0.0303)-treated chickens compared to LPS-injected control birds. Dietary supplementation of carotenoids also decreased relative gene expression of splenic interleukin-6 (IL-6) (p = 0.0325). In the ileum, β-glucan supplementation showed lower relative mRNA expression of toll-like receptor 5 (TLR-5) (p = 0.0387) compared to anthocyanin treatment. Gene expression of both splenic and ileal interferon-α (IFN-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4) and toll-like receptor 5 (TLR-5) were not influenced by dietary supplements. In conclusion, carotenoids, oligosaccharides and anthocyanins could partially mitigate the immune stress caused by LPS challenge. All of the compounds impacted longer villus height (p < 0.0001), villus height:crypt depth ratios were higher after β-glucan (p < 0.0001) and anthocyanin (p = 0.0063) supplementations and thickened mucosa was observed in β-glucan (p < 0.0001), oligosaccharide (p < 0.0001) and anthocyanin (p = 0.048) treatments. All of these findings could represent a more effective absorption of nutrients.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Institute of Microbiomics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Babinszky
- Department of Feed and Food Biotechnology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Komlósi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - András Jávor
- Department of Laboratory of Animal Genetics, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - János Oláh
- Farm and Regional Research Institute of Debrecen, University of Debrecen, 4032 Debrecen, Hungary;
| | - Georgina Pesti-Asbóth
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
33
|
Zhang H, Chen Y, Chen Y, Li Y, Jia P, Ji S, Zhou Y, Wang T. Dietary pterostilbene supplementation attenuates intestinal damage and immunological stress of broiler chickens challenged with lipopolysaccharide. J Anim Sci 2020; 98:skz373. [PMID: 31822918 PMCID: PMC6986435 DOI: 10.1093/jas/skz373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
The present study explored the potential effect of pterostilbene as a prophylactic treatment on the lipopolysaccharide (LPS)-induced intestinal injury of broiler chickens by monitoring changes in mucosal injury indicators, redox status, and inflammatory responses. In total, 192 one-day-old male Ross 308 broiler chicks were randomly divided into four groups. This trial consisted of a 2 × 2 factorial design with a diet factor (supplemented with 0 or 400 mg/kg pterostilbene from 1 to 22 d of age) and a stress factor (intraperitoneally injected with saline or LPS at 5.0 mg/kg BW at 21 da of age). The results showed that LPS challenge induced a decrease in BW gain (P < 0.001) of broilers during a 24-h period postinjection; however, this decrease was prevented by pterostilbene supplementation (P = 0.031). Administration of LPS impaired the intestinal integrity of broilers, as indicated by increased plasma diamine oxidase (DAO) activity (P = 0.014) and d-lactate content (P < 0.001), reduced jejunal villus height (VH; P < 0.001) and the ratio of VH to crypt depth (VH:CD; P < 0.001), as well as a decreased mRNA level of jejunal tight junction protein 1 (ZO-1; P = 0.002). In contrast, pterostilbene treatment increased VH:CD (P = 0.018) and upregulated the mRNA levels of ZO-1 (P = 0.031) and occludin (P = 0.024) in the jejunum. Consistently, pterostilbene counteracted the LPS-induced increased DAO activity (P = 0.011) in the plasma. In addition, the LPS-challenged broilers exhibited increases in nuclear accumulation of nuclear factor kappa B (NF-κB) p65 (P < 0.001), the protein content of tumor necrosis factor α (P = 0.033), and the mRNA abundance of IL-1β (P = 0.042) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3; P = 0.019). In contrast, pterostilbene inhibited the nuclear translocation of NF-κB p65 (P = 0.039) and suppressed the mRNA expression of IL-1β (P = 0.003) and NLRP3 (P = 0.049) in the jejunum. Moreover, pterostilbene administration induced a greater amount of reduced glutathione (P = 0.017) but a lower content of malondialdehyde (P = 0.023) in the jejunum of broilers compared with those received a basal diet. Overall, the current study indicates that dietary supplementation with pterostilbene may play a beneficial role in alleviating the intestinal damage of broiler chicks under the conditions of immunological stress.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yanan Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peilu Jia
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuli Ji
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanmin Zhou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Memon S, Kamboh A, Leghari I, Leghari R. Effect of in ovo and post-hatch administration of honey on the immunity and intestinal microflora of growing chickens. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/114139/2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Zhou Y, Mao S, Zhou M. Effect of the flavonoid baicalein as a feed additive on the growth performance, immunity, and antioxidant capacity of broiler chickens. Poult Sci 2019; 98:2790-2799. [PMID: 30778569 DOI: 10.3382/ps/pez071] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Baicalein, the main flavonoid extracted from the root of Scutellaria baicalensis Georgi, has been demonstrated to exert multiple pharmacological effects, and thus could be utilized as a potential feed additive in broiler chickens. This study evaluated the effects of broiler chicken diet supplementation with baicalein on growth performance, immunity, and antioxidant activity at levels of 100 and 200 mg/kg. No significant effect on average daily feed intake (P > 0.05) of broilers with diets supplemented with baicalein was found compared to those on the basal diet or butylated hydroxytoluene (BHT) during the 35-d feeding trial. The addition of baicalein to the basal diet significantly increased average body weight, body weight gain, average weight gain, and the feed conversion ratio of birds during 21 to 42 d and 7 to 42 d of age, respectively. The best numerical values for the overall growth performance were observed in broilers fed on diets containing 200 mg/kg of baicalein. Baicalein supplementation significantly increased the ratio of CD3+/CD4+ and CD3±/CD8+, the concentration of IFN-γ, anti-IB antibody titer, and the spleen index compared with the control group (P < 0.05). Total cholesterol, the ratio of non-HDL-C/HDL-C, LDL-C/HDL-C, TC/HDL-C, triglycerides, and low-density lipoprotein cholesterol were significantly decreased after intake of baicalein compared with both the basal diet and the BHT-supplemented diet, whereas the SOD, GSH-Px, and CAT activity in the serum increased with the supplementation of baicalein. The T-AOC activity, T-SOD, and GSH-Px level in liver tissues was significantly increased by inclusion of baicalein, and intake of baicalein or BHT significantly decreased the malondialdehyde level found both in serum and meat tissue. Thus, the results obtained here indicate that the baicalein can be used as an effective natural feed additive in broiler chicken diets, and that 100 to 200 mg/kg can be considered as the optimum dosage.
Collapse
Affiliation(s)
- Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| | - Shanguo Mao
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| | - Meixian Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| |
Collapse
|
36
|
Yang L, Liu G, Liang X, Wang M, Zhu X, Luo Y, Shang Y, Yang JQ, Zhou P, Gu XL. Effects of berberine on the growth performance, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Anim Sci J 2019; 90:1229-1238. [PMID: 31264347 DOI: 10.1111/asj.13255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
This study evaluated the effects of berberine on growth performance, immunity, haematological parameters, antioxidant capacity, and the expression of immune response-related genes in lipopolysaccharide (LPS)-challenged broilers. We assigned 120 one-day-old male broilers (Ross 308) to two treatment groups; each group included two subgroups, each of which included six replicates of five birds per replicate. The experiment used a 2 × 2 factorial arrangement with berberine treatment (0 or 60 mg/kg dietary) and challenge status [injection of saline (9 g/L w/v) or LPS (1.5 mg/kg body weight)] as the main factors. On days 14, 16, 18 and 20, broilers were intraperitoneally injected with LPS or physiological saline. Blood and liver samples were collected on day 21. Dietary berberine supplementation significantly alleviated the compromised average daily gain and average daily feed intake (p < 0.05) caused by LPS. The LPS challenge led to increased lymphocyte and white blood cell (WBC) counts, malondialdehyde (serum and liver) content, and immunoglobulin G and M, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression (p < 0.05) and significantly reduced serum total superoxide dismutase (T-SOD) activity (p < 0.05). Dietary berberine significantly mitigated the LPS-induced decreases in the mRNA expression of nuclear factor-kappa B (NF-κB), TNF-α, IL-1β, inducible nitrite synthase and cyclooxygenase-2 (p < 0.05) in the liver. In conclusion, berberine supplementation has a positive effect on LPS challenge, which may be related to the increase in antioxidant enzyme activity and inhibition of both NF-κB signalling and the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaorui Liang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Mengmeng Wang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Jing-Quan Yang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Ping Zhou
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xin-Li Gu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| |
Collapse
|
37
|
Yang L, Liu G, Lian K, Qiao Y, Zhang B, Zhu X, Luo Y, Shang Y, Gu XL. Dietary leonurine hydrochloride supplementation attenuates lipopolysaccharide challenge-induced intestinal inflammation and barrier dysfunction by inhibiting the NF-κB/MAPK signaling pathway in broilers. J Anim Sci 2019; 97:1679-1692. [PMID: 30789669 DOI: 10.1093/jas/skz078] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
This study was performed to evaluate the beneficial effects of dietary leonurine hydrochloride (LH) supplementation on intestinal morphology and barrier integrity and further illuminate its underlying antioxidant and immunomodulatory mechanisms in lipopolysaccharide (LPS)-treated broilers. A total of 120 1-d-old male broilers (Ross 308) were assigned to 4 treatment groups with 6 replicates of 5 birds per cage. The experiment was designed in a 2 × 2 factorial arrangement with LH (0 or 120 mg/kg) and LPS (injection of saline or 1.5 mg/kg body weight) as treatments. On days 14, 16, 18, and 20 of the trial, broilers were intraperitoneally injected with LPS or physiological saline. Compared with the control group, LPS-challenged broilers showed impaired growth performance (P < 0.05) from day 15 to day 21 of the trial, increased serum diamine oxidase (DAO) and D-lactic acid (D-LA) levels coupled with reduced glutathione (GSH) content and total superoxide dismutase (T-SOD) activity (duodenal and jejunal mucosa), reduced malondialdehyde (MDA) content (duodenal, jejunal, and ileal mucosa), and compromised morphological structure of the duodenum and jejunum. Additionally, LPS challenge increased (P < 0.05) the mRNA expression of proinflammatory cytokine genes and reduced tight junction (TJ) protein expression in the jejunum. However, dietary LH prevented LPS-induced reductions in average daily gain (ADG) and average daily feed intake (ADFI) in broilers. It also alleviated LPS challenge-induced increases in serum DAO levels, MDA content (duodenal and jejunal mucosa), and jejunal crypt depth (P < 0.05) but reduced villus height, GSH content (jejunal mucosa), and T-SOD activity (duodenal and jejunal mucosa) (P < 0.05). Additionally, LH supplementation significantly downregulated the mRNA expression of nuclear factor (NF)-κB, cyclooxygenase-2 (COX-2), and proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and upregulated the mRNA expression of zonula occludens-1 (ZO-1) and Occludin in the jejunal mucosa induced by LPS (P < 0.05). On the other hand, LH administration prevented LPS-induced activation of the p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) and attenuated IkB alpha (IκBα) phosphorylation and nuclear translocation of NF-κB (p65) in the jejunal mucosa. In conclusion, dietary LH supplementation attenuates intestinal mucosal disruption mainly by accelerating the expression of TJ proteins and inhibiting activation of the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Kexun Lian
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yanjie Qiao
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Baojun Zhang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xin-Li Gu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| |
Collapse
|
38
|
Makled MN, Abouelezz KFM, Gad-Elkareem AEG, Sayed AM. Comparative influence of dietary probiotic, yoghurt, and sodium butyrate on growth performance, intestinal microbiota, blood hematology, and immune response of meat-type chickens. Trop Anim Health Prod 2019; 51:2333-2342. [PMID: 31168683 DOI: 10.1007/s11250-019-01945-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
This study was conducted to assess the effects of early dietary supplementation with probiotic, yoghurt, and sodium butyrate (SB) on the growth performance, intestinal microbiota, blood hematology, and immune response of broiler chickens. A total of 180 1-day-old SASSO broiler chicks, housed in 12 equal floor pen replicates each of 15 chicks, were assigned randomly to four feeding treatments (three replicates/treatment, n = 45): T1. Basal diet (BD) (control), T2. BD incorporated 1 g of a commercial probiotic per kilogram, T3. BD mixed with 5 g of fresh yoghurt per kilogram, and T4. BD incorporated 0.6 g SB/kg. The experimental birds received the dietary treatments from 1 to 21 days of age. The dietary supplementation (g/kg) with commercial probiotic, yoghurt, and SB during the first 21 days of age did not affect broiler's growth performance variables at day 42, relative weight of immunity organs, blood hematological indices, or the ileal and cecal bacterial counts at day 42, but increased the serum IgG levels and reduced the cecal aerobes at day 21. The probiotic and yoghurt treatments increased the serum content of antibody titer against Newcastle disease virus and decreased the counts of ileal aerobes and E. coli at day 21, whereas the SB treatment increased the ileal lactobacilli count at day 21. In conclusion, the tested feed additives displayed beneficial impacts on broilers' gut microbiota at day 21 and serum IgG at day 42, but did not affect the growth performance or blood hematological indices at 42 days of age.
Collapse
Affiliation(s)
- M N Makled
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - K F M Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
- Institute of Animal Science, Guangdong Academy of Agricultural Science, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - A E G Gad-Elkareem
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - A M Sayed
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
39
|
Dietary supplementation with orange pulp (Citrus sinensis) improves egg yolk oxidative stability in laying hens. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Kamboh AA, Khan MA, Kaka U, Awad EA, Memon AM, Saeed M, Korejo NA, Bakhetgul M, Kumar C. Effect of dietary supplementation of phytochemicals on immunity and haematology of growing broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1438854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Asghar Ali Kamboh
- Department of Veterinary Microbiology, Sindh Agriculture University, Tandojam, Pakistan
| | - Muhammad Ammar Khan
- Department of Food Science and Technology, University College of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ubedullah Kaka
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Selangor, Malaysia
| | - Elmutaz Atta Awad
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Selangor, Malaysia
- Department of Poultry Production, University of Khartoum, Khartoum, Sudan
| | - Atta Muhammad Memon
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Saeed
- Department of Animal Nutrition, College of Animal Sciences and Technology, Northwest A&F University, Yangling, China
| | - Nazar Ali Korejo
- Department of Veterinary Medicine, Sindh Agriculture University, Tandojam, Pakistan
| | - Manatbai Bakhetgul
- Technical Center of Xinjiang Entry–Exit Inspection and Quarantine Bureau, Urumqi, China
| | - Chandar Kumar
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|