1
|
Yayla S, Hurkul MM, Cetinkaya A, Uzun L, Ozkan SA. Selective apigenin assay in plant extracts and herbal supplement with molecularly imprinted polymer-based electrochemical sensor. Talanta 2025; 281:126895. [PMID: 39298810 DOI: 10.1016/j.talanta.2024.126895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study is the first successful application of a nanomaterial-supported molecularly imprinted polymer (MIP)-based electrochemical sensor for the sensitive and selective determination of apigenin (API), which is a naturally occurring product of the flavone class that is an aglycone of several glycosides. Secondary metabolites are biologically active substances produced by plants in response to various environmental factors. The levels of these compounds can vary depending on factors such as climate, soil conditions and the season in which the plants are grown. Therefore, the analysis of these compounds is essential to properly understand the biological effects of plant extracts and to ensure their safe use. To increase the glassy carbon electrode (GCE) surface's active surface area and porosity, zinc oxide nanoparticles (ZnO NPs) were integrated into the MIP-based electrochemical sensor design. Tryptophan methacrylate (TrpMA) was selected as the functional monomer along with other MIP components such as 2-hydroxyethyl methacrylate (HEMA, basic monomer), 2-hydroxy-2-methylpropiophenone (initiator), and ethylene glycol dimethacrylate (EGDMA, crosslinking agent). The morphological and electrochemical characterizations of the developed API/ZnO NPs/TrpMA@MIP-GCE sensor were performed with scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The indirect measurement approach via 5.0 mM [Fe(CN)6]3-/4- solution was utilized to determine API in the linear range of 1.0x10-13 M - 1.0x10-12 M. The limit of detection (LOD) and limit of quantification (LOQ) for standard solutions were found to be 2.47x10-14 and 8.23x10-14 M, respectively. In addition, the extraction processes were carried out using ultrasound-assisted extraction (UAE) and maceration (MCR) procedures. For Apium graveolens L., Petroselinum crispum (Mill.) Fuss and herbal supplement, the API recoveries varied from 98.79 % to 102.71 %, with average relative standard deviations (RSD) less than 2.25 % in all three cases. The sensor's successful performance in the presence of components with chemical structures similar to the API was also demonstrated, revealing its unique selectivity.
Collapse
Affiliation(s)
- Seyda Yayla
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey; Ankara University, Graduate School of Health Sciences, Ankara, Turkey
| | - M Mesud Hurkul
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey.
| | - Ahmet Cetinkaya
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| |
Collapse
|
2
|
Yang J, Wang T, Fang G, Qi L, Chen X, Zhou H. Chirality identification of Ibuprofen enantiomers by a terahertz polarization-sensitive metasurface sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124803. [PMID: 39003828 DOI: 10.1016/j.saa.2024.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Chirality plays an important role in medicine, biology, and chemistry. Molecules of different chirality could display dramatically different medical effects, pharmacological activities, and physiological impacts. Ibuprofen is an important anti-inflammatory drug in clinics. The anti-inflammatory effect is almost solely attributed to the (S)-(+)-Ibuprofen, while its enantiomer (R)-(-)-Ibuprofen plays a negative effect on increasing the metabolic burden. In this work, a terahertz (THz) polarization-sensitive metasurface sensor is proposed for qualitative and quantitative identification of the chiral Ibuprofen. The chirality parameters of Ibuprofen are extracted from the circular-polarized transmission coefficients. The parameters are further used to simulate the coupling mechanism between the Ibuprofen and the sensor to explain the principle of recognition. The sensitivities of (R)-(-)-Ibuprofen and (S)-(+)-Ibuprofen are found to be 1.5 THz/(mg/L) and 1.8 THz/(mg/L) for the TM polarization, respectively, and 1.7 THz/(mg/L) and 2.1 THz/(mg/L) for the TE polarization, respectively. The difference enables the chirality identification according to the different frequency shift at the same concentration. The exceptional specificity and sensitivity provide a new avenue for chiral molecular recognition.
Collapse
Affiliation(s)
- Jun Yang
- GBA branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Tianwu Wang
- GBA branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangyou Fang
- GBA branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Limei Qi
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Xuequan Chen
- GBA branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Huaping Zhou
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China.
| |
Collapse
|
3
|
Zhang L, Li C, Chen Y, Li S, Wang X, Li F. A polyoxometalate/chitosan-Ti 3C 2T x MXene nanocomposite constructed by electrostatically mediated strategy for electrochemical detecting L-tryptophan in milk. Food Chem 2024; 458:140309. [PMID: 38968709 DOI: 10.1016/j.foodchem.2024.140309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
L-tryptophan (L-Trp) is crucial for human metabolism, and its imbalance or deficiency can lead to certain diseases, such as insomnia, depression, and heart disease. Since the body cannot synthesize L-Trp and must obtain it from external sources, accurately monitoring L-Trp levels in food is essential. Herein, a nanocomposite film based on polyoxometalate (P2Mo17V), Ti3C2Tx MXene, and chitosan (Cs) was developed through a green electrostatically mediated layer-by-layer self-assembly strategy for electrochemical detection of L-Trp. The composite film exhibits fast electron transfer and remarkable electrocatalytic performance for L-Trp with a wide linear range (0.1-103 μM), low limit of detection (0.08 μM, S/N = 3), good selectivity, reproducibility, and repeatability. In milk sample, the recoveries of L-Trp were from 95.78% and 104.31%. The P2Mo17V/Cs-Ti3C2Tx electrochemical sensor not only provides exceptional recognition and detection capabilities for L-Trp but also shows significant potential for practical applications, particularly in food safety and quality control.
Collapse
Affiliation(s)
- Li Zhang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Chao Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yue Chen
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China.
| | - Xue Wang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China..
| |
Collapse
|
4
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
5
|
Du Y, Yan Q, Wang S. Progress and Challenges of Monometallic Titanium Coordination Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403470. [PMID: 39109946 DOI: 10.1002/smll.202403470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Indexed: 11/21/2024]
Abstract
The realm of titanium coordination polymer research is still in its nascent stages and presents a formidable challenge in the field of coordination chemistry. In recent decades, the focus has predominantly been on manipulating titanium reactions in solution, resulting in the synthesis of ≈60 targeted compounds. Despite the limited number of documented instances, these materials showcase a diverse array of structures, encompassing 1D chains, 2D layers, and 3D frameworks. This suggests potential for fine-tuning coordination modes and structural features in future investigations. Moreover, titanium coordination polymers not only exhibit photo-active and photo-responsive properties but also hold promise for various other significant applications. This article offers an exhaustive review tracing the evolution of titanium coordination polymer development while providing an update on recent advancements. The review encompasses a synopsis of reported synthetic strategies, methodologies, structural diversity, and associated applications. Additionally, it delves into critical issues that necessitate attention for future progressions and proposes potential avenues to effectively propel this research field forward at an accelerated pace.
Collapse
Affiliation(s)
- Yafei Du
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Anhui Province Key Laboratory of Scientific Instrument Development and Application, Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Qingqing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Anhui Province Key Laboratory of Scientific Instrument Development and Application, Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Sujing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Anhui Province Key Laboratory of Scientific Instrument Development and Application, Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Al-Qwairi FO, Shaheen Shah S, Shabi AH, Khan A, Aziz MA. Stainless Steel Mesh in Electrochemistry: Comprehensive Applications and Future Prospects. Chem Asian J 2024; 19:e202400314. [PMID: 39014972 DOI: 10.1002/asia.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Stainless steel mesh (SSM) has emerged as a cornerstone in electrochemical applications owing to its exemplary versatility, electrical conductivity, mechanical robustness, and corrosion resistance. This state-of-the-art review delves into the diverse roles of SSM across a spectrum of electrochemical domains, including energy conversion and storage devices, water treatment technologies, electrochemical sensors, and catalysis. We meticulously explore its deployment in supercapacitors, batteries, and fuel cells, highlighting its utility as a current collector, electrode, and separator. The review further discusses the critical significance of SSM in water treatment processes, emphasizing its efficacy in supporting membranes and facilitating electrocoagulation, as well as its novel uses in electrochemical sensing and catalysis, which include electrosynthesis and bioelectrochemistry. Each section delineates the recent advancements, identifies the inherent challenges, and suggests future directions for leveraging SSM in electrochemical technologies. This comprehensive review showcases the current state of knowledge and articulates the novel integration of SSM with emerging materials and technologies, thereby establishing a new paradigm for sustainable and efficient electrochemical applications. Through critical analysis and insightful recommendations, this review positions itself as a seminal contribution, paving the way for researchers and practitioners to harness the full potential of SSM in advancing the electrochemistry frontiers.
Collapse
Affiliation(s)
- Fatima Omar Al-Qwairi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A H Shabi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
7
|
Theyagarajan K, Kim YJ. Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. BIOSENSORS 2024; 14:492. [PMID: 39451704 PMCID: PMC11506055 DOI: 10.3390/bios14100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
8
|
Kumar S, Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kumar D, Gupta S, Kaushal A. Recent advances in ctDNA detection using electrochemical biosensor for cancer. Discov Oncol 2024; 15:517. [PMID: 39356360 PMCID: PMC11448507 DOI: 10.1007/s12672-024-01365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
In the quest for early cancer diagnosis, early identification and treatment are paramount. Recently, ctDNA detection has emerged as a viable avenue for early screening of cancer. The examination of ctDNA in fluid biopsies has gained substantial attention in tumor diagnosis and therapy. Both the scientific community and industry are actively exploring this field. However, developing cost-effective, portable, and real-time ctDNA measurement methods using conventional gene detection equipment poses a significant challenge. This challenge has led to the exploration of alternative approaches. Electrochemical biosensors, distinguished by their heightened sensitivity, remarkable specificity, affordability, and excellent portability, have emerged as a promising avenue for ctDNA detection. This review is dedicated to the specific focus on ctDNA detection, highlighting recent advancements in this evolving detection technology. We aimed to reference previous studies related to ctDNA-targeted cancer detection using electrochemical biosensors to advocate the utilization of electrochemical biosensors in healthcare diagnostics. Further research is imperative for the effective integration of ctDNA analysis into point-of-care cancer testing. Innovative approaches utilizing multiple markers need to be explored to advance this technology and make substantial contributions to societal well-being.
Collapse
Affiliation(s)
- Sahil Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, Warsaw, 01142, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Naveen Kumar Kaushik
- Department of Industrial Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| |
Collapse
|
9
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Balasamy S, Atchudan R, Arya S, Gunasekaran BM, Nesakumar N, Sundramoorthy AK. Cortisol: Biosensing and detection strategies. Clin Chim Acta 2024; 562:119888. [PMID: 39059481 DOI: 10.1016/j.cca.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cortisol, a crucial steroid hormone synthesized by the adrenal glands, has diverse impacts on multiple physiological processes, such as metabolism, immune function, and stress management. Disruption in cortisol levels can result in conditions like Cushing's syndrome and Addison's disease. This review provides an in-depth exploration of cortisol, covering its structure, various forms in the body, detection methodologies, and emerging trends in cancer treatment and detection. Various techniques for cortisol detection, including electrochemical, chromatographic, and immunoassay methods were discussed and highlighted for their merits and applications. Electrochemical immunosensing emerges as a promising approach, which offered high sensitivity and low detection limits. Moreover, the review delves into the intricate relationship between cortisol and cancer, emphasizing cortisol's role in cancer progression and treatment outcomes. Lastly, the utilization of biomarkers, in-silico modeling, and machine learning for electrochemical cortisol detection were explored, which showcased innovative strategies for stress monitoring and healthcare advancement.
Collapse
Affiliation(s)
- Sesuraj Balasamy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir 180006, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
11
|
Rai A, Jha NS, Sharma P, Tiwari S, Subramanian R. Curcumin-derivatives as fluorescence-electrochemical dual probe for ultrasensitive detections of picric acid in aqueous media. Talanta 2024; 275:126113. [PMID: 38669958 DOI: 10.1016/j.talanta.2024.126113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
We are reporting the two curcumin derivatives, ferrocenyl curcumin (Fc-cur) and 4-nitro-benzylidene curcumin (NBC), as a probe through dual modalities, i.e., fluorescence and electrochemical methods, for the detection of nitro-analytes, such as picric acid (PA). The probes exhibited aggregation-induced enhanced emission (AIEE), and the addition of picric acid (PA) demonstrated good and specific fluorimetric identification of PA in the aggregated state. By using density functional theory (DFT), the mechanism of picric acid's (PA) interactions with the probes was further investigated. DFT studies shows evidence of charge transfer from curcumin derivatives probe to picric acid resulting into the formation of an adduct. The reduction of trinitrophenol (PA) to 2, 4, 6-trinitrosophenol was investigated utilizing a probe-modified glassy carbon electrode (GCE) with a good detection limit of 9.63 ± 0.001 pM and 41.01 ± 0.002 pM, respectively, for Fc-cur@GCE and NBC@GCE, taking into account the redox behavior of the probe. The applicability of the designed sensor has been utilized for real-time application in the estimation of picric acid in several water samples collected from the different source.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India.
| | - Padma Sharma
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India
| | - Suresh Tiwari
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, Bihar, India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, Bihar, India
| |
Collapse
|
12
|
Labra-Muñoz JA, van der Zant HSJ. Ferritin Single-Electron Transistor. J Phys Chem B 2024; 128:6387-6393. [PMID: 38916107 PMCID: PMC11228996 DOI: 10.1021/acs.jpcb.4c01937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We report on the fabrication of a single-electron transistor based on ferritin using wide self-aligned nanogap devices. A local gate below the gap area enables three-terminal electrical measurements, showing the Coulomb blockade in good agreement with the single-electron tunneling theory. Comparison with this theory allows extraction of the tunnel resistances, capacitances, and gate coupling. Additionally, the data suggest the presence of two separate islands coupled in series or in parallel: information that was not possible to distinguish by using only two-terminal measurements. To interpret the charge transport features, we propose a scenario based on the established configuration structures of ferritin involving either iron sites in the organic shell or two dissimilar clusters within the core.
Collapse
Affiliation(s)
- Jacqueline A Labra-Muñoz
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
13
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
14
|
Wang M, Wang L, Hou A, Hong M, Li C, Yue Q. Portable sensing methods based on carbon dots for food analysis. J Food Sci 2024; 89:3935-3949. [PMID: 38865253 DOI: 10.1111/1750-3841.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Food analysis is significantly important in monitoring food quality and safety for human health. Traditional methods for food detection mainly rely on benchtop instruments and require a certain amount of analysis time, which promotes the development of portable sensors. Portable sensing methods own many advantages over traditional techniques such as flexibility and accessibility in diverse environments, real-time monitoring, cost-effectiveness, and rapid deployment. This review focuses on the portable approaches based on carbon dots (CDs) for food analysis. CDs are zero-dimensional carbon-based material with a size of less than 10 nm. In the manner of sensing, CDs exhibit rich functional groups, low biotoxicity, good biocompatibility, and excellent optical properties. Furthermore, there are many methods for the synthesis of CDs using various precursor materials. The incorporation of CDs into food science and engineering for enhancing food safety control and risk assessment shows promising prospects.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Aiying Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
15
|
Song K, Hwang SJ, Jeon Y, Yoon Y. The Biomedical Applications of Biomolecule Integrated Biosensors for Cell Monitoring. Int J Mol Sci 2024; 25:6336. [PMID: 38928042 PMCID: PMC11204277 DOI: 10.3390/ijms25126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cell monitoring is essential for understanding the physiological conditions and cell abnormalities induced by various stimuli, such as stress factors, microbial invasion, and diseases. Currently, various techniques for detecting cell abnormalities and metabolites originating from specific cells are employed to obtain information on cells in terms of human health. Although the states of cells have traditionally been accessed using instrument-based analysis, this has been replaced by various sensor systems equipped with new materials and technologies. Various sensor systems have been developed for monitoring cells by recognizing biological markers such as proteins on cell surfaces, components on plasma membranes, secreted metabolites, and DNA sequences. Sensor systems are classified into subclasses, such as chemical sensors and biosensors, based on the components used to recognize the targets. In this review, we aim to outline the fundamental principles of sensor systems used for monitoring cells, encompassing both biosensors and chemical sensors. Specifically, we focus on biosensing systems in terms of the types of sensing and signal-transducing elements and introduce recent advancements and applications of biosensors. Finally, we address the present challenges in biosensor systems and the prospects that should be considered to enhance biosensor performance. Although this review covers the application of biosensors for monitoring cells, we believe that it can provide valuable insights for researchers and general readers interested in the advancements of biosensing and its further applications in biomedical fields.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (S.-J.H.)
| |
Collapse
|
16
|
Darestani-Farahani M, Mendoza Montealegre I, Tavakkoli Gilavan M, Kirby T, Selvaganapathy PR, Kruse P. A highly sensitive ion-selective chemiresistive sensor for online monitoring of lead ions in water. Analyst 2024; 149:2915-2924. [PMID: 38578133 DOI: 10.1039/d4an00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Dissolved lead is a serious but common health hazard in drinking water, yet there is still no practical way to monitor its levels continuously in the distribution system or at the point of use. Here we propose using a lead-selective membrane on top of a chemiresistive device to continuously measure Pb2+ ion concentrations in real time. The detection limit was lowered by stabilizing the surface of the resistive film with sodium hydroxide and 15-crown-5 ether and optimizing the sensor geometry to maximize the effective surface area. The detection mechanism is based on the complexation of the Pb2+ ions by the lead ionophores within the membrane, thus modulating the interactions between the ionophores and the chemiresistive film. The limit of detection of the fabricated devices was reliably below 2 μg L-1, with concentrations up to 3 mg L-1 routinely quantifiable over several measurement cycles. The chemiresistive sensors can thus achieve lower detection limits than potentiometric devices while being more robust and simpler to fabricate by omitting the reference electrode. Ion-selective membrane-covered chemiresistors can therefore be deployed to continuously monitor drinking water sources and detect harmful levels of lead in real time.
Collapse
Affiliation(s)
- Maryam Darestani-Farahani
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | - Isabella Mendoza Montealegre
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | - Mehraneh Tavakkoli Gilavan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Thomas Kirby
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Peter Kruse
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
17
|
Wong TI, Ng C, Lin S, Chen Z, Zhou X. Adaptive Fabrication of Electrochemical Chips with a Paste-Dispensing 3D Printer. SENSORS (BASEL, SWITZERLAND) 2024; 24:2844. [PMID: 38732950 PMCID: PMC11086071 DOI: 10.3390/s24092844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
Electrochemical (EC) detection is a powerful tool supporting simple, low-cost, and rapid analysis. Although screen printing is commonly used to mass fabricate disposable EC chips, its mask is relatively expensive. In this research, we demonstrated a method for fabricating three-electrode EC chips using 3D printing of relatively high-viscosity paste. The electrodes consisted of two layers, with carbon paste printed over silver/silver chloride paste, and the printed EC chips were baked at 70 °C for 1 h. Engineering challenges such as bulging of the tubing, clogging of the nozzle, dripping, and local accumulation of paste were solved by material selection for the tube and nozzle, and process optimization in 3D printing. The EC chips demonstrated good reversibility in redox reactions through cyclic voltammetry tests, and reliably detected heavy metal ions Pb(II) and Cd(II) in solutions using differential pulse anodic stripping voltammetry measurements. The results indicate that by optimizing the 3D printing of paste, EC chips can be obtained by maskless and flexible 3D printing techniques in lieu of screen printing.
Collapse
Affiliation(s)
- Ten It Wong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore;
| | - Candy Ng
- School of Materials Science & Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798, Singapore; (C.N.); (Z.C.)
| | - Shengxuan Lin
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore;
| | - Zhong Chen
- School of Materials Science & Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798, Singapore; (C.N.); (Z.C.)
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore;
| |
Collapse
|
18
|
Zhao J, Wang H, Cai Y, Zhao J, Gao Z, Song YY. The Challenges and Opportunities for TiO 2 Nanostructures in Gas Sensing. ACS Sens 2024; 9:1644-1655. [PMID: 38503265 DOI: 10.1021/acssensors.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chemiresistive gas sensors based on metal oxides have been widely applied in industrial monitoring, medical diagnosis, environmental pollutant detection, and food safety. To further enhance the gas sensing performance, researchers have worked to modify the structure and function of the material so that it can adapt to different gas types and environmental conditions. Among the numerous gas-sensitive materials, n-type TiO2 semiconductors are a focus of attention for their high stability, excellent biosafety, controllable carrier concentration, and low manufacturing cost. This Perspective first introduces the sensing mechanism of TiO2 nanostructures and composite TiO2-based nanomaterials and then analyzes the relationship between their gas-sensitive properties and their structure and composition, focusing also on technical issues such as doping, heterojunctions, and functional applications. The applications and challenges of TiO2-based nanostructured gas sensors in food safety, medical diagnosis, environmental detection, and other fields are also summarized in detail. Finally, in the context of their practical application challenges, future development technologies and new sensing concepts are explored, providing new ideas and directions for the development of multifunctional intelligent gas sensors in various application fields.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Haiquan Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yahui Cai
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjin Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
19
|
Al-Amin, Prasad GV, Jang SJ, Oh JW, Kim TH. A MOF-Templated Double-Shelled Co 3O 4/NiCo 2O 4 Nanocomposite for Electrochemical Detection of Alfuzosin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:757. [PMID: 38727351 PMCID: PMC11085321 DOI: 10.3390/nano14090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
We developed a novel electrochemical sensor for the detection of alfuzosin (AFZ), a drug used to treat benign prostatic hyperplasia, using a double-shelled Co3O4/NiCo2O4 nanocomposite-modified electrode. The nanocomposites were synthesized using a template-assisted approach, with zeolitic imidazole framework-67 (ZIF-67) as the sacrificial template, involving the formation of uniform ZIF-67/Ni-Co layered double hydroxide (LDH) hollow structures followed by calcination to achieve the final nanocomposite. The nanocomposite was characterized by various techniques and showed high porosity, large surface area, and good conductivity. The nanocomposite-modified electrode exhibited excellent electrocatalytic activity towards AFZ oxidation, with a wide linear range of 5-180 µM and a low limit of detection of 1.37 µM. The sensor also demonstrated good repeatability, reproducibility, and stability selectivity in the presence of common interfering substances. The sensor was successfully applied to determine the AFZ in pharmaceutical tablets and human serum samples, with satisfactory recoveries. Our results suggest that the double-shelled Co3O4/NiCo2O4 nanocomposite is a promising material for the fabrication of electrochemical sensors for AFZ detection.
Collapse
Affiliation(s)
- Al-Amin
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| | | | - Seung Joo Jang
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| | - Jeong-Wook Oh
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea;
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| |
Collapse
|
20
|
Daems E, Bassini S, Mariën L, Op de Beeck H, Stratulat A, Zwaenepoel K, Vandamme T, Op de Beeck K, Koljenović S, Peeters M, Van Camp G, De Wael K. Singlet oxygen-based photoelectrochemical detection of single-point mutations in the KRAS oncogene. Biosens Bioelectron 2024; 249:115957. [PMID: 38199080 DOI: 10.1016/j.bios.2023.115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
- Elise Daems
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Simone Bassini
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Laura Mariën
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Hannah Op de Beeck
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Alexandr Stratulat
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Timon Vandamme
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Oncology and Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital, Edegem, 2650, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Senada Koljenović
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Marc Peeters
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Oncology and Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital, Edegem, 2650, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium.
| |
Collapse
|
21
|
Ben Arbia M, Helal H, Comini E. Recent Advances in Low-Dimensional Metal Oxides via Sol-Gel Method for Gas Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:359. [PMID: 38392732 PMCID: PMC10891883 DOI: 10.3390/nano14040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Low-dimensional metal oxides have drawn significant attention across various scientific domains due to their multifaceted applications, particularly in the field of environment monitoring. Their popularity is attributed to a constellation of unique properties, including their high surface area, robust chemical stability, and remarkable electrical conductivity, among others, which allow them to be a good candidate for detecting CO, CO2, H2, NH3, NO2, CH4, H2S, and volatile organic compound gases. In recent years, the Sol-Gel method has emerged as a powerful and versatile technique for the controlled synthesis of low-dimensional metal oxide materials with diverse morphologies tailored for gas sensing applications. This review delves into the manifold facets of the Sol-Gel processing of metal oxides and reports their derived morphologies and remarkable gas-sensing properties. We comprehensively examine the synthesis conditions and critical parameters governing the formation of distinct morphologies, including nanoparticles, nanowires, nanorods, and hierarchical nanostructures. Furthermore, we provide insights into the fundamental principles underpinning the gas-sensing mechanisms of these materials. Notably, we assess the influence of morphology on gas-sensing performance, highlighting the pivotal role it plays in achieving exceptional sensitivity, selectivity, and response kinetics. Additionally, we highlight the impact of doping and composite formation on improving the sensitivity of pure metal oxides and reducing their operation temperature. A discussion of recent advances and emerging trends in the field is also presented, shedding light on the potential of Sol-Gel-derived nanostructures to revolutionize the landscape of gas sensing technologies.
Collapse
Affiliation(s)
| | | | - Elisabetta Comini
- Sensor Lab, Department of Information Engineering, University of Brescia, Via Valotti 9, 25133 Brescia, Italy; (M.B.A.); (H.H.)
| |
Collapse
|
22
|
Shruti A, Bage N, Kar P. Nanomaterials based sensors for analysis of food safety. Food Chem 2024; 433:137284. [PMID: 37703589 DOI: 10.1016/j.foodchem.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
The freshnessof the food is a major issue because spoiled food lacks critical nutrients for growth and could be harmful to human health if consumed directly. Nanomaterials are captivating due to their unique properties like large surface area, high selectivity, small dimension, great biocompatibility and conductivity, real-time onsite analysis, etc. which give them an advantage over conventional evaluation techniques. Despite these advantages of nanomaterials used in food safety and their preservation, food products can still get affected by various environmental factors (like pH, temperature, etc.), making the use of time-temperature indicators more condescending. This review is a comprehensive study on food safety, its causes, the responsible analytes, their remedies by various nanomaterials, the development of various nanosensors, and the various challenges faced in maintaining food safety standards to reduce the risk of contaminants.
Collapse
Affiliation(s)
- Asparshika Shruti
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Nirgaman Bage
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Pradip Kar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
23
|
Ahmadipour M, Bhattacharya A, Sarafbidabad M, Syuhada Sazali E, Krishna Ghoshal S, Satgunam M, Singh R, Rezaei Ardani M, Missaoui N, Kahri H, Pal U, Ling Pang A. CA19-9 and CEA biosensors in pancreatic cancer. Clin Chim Acta 2024; 554:117788. [PMID: 38246211 DOI: 10.1016/j.cca.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a complex pathophysiological condition causing millions of deaths each year. Early diagnosis is essential especially for pancreatic cancer. Existing diagnostic tools rely on circulating biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA). Unfortunately, these markers are nonspecific and may be increased in a variety of disorders. Accordingly, diagnosis of pancreatic cancer generally involves more invasive approaches such as biopsy as well as imaging studies. Recent advances in biosensor technology have allowed the development of precise diagnostic tools having enhanced analytical sensitivity and specificity. Herein we examine these advances in the detection of cancer in general and in pancreatic cancer specifically. Furthermore, we highlight novel technologies in the measurement of CA19-9 and CEA and explore their future application in the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia.
| | - Anish Bhattacharya
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohsen Sarafbidabad
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ezza Syuhada Sazali
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Sib Krishna Ghoshal
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Meenaloshini Satgunam
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Department of Mechanical Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia
| | - Ramesh Singh
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Center of Advanced Manufacturing and Materials Processing (AMMP), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammad Rezaei Ardani
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nadhem Missaoui
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Hamza Kahri
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Ujjwal Pal
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ai Ling Pang
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
24
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
25
|
Liu G, Hou S, Li S, Ling J, Xu G, Li J. A molecularly imprinted sensor for single-molecule detection of pesticide metabolite at the amol/L level sensitized by water-soluble luminol derivative encapsulated liposome via click reaction. Biosens Bioelectron 2023; 242:115714. [PMID: 37816285 DOI: 10.1016/j.bios.2023.115714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
A novel luminol derivative, 4-[(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)amino]-4-oxobut-2-enoic acid (ALD) with electrochemiluminescence intensity and stability characteristics similar to luminol, but higher solubility in near neutral solution, was designed and synthesized in this study. Using this derivative, a molecular imprinted electrochemiluminescence sensor (MIECLS) was prepared for the sensitive and selective determination of 2-amino-5-mercapto-1,3,4-thiadiazole (AMT), a metabolite of bismerthiazol, thiediazole copper, thiazole zinc, and other pesticides. The ALD probes encapsulated in liposomes are immobilized on the molecularly imprinted film by light-triggered click reaction, and the concurrent release of multiple probes allows for highly sensitive detection. In the AMT concentration range of 1.00 × 10-18 - 5.00 × 10-13 mol/L, the relation between ECL response and log AMT concentration is linear. With a detection limit of 5.25 × 10-19 mol/L (about 4 - 6 molecules in 10 μL of the sample), the sensor allows for high sensitivity analysis of ultra-trace amounts of small organic compounds. In general, the ECL-based single-molecule detection technique proposed herein might be a promising alternative to fluorescence single-molecule detection.
Collapse
Affiliation(s)
- Guangyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shili Hou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Shiyu Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jun Ling
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Guobao Xu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
26
|
Zhang X, Zhao J, Wang H, He H, He ZK, Zhao J, Gao Z, Song YY. MoO 2 Pump-Enhanced Flexible TiO 2 Nanojungle-Based Chemiresistors for Rapid Room-Temperature Detection of H 2S at Parts-per-Billion Levels. ACS Sens 2023; 8:4179-4188. [PMID: 37904486 DOI: 10.1021/acssensors.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
In this study, we developed a gas sensing platform that can sensitively and specifically detect trace H2S in a high-humidity atmosphere at RT. Upon integrating a carbon nitride (C3N4) nanofilm and molybdenum dioxide (MoO2) nanosheets onto nanojungle-like TiO2 nanotube arrays (TiNTs), the fabricated chemiresistor showed rapid response (38 s)/recovery (58 s) abilities and remarkable detection sensitivity for H2S at concentrations down to 2 ppb, with an estimated detection limit of 1.13 ppb at RT and room-environmental light (REL). Importantly, the gas sensor exhibited satisfactory H2S sensing performance even in dark conditions with a response of 1.9 at 200 ppb. In this design, apart from the architectural advantages of the nanojungle-like TiNTs for accelerating the gas flow efficiency and the abundant sensing sites provided by the C3N4 film, the MoO2 nanosheets act as the essential electron pump not only for the H2S response but also for the subsequent recovery process in air. After employing the MoO2 pump onto C3N4/TiNTs, the response time and recovery time of the system are shortened to ∼35 and ∼11%, respectively. Moreover, we demonstrated the good performance of the flexible gas sensor in detecting trace H2S in human exhaled breath with good humidity resistance. These results highlight the possibility of designing chemiresistors operating in RT and REL conditions and to use these environmentally friendly TiO2-based sensors in real applications.
Collapse
Affiliation(s)
- Xifeng Zhang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Jiahui Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Haiquan Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Haoxuan He
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhen-Kun He
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
27
|
Boruah BS, Biswas R, Mazumder N. Quantifying arsenic and mercury in aqueous media via bio-inspired gold nanoparticles modified by mango leaf extract. RSC Adv 2023; 13:34916-34921. [PMID: 38035228 PMCID: PMC10687517 DOI: 10.1039/d3ra07293b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
The present study conveys a new method for detecting arsenic(iii) and mercury(ii) in aqueous solution via bio-inspired gold nanoparticles. The process of synthesizing gold nanoparticles involves the utilization of the chemical reduction method. The functionalization of gold nanoparticles' surface is achieved via mango leaf extract. The as-synthesized nanoparticles are characterized by UV-Vis and DLS which reveal a plasmonic peak around ∼520 nm with an average size distribution of ∼44 nm. The modified gold nanoparticles have demonstrated selective detection capabilities towards arsenic(iii) as well as mercury(ii), as evidenced by color changes observed in the presence of ions of arsenic as well as mercury. The addition of mercury and arsenic lead to the overall aggregation-thereby bringing a colorimetric response. The limit of detection was determined to be 1 ppb and 1.5 ppb for arsenic(iii) and mercury(ii) ions, respectively along with exceptional linearity.
Collapse
Affiliation(s)
| | - Rajib Biswas
- Department of Physics, Applied Optics and Photonics Research Laboratory, Tezpur University Tezpur-784028 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education Manipal Karnataka India-576104
| |
Collapse
|
28
|
Ezzat N, Hefnawy MA, Medany SS, El-Sherif RM, Fadlallah SA. Green synthesis of Ag nanoparticle supported on graphene oxide for efficient nitrite sensing in a water sample. Sci Rep 2023; 13:19441. [PMID: 37945582 PMCID: PMC10636149 DOI: 10.1038/s41598-023-46409-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Water is essential for conserving biodiversity, ecology, and human health, but because of population growth and declining clean water supplies, wastewater must be treated to meet demand. Nitrite is one of the contaminants in wastewater that is well-known. It is crucial to identify nitrite since it can be fatal to humans in excessive doses. Utilizing a straightforward and effective electrochemical sensor, nitrite in actual water samples may be determined electrochemically. The sensor is created by coating the surface of a GC electrode with a thin layer of graphene oxide (GO), followed by a coating of silver nanoparticles. The modified electrode reached a linear detection range of 1-400 µM. thus, the activity of the electrode was investigated at different pH values ranging from 4 to 10 to cover acidic to highly basic environments. However, the electrode recorded limit of detection (LOD) is equal to 0.084, 0.090, and 0.055 µM for pH 4, 7, and 10, respectively. Additionally, the electrode activity was utilized in tap water and wastewater that the LOD reported as 0.16 and 0.157 µM for tape water and wastewater, respectively.
Collapse
Affiliation(s)
- Nourhan Ezzat
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Rabab M El-Sherif
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sahar A Fadlallah
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
29
|
Darestani-Farahani M, Ma F, Patel V, Selvaganapathy PR, Kruse P. An ion-selective chemiresistive platform as demonstrated for the detection of nitrogen species in water. Analyst 2023; 148:5731-5744. [PMID: 37840463 DOI: 10.1039/d3an01267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The use of ion-selective electrodes (ISE) is a well-established technique for the detection of ions in aqueous solutions but requires the use of a reference electrode. Here, we introduce a platform of ion-selective chemiresistors for the detection of nitrogen species in water as an alternative method without the need for reference electrodes. Chemiresistors have a sensitive surface that is prone to damage during operation in aqueous solutions. By applying a layer of ion-selective membrane to the surface of the chemiresistive device, the surface becomes protected and highly selective. We demonstrate both anion-selective (NO3-, NO2-) and cation-selective (NH4+) membranes. The nitrate sensors are able to measure nitrate ions in a range of 2.2-220 ppm with a detection limit of 0.3 ppm. The nitrite sensors respond between 67 ppb and 67 ppm of nitrite ions (64 ppb detection limit). The ammonium sensors can measure ammonium concentrations in a wide range from 10 ppb to 100 ppm (0.5 ppb detection limit). The fast responses to nitrate and nitrite are due to a mechanism involving electrostatic gating repulsion between negative charge carriers of the film and anions while ammonium detection arises from two mechanisms based on electrostatic gating repulsion and adsorption of ammonium ions at the surface of the p-doped chemiresistive film. The adsorption phenomenon slows down the recovery time of the ammonium sensor. This sensor design is a new platform to continuously monitor ions in industrial, domestic, and environmental water resources by robust chemiresistive devices.
Collapse
Affiliation(s)
- Maryam Darestani-Farahani
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Fanqing Ma
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Vinay Patel
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| | | | - Peter Kruse
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
30
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
31
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
32
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
33
|
Chen X, Li H, Xu Z, Lu L, Pan Z, Mao Y. Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics (Basel) 2023; 8:223. [PMID: 37366818 DOI: 10.3390/biomimetics8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Han Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziteng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
35
|
Wang J, Chen X, Qu D, Zhang X, Wang L, Guo Z, Liu S. An enzyme-responsive electrochemical DNA biosensor achieving various dynamic range by using only-one immobilization probe. Anal Chim Acta 2023; 1251:340999. [PMID: 36925289 DOI: 10.1016/j.aca.2023.340999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Developing a simple and easy-to-operate biosensor with tunable dynamic range would provide enormous opportunities to promote the diagnostic applications. Herein, an enzyme-responsive electrochemical DNA biosensor is developed by using only-one immobilization probe. The immobilization probe was designed with a two-loop hairpin-like structure that contained the mutually independent target recognition and enzyme (EcoRI restriction endonuclease) responsive domains. The target recognition was based on a toehold-mediated strand displacement reaction strategy. The toehold region was initially caged in the loop of the immobilization probe and showed a relatively low binding affinity with target, which was improved via EcoRI cleavage of immobilization probe to liberate the toehold region. The EcoRI cleavage operation for immobilization probe demonstrated the well regulation ability in detection performance. It showed a largely extended dynamic range, a significantly lowered detection limit and better discrimination ability toward the mismatched sequences whether in two buffers (with high or low salt concentrations) or in the serum system. The advantages also includes simplicity in probe design, and facile biosensor fabrication and operation. It thus opens a new avenue for the development of the modulated DNA biosensor and hold a great potential for the diagnostic applications and drug monitoring.
Collapse
Affiliation(s)
- Jianru Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xue Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dengfeng Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China
| | - Xiaofan Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| | - Zongxia Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
36
|
De Zio S, Becconi M, Soldà A, Malferrari M, Lesch A, Rapino S. Glucose micro-biosensor for scanning electrochemical microscopy characterization of cellular metabolism in hypoxic microenvironments. Bioelectrochemistry 2023; 150:108343. [PMID: 36608371 DOI: 10.1016/j.bioelechem.2022.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Mapping of the metabolic activity of tumor tissues represents a fundamental approach to better identify the tumor type, elucidate metastatic mechanisms and support the development of targeted cancer therapies. The spatially resolved quantification of Warburg effect key metabolites, such as glucose and lactate, is essential. Miniaturized electrochemical biosensors scanned over cancer cells and tumor tissue to visualize the metabolic characteristics of a tumor is attractive but very challenging due to the limited oxygen availability in the hypoxic environments of tumors that impedes the reliable applicability of glucose oxidase-based glucose micro-biosensors. Herein, the development and application of a new glucose micro-biosensor is presented that can be reliably operated under hypoxic conditions. The micro-biosensor is fabricated in a one-step synthesis by entrapping during the electrochemically driven growth of a polymeric matrix on a platinum microelectrode glucose oxidase and a catalytically active Prussian blue type aggregate and mediator. The as-obtained functionalization improves significantly the sensitivity of the developed micro-biosensor for glucose detection under hypoxic conditions compared to normoxic conditions. By using the micro-biosensor as non-invasive sensing probe in Scanning Electrochemical Microscopy (SECM), the glucose uptake by a breast metastatic adenocarcinoma cell line, with an epithelial morphology, is measured.
Collapse
Affiliation(s)
- Simona De Zio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Maila Becconi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Alice Soldà
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
37
|
Yang Y, Li Y. Perspective Chapter: Novel Diagnostics Methods for SARS-CoV-2. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence has given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests such as PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the various novel diagnostics methods including SERS, SPR, electrochemical, magnetic detection of SARS-CoV-2. All sensing and biosensing methods based on nanotechnology developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system.
Collapse
|
38
|
Duan D, Wang J, Han P, Liu X, Zhao L, Ma S. Dual-monomer molecularly imprinted electrochemical sensor based on amino-functionalized MOFs and graphene for trace determination of taurine. Mikrochim Acta 2023; 190:162. [PMID: 36988765 DOI: 10.1007/s00604-023-05751-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
A molecularly imprinted electrochemical sensor (MIECS) for trace determination of taurine was developed. The sensor was constructed by electropolymerizing dopamine and o-phenylenediamine as dual monomers on the surface of amino-functionalized iron-based MOFs and graphene composite-modified electrode. The porous structure and large specific surface area of amino-functionalized iron-based MOFs not only increase the number of imprinted sites, but also facilitate the binding of molecularly imprinted films. The presence of dual monomers can increase the binding sites during the formation of imprinted films. The linear range of this sensor for taurine detection is 1.00 × 10-14-1.00 × 10-8 mol L-1 with a determination limit of 3.20 × 10-15 mol L-1. The proposed MIECS was successfully applied to quantify the amount of taurine in human serum sample with good recovery values from 97.3 to 113%.
Collapse
Affiliation(s)
- Dingding Duan
- Nanyang Institute of Technology, Nanyang, Henan, China.
| | - Jun Wang
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Pengxin Han
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xin Liu
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Luhang Zhao
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Shenao Ma
- Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
39
|
Dai Z. Recent Advances in the Development of Portable Electrochemical Sensors for Controlled Substances. SENSORS (BASEL, SWITZERLAND) 2023; 23:3140. [PMID: 36991851 PMCID: PMC10058808 DOI: 10.3390/s23063140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
This review article summarizes recent achievements in developing portable electrochemical sensing systems for the detection and/or quantification of controlled substances with potential on-site applications at the crime scene or other venues and in wastewater-based epidemiology. Electrochemical sensors employing carbon screen-printed electrodes (SPEs), including a wearable glove-based one, and aptamer-based devices, including a miniaturized aptamer-based graphene field effect transistor platform, are some exciting examples. Quite straightforward electrochemical sensing systems and methods for controlled substances have been developed using commercially available carbon SPEs and commercially available miniaturized potentiostats. They offer simplicity, ready availability, and affordability. With further development, they might become ready for deployment in forensic field investigation, especially when fast and informed decisions are to be made. Slightly modified carbon SPEs or SPE-like devices might be able to offer higher specificity and sensitivity while they can still be used on commercially available miniaturized potentiostats or lab-fabricated portable or even wearable devices. Affinity-based portable devices employing aptamers, antibodies, and molecularly imprinted polymers have been developed for more specific and sensitive detection and quantification. With further development of both hardware and software, the future of electrochemical sensors for controlled substances is bright.
Collapse
Affiliation(s)
- Zhaohua Dai
- Forensic Science Program, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
40
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
41
|
Chongdar S, Mondal U, Chakraborty T, Banerjee P, Bhaumik A. A Ni-MOF as Fluorescent/Electrochemical Dual Probe for Ultrasensitive Detection of Picric Acid from Aqueous Media. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36893380 DOI: 10.1021/acsami.3c00604] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A water-stable, microporous, luminescent Ni(II)-based metal-organic framework (MOF) (Ni-OBA-Bpy-18) with a 4-c uninodal sql topology was solvothermally synthesized using mixed N-, O-donor-directed π-conjugated co-ligands. The extraordinary performance of this MOF toward rapid monitoring of mutagenic explosive trinitrophenol (TNP) in aqueous and vapor phases by the fluorescence "Turn-off" technique with an ultralow detection limit of 66.43 ppb (Ksv: 3.45 × 105 M-1) was governed by a synchronous occurrence of photoinduced electron transfer-resonance energy transfer-intermolecular charge transfer (PET-RET-ICT) and non-covalent π···π weak interactions, as revealed from density functional theory studies. The recyclable nature of the MOF, detection from complex environmental matrices, and fabrication of a handy MOF@cotton-swab detection kit certainly escalated the on-field viability of the probe. Interestingly, the presence of electron-withdrawing TNP decisively facilitated the redox events of the reversible NiIII/II and NiIV/III couples under an applied voltage based on which electrochemical recognition of TNP was realized by the Ni-OBA-Bpy-18 MOF/glassy carbon electrode, with an excellent detection limit of ∼0.6 ppm. Such detection of a specific analyte by MOF-based probe via two divergent yet coherent techniques is unprecedented and yet to be explored in relevant literature.
Collapse
Affiliation(s)
- Sayantan Chongdar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Udayan Mondal
- Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Tonmoy Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
42
|
Wei H, Zhang H, Song B, Yuan K, Xiao H, Cao Y, Cao Q. Metal-Organic Framework (MOF) Derivatives as Promising Chemiresistive Gas Sensing Materials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4388. [PMID: 36901399 PMCID: PMC10001476 DOI: 10.3390/ijerph20054388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The emission of harmful gases has seriously exceeded relative standards with the rapid development of modern industry, which has shown various negative impacts on human health and the natural environment. Recently, metal-organic frameworks (MOFs)-based materials have been widely used as chemiresistive gas sensing materials for the sensitive detection and monitoring of harmful gases such as NOx, H2S, and many volatile organic compounds (VOCs). In particular, the derivatives of MOFs, which are usually semiconducting metal oxides and oxide-carbon composites, hold great potential to prompt the surface reactions with analytes and thus output amplified resistance changing signals of the chemiresistors, due to their high specific surface areas, versatile structural tunability, diversified surface architectures, as well as their superior selectivity. In this review, we introduce the recent progress in applying sophisticated MOFs-derived materials for chemiresistive gas sensors, with specific emphasis placed on the synthesis and structural regulation of the MOF derivatives, and the promoted surface reaction mechanisms between MOF derivatives and gas analytes. Furthermore, the practical application of MOF derivatives for chemiresistive sensing of NO2, H2S, and typical VOCs (e.g., acetone and ethanol) has been discussed in detail.
Collapse
Affiliation(s)
- Huijie Wei
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Kaiping Yuan
- Frontier Institute of Chip and System, Fudan University, Shanghai 200438, China
| | - Hongbin Xiao
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yunyi Cao
- Laundry Appliances Business Division of Midea Group, Wuxi 214028, China
| | - Qi Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
43
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
44
|
Integration of enzyme-encapsulated mesoporous silica between nanohole array electrode and hydrogel film for flow-type electrochemical biosensor. ANAL SCI 2023; 39:153-161. [PMID: 36334242 DOI: 10.1007/s44211-022-00209-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
We herein propose a simple and sensitive electrochemical flow biosensor platform without an external flow device. The sensing unit comprises a platinum nanohole array electrode deposited on a nanoporous track-etched membrane (PtNH/NPM), a packed-layer of glucose oxidase-encapsulated mesoporous silica particles (GOD/MPS), and bovine serum albumin hydrogel film (BSA gel film). This sensing unit was fixed at the open window at the side of the plastic container with internal solution containing NaCl as osmotic reagent. When the sample glucose solution (0.10 mL) was pipetted at the sensing unit, a portion of the sample solution (5 μL) was spontaneously transferred into the BSA gel film. The concentration gradient of NaCl between the internal solution and the BSA gel film induced osmotic flow of water toward the internal solution. This osmotic flow assisted delivery of glucose to the GOD/MPS and enzymatically generated H2O2 to the PtNH/NPM. The proposed sensor could be used repeatedly and produced a linear current response for glucose, with a limit of detection of 16 μM. These sensor performances confirmed availability of the sensor design utilizing the osmotic flow.
Collapse
|
45
|
Zambrano-Intriago LA, Amorim CG, Araújo AN, Gritsok D, Rodríguez-Díaz JM, Montenegro MCBSM. Development of an inexpensive and rapidly preparable enzymatic pencil graphite biosensor for monitoring of glyphosate in waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158865. [PMID: 36165910 DOI: 10.1016/j.scitotenv.2022.158865] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY) is the most widely used non-selective broad-spectrum herbicide worldwide under well-reported side effects on the environment and human health. That's why it's necessary to control its presence in the environment. This work describes the development of an affordable, simple, and accurate electrochemical biosensor using a pencil graphite electrode as support, a horseradish peroxidase enzyme immobilized on a polysulfone membrane doped with multi-walled carbon nanotubes. The developed electrochemical sensor was used in the determination of GLY in river and drinking water samples. Cyclic voltammetry and amperometry were used as electrochemical detection techniques for the characterization and analytical application of the developed biosensor. The working mechanism of the biosensor is based on the inhibition of the peroxidase enzyme by GLY. Under optimal experimental conditions, the biosensor showed a linear response in the concentration range of 0.1 to 10 mg L-1. The limits of detection and quantification are 0.025 ± 0.002 and 0.084 ± 0.007 mg L-1, respectively, which covers the maximum residual limit established by the EPA for drinking water (0.7 mg L-1). The proposed biosensor demonstrated high reproducibility, excellent analytical performance, repeatability, and accuracy. The sensor proved to be selective against other pesticides, organic acids, and inorganic salts. Application on real samples showed recovery rates ranging between 98.18 ± 0.11 % and 97.32 ± 0.23 %. The analytical features of the proposed biosensor make it an effective and useful tool for the detection of GLY for environmental analysis.
Collapse
Affiliation(s)
- Luis Angel Zambrano-Intriago
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Célia G Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alberto N Araújo
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Dmitrij Gritsok
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
46
|
Carneiro P, Loureiro JA, Delerue-Matos C, Morais S, Pereira MDC. Nanostructured label–free electrochemical immunosensor for detection of a Parkinson's disease biomarker. Talanta 2023; 252:123838. [DOI: 10.1016/j.talanta.2022.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
47
|
Pourali A, Omidi Y. Diagnosis of acute myocardial infarction: highlighting cardiac troponins as vital biomarkers. BIOIMPACTS : BI 2023; 13:85-88. [PMID: 37193078 PMCID: PMC10182445 DOI: 10.34172/bi.2023.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/30/2021] [Indexed: 05/18/2023]
Abstract
The molecular marker, cardiac troponin (cTn) is a complex protein that is attached to tropomyosin on the actin filament. It is an essential biomolecule in terms of the calcium-mediated regulation of the contractile apparatus in myofibrils, the release of which is an indication of the dysfunction of cardiomyocytes and hence the initiation of ischemic phenomena in the heart tissue. Fast and accurate analysis of cTn may help the diagnosis and management of acute myocardial infarction (AMI), for which electrochemical biosensors and microfluidics devices can be of great benefit. This editorial aims to highlight the importance of cTn as vital biomarkers in AMI diagnosis.
Collapse
Affiliation(s)
- Ali Pourali
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL33328, USA
- Corresponding author: Yadollah Omidi,
| |
Collapse
|
48
|
Allegra A, Petrarca C, Di Gioacchino M, Mirabile G, Gangemi S. Electrochemical Biosensors in the Diagnosis of Acute and Chronic Leukemias. Cancers (Basel) 2022; 15:cancers15010146. [PMID: 36612142 PMCID: PMC9817807 DOI: 10.3390/cancers15010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Until now, morphological assessment with an optical or electronic microscope, fluorescence in situ hybridization, DNA sequencing, flow cytometry, polymerase chain reactions, and immunohistochemistry have been employed for leukemia identification. Nevertheless, despite their numerous different vantages, it is difficult to recognize leukemic cells correctly. Recently, the electrochemical evaluation with a nano-sensing interface seems an attractive alternative. Electrochemical biosensors measure the modification in the electrical characteristics of the nano-sensing interface, which is modified by the contact between a biological recognition element and the analyte objective. The implementation of nanosensors is founded not on single nanomaterials but rather on compilating these components efficiently. Biosensors able to identify the molecules of deoxyribonucleic acid are defined as DNA biosensors. Our review aimed to evaluate the literature on the possible use of electrochemical biosensors for identifying hematological neoplasms such as acute promyelocytic leukemia, acute lymphoblastic leukemia, and chronic myeloid leukemia. In particular, we focus our attention on using DNA electrochemical biosensors to evaluate leukemias.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Claudia Petrarca
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy
- Correspondence:
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
49
|
Tian Y, Xu G, Cai K, Zhao X, Zhang B, Wang L, Wang T. Emerging biotransduction strategies on soft interfaces for biosensing. NANOSCALE 2022; 15:80-91. [PMID: 36512329 DOI: 10.1039/d2nr05444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a lab-on-soft biochip providing accurate and timely biomarker information, wearable biosensors can satisfy the increasing demand for intelligent e-health services, active disease diagnosis/therapy, and huge bioinformation data. As biomolecules generally could not directly produce detectable signals, biotransducers that specifically convert biomolecules to electrical or optical signals are involved, which determines the pivotal sensing performance including 3S (sensitivity, selectivity, and stability), reversibility, etc. The soft interface poses new requirements for biotransducers, especially equipment-free, facile operation, mechanical tolerance, and high sensing performance. In this review, we discussed the emerging electrochemical and optical biotransduction strategies on wearables from the aspects of the transduction mechanism, amplification strategies, biomaterial selection, and device fabrication procedures. Challenges and perspectives regarding future biotransducers for monitoring trace amounts of biomolecules with high fidelity, sensitivity, and multifunctionality are also discussed. It is expected that through fusion with functional electronics, wearable biosensors can provide possibilities to further decentralize the healthcare system and even build biomolecule-based intelligent cyber-physical systems and new modalities of cyborgs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guoliang Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kaiyu Cai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xiao Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Bo Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Ting Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
50
|
Detection Methods for H1N1 Virus. Methods Mol Biol 2022; 2610:109-127. [PMID: 36534286 DOI: 10.1007/978-1-0716-2895-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza A virus H1N1, a respiratory virus transmitted via droplets and responsible for the global pandemic in 2009, belongs to the Orthomyxoviridae family, a single-negative-stranded RNA. It possesses glycoprotein spikes neuraminidase (NA), hemagglutinin (HA), and a matrix protein named M2. The Covid-19 pandemic affected the world population belongs to the respiratory virus category is currently mutating, this can also be observed in the case of H1N1 influenza A virus. Mutations in H1N1 can enhance the viral capacity which can lead to another pandemic. This virus affects children below 5 years, pregnant women, old age people, and immunocompromised individuals due to its high viral capacity. Its early detection is necessary for the patient's recovery time. In this book chapter, we mainly focus on the detection methods for H1N1, from traditional ones to the most advance including biosensors, RT-LAMP, multi-fluorescent PCR.
Collapse
|