1
|
Suman TY, Kwak IS. Current understanding of human bioaccumulation patterns and health effects of exposure to perfluorooctane sulfonate (PFOS). JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137249. [PMID: 39842114 DOI: 10.1016/j.jhazmat.2025.137249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant of global concern due to its environmental presence,bioaccumulative potential and toxicological impacts. This review synthesizes current knowledge regarding PFOS exposure, bioaccumulation patterns and adverse health outcomes in human population. Analysis of worldwide biomonitoring data, and epidemiological studies reveals PFOS systemic effects, including immunological dysfunction (decreased vaccine response), developmental toxicity (reduced birth weight), hepatic metabolic disruption, potential carcinogenogenicity, and reproductive abnormalities. At the molecular level, PFOS induces toxicity through multiple pathways, including PI3K/AKT/mTOR pathway inhibition, PPARα activation, NF-κB signaling modulation, and oxidative stress induction. Recent advances in analytical methodologies have enhanced our understanding of PFOS distribution and fate, while evolving egulatory frameworks attempts to address its risk. This review identifies critical research gaps and emphasized the need for coordinated multidisciplinary approaches to address this persistent environmental contaminant.
Collapse
Affiliation(s)
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
2
|
Tashiro Y, Harada KH, Ikehara T, Ito T. Analysis of perfluoroalkyl carboxylates and perfluoroalkyl sulfonates in environmental water by in-port arylation gas chromatography-electron impact ionization-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65385-65392. [PMID: 39579190 DOI: 10.1007/s11356-024-35615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that have been used for various purposes. Although PFAS can pollute the environment in a variety of areas related to the use, storage, and disposal of their products, there are insufficient data on the extent of PFAS pollution outside industrialized countries with their manufacturing facilities. Most of the analyses depend on high-cost liquid chromatography-tandem mass spectrometry. In this study, we established a method to analyze ionic PFAS using gas chromatography-electron impact ionization-mass spectrometry with in-port arylation by diaryl iodonium. Extraction of PFAS from water samples was performed using solid phase extraction with reverse phase sorbent. Fourteen PFAS compounds could be detected from spiked water samples, and the detection limit ranged from 3.1 to 8.1 ng L-1. Using this method, we analyzed groundwater samples from Okinawa Island, Japan, and detected PFAS up to a total concentration of 1900 ng L-1. This method uses relatively inexpensive analytical equipment; hence, it can possibly enable surveys on PFAS contaminations in a wide range of regions and opportunities.
Collapse
Affiliation(s)
- Yutaka Tashiro
- School of International Studies, Meio University, 1220-1 Biimata, Nago, Okinawa, 905-8585, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Takanori Ikehara
- College of Economics and Environmental Policy, Okinawa International University, Ginowan, Okinawa, 901-2701, Japan
| | - Takuma Ito
- College of Economics and Environmental Policy, Okinawa International University, Ginowan, Okinawa, 901-2701, Japan
| |
Collapse
|
3
|
Zhang J, Ren Z, Chen M. Immunotoxicity and Transcriptome Analyses of Zebrafish ( Danio rerio) Embryos Exposed to 6:2 FTSA. TOXICS 2023; 11:toxics11050459. [PMID: 37235273 DOI: 10.3390/toxics11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
As a new alternative to perfluorooctane sulfonic acid (PFOS), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) has been widely produced and used in recent years, and its concentration and frequency of detection in the aquatic environment and aquatic organisms are increasing. However, studies of its toxicity in aquatic biological systems are alarmingly scarce, and the relevant toxicological information needs to be improved. In this study, we investigated AB wild-type zebrafish (Danio rerio) embryos subjected to acute 6:2 FTSA exposure for immunotoxicity using immunoassays and transcriptomics. Immune indexes showed significant decreases in SOD and LZM activities, but no significant change in NO content. Other indexes (TNOS, iNOS, ACP, AKP activities, and MDA, IL-1β, TNF-α, NF-κB, TLR4 content) all showed significant increases. These results indicated that 6:2 FTSA induced oxidative stress and inflammatory responses in zebrafish embryos and exhibited immunotoxicity. Consistently, transcriptomics showed that genes involved in the MAPK, TLR and NOD-like receptor signaling pathways (hsp70, hsp701, stat1b, irf3, cxcl8b, map3k8, il1b, tnfa and nfkb) were significantly upregulated after 6:2 FTSA exposure, suggesting that 6:2 FTSA might induce immunotoxicity in zebrafish embryos through the TLR/NOD-MAPK pathway. The results of this study indicate that the safety of 6:2 FTSA should be examined further.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
4
|
Li L, Yu N, Wang X, Shi W, Liu H, Zhang X, Yang L, Pan B, Yu H, Wei S. Comprehensive Exposure Studies of Per- and Polyfluoroalkyl Substances in the General Population: Target, Nontarget Screening, and Toxicity Prediction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14617-14626. [PMID: 36174189 DOI: 10.1021/acs.est.2c03345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Novel per- and polyfluoroalkyl substances (PFASs) in the environment and populations have received extensive attention; however, their distribution and potential toxic effects in the general population remain unclear. Here, a comprehensive study on PFAS screening was carried out in serum samples of 202 individuals from the general population in four cities in China. A total of 165 suspected PFASs were identified using target and nontarget analysis, including seven identified PFAS homolog series, of which 16 PFASs were validated against standards, and seven PFASs [4:2 chlorinated polyfluorinated ether sulfonate (4:2 Cl-PFESA), 7:2 chlorinated polyfluorinated ether sulfonate (7:2 Cl-PFESA), hydrosubstituted perfluoroheptanoate (H-PFHpA), chlorine-substituted perfluorooctanoate (Cl-PFOA), chlorine-substituted perfluorononanate (Cl-PFNA), chlorine-substituted perfluorodecanoate (Cl-PFDA), and perfluorodecanedioic acid (PFLDCA n = 8)] were reported for the first time in human serum. The Tox21-GCN model (a graph convolutional neural network model based on the Tox21 database) was established to predict the toxicity of the discovered PFASs, revealing that PFASs containing sulfonic acid groups exhibited multiple potential toxic effects, such as estrogenic effects and stress responses. Our study indicated that the general population was exposed to various PFASs, and the toxicity prediction results of individual PFASs suggested potential health risks that could not be ignored.
Collapse
Affiliation(s)
- Laihui Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| |
Collapse
|
5
|
Foguet-Romero E, Samarra I, Guirro M, Riu M, Joven J, Menendez JA, Canela N, DelPino-Rius A, Fernández-Arroyo S, Herrero P. Optimization of a GC-MS Injection-Port Derivatization Methodology to Enhance Metabolomics Analysis Throughput in Biological Samples. J Proteome Res 2022; 21:2555-2565. [PMID: 36180971 DOI: 10.1021/acs.jproteome.2c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in metabolomics analysis and data treatment increase the knowledge of complex biological systems. One of the most used methodologies is gas chromatography-mass spectrometry (GC-MS) due to its robustness, high separation efficiency, and reliable peak identification through curated databases. However, methodologies are not standardized, and the derivatization steps in GC-MS can introduce experimental errors and take considerable time, exposing the samples to degradation. Here, we propose the injection-port derivatization (IPD) methodology to increase the throughput in plasma metabolomics analysis by GC-MS. The IPD method was evaluated and optimized for different families of metabolites (organic acids, amino acids, fatty acids, sugars, sugar phosphates, etc.) in terms of residence time, injection-port temperature, and sample/derivatization reagent ratio. Finally, the method's usefulness was validated in a study consisting of a cohort of obese patients with or without nonalcoholic steatohepatitis. Our results show a fast, reproducible, precise, and reliable method for the analysis of biological samples by GC-MS. Raw data are publicly available at MetaboLights with Study Identifier MTBLS5151.
Collapse
Affiliation(s)
- Elisabet Foguet-Romero
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Iris Samarra
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Maria Guirro
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Marc Riu
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Jorge Joven
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, 43201 Reus, Spain.,Institut d'investigació Sanitària Pere Virgili, Hospital Universitari de Sant Joan, Unitat de Recerca Biomèdica, 43204 Reus, Spain
| | - Javier A Menendez
- Girona Biomedical Research Institute (IdIBGi), Salt, 17190 Girona, Spain.,Metabolism & Cancer Group, ProCURE, Catalan Institute of Oncology, 17007 Girona, Spain
| | - Núria Canela
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Antoni DelPino-Rius
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Salvador Fernández-Arroyo
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Pol Herrero
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| |
Collapse
|
6
|
Kirkwood KI, Fleming J, Nguyen H, Reif DM, Baker ES, Belcher SM. Utilizing Pine Needles to Temporally and Spatially Profile Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3441-3451. [PMID: 35175744 PMCID: PMC9199521 DOI: 10.1021/acs.est.1c06483] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As concerns over exposure to per- and polyfluoroalkyl substances (PFAS) are continually increasing, novel methods to monitor their presence and modifications are greatly needed, as some have known toxic and bioaccumulative characteristics while most have unknown effects. This task however is not simple, as the Environmental Protection Agency (EPA) CompTox PFAS list contains more than 9000 substances as of September 2020 with additional substances added continually. Nontargeted analyses are therefore crucial to investigating the presence of this immense list of possible PFAS. Here, we utilized archived and field-sampled pine needles as widely available passive samplers and a novel nontargeted, multidimensional analytical method coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to evaluate the temporal and spatial presence of numerous PFAS. Over 70 PFAS were detected in the pine needles from this study, including both traditionally monitored legacy perfluoroalkyl acids (PFAAs) and their emerging replacements such as chlorinated derivatives, ultrashort chain PFAAs, perfluoroalkyl ether acids including hexafluoropropylene oxide dimer acid (HFPO-DA, "GenX") and Nafion byproduct 2, and a cyclic perfluorooctanesulfonic acid (PFOS) analog. Results from this study provide critical insight related to PFAS transport, contamination, and reduction efforts over the past six decades.
Collapse
Affiliation(s)
- Kaylie I Kirkwood
- North Carolina State University, Department of Chemistry, Raleigh, North Carolina 27607, United States
| | - Jonathon Fleming
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina 27607, United States
| | - Helen Nguyen
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina 27607, United States
| | - David M Reif
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina 27607, United States
| | - Erin S Baker
- North Carolina State University, Department of Chemistry, Raleigh, North Carolina 27607, United States
| | - Scott M Belcher
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina 27607, United States
| |
Collapse
|
7
|
Uwayezu JN, Yeung LWY, Bäckström M. Sorption of Perfluorooctane sulfonate (PFOS) including its isomers on hydrargillite as a function of pH, humic substances and Na 2SO 4. J Environ Sci (China) 2022; 111:263-272. [PMID: 34949356 DOI: 10.1016/j.jes.2021.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant (POP) and emergent contaminant that are widespread in the environment. Understanding the mechanisms controlling the distribution of PFOS and its isomers between hydrargillite and the water phase is important in order to study their redistribution and mobility in the environment. This study investigated the effects of pH, humic acid, fulvic acid and Na2SO4 on sorption of PFOS isomers to hydrargillite. A mixture of PFOS isomers was spiked into water and hydrargillite was added to the system and shaken for one day; the system was tested with different aqueous composition. Concentrations of PFOS isomers in the aqueous phase were quantified using an ultra-performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. Our results showed that the distribution coefficients of PFOS isomers were found to be 0.76, 0.71, 0.93 and 0.90 at pH 6.5, for 3-/4-/5- PFOS, 6-/2-PFOS, L-PFOS and total PFOS respectively. The distribution coefficients increased at lower pH and decreased at alkaline conditions. The presence of humic substances (HS) increased the sorption slightly at the environmental pH of 6.5, although a competition effect was observed during acidic conditions. A tendency of PFOS distribution to hydrargillite in the presence of Na2SO4 was like its behavior in the presence of HS although the mechanisms behind the sorption were interpreted differently. This study revealed that L-PFOS was readily sorbed when no other chemicals were added or in 20 mg/L FA or 100 mg/L Na2SO4. We suggest that an increase in PFOS sorption in the presence of HS may be due to hydrophobic mechanisms while Na2SO4 contributed to increased sorption through ionic strength effects.
Collapse
Affiliation(s)
- Jean-Noel Uwayezu
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| | - Mattias Bäckström
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden.
| |
Collapse
|
8
|
Ali AM, Langberg HA, Hale SE, Kallenborn R, Hartz WF, Mortensen ÅK, Ciesielski TM, McDonough CA, Jenssen BM, Breedveld GD. The fate of poly- and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:588-604. [PMID: 33704290 DOI: 10.1039/d0em00510j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although poly- and perfluorinated alkyl substances (PFAS) are ubiquitous in the Arctic, their sources and fate in Arctic marine environments remain unclear. Herein, abiotic media (water, snow, and sediment) and biotic media (plankton, benthic organisms, fish, crab, and glaucous gull) were sampled to study PFAS uptake and fate in the marine food web of an Arctic Fjord in the vicinity of Longyearbyen (Svalbard, Norwegian Arctic). Samples were collected from locations impacted by a firefighting training site (FFTS) and a landfill as well as from a reference site. Mean concentration in the landfill leachate was 643 ± 84 ng L-1, while it was 365 ± 8.0 ng L-1 in a freshwater pond and 57 ± 4.0 ng L-1 in a creek in the vicinity of the FFTS. These levels were an order of magnitude higher than in coastal seawater of the nearby fjord (maximum level , at the FFTS impacted site). PFOS was the most predominant compound in all seawater samples and in freshly fallen snow (63-93% of ). In freshwater samples from the Longyear river and the reference site, PFCA ≤ C9 were the predominant PFAS (37-59%), indicating that both local point sources and diffuse sources contributed to the exposure of the marine food web in the fjord. concentrations increased from zooplankton (1.1 ± 0.32 μg kg-1 ww) to polychaete (2.8 ± 0.80 μg kg-1 ww), crab (2.9 ± 0.70 μg kg-1 ww whole-body), fish liver (5.4 ± 0.87 μg kg-1 ww), and gull liver (62.2 ± 11.2 μg kg-1). PFAS profiles changed with increasing trophic level from a large contribution of 6:2 FTS, FOSA and long-chained PFCA in zooplankton and polychaetes to being dominated by linear PFOS in fish and gull liver. The PFOS isomer profile (branched versus linear) in the active FFTS and landfill was similar to historical ECF PFOS. A similar isomer profile was observed in seawater, indicating major contribution from local sources. However, a PFOS isomer profile enriched by the linear isomer was observed in other media (sediment and biota). Substitutes for PFOS, namely 6:2 FTS and PFBS, showed bioaccumulation potential in marine invertebrates. However, these compounds were not found in organisms at higher trophic levels.
Collapse
Affiliation(s)
- Aasim M Ali
- Department of Contaminants and Biohazards, Institute of Marine Research, Bergen NO-5817, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu Y, Li A, Buchanan S, Liu W. Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants. ENVIRONMENT INTERNATIONAL 2020; 144:106012. [PMID: 32771830 DOI: 10.1016/j.envint.2020.106012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 05/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment, making it inevitable for humans to be exposed to these pollutants. The exposure begins while in utero and continues in infancy, during the potentially most sensitive early stages of life. This review summarizes the current knowledge on pre- and neo-natal exposures based on more than 200 articles published from 2000 to date. All relevant biological matrices used in the cited studies were included, such as maternal blood, umbilical cord blood, breast milk, placenta, amniotic fluid, fetal organs, newborns' dried blood spots, and infant serum. We show that such exposures are geographically global with significant discrepancies among countries and continents, and that while the levels of major legacy PFASs (PFOS and PFOA) have declined since 2000, those of others may have not. We also show that levels of PFOS and PFOA exceed those of some major environmental toxins, such as p,p'-DDE, BDE-47, PCB-153, PBB-153, and OH-PBDEs in maternal blood. Given that the behavior and potential effects have an origin in molecular structure, biomonitoring and research at the levels of isomers and enantiomers are critically important. Through critical analysis of these works, we summarize the major achievements, consensus, and the deficiencies of existing research. To our knowledge, this is the first review on the overall internal exposure status of mothers and infants to PFASs during pregnancy and lactation.
Collapse
Affiliation(s)
- Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Susan Buchanan
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Stróżyńska M, H Gross J, Schuhen K. Structural investigation of perfluorocarboxylic acid derivatives formed in the reaction with N,N-dimethylformamide dialkylacetals. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:131-143. [PMID: 31594396 DOI: 10.1177/1469066719880546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A structural investigation of perfluorocarboxylic acid derivatives formed in the reaction with N,N-dimethylformamide dialkylacetals employing several techniques of mass spectrometry (MS) is described. Two derivatizing reagents, dimethylformamide dimethyl acetal (DMF-DMA) and dimethylformamide diethylacetal (DMF-DEA) were used. In contrast to carboxylic acids, perfluorocarboxylic acids are not able to form alkyl esters as the main product in this reaction. We found that perfluorooctanoic acid (PFOA) forms a salt with N,N-dimethylformamide dialkylacetals. This salt undergoes a further reaction inside the injection block of a gas chromatograph (GC) by loss of CO2 and then forms 1,1-perfluorooctane-(N,N,N,N-tetramethyl)-diamine. The GC-MS experiments using both electron ionization (EI) and positive-ion chemical ionization (PCI) revealed that the same reaction products are formed with either derivatizing reagent. Subjecting the perfluorocarboxylic acid derivative to electrospray ionization (ESI) and direct analysis in real time (DART), both positive- and negative-ion modes indicated that cluster ions are formed. In the positive-ion mode, this cluster ion consists of two iminium cations and one PFOA anion, while in the negative-ion mode, it comprises two PFOA anions and one cation. The salt structure was further confirmed by liquid injection field desorption/ionization (LIFDI) as well as infrared (IR) spectroscopy. We propose a simple mechanism of N,N,N',N'-tetramethylformamidinium cation formation. The structure elucidation is supported by specific fragment ions as obtained by GC-EI-MS and GC-PCI-MS analyses.
Collapse
Affiliation(s)
- Monika Stróżyńska
- Wasser 3.0/abcr GmbH, Karlsruhe, Germany
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
11
|
Chen Q, Zhu P, Xiong J, Gao L, Tan K. A new dual-recognition strategy for hybrid ratiometric and ratiometric sensing perfluorooctane sulfonic acid based on high fluorescent carbon dots with ethidium bromide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117362. [PMID: 31352140 DOI: 10.1016/j.saa.2019.117362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel strategy for perfluorooctane sulfonic acid (PFOS) detection was established by using a ratiometric nanosensor with the combination of fluorescence and second-order scattering (SOS). The practical ratiometric nanosensor was synthesized simply by mixing fluorescent dye ethidium bromide (EB) and nitrogen doped carbon dots (N-CDs) which was synthesized by a one-step hydrothermal method with Victoria Blue B, possessing three emission peaks at 472 nm, 560 nm and 600 nm under a single wavelength excitation of 280 nm, respectively. The EB served as the reference signal label, and the N-CDs, having response to the analytes, acted as the response signal label. To achieve ratiometric detection, the fluorescence emission of the N-CDs was turned off and the SOS emission was turned on with the addition of the target PFOS. To achieve colorimetric detection, with the help of EB, the fluorescence of the system changed from green to orange. Under the optimal conditions, the difference of F472/I568 of the nanosensor had good linearity against the concentrations of PFOS within a linear range of 0-2.0 μM. The limit of detection was as low as 27.8 nM, which was low enough for the detection of PFOS in water samples. The proposed method has been successfully applied to the detection of PFOS with RSD <1.67%. The results show that the as-prepared N-CDs/EB ratiometric nanosensor has potential application for the detection of PFOS in environmental monitoring.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Panpan Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jie Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lixia Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Kejun Tan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Zhu J, Harada KH, Zou X, Sun C. Investigating isomers/enantiomers of perfluorooctanoic acid in river water by gas chromatography-mass spectrometry with chiral derivatization. CHEMOSPHERE 2020; 238:124617. [PMID: 31450108 DOI: 10.1016/j.chemosphere.2019.124617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) in environmental media contains numerous isomers/enantiomers because of the PFOA manufacturing process and biological degradation of PFOA precursors. Few methods for analyzing PFOA enantiomers have been described. A simple derivatization method using (S)-1-phenethyl chloride that was developed to allow PFOA isomers/enantiomers to be separated by gas chromatography and analyzed by electron-capture negative ionization mass spectrometry is described here. PFOA standards were analyzed, and enantiomers of the chiral isomers perfluoro-3-methyl-heptanoic acid, perfluoro-4-methyl-heptanoic acid, and perfluoro-3,5-dimethyl-hexanoic acid were separated using an HP-5MS column. Linear PFOA and perfluoro-6-methyl-heptanoic acid were chromatographically separated from these enantiomers. The linear ranges (giving correlation coefficients r > 0.997) of the calibration curves for the isomers were 0.010-3.00 ng/mL. PFOA isomer/enantiomer concentrations in river water were determined using the method. The method separated the enantiomers of perfluoro-3-methyl-heptanoic acid and perfluoro-4-methyl-heptanoic acid, the isomers of perfluoro-6-methyl-heptanoic acid, and linear PFOA in river water. No significant differences were found between the PFOA enantiomer/isomer compositions of the sample and technical PFOA. Enantiomer ratios can provide information about the sources and transport of pollutant isomers/enantiomers in the environment. Enantiomeric separation requires effective separation techniques. Our method achieved chiral separation using a non-chiral GC column that is often used in general analytical laboratories. The method could be used to investigate the sources and fates of PFOA and the isomers/enantiomers of other potentially toxic persistent pollutants in the environment and the risks posed to humans.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061, China; Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061, China
| | - Chengjun Sun
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061, China
| |
Collapse
|
13
|
Uwayezu JN, Yeung LWY, Bäckström M. Sorption of PFOS isomers on goethite as a function of pH, dissolved organic matter (humic and fulvic acid) and sulfate. CHEMOSPHERE 2019; 233:896-904. [PMID: 31340417 DOI: 10.1016/j.chemosphere.2019.05.252] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Understanding the distribution of PFOS isomers between the aqueous phase and goethite is crucial, since it is an abundant sorbent and thus may have a large influence on the mobility of PFOS. This study was conducted to understand the effects of pH, humic acid (HA), fulvic acid (FA) and sulfate on sorption of PFOS isomers. The results will increase the understanding about what parameters may control the fate and transport of PFOS in surface and ground water. The study was conducted by adding PFOS spiked water to a goethite slurry with different aqueous chemistry. Levels of total PFOS and PFOS isomers were quantified using an Ultra-Performance Liquid Chromatograph coupled to a triple quadrupole mass spectrometer. Results showed that sorption of PFOS was mainly dependent on pH; sorption decreased as pH increased. Presence of HA increased log Kd from 1.29 to 2.03, 1.76 to 1.92 and 1.51 to 1.96 at pH 5.50-7.50 for 3-/4-/4-PFOS, 6-/2-PFOS and L-PFOS, respectively. Changes in the aqueous chemistry also affected the behaviour of PFOS as the addition of Na2SO4 enhanced the sorption of PFOS. Results showed that L-PFOS was more readily sorbed to goethite at pH < 4.35 both in the presence and in the absence of humic or fulvic acids. At pH > 4.5 the 3-/4-/5-PFOS isomer group was more associated to goethite. Besides electrostatic interactions, which controlled the sorption of PFOS, this study indicate that the presence of dissolved humic substances in the aqueous phase enhances the sorption via hydrophobic mechanisms.
Collapse
Affiliation(s)
- Jean-Noel Uwayezu
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82, Örebro, Sweden
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82, Örebro, Sweden
| | - Mattias Bäckström
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
14
|
Cheng Z, Dong H, Liang J, Zhang F, Chen X, Du L, Tan K. Highly selective fluorescent visual detection of perfluorooctane sulfonate via blue fluorescent carbon dots and berberine chloride hydrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:262-269. [PMID: 30253323 DOI: 10.1016/j.saa.2018.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 05/21/2023]
Abstract
As a kind of emerging persistent organic pollutants, perfluorooctane sulfonate (PFOS) and its salts have caused global ecosystem pollution. To develop rapid, sensitive and low-cost detection method of PFOS is of great importance. In this work, a novel sensing method has been proposed for the highly selective fluorescent visual detection of PFOS in aqueous solution based on carbon dots (CDs) and berberine chloride hydrate (BH). It was found that the fluorescence of CDs decreased apparently in the presence of berberine chloride hydrate in pH 6.09 Britton-Robinson (BR) buffer solution. When PFOS was added to the system, the fluorescence was restored slightly at 448 nm and enhanced apparently at 533 nm, but no phenomenon occurred with other perfluorinated compounds. As a consequence, an obviously distinguishable fluorescence color variation (from blue to light yellow) of solution was observed. Under the optimized experimental conditions, the enhanced fluorescence intensities at 533 nm are in proportion to the concentration of PFOS in the range of 0.22-50.0 μmol/L (R2 = 0.9919), with a detection limit of 21.7 nmol/L (3σ). The proposed approach has been successfully applied to the detection of PFOS in environmental water samples with RSD ≤ 1.1%.
Collapse
Affiliation(s)
- Zhen Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hongcen Dong
- Class 12 Senior Grade 2018, High School Affiliated to Southwest University, Chongqing 400700, PR China
| | - Jiaman Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fang Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xianping Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lingling Du
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Kejun Tan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Determination of perfluoroalkyl acid isomers in biosolids, biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:25-33. [DOI: 10.1016/j.jchromb.2017.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
|
16
|
Wang Z, Pei X, Li N, Tang X. Phosphate-perylene modified G-quadruplex probes for the detection of Pb 2+ using fluorescence anisotropy. J Mater Chem B 2016; 4:4330-4336. [PMID: 32263415 DOI: 10.1039/c6tb00539j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A simple and universal phosphate-perylene modification strategy was applied in the development of G-quadruplex probes with thrombin binding aptamer (TBA) and [d(TGGGT)4] (G4) sequences. A perylene moiety was inserted at different phosphate positions of oligonucleotides without a significant effect on the G-quadruplex structures. Upon binding with K+ or Pb2+, these probes showed different perylene fluorescence anisotropy responses due to the different labeling positions and G-quadruplex structures. Two probes (G4-9 and TBA-9) were successfully used in Pb2+ detection through fluorescence anisotropy. Once the complexes of Pb2+ with G4-9 or TBA-9 were formed, the rotational diffusion of the perylene moiety was limited, resulting in a significant increase in fluorescence anisotropy. Both probes showed good sensitivity to Pb2+ and their fluorescence anisotropy signals demonstrated good linear responses to the logarithm of Pb2+ concentrations and the detection limits were 24.5 nM and 30.0 nM for TBA-9 and G4-9, respectively.
Collapse
Affiliation(s)
- Zhixuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | | | | | | |
Collapse
|
17
|
Chu S, Letcher RJ, McGoldrick DJ, Backus SM. A New Fluorinated Surfactant Contaminant in Biota: Perfluorobutane Sulfonamide in Several Fish Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:669-75. [PMID: 26649981 DOI: 10.1021/acs.est.5b05058] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental contamination and regulation of longer-chain perfluoroalkyl substances (PFASs) such as perfluorooctanesulfonate (PFOS) has given rise to the increased use of shorter-chain PFASs as alternatives in new products, although confirmation of their presence in the environment remains limited. In this study, the PFAS alternative, perfluoro-1-butane-sulfonamide (FBSA), was identified for the first time in biota in homogenate samples of fish by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-ToF-MS) and quantified by ultra high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS). In one flounder (Platichthys flesus) muscle sample from the Western Scheldt, The Netherlands, FBSA concentration was at 80.12 ng/g wet weight (w.w.) and was exceeded only by PFOS. FBSA was also detected in 32 out of 33 samples of freshwater fish collected (2009-2010) from water bodies across Canada. In lake trout (Salvelinus namaycush) from northern Canada (e.g., Lake Kusawa (Yukon Territory), Great Bear Lake (Northwest Territories and in the Arctic), and Lake Athabasca (northern Alberta)), the concentrations of FBSA ranged from below method detection limit (<0.01 ng/g w.w) to 0.44 ng/g w.w. and were much lower than those reported for lake trout from the more urbanized and industrialized Laurentian Great Lakes sites (3.17 ± 1.53 ng/g w.w.). In three species of fish purchased from a supermarket in Ottawa (ON, Canada), FBSA concentrations were the lowest of all fish and ranged from < MLOD to 0.29 ng/g w.w. and 0.03 to 0.76 ng/g w.w. in muscle and liver, respectively. FBSA is a bioaccumulative contaminant in fish in Canada and possibly in The Netherlands. It is likely sourced from new alternative perfluorobutane-based products, as well as other shorter chain perfluoroalkyl-based products.
Collapse
Affiliation(s)
- Shaogang Chu
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON K1A 0H3, Canada
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON K1A 0H3, Canada
| | - Daryl J McGoldrick
- Water Science and Technology Directorate, Environment Canada , Burlington, ON L7R 4A6, Canada
| | - Sean M Backus
- Water Science and Technology Directorate, Environment Canada , Burlington, ON L7R 4A6, Canada
| |
Collapse
|
18
|
Svihlikova V, Lankova D, Poustka J, Tomaniova M, Hajslova J, Pulkrabova J. Perfluoroalkyl substances (PFASs) and other halogenated compounds in fish from the upper Labe River basin. CHEMOSPHERE 2015; 129:170-178. [PMID: 25455680 DOI: 10.1016/j.chemosphere.2014.09.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
This study summarizes results on levels of 25 perfluoroalkyl substances (PFASs), three hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol A (TBBPA), three brominated phenols and four hydroxylated derivates of polybrominated diphenyl ethers (OH-PBDEs) in 59fish samples collected in nine localities on two major rivers from the Czech Republic. To identify potential sources of these chemicals, several sampling sites located close to highly industrialized areas were also involved. The major PFAS representatives, perfluorooctane sulfonate (PFOS), C9-C14 perfluoroalkyl carboxylic acids (PFCAs) and perfluorooctane sulfonamide (FOSA) were detected in 100% fish samples. The concentration ranges of individual substances in the respective groups of PFASs were as follows: 0.572-61.3ngg(-)(1) wet weight (ww) for Tot-PFOS, 0.007-0.121ngg(-)(1)ww for perfluoroalkane sulfonates (PFSAs) (without PFOS isomers), 0.007-22.0ngg(-)(1)ww for PFCAs and 0.026-7.76ngg(-)(1)ww for FOSA. The highest contents of ∑PFASs (51.9ngg(-)(1)ww and 47.8ngg(-)(1)ww) were measured in fish muscle tissue from the locality Trmice situated on the Bílina River and Verdek on the Labe River, where chemical and/or textile industry is located. From 11 targeted BFRs, five compounds (α-HBCD, β-HBCD, γ-HBCD, TBBPA and 2,4,6-tribromophenol (TBP)) were determined in analyzed samples. The concentration ranged as follows: 3.15-1211ngg(-)(1) lipid weight (lw) for ∑HBCD, 4.99-203ngg(-)(1)lw for TBBPA and 1.76-107ngg(-)(1)lw for 2,4,6-TBP.
Collapse
Affiliation(s)
- Veronika Svihlikova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Darina Lankova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jan Poustka
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Monika Tomaniova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
19
|
Yu N, Wang X, Zhang B, Yang J, Li M, Li J, Shi W, Wei S, Yu H. Distribution of perfluorooctane sulfonate isomers and predicted risk of thyroid hormonal perturbation in drinking water. WATER RESEARCH 2015; 76:171-80. [PMID: 25813491 DOI: 10.1016/j.watres.2015.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 05/03/2023]
Abstract
We documented the distribution of seven perfluorooctane sulfonate (PFOS) isomers in drinking water in Jiangsu Province, China. Compared to the 30% proportion of branched PFOS in technical PFOS, the levels of branched PFOS in drinking water increased to 31.8%-44.6% of total PFOS. Because of previous risk assessment without considering the PFOS isomer profile and the toxicity of individual PFOS isomers, here we performed a new health risk assessment of PFOS for thyroid hormonal perturbation in drinking water with the contribution from individual PFOS isomers. The risk quotients (RQs) of individual PFOS isomers indicated that linear PFOS contributed most to the risk among all the target PFOS isomers (83.0%-90.2% of the total PFOS RQ), and that risk from 6m-PFOS (5.2%-11.9% of the total PFOS RQ) was higher than that from other branched PFOS isomers. We found that the risks associated with PFOS in drinking water would be overestimated by 10.0%-91.7% if contributions from individual PFOS isomers were not considered. The results revealed that the PFOS isomer profile and the toxicity of individual PFOS isomers were important factors in health risk assessment of PFOS and should be considered in the future risk assessments.
Collapse
Affiliation(s)
- Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Beibei Zhang
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing, PR China
| | - Jingping Yang
- Laboratory of Immunology and Reproductive Biology, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Meiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China.
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
20
|
Zhang Z, Peng H, Wan Y, Hu J. Isomer-specific trophic transfer of perfluorocarboxylic acids in the marine food web of Liaodong Bay, North China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1453-1461. [PMID: 25575072 DOI: 10.1021/es504445x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Trophic transfers of perfluorocarboxylic acids (PFCAs) have been well studied in aquatic food webs; however, most studies examined PFCAs as single compounds without differentiating isomers. In this study, an in-port derivatization GC-MS method was used to determine PFCA (perfluorooctanoic acid, PFOA; perfluorononanoic acid, PFNA; perfluorodecanoate acid, PFDA; perfluoroundecanoate acid, PFUnDA; perfluorododecanoate acid, PFDoDA; perfluorotridecanoate acid, PFTriDA, and perfluorotetradecanoate acid, PFTeDA) structural isomers in 11 marine species including benthic invertebrates, fishes, and gulls collected in November 2006 from Liaodong Bay in China. The total concentrations of linear PFCAs were 0.35-1.10, 0.93-2.61, and 2.13-2.69 ng/g ww, and the corresponding percentages of branched PFCAs to linear PFCAs were 6.6-15.5%, 4.2-9.9%, and 4.5-6.0% in invertebrates, fishes, and birds, respectively. Except for linear PFOA, significant positive relationships were found between the concentrations of all the target linear PFCAs and trophic levels, and the trophic magnification factors (TMFs) ranged from 1.90 to 4.88. Positive correlations between the concentrations of branched PFCAs isomers and trophic levels were also observed but were without statistical significance. The relatively high biomagnification of linear isomers of PFCAs would lead to low percentages of branched PFCAs to total PFCAs in organisms at high trophic levels. This study for the first time clarified isomer-specific trophic transfers of PFCAs in a marine food web.
Collapse
Affiliation(s)
- Zhong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | | | | | | |
Collapse
|
21
|
Preus-Olsen G, Olufsen MO, Pedersen SA, Letcher RJ, Arukwe A. Effects of elevated dissolved carbon dioxide and perfluorooctane sulfonic acid, given singly and in combination, on steroidogenic and biotransformation pathways of Atlantic cod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:222-235. [PMID: 25063886 DOI: 10.1016/j.aquatox.2014.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
In the aquatic environments, the predicted changes in water temperature, pO2 and pCO2 could result in hypercapnic and hypoxic conditions for aquatic animals. These conditions are thought to affect several basic cellular and physiological mechanisms. Yet, possible adverse effects of elevated CO2 (hypercapnia) on teleost fish, as well as combined effects with emerging and legacy environmental contaminants are poorly investigated. In this study, juvenile Atlantic cod (Gadus morhua) were divided into groups and exposed to three different water bath PFOS exposure regimes (0 (control), 100 and 200 μg L(-1)) for 5 days at 1h/day, followed by three different CO2-levels (normocapnia, moderate (0.3%) and high (0.9%)). The moderate CO2 level is the predicted near future (within year 2300) level, while 0.9% represent severe hypercapnia. Tissue samples were collected at 3, 6 and 9 days after initiated CO2 exposure. Effects on the endocrine and biotransformation systems were examined by analyzing levels of sex steroid hormones (E2, T, 11-KT) and transcript expression of estrogen responsive genes (ERα, Vtg-α, Vtg-β, ZP2 and ZP3). In addition, transcripts for genes encoding xenobiotic metabolizing enzymes (cyp1a and cyp3a) and hypoxia-inducible factor (HIF-1α) were analyzed. Hypercapnia alone produced increased levels of sex steroid hormones (E2, T, 11-KT) with concomitant mRNA level increase of estrogen responsive genes, while PFOS produced weak and time-dependent effects on E2-inducible gene transcription. Combined PFOS and hypercapnia exposure produced increased effects on sex steroid levels as compared to hypercapnia alone, with transcript expression patterns that are indicative of time-dependent interactive effects. Exposure to hypercapnia singly or in combination with PFOS produced modulations of the biotransformation and hypoxic responses that were apparently concentration- and time-dependent. Loading plots of principal component analysis (PCA) produced a significant grouping of individual scores according to the exposure scenarios at day 6 and 9. Overall, the PCA analysis produced a unique clustering of variables that signifies a positive correlation between exposure to high PFOS concentration and mRNA expression of E2 responsive genes. Notably, this pattern was not evident for individuals exposed to PFOS concentrations in combination with elevated CO2 scenarios. To our knowledge, the present study is the first of its kind, to evaluate such effects using combined exposure to a perfluoroalkyl sulfonate and elevated levels of CO2 saturation, representative of future oceanic climate change, in any fish species or lower vertebrate.
Collapse
Affiliation(s)
- Gunnhild Preus-Olsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Marianne O Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Sindre Andre Pedersen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
22
|
Fang S, Chen X, Zhao S, Zhang Y, Jiang W, Yang L, Zhu L. Trophic magnification and isomer fractionation of perfluoroalkyl substances in the food web of Taihu Lake, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2173-82. [PMID: 24460088 DOI: 10.1021/es405018b] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biomagnification of perfluoroalkyl substances (PFASs) are well studied in marine food webs, but related information in fresh water ecosystem and knowledge on fractionation of their isomers along the food web are limited. The distribution, bioaccumulation, magnification, and isomer fractionation of PFASs were investigated in a food web of Taihu Lake, China. Perfluorooctanesulfonate (PFOS) and perfluorocarboxylates (PFCAs) with longer carbon chain lengths, such as perfluorodecanoate (PFDA) and perfluoroundecanoate (PFUnA), were predominant in organisms, while perfluorohexanoate (PFHxA) and perfluorooctanoate (∑PFOA) contributed more in the water phase. The consistent profile signature of PFOA isomers in water phase with 3M electrochemical fluorination (ECF) products suggests that ECF production of PFOA still exists in China. Linear proportions of PFOA, PFOS and perfluorooctane sulfonamide (PFOSA) in the biota were in the range of 91.9-100%, 78.6-95.5%, and 72.2-95.5%, respectively, indicating preferential bioaccumulation of linear isomers in biota. Trophic magnification factors (TMFs) were estimated for PFDA (2.43), perfluorododecanoate (PFDoA) (2.68) and PFOS (3.46) when all biota were included, suggesting that PFOS and long-chained PFCAs are biomagnified in the fresh water food web. The TMF of PFOS isomers descended in the order: n-PFOS (3.86) > 3+5m-PFOS (3.35) > 4m-PFOS (3.32) > 1m-PFOS (2.92) > m2-PFOS (2.67) > iso-PFOS (2.59), which is roughly identical to their elution order on a FluoroSep-RP Octyl column, suggesting that hydrophobicity may be an important contributor for isomer discrimination in biota.
Collapse
Affiliation(s)
- Shuhong Fang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University , Tianjin 300071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Focused ultrasound solid–liquid extraction for the determination of perfluorinated compounds in fish, vegetables and amended soil. J Chromatogr A 2014; 1331:27-37. [DOI: 10.1016/j.chroma.2014.01.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/23/2013] [Accepted: 01/12/2014] [Indexed: 01/28/2023]
|
24
|
Peng H, Zhang S, Sun J, Zhang Z, Giesy JP, Hu J. Isomer-specific accumulation of perfluorooctanesulfonate from (N-ethyl perfluorooctanesulfonamido)ethanol-based phosphate diester in Japanese Medaka (Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1058-66. [PMID: 24364678 DOI: 10.1021/es404867w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While (N-ethyl perfluorooctanesulfonamido)ethanol (FOSE) -based phosphate diester (diSPAP) has been proposed as a candidate precursor of perfluorooctanesulfonate (PFOS), its potential biotransformation to PFOS has not been verified. Metabolism of diSPAP was investigated in Japanese medaka ( Oryzias latipes ) after exposure in water for 10 days, followed by 10 days of depuration. Branched isomers of diSPAP (B-diSPAP) were preferentially enriched in medaka exposed to diSPAP, with the proportion of branched isomers (BF) ranging from 0.56 to 0.80, which was significantly greater than that in the water to which the medaka were exposed (0.36) (p < 0.001). This enrichment was due primarily to preferential uptake of B-diSPAP. PFOS together with perfluorooctanesulfonamide (PFOSA), N-ethyl perfluorooctanesulfonamide (NEtFOSA), 2-(perfluorooctanesulfonamido)acetic acid (FOSAA), NEtFOSAA, FOSE, and NEtFOSE were detected in medaka exposed to diSPAP, which indicated the potential for biotransformation of diSPAP to PFOS via multiple intermediates. Due to preferential metabolism of branched isomers, FOSAA and PFOSA exhibited greater BF values (>0.5) than those of NEtFOSA, NEtFOSAA, and NEtFOSE (<0.2). Such preferential metabolism of branched isomers along the primary pathway of metabolism and preferential accumulation of B-diSPAP led to enrichment of branched PFOS (B-PFOS) in medaka. Enrichment of B-PFOS was greater for 3-, 4-, and 5-perfluoromethyl PFOS (P3MPFOS, P4MPFOS, and P5MPFOS), for which values of BF were 0.58 ± 0.07, 0.62 ± 0.06, and 0.61 ± 0.05 (day 6), respectively; these values are 5.8-, 7.8-, and 6.4-fold greater than those of technical PFOS. This work provides evidence on the isomer-specific accumulation of PFOS from diSPAP and will be helpful to track indirect sources of PFOS in the future.
Collapse
Affiliation(s)
- Hui Peng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
25
|
Greaves AK, Letcher RJ. Linear and branched perfluorooctane sulfonate (PFOS) isomer patterns differ among several tissues and blood of polar bears. CHEMOSPHERE 2013; 93:574-80. [PMID: 23920361 DOI: 10.1016/j.chemosphere.2013.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 06/12/2013] [Accepted: 07/04/2013] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a globally distributed persistent organic pollutant that has been found to bioaccumulate and biomagnify in aquatic food webs. Although principally in its linear isomeric configuration, 21-35% of the PFOS manufactured via electrochemical fluorination is produced as a branched structural isomer. PFOS isomer patterns were investigated in multiple tissues of polar bears (Ursus maritimus) from East Greenland. The liver (n = 9), blood (n = 19), brain (n = 16), muscle (n = 5), and adipose (n = 5) were analyzed for linear PFOS (n-PFOS), as well as multiple mono- and di-trifluoromethyl-substituted branched isomers. n-PFOS accounted for 93.0 ± 0.5% of Σ-PFOS isomer concentrations in the liver, whereas the proportion was significantly lower (p<0.05) in the blood (85.4 ± 0.5%). Branched isomers were quantifiable in the liver and blood, but not in the brain, muscle, or adipose. In both the liver and blood, 6-perfluoromethylheptane sulfonate (P6MHpS) was the dominant branched isomer (2.61 ± 0.10%, and 3.26 ± 0.13% of Σ-PFOS concentrations, respectively). No di-trifluoromethyl-substituted isomers were detectable in any of the tissues analyzed. These tissue-specific isomer patterns suggest isomer-specific pharmacokinetics, perhaps due to differences in protein affinities, and thus differences in protein interactions, as well transport, absorption, and/or metabolism in the body.
Collapse
Affiliation(s)
- Alana K Greaves
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, National Wildlife Research Centre, Environment Canada, Carleton University, Ottawa, ON K1A 0H3, Canada
| | | |
Collapse
|
26
|
Analysis of perfluorooctane sulfonate and perfluorooctanoic acid with a mixed-mode coating-based solid-phase microextraction fiber. Talanta 2013; 114:11-6. [DOI: 10.1016/j.talanta.2013.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 11/19/2022]
|
27
|
The determination of perfluoroalkyl substances, brominated flame retardants and their metabolites in human breast milk and infant formula. Talanta 2013; 117:318-25. [PMID: 24209347 DOI: 10.1016/j.talanta.2013.08.040] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 12/23/2022]
Abstract
In the present study, a novel analytical approach for the simultaneous determination of 18 perfluoroalkyl substances (PFASs) and 11 brominated flame retardants (BFRs) including their hydroxylated metabolites and brominated phenols has been developed and validated for breast milk and infant formula. The sample preparation procedure based on extraction using acetonitrile and subsequent purification by dispersive solid-phase extraction (d-SPE) employing C18 sorbent is rapid, simple and high-throughput. Ultra-high performance liquid chromatography (UHPLC) interfaced with a tandem mass spectrometry (MS/MS) was employed for the identification/quantification of these compounds. The method recoveries of target compounds for both matrices ranged from 80% to 117% with relative standard deviations lower than 28% and quantification limits in the range of 3-200 pg/mL for milk and 5-450 pg/g for infant formula. Within the pilot study, the new method was used for the analysis of PFASs and BFRs in 50 human breast milks and six infant formulas. In the breast milk samples the total contents of PFASs and BFRs were in the range of 38-279 and 45-16,200 pg/mL, respectively. The most abundant PFASs detected in all tested breast milk samples were perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), the latter contaminant was present not only as a linear form but also as a branched isomers. The incidence of BFRs was lower, the only representatives of this group, tetrabromobiphenol A (TBBPA) and α-hexabromocyclododecane (α-HBCD), were detected in less than 30% of breast milk samples. None of the infant formulas contained BFRs, traces of either PFOS, PFOA or PFNA were found in three samples.
Collapse
|
28
|
Wang Q, Ma L, Yin CR, Xu L. Developments in injection port derivatization. J Chromatogr A 2013; 1296:25-35. [DOI: 10.1016/j.chroma.2013.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
29
|
Bizkarguenaga E, Iparragirre A, Navarro P, Olivares M, Prieto A, Vallejo A, Zuloaga O. In-port derivatization after sorptive extractions. J Chromatogr A 2013; 1296:36-46. [DOI: 10.1016/j.chroma.2013.03.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/28/2022]
|
30
|
Van Leeuwen S, Leslie H, De Boer J, Van Leeuwen S, Van Bavel B, Abad E, Fiedler H. POPs analysis reveals issues in bringing laboratories in developing countries to a higher quality level. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Arukwe A, Cangialosi MV, Letcher RJ, Rocha E, Mortensen AS. Changes in morphometry and association between whole-body fatty acids and steroid hormone profiles in relation to bioaccumulation patterns in salmon larvae exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:219-230. [PMID: 23435358 DOI: 10.1016/j.aquatox.2012.12.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/08/2012] [Accepted: 12/21/2012] [Indexed: 05/28/2023]
Abstract
In the present study, we have used salmon embryos whose continuous exposure to waterborne PFOA or PFOS at 100 μg/L started as freshly fertilized eggs, and lasted for a total of 52 days. PFOS and PFOA were dissolved in methanol (carrier vehicle) whose concentration never exceeded 0.01% of total tank volume. Samples were collected at day 21, 28, 35, 52, 49 and 56 after the start of the exposure. Note that days 49 and 56 represent end of exposure and 1 week after a recovery period, respectively. Tissue bioaccumulations were determined by HPLC/MS/MS, steroid hormones, fatty acids (FAs) and lipids were determined by GC-MS, while mRNA expression levels of genes were determined by qPCR in whole body homogenate. We observed that PFOS and PFOA showed a steady increase in whole body burden during the exposure period, with a slight decrease after the recovery period. Calculated somatic indexes showed that PFOA produced increases in heart-, thymus-, liver- and kidney somatic indexes (HSI, TSI, LSI and KSI). PFOA and PFOS exposure produced significant decreases in whole body dehydroepiandrosterone (DHEA), estrone and testosterone at sampling day 21 and a strong increase of cortisol and cholesterol at the end of recovery period (day 56). PFOA and PFOS effects differed with DHEA and estrone. While PFOS decreased DHEA levels, PFOA produced an increase at day 49, and while PFOS decreased estrone, PFOA produced a slight increase at day 56. We observed changes in FA composition that predominantly involved increases in FA methyl esters (FAMEs), mono- and poly-unsaturated FA (MUFA and PUFA) and a decrease in n-3/n-6 PUFA ratio by both PFOA and PFOS. Particularly, an increase in - pentadecenoic MUFA (15:1), two n-3 PUFAs α-linolenic acid [ALA: 18:3 n3] and eicosapentaenoic acid [EPA: 20:5 n-3] and n-6 PUFA: arachidonic acid [ARA: 20:4 n6], docosapentaenoic acid (DPA) by PFOA and PFOS were observed. These effects were associated with changes in mRNA expression of FA elongase (FAE), Δ5-desaturase (FAD5) and Δ6-desaturase (FAD6) genes. In summary, the changes in hormonal and FA profiles may represent cellular and/or physiological adaptation to continuous PFOS and PFOA exposure by increasing membrane fluidity, and/or overt developmental effects. The present findings provide some potential insights and basis for a better understanding on the possible mechanisms of PFCs toxicity in fish.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
32
|
Kwadijk CJAF, Velzeboer I, Koelmans AA. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments. CHEMOSPHERE 2013; 90:1631-1636. [PMID: 23041036 DOI: 10.1016/j.chemosphere.2012.08.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
To date, sorption of organic compounds to nanomaterials has mainly been studied for the nanomaterial in its pristine state. However, sorption may be different when nanomaterials are buried in sediments. Here, we studied sorption of Perfluorooctane sulfonate (PFOS) to sediment and to sediment with 4% multiwalled carbon nanotubes (MWCNTs), as a function of factors affecting PFOS sorption; aqueous concentration, pH and Ca(2+) concentration. Sorption to MWCNT in the sediment-MWCNT mixtures was assessed by subtracting the contribution of PFOS sorption to sediment-only from PFOS sorption to the total sediment-MWCNT mixture. PFOS Log K(D) values ranged 0.52-1.62 L kg(-1) for sediment and 1.91-2.90 L kg(-1) for MWCNT present in the sediment. The latter values are relatively low, which is attributed to fouling of MWCNT by sediment organic matter. PFOS sorption was near-linear for sediment (Freundlich exponent of 0.92 ± 0.063) but non-linear for MWCNT (Freundlich exponent of 0.66 ± 0.03). Consequently, the impact of MWCNT on sorption in the mixture was larger at low PFOS aqueous concentration. Effects of pH and Ca(2+) on PFOS sorption to MWCNT were statistically significant. We conclude that MWCNT fouling and PFOS concentration dependency are important factors affecting PFOS-MWCNT interactions in sediments.
Collapse
Affiliation(s)
- C J A F Kwadijk
- Institute for Marine Resources & Ecosystem Studies, Wageningen UR, 1970 AB IJmuiden, The Netherlands.
| | | | | |
Collapse
|
33
|
Yu N, Shi W, Zhang B, Su G, Feng J, Zhang X, Wei S, Yu H. Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai River Basin and Taihu Lake in Jiangsu Province, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:710-717. [PMID: 23253185 DOI: 10.1021/es3037803] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The spatial distribution of 10 perfluoroalkyl acids including linear and branched (six monotrifluoromethyl isomers) perfluorooctane sulfonate (PFOS) in surface water was investigated in Huai River Basin and Taihu Lake in Jiangsu Province, China. In the water samples from Huai River Basin, perfluorooctanoic acid (PFOA) and PFOS were the predominant compounds (mean 18 ng/L and 4.7 ng/L, respectively), while in samples from Taihu Lake, PFOA, perfluorohexanoic acid (PFHxA), and PFOS were the predominant compounds (mean 56 ng/L, 19 ng/L, and 15 ng/L, respectively). Branched PFOS (Br-PFOS) isomers accounting for 48.1% to 62.5% of total PFOS were enriched in all samples from Taihu Lake, compared to technical electrochemical fluorination (ECF) PFOS (Br-PFOS ∼30.0%), while the similar phenomena were not found in samples from Huai River Basin (Br-PFOS 29.0-35.0%). Principal component analysis (PCA) on the percentages of the individual isomer showed that the first two components accounted for 78.4% and 15.3% of the overall observed data variance. Samples from Huai River Basin were grouped together with the ECF PFOS standard suggesting the profiles were similar, while samples from Taihu Lake were grouped by themselves, suggesting that isomer profiles in these samples were different from that of Huai River Basin. The obvious difference in isomer profiles probably results from the different environmental behaviors of PFOS isomers and/or unknown sources (PFOS or PFOS precursors).
Collapse
Affiliation(s)
- Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Determination of perfluorinated compounds in aquatic organisms: a review. Anal Bioanal Chem 2012; 405:143-57. [PMID: 23108980 DOI: 10.1007/s00216-012-6492-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/01/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Bioaccumulation of PFAS in aquatic organisms is an environmental problem of growing concern around the world. This problem has been tackled by regulatory bodies by proposing EQS for biota in EU water bodies and tolerable daily intake for food. The introduction of regulatory limits requires the availability of harmonised and validated analytical methods of sufficient sensitivity. This paper reviews recent advances in analytical methods for analysis of PFAS in aquatic organisms. The methods available for biota analysis are mostly based on three extraction procedures: ion-pair extraction, solvent liquid extraction, and alkaline digestion. The resulting extracts are then subjected to different clean-up or enrichment steps on solid adsorbents, for example graphitized carbon black, C(18), and WAX phases. All methods reviewed in this work give reliable results but are partially validated only, because of the lack of certified reference materials and regular interlaboratory exercises. The few interlaboratory exercises performed on real unspiked samples did not afford satisfactory results for PFAS other than PFOS, especially for matrices with high lipid content, for example mussels. The reasons for those partially negative results have been identified, and can mainly be attributed to calibration procedures and availability and purity of standards. The urgent need for certified reference materials for this type of analysis is emphasized.
Collapse
|
35
|
Rapid characterization of perfluoralkyl carboxylate, sulfonate, and sulfonamide isomers by high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2012; 1247:165-70. [DOI: 10.1016/j.chroma.2012.05.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/30/2012] [Accepted: 05/23/2012] [Indexed: 11/22/2022]
|
36
|
|
37
|
Wang X, Chen R, Luan T, Lin L, Zou S, Yang Q. Full automatic determination of chlorophenols in water using solid-phase microextraction/on-fiber derivatization and gas chromatography-mass spectrometry. J Sep Sci 2012; 35:1017-26. [DOI: 10.1002/jssc.201100979] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaowei Wang
- MOE Key Laboratory of Aquatic Product Safety; School of Life Sciences; Sun Yat-sen University; Guangzhou P. R. China
| | - Ruohong Chen
- MOE Key Laboratory of Aquatic Product Safety; School of Life Sciences; Sun Yat-sen University; Guangzhou P. R. China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety; School of Life Sciences; Sun Yat-sen University; Guangzhou P. R. China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety; School of Life Sciences; Sun Yat-sen University; Guangzhou P. R. China
| | - Shichun Zou
- School of Maine Sciences; Sun Yat-sen University; Guangzhou P. R. China
| | - Qingshu Yang
- School of Maine Sciences; Sun Yat-sen University; Guangzhou P. R. China
| |
Collapse
|
38
|
Ross MS, Wong CS, Martin JW. Isomer-specific biotransformation of perfluorooctane sulfonamide in Sprague-Dawley rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3196-3203. [PMID: 22339592 DOI: 10.1021/es204028v] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Great variability exists in perfluorooctane sulfonate (PFOS) isomer patterns in human and wildlife samples, including unexpectedly high percentages (e.g., >40%) of branched isomers in human sera. Previous in vitro tests showed that branched PFOS-precursors were biotransformed faster than the corresponding linear isomer. Thus, high percentages of branched PFOS may be a biomarker of PFOS-precursor exposure in humans. We evaluated this hypothesis by examining the isomer-specific fate of perfluorooctane sulfonamide (PFOSA), a known PFOS-precursor, in male Sprague-Dawley rats exposed to commercial PFOSA via food for 77 days (83.0 ± 20.4 ng kg(-1) day(-1)), followed by 27 days of depuration. Elimination half-lives of the two major branched PFOSA isomers (2.5 ± 1.0 days and 3.7 ± 1.2 days) were quicker than for linear PFOSA (5.9 ± 4.6 days), resulting in a depletion of branched PFOSA isomers in blood and tissues relative to the dose. A corresponding increase in the total branched isomer content of PFOS, the ultimate metabolite, in rat serum was not observed. However, a significant enrichment of 5m-PFOS and a significant depletion of 1m-PFOS were observed, relative to authentic electrochemical PFOS. The data cannot be directly extrapolated to humans, due to known differences in the toxicokinetics of PFOS in rodents and humans. However, the results confirm that in vivo exposure to commercially relevant PFOS-precursors can result in a distinct PFOS isomer profile that may be useful as a biomarker of exposure source.
Collapse
Affiliation(s)
- Matthew S Ross
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | | | | |
Collapse
|
39
|
O'Brien JM, Austin AJ, Williams A, Yauk CL, Crump D, Kennedy SW. Technical-grade perfluorooctane sulfonate alters the expression of more transcripts in cultured chicken embryonic hepatocytes than linear perfluorooctane sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2846-2859. [PMID: 21994020 DOI: 10.1002/etc.700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently it was discovered that the perfluorooctane sulfonate (PFOS) detected in wildlife, such as fish-eating birds, had a greater proportion of linear PFOS (L-PFOS) than the manufactured technical product (T-PFOS), which contains linear and branched isomers. This suggests toxicological studies based on T-PFOS data may inaccurately assess exposure risk to wildlife. To determine whether PFOS effects were influenced by isomer content, we compared the transcriptional profiles of cultured chicken embryonic hepatocytes (CEH) exposed to either L-PFOS or T-PFOS using Agilent microarrays. At equal concentrations (10 µM), T-PFOS altered the expression of more transcripts (340, >1.5-fold change, p < 0.05) compared with L-PFOS (130 transcripts). Higher concentrations of L-PFOS (40 µM) were also less transcriptionally disruptive (217 transcripts) than T-PFOS at 10 µM. Functional analysis showed that L-PFOS and T-PFOS affected genes involved in lipid metabolism, hepatic system development, and cellular growth and proliferation. Pathway and interactome analysis suggested that genes may be affected through the RXR receptor, oxidative stress response, TP53 signaling, MYC signaling, Wnt/β-catenin signaling, and PPARγ and SREBP receptors. In all functional categories and pathways examined, the response elicited by T-PFOS was greater than that of L-PFOS. These data show that T-PFOS elicits a greater transcriptional response in CEH than L-PFOS alone and demonstrates the importance of considering the isomer-specific toxicological properties of PFOS when assessing exposure risk.
Collapse
Affiliation(s)
- Jason M O'Brien
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Elie MP, Baron MG, Birkett JW. Injection port silylation of γ-hydroxybutyrate and trans-hydroxycrotonic acid: conditions optimisation and characterisation of the di-tert-butyldimethylsilyl derivatives by GC-MS. Analyst 2011; 137:255-62. [PMID: 22081086 DOI: 10.1039/c1an15825b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silylation is usually carried out on γ-hydroxybutyrate (GHB) for its analysis by Gas Chromatography/Mass Spectrometry (GCMS) and requires potentially long incubation times before injection during which the derivatisation reagent and derivatives (such as trimethyl-silyl compounds) can hydrolyse. Moreover, alternative internal standards (IS) are often useful depending on sample matrices, extraction/purification procedures, commercial availability and price. This study evaluated the possibility of silylating GHB with an injection port derivatisation procedure using N-methyl-N-[tert-butyldimethyl-silyl]trifluoroacetimide (MTBSTFA) with 1% tert-butyldimethylchlorosilane (TBCS) as the derivatisation reagent, producing di-tert-butyldimethyl-silyl derivatives as a novel means of analyzing GHB. In parallel, trans-hydroxycrotonic acid (t-HCA) was investigated as a potential IS for GHB quantification. Analyses were carried out with a temperature programmable injector and the GHB(t-BDMS)(2) and t-HCA(t-BDMS)(2) derivatives were successfully produced, characterised and derivatisation conditions optimised. t-HCA behaved very similarly to GHB through the derivatisation processes and was used as the IS for the determination of urinary endogenous GHB concentrations in human subjects where the method showed a limit of detection of 0.049 μg mL(-1), a limit of quantification of 0.162 μg mL(-1), and a limit of confirmation of 1.33 μg mL(-1), suitable for toxicological GHB concentration determination.
Collapse
Affiliation(s)
- Mathieu Pierre Elie
- School of Life Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | | | | |
Collapse
|
41
|
Houde M, De Silva AO, Muir DCG, Letcher RJ. Monitoring of perfluorinated compounds in aquatic biota: an updated review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7962-73. [PMID: 21542574 DOI: 10.1021/es104326w] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The goal of this article is to summarize new biological monitoring information on perfluorinated compounds (PFCs) in aquatic ecosystems (post-2005) as a followup to our critical review published in 2006. A wider range of geographical locations (e.g., South America, Russia, Antarctica) and habitats (e.g., high-mountain lakes, deep-ocean, and offshore waters) have been investigated in recent years enabling a better understanding of the global distribution of PFCs in aquatic organisms. High concentrations of PFCs continue to be detected in invertebrates, fish, reptiles, and marine mammals worldwide. Perfluorooctane sulfonate (PFOS) is still the predominant PFC detected (mean concentrations up to 1900 ng/g ww) in addition to important concentrations of long-chain perfluoroalkyl carboxylates (PFCAs; sum PFCAs up to 400 ng/g ww). More studies have evaluated the bioaccumulation and biomagnification of these compounds in both freshwater and marine food webs. Several reports have indicated a decrease in PFOS levels over time in contrast to PFCA concentrations that have tended to increase in tissues of aquatic organisms at many locations. The detection of precursor metabolites and isomers has become more frequently reported in environmental assessments yielding important information on the sources and distribution of these contaminants. The integration of environmental/ecological characteristics (e.g., latitude/longitude, salinity, and/or trophic status at sampling locations) and biological variables (e.g., age, gender, life cycle, migration, diet composition, growth rate, food chain length, metabolism, and elimination) are essential elements in order to adequately study the environmental fate and distribution of PFCs and should be more frequently considered in study design.
Collapse
Affiliation(s)
- Magali Houde
- Environment Canada , Centre Saint-Laurent, 105 McGill Street, Montréal, Québec, Canada, H2Y 2E7.
| | | | | | | |
Collapse
|
42
|
Mortensen AS, Letcher RJ, Cangialosi MV, Chu S, Arukwe A. Tissue bioaccumulation patterns, xenobiotic biotransformation and steroid hormone levels in Atlantic salmon (Salmo salar) fed a diet containing perfluoroactane sulfonic or perfluorooctane carboxylic acids. CHEMOSPHERE 2011; 83:1035-44. [PMID: 21354591 DOI: 10.1016/j.chemosphere.2011.01.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/18/2011] [Accepted: 01/29/2011] [Indexed: 05/05/2023]
Abstract
In the present study, groups of juvenile Atlantic salmon (Salmo salar) were fed gelatine capsules containing fish-food spiked with PFOA or PFOS (0.2 mg kg(-1) fish) and solvent (methanol). The capsules were given at days 0, 3 and 6. Blood, liver and whole kidney samples were collected prior to exposure (no solvent control), and at days 2, 5, 8 and 14 after exposure (Note: that day 14 after exposure is equal to 7d recovery period). We report on the differences in the tissue bioaccumulation patterns of PFOS and PFOA, in addition to tissue and compound differences in modulation pattern of biotransformation enzyme genes. We observed that the level of PFOS and PFOA increased in the blood, liver and kidney during the exposure period. Different PFOS and PFOA bioaccumulation patterns were observed in the kidney and liver during exposure- and after the recovery periods. Particularly, after the recovery period, PFOA levels in the kidney and liver tissues were almost at the control level. On the contrary, PFOS maintained an increase with tissue-specific differences, showing a higher bioaccumulation potential (also in the blood), compared with PFOA. While PFOS and PFOA produced an apparent time-dependent increase in kidney CYP3A, CYP1A1 and GST expression, similar effects were only temporary in the liver, significantly increasing at sampling day 2. PFOA and PFOS exposure resulted in significant decreases in plasma estrone, testosterone and cortisol levels at sampling day 2, and their effects differed with 17α-methyltestostrerone showing significant decrease by PFOA (also for cholesterol) and increase by PFOS. PFOA significantly increased estrone and testosterone, and no effects were observed for cortisol, 17α-methyltestosterone and cholesterol at sampling day 5. Overall, the changes in plasma steroid hormone levels parallel changes in CYP3A mRNA levels. Given that there are no known studies that have demonstrated such tissue differences in bioaccumulation patterns with associated differences in toxicological responses in any fish species or lower vertebrate, the present findings provide some potential insights and basis for a better understanding of the possible mechanisms of PFCs toxicity that need to be studied in more detail.
Collapse
Affiliation(s)
- Anne S Mortensen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
43
|
O'Brien JM, Kennedy SW, Chu S, Letcher RJ. Isomer-specific accumulation of perfluorooctane sulfonate in the liver of chicken embryos exposed in ovo to a technical mixture. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:226-231. [PMID: 20928918 DOI: 10.1002/etc.368] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prior to its recent phaseout, perfluorooctane sulfonate (PFOS) was produced by electrochemical fluorination processes, which yielded technical mixtures composed of linear isomer (∼65-79%) and several branched isomers (∼21-35%). Because PFOS can biomagnify in wildlife, birds that occupy higher trophic levels are at increased risk of exposure. We hypothesized that the pharmacokinetic properties of PFOS are isomer-specific in developing chicken (Gallus gallus domesticus) embryos exposed to technical grade PFOS (T-PFOS). In the present study, T-PFOS was composed of 62.7% linear isomer (L-PFOS), and 37.3% branched isomer, including six mono(trifluoromethyl)-branched isomers and four bis(trifluoromethyl)-branched isomers. Concentrations of 0.1, 5, or 100 µg/g of T-PFOS were injected into the air cell of chicken eggs prior to incubation. After pipping, compared with T-PFOS, the PFOS isomer profile in embryonic liver tissue for the 0.1 µg/g dose group showed 21% enrichment in the proportion of L-PFOS with a corresponding decrease in the proportion of branched isomers. Not all branched isomers were discriminated against at equal rates. The proportion of two mono(trifluoromethyl)-branched isomers and three bis(trifluoromethyl)-branched isomers decreased to a greater degree than other branched isomers. In contrast, the mono-branched isomer, P6MHpS, was overrepresented in the low-dose group. In the higher dose groups, L-PFOS was still enriched but only by approximately 10%, which indicated a dose-dependent change in isomer composition relative to T-PFOS. These results show that accumulation of PFOS in chicken embryo livers is dependent on the presence and position of branches on the alkyl backbone. This supports the hypothesis that the pharmacokinetics of PFOS are isomer-specific in biota, and may help explain why wildlife PFOS burdens are dominated by L-PFOS relative to T-PFOS mixtures.
Collapse
Affiliation(s)
- Jason M O'Brien
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
44
|
CHENG CY, WANG YC, DING WH. Determination of Triclosan in Aqueous Samples Using Solid-phase Extraction Followed by On-line Derivatization Gas Chromatography-Mass Spectrometry. ANAL SCI 2011; 27:197-202. [DOI: 10.2116/analsci.27.197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Yu-Chen WANG
- Department of Chemistry, National Central University
| | | |
Collapse
|
45
|
Martin JW, Asher BJ, Beesoon S, Benskin JP, Ross MS. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure? ACTA ACUST UNITED AC 2010; 12:1979-2004. [PMID: 20944836 DOI: 10.1039/c0em00295j] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extent to which perfluorooctanesulfonate precursors (PreFOS) play a role in human or environmental exposure to perfluorooctanesulfonate (PFOS) is not well characterized. The diversity of manufactured PreFOS and its degradation products (e.g. C(8)F(17)SO(2)R and C(8)F(17)SO(2)NR'R'', where R is H or F, and R' and R'' are various) has made it difficult to track their fate. Temporal trends of PFOS in both humans and wildlife are discrepant, thus it is difficult to predict future exposure, and hypotheses about the role of PreFOS have been raised. Although abiotic degradation of commercially important PreFOS materials requires further research, current data suggest that the yield of PFOS is negligible or minor. On the other hand, in vivo biotransformation of PreFOS yields PFOS as the major metabolite, and >32% yields have been observed. In Canadians, exposure to PreFOS was equivalent or greater than direct PFOS exposure prior to 2002. In most ocean water, PFOS is dominant to PreFOS, but in the oceans east of Greenland there may be more PreFOS than PFOS, consistent with the fact that whales and humans in this region also show evidence of substantial PreFOS exposure. Quantitative assessments of PFOS body-burdens coming from PreFOS are complicated by the fact that PreFOS partitions to the cellular fraction of blood, thus biomonitoring in serum under predicts PreFOS relative to PFOS. Many unknowns exist that prevent accurate modelling, thus analytical methods that can distinguish directly manufactured PFOS, from PFOS that has been biotransformed from PreFOS, should be applied in future human and environmental monitoring. Two new source tracking principles are presented and applied to human serum.
Collapse
Affiliation(s)
- Jonathan W Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, CanadaT6G 2G3.
| | | | | | | | | |
Collapse
|
46
|
Sharpe RL, Benskin JP, Laarman AH, Macleod SL, Martin JW, Wong CS, Goss GG. Perfluorooctane sulfonate toxicity, isomer-specific accumulation, and maternal transfer in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:1957-66. [PMID: 20821653 DOI: 10.1002/etc.257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS; C(8)F(17)SO(3) (-)) bioaccumulation and toxicity have been demonstrated in both aquatic and terrestrial organisms. The majority of investigations have examined total PFOS concentrations in wildlife and in toxicity testing, but isomer-specific monitoring studies are less common, and no laboratory-based study of PFOS isomer accumulation in fish has been reported. The present study examined accumulation and maternal transfer of PFOS isomers in zebrafish and tissue-specific accumulation of PFOS isomers in trout parr. A median lethal dose (LC50) of 22.2 and 2.5 mg/L was calculated for adult zebrafish and trout parr, respectively. A two-week PFOS exposure resulted in tissue-specific PFOS accumulation in trout, with maximum concentrations identified in the liver tissue (>50 microg/g). Prior exposure to PFOS as alevin did not affect the accumulation of PFOS in tissues later in life. In both species, accumulation of branched PFOS isomers generally occurred to a lesser extent than linear PFOS, which may explain the relative deficiency of branched PFOS isomers in some aquatic species in the field. Analysis of exposed trout tissues indicated that isomer discrimination may occur at the level of elimination or uptake and elimination processes in the kidney or gill, respectively. When zebrafish underwent a reproductive cycle in the presence of PFOS, approximately 10% (wt) of the adult PFOS body burden was transferred to the developing embryos, resulting in a higher total PFOS concentration in eggs (116 +/- 13.3 microg/g) than in the parent fish (72.1 +/- 7.6 microg/g). The isomer profile in eggs was not significantly different from that of adults, suggesting that the maternal transfer of branched and linear PFOS isomers in fish is largely nonisomer specific.
Collapse
Affiliation(s)
- Rainie L Sharpe
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T5G 2E9, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Montero-Campillo MM, Mora-Diez N, Lamsabhi AM. Thermodynamic Stability of Neutral and Anionic PFOS: A Gas-Phase, n-Octanol, and Water Theoretical Study. J Phys Chem A 2010; 114:10148-55. [DOI: 10.1021/jp105187w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Merced Montero-Campillo
- Department of Chemistry, Thompson Rivers University, Kamloops, British Columbia, V2C 5N3 Canada, and Departamento de Química C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Nelaine Mora-Diez
- Department of Chemistry, Thompson Rivers University, Kamloops, British Columbia, V2C 5N3 Canada, and Departamento de Química C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Al Mokhtar Lamsabhi
- Department of Chemistry, Thompson Rivers University, Kamloops, British Columbia, V2C 5N3 Canada, and Departamento de Química C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
48
|
ZHAO X, LI Y, ZHANG H, NI Y, CHEN J. Applications of chromatography-mass spectrometry for the analysis of emerging organic pollutants. Se Pu 2010; 28:435-41. [DOI: 10.3724/sp.j.1123.2010.00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Butt CM, Berger U, Bossi R, Tomy GT. Levels and trends of poly- and perfluorinated compounds in the arctic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2936-65. [PMID: 20493516 DOI: 10.1016/j.scitotenv.2010.03.015] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 04/14/2023]
Abstract
Poly- and perfluorinated organic compounds (PFCs) are ubiquitous in the Arctic environment. Several modeling studies have been conducted in attempt to resolve the dominant transport pathway of PFCs to the arctic-atmospheric transport of precursors versus direct transport via ocean currents. These studies are generally limited by their focus on perfluorooctanoate (PFOA) fluxes to arctic seawater and thus far have only used fluorotelomer alcohols (FTOHs) and sulfonamide alcohols as inputs for volatile precursors. There have been many monitoring studies from the North American and European Arctic, however, almost nothing is known about PFC levels from the Russian Arctic. In general, there are very few measurements of PFCs from the abiotic environment. Atmospheric measurements show the widespread occurrence of PFC precursors, FTOHs and perfluorinated sulfonamide alcohols. Further, PFCAs and PFSAs have been detected on atmospheric particles. The detection of PFCAs and PFSAs in snow deposition is consistent with the volatile precursor transport hypothesis. There are very limited measurements of PFCs in seawater. PFOA is generally detected in the greatest concentrations. Additional seawater measurements are needed to validate existing model predications. The bulk of the monitoring efforts in biological samples have focused on the perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs), although there are very few measurements of PFC precursors. The marine food web has been well studied, particularly the top predators. In contrast, freshwater and terrestrial ecosystems have been poorly studied. Studies show that in wildlife perfluorooctane sulfonate (PFOS) is generally measured in the highest concentration, followed by either perfluorononanoate (PFNA) or perfluoroundecanoate (PFUnA). However, some whale species show relatively high levels of perfluorooctane sulfonamide (PFOSA) and seabirds are typically characterized by high proportions of the C(11)-C(15) PFCAs. PFOA is generally infrequently detected and is present in low concentrations in arctic biota. Food web studies show high bioaccumulation in the upper trophic-level animals, although the mechanism of PFC biomagnification is not understood. Spatial trend studies show some differences between populations, although there are inconsistencies between PFC trends. The majority of temporal trend studies are from the Northern American Arctic and Greenland. Studies show generally increasing levels of PFCs from the 1970s, although some studies from the Canadian Arctic show recent declines in PFOS levels. In contrast, ringed seals and polar bears from Greenland continue to show increasing PFOS concentrations. The inconsistent temporal trends between regions may be representative of differences in emissions from source regions.
Collapse
Affiliation(s)
- Craig M Butt
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
50
|
Rayne S, Forest K. Comparative semiempirical, ab initio, and density functional theory study on the thermodynamic properties of linear and branched perfluoroalkyl sulfonic acids/sulfonyl fluorides, perfluoroalkyl carboxylic acid/acyl fluorides, and perhydroalkyl sulfonic acids, alkanes, and alcohols. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|