1
|
Langa F, de la Cruz P, Sharma GD. Organic Solar Cells Based on Non-Fullerene Low Molecular Weight Organic Semiconductor Molecules. CHEMSUSCHEM 2024:e202400361. [PMID: 39240557 DOI: 10.1002/cssc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/07/2024]
Abstract
The development of narrow bandgap A-D-A- and ADA'DA-type non-fullerene small molecule acceptors (NFSMAs) along with small molecule donors (SMDs) have led to significant progress in all-small molecule organic solar cells. Remarkable power conversion efficiencies, nearing the range of 17-18 %, have been realized. These efficiency values are on par with those achieved in OSCs based on polymeric donors. The commercial application of organic photovoltaic technology requires the design of more efficient organic conjugated small molecule donors and acceptors. In recent years the precise tuning of optoelectronic properties in small molecule donors and acceptors has attracted considerable attention and has contributed greatly to the advancement of all-SM-OSCs. Several reviews have been published in this field, but the focus of this review concerns the advances in research on OSCs using SMDs and NFSMAs from 2018 to the present. The review covers the progress made in binary and ternary OSCs, the effects of solid additives on the performance of all-SM-OSCs, and the recently developed layer-by-layer deposition method for these OSCs. Finally, we present our perspectives and a concise outlook on further advances in all-SM-OSCs for their commercial application.
Collapse
Affiliation(s)
- Fernando Langa
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Pilar de la Cruz
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
| |
Collapse
|
2
|
Shao G, Liu YY, Niu C, Yin ZC, Ye SQ, Yao YR, Chen M, Chen JS, Xia XL, Yang S, Wang GW. Unexpected and divergent mechanosynthesis of furanoid-bridged fullerene dimers C 120O and C 120O 2. Chem Sci 2024:d4sc04167d. [PMID: 39246362 PMCID: PMC11376007 DOI: 10.1039/d4sc04167d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
An unexpected, divergent and efficient approach toward furanoid-bridged fullerene dimers C120O and C120O2 was established under different solvent-free ball-milling conditions by simply using pristine C60 as the starting material, water as the oxygen source and FeCl3 as the mediator. The structures of C120O and C120O2 were unambiguously established by single-crystal X-ray crystallography. A plausible reaction mechanism is proposed on the basis of control experiments. Furthermore, C120O2 has been applied in organic solar cells as the third component and exhibits good performance.
Collapse
Affiliation(s)
- Gang Shao
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yuan-Yuan Liu
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuang Niu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Zheng-Chun Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Shi-Qi Ye
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Muqing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology Dongguan Guangdong 523808 P. R. China
| | - Jun-Shen Chen
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xu-Ling Xia
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou Gansu 730000 P. R. China
| |
Collapse
|
3
|
Li Y, Duan Y, Feng J, Sun Y, Wang K, Li H, Wang H, Zang Z, Zhou H, Xu D, Wu M, Li Y, Xie Z, Liu Z, Huang J, Yao Y, Peng Q, Fan Q, Yuan N, Ding J, Liu S, Liu Z. 25.71 %-Efficiency FACsPbI 3 Perovskite Solar Cells Enabled by A Thiourea-based Isomer. Angew Chem Int Ed Engl 2024:e202410378. [PMID: 39143026 DOI: 10.1002/anie.202410378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
Various isomers have been developed to regulate the morphology and reduce defects in state-of-the-art perovskite solar cells (PSCs). To insight the structure-function-effect correlations for the isomerization of thiourea derivatives on the performance of the PSCs, we developed two thiourea derivatives [(3,5-dichlorophenyl)amino]thiourea (AT) and N-(3,5-dichlorophenyl)hydrazinecarbothioamide (HB). Supported by experimental and calculated results, it was found that AT can bind with undercoordinated Pb2+ defect through synergistic interaction between N1 and C=S group with a defect formation energy of 1.818 eV, which is much higher than that from the synergistic interaction between two -NH- groups in HB and perovskite (1.015 eV). Moreover, the stronger interaction between AT and Pb2+ regulates the crystallization process of perovskite film to obtain a high-quality perovskite film with high crystallinity, large grain size, and low defect density. Consequently, the AT-treated FACsPbI3 device engenders an efficiency of 25.71 % (certified as 24.66 %), which is greatly higher than control (23.74 %) and HB-treated FACsPbI3 devices (25.05 %). The resultant device exhibits a remarkable stability for maintaining 91.0 % and 95.2 % of its initial efficiency after aging 2000 h in air condition or tracking at maximum power point for 1000 h, respectively.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiqiao Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Huaxin Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Hui Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dongfang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Meizi Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongzhe Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhuang Xie
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Zexia Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Jingyu Huang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Yao Yao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ningyi Yuan
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, 213164, China
| | - Jianning Ding
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, 213164, China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Niu C, Zhou DB, Huang X, Yin ZC, Wang GW. Synthesis of [60]Fullerene-Fused Lactones via Carboxylic Acid Group-Directed C-H Bond Activation and Further Retro Baeyer-Villiger Reaction. Org Lett 2024; 26:5300-5305. [PMID: 38885445 DOI: 10.1021/acs.orglett.4c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An efficient palladium-catalyzed reaction of [60]fullerene with benzoic acids via carboxylic acid group-directed C-H bond activation is achieved. The obtained [60]fullerene-fused lactones can undergo a retro Baeyer-Villiger reaction to provide [60]fullerene-fused ketones via apparent reduction in the presence of triflic acid. A representative ketone product obtained by the reduction reaction can be employed as an overcoating layer for the electron-transporting layer in an n-type perovskite solar cell.
Collapse
Affiliation(s)
- Chuang Niu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dian-Bing Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinmin Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng-Chun Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
5
|
Liu TX, Ru Y, Guo W, Ma N, Yang P, Li X, Zhang P, Bi J, Zhang G. Catalytic System-Controlled Regioselective 1,2- and 1,4-Carboannulations of [60]Fullerene. Org Lett 2024; 26:2552-2557. [PMID: 38527028 DOI: 10.1021/acs.orglett.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Selective functionalization of fullerenes is an important but challenging topic in fullerene chemistry and synthetic chemistry. Here we present the first example of catalytic system-controlled regioselective 1,2- and 1,4-addition reactions for the flexible and efficient synthesis of novel 1,2- and 1,4-carbocycle-fused fullerenes via a palladium-catalyzed decarboxylative carboannulation process.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yifei Ru
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenyue Guo
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Panting Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaojun Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Iannace V, Sabrià C, Xu Y, Delius MV, Imaz I, Maspoch D, Feixas F, Ribas X. Regioswitchable Bingel Bis-Functionalization of Fullerene C 70 via Supramolecular Masks. J Am Chem Soc 2024; 146:5186-5194. [PMID: 38311922 PMCID: PMC10910506 DOI: 10.1021/jacs.3c10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C70, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C60. In this work, the supramolecular mask approach is applied for the first time to C70, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles. Based on the tetragonal prismatic geometry imposed by the smaller supramolecular mask tested, the obtained major bis-adduct is completely reversed (major 5 o'clock) compared to bare C70 functionalization (major 2 o'clock). Moreover, by further restricting the accessibility of C70 using a three-shell Matryoshka mask and dibenzyl-bromomalonate, a single regiospecific 2 o'clock bis-isomer is obtained, owing to the perfect complementarity of the mask and the addend steric properties. The outcome of the reactions is fully explained at the molecular level by means of a thorough molecular dynamics (MD) study of the accessibility of the α-bonds to produce the different bis-adducts.
Collapse
Affiliation(s)
- Valentina Iannace
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Clara Sabrià
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Youzhi Xu
- Institute
of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Catalonia, Spain
- ICREA, Passeig de Lluís Companys
23, 08010 Barcelona, Catalonia, Spain
| | - Ferran Feixas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Xavi Ribas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| |
Collapse
|
7
|
Liu W, Huang G, Chen CY, Tan T, Fuyuki H, Hu S, Nakamura T, Truong MA, Murdey R, Hashikawa Y, Murata Y, Wakamiya A. An open-cage bis[60]fulleroid as an electron transport material for tin halide perovskite solar cells. Chem Commun (Camb) 2024; 60:2172-2175. [PMID: 38315560 DOI: 10.1039/d3cc05843c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
An open-cage bis[60]fulleroid (OC) was applied as an electron transport material (ETM) in tin (Sn) halide perovskite solar cells (PSCs). Due to the reduced offset between the energy levels of Sn-based perovskites and ETMs, the power conversion efficiency (PCE) of Sn-based PSCs with OC reached 9.6% with an open-circuit voltage (VOC) of 0.72 V. Additionally, OC exhibited superior thermal stability and provided 75% of the material without decomposition after vacuum deposition. The PSC using vacuum-deposited OC as the ETM could afford a PCE of 7.6%, which is a big leap forward compared with previous results using vacuum-deposited fullerene derivatives as ETMs.
Collapse
Affiliation(s)
- Wentao Liu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Guanglin Huang
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Chien-Yu Chen
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tiancheng Tan
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Harata Fuyuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Shuaifeng Hu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Minh Anh Truong
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Richard Murdey
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
8
|
Yang P, Sun C, Fu X, Cheng S, Chen J, Zhang H, Nan ZA, Yang J, Zhao XJ, Xie LQ, Meng L, Tian C, Wei Z. Efficient Tin-Based Perovskite Solar Cells Enabled by Precisely Synthesized Single-Isomer Fullerene Bisadducts with Regulated Molecular Packing. J Am Chem Soc 2024; 146:2494-2502. [PMID: 38129761 DOI: 10.1021/jacs.3c10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement. Herein, we synthesized single-isomer C60- and C70-based diethylmalonate functionalized bisadducts (C60BB and C70BB) by utilizing the steric-hindrance-assisted strategy and determined all molecular structures involved by single crystal diffraction. Meanwhile, we found that the different solvents used for processing the fullerene bisadducts can effectively regulate the molecular packing in their films. The dense and amorphous fullerene bisadduct films prepared by using anisole exhibited the highest electron mobility. Finally, C60BB- and C70BB-based TPSCs showed impressive efficiencies up to 14.51 and 14.28%, respectively. These devices also exhibited excellent long-term stability. This work highlights the importance of developing strategies to synthesize single-isomer fullerene bisadducts and regulate their molecular packing to improve TPSCs' performance.
Collapse
Affiliation(s)
- Panpan Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Chao Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xifeng Fu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shuo Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfu Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hui Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zi-Ang Nan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jinxin Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xin-Jing Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Qiang Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chengbo Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
9
|
Hou X, Coker JF, Yan J, Shi X, Azzouzi M, Eisner FD, McGettrick JD, Tuladhar SM, Abrahams I, Frost JM, Li Z, Dennis TJS, Nelson J. Structure-Property Relationships for the Electronic Applications of Bis-Adduct Isomers of Phenyl-C 61 Butyric Acid Methyl Ester. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:425-438. [PMID: 38222935 PMCID: PMC10782444 DOI: 10.1021/acs.chemmater.3c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Higher adducts of a fullerene, such as the bis-adduct of PCBM (bis-PCBM), can be used to achieve shallower molecular orbital energy levels than, for example, PCBM or C60. Substituting the bis-adduct for the parent fullerene is useful to increase the open-circuit voltage of organic solar cells or achieve better energy alignment as electron transport layers in, for example, perovskite solar cells. However, bis-PCBM is usually synthesized as a mixture of structural isomers, which can lead to both energetic and morphological disorder, negatively affecting device performance. Here, we present a comprehensive study on the molecular properties of 19 pure bis-isomers of PCBM using a variety of characterization methods, including ultraviolet photoelectron spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, single crystal structure, and (time-dependent) density functional theory calculation. We find that the lowest unoccupied molecular orbital of such bis-isomers can be tuned to be up to 170 meV shallower than PCBM and up to 100 meV shallower than the mixture of unseparated isomers. The isolated bis-isomers also show an electron mobility in organic field-effect transistors of up to 4.5 × 10-2 cm2/(V s), which is an order of magnitude higher than that of the mixture of bis-isomers. These properties enable the fabrication of the highest performing bis-PCBM organic solar cell to date, with the best device showing a power conversion efficiency of 7.2%. Interestingly, we find that the crystallinity of bis-isomers correlates negatively with electron mobility and organic solar cell device performance, which we relate to their molecular symmetry, with a lower symmetry leading to more amorphous bis-isomers, less energetic disorder, and higher dimensional electron transport. This work demonstrates the potential of side chain engineering for optimizing the performance of fullerene-based organic electronic devices.
Collapse
Affiliation(s)
- Xueyan Hou
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
- School
of Physical and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - Jack F. Coker
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
| | - Jun Yan
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
- School
of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen, Guangdong Province 518172, P. R. China
| | - Xingyuan Shi
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
| | - Mohammed Azzouzi
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
| | - Flurin D. Eisner
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
| | | | | | - Isaac Abrahams
- School
of Physical and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - Jarvist M. Frost
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
| | - Zhe Li
- School
of Engineering and Materials Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - T. John S. Dennis
- Department
of Chemistry, Xi’an Jiaotong-Liverpool
University, Suzhou 215123, China
| | - Jenny Nelson
- Department
of Physics, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
10
|
Sun H, Xiao K, Gao H, Duan C, Zhao S, Wen J, Wang Y, Lin R, Zheng X, Luo H, Liu C, Wu P, Kong W, Liu Z, Li L, Tan H. Scalable Solution-Processed Hybrid Electron Transport Layers for Efficient All-Perovskite Tandem Solar Modules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308706. [PMID: 37983869 DOI: 10.1002/adma.202308706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/01/2023] [Indexed: 11/22/2023]
Abstract
All-perovskite tandem solar cells offer the potential to surpass the Shockley-Queisser (SQ) limit efficiency of single-junction solar cells while maintaining the advantages of low-cost and high-productivity solution processing. However, scalable solution processing of electron transport layer (ETL) in p-i-n structured perovskite solar subcells remains challenging due to the rough perovskite film surface and energy level mismatch between ETL and perovskites. Here, scalable solution processing of hybrid fullerenes (HF) with blade-coating on both wide-bandgap (≈1.80 eV) and narrow-bandgap (≈1.25 eV) perovskite films in all-perovskite tandem solar modules is developed. The HF, comprising a mixture of fullerene (C60 ), phenyl C61 butyric acid methyl ester, and indene-C60 bisadduct, exhibits improved conductivity, superior energy level alignment with both wide- and narrow-bandgap perovskites, and reduced interfacial nonradiative recombination when compared to the conventional thermal-evaporated C60 . With scalable solution-processed HF as the ETLs, the all-perovskite tandem solar modules achieve a champion power conversion efficiency of 23.3% (aperture area = 20.25 cm2 ). This study paves the way to all-solution processing of low-cost and high-efficiency all-perovskite tandem solar modules in the future.
Collapse
Affiliation(s)
- Hongfei Sun
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Ke Xiao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Han Gao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Chenyang Duan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Siyang Zhao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Jin Wen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Yurui Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Renxing Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Xuntian Zheng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Haowen Luo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Chenshuaiyu Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Pu Wu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Wenchi Kong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Zhou Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Ludong Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Majeed M, Waqas M, Aloui Z, Essid M, Ibrahim MAA, Khera RA, Shaban M, Ans M. Exploring the Electronic, Optical, and Charge Transfer Properties of A-D-A-Type IDTV-ThIC-Based Molecules To Enhance Photovoltaic Performance of Organic Solar Cells. ACS OMEGA 2023; 8:45384-45404. [PMID: 38075832 PMCID: PMC10701727 DOI: 10.1021/acsomega.3c04437] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 01/23/2024]
Abstract
Improving the charge mobility and optoelectronic properties of indacenodithiophene-based small molecule acceptors is a key challenge to improving overall efficiency. In this current research, seven newly designed molecules (DT1-DT7) comprising the indacenodithiophene-based core are presented to tune energy levels, enhance charge mobility, and improve the photovoltaic performance of IDTV-ThIC molecules via density functional theory. All the molecules were designed by end-capped modification by substituting terminal acceptors of IDTV-ThIC with strong electron-withdrawing moieties. Among all the examined structures, DT1 has proved itself a superior molecule in multiple aspects, including higher λmax in chloroform (787 nm) and gaseous phase (727 nm), narrow band gap (2.16 eV), higher electron affinity (3.31 eV), least excitation energy (1.57 eV), and improved charge mobility due to low reorganization energy and higher excited state lifetime (2.37 ns) when compared to the reference (IDTV-ThIC) and other molecules. DT5 also showed remarkable improvement in different parameters, such as the lowest exciton binding energy (0.41 eV), leading to easier charge moveability. The improved open-circuit voltage of DT4 and DT5 makes them proficient molecules exhibiting the charge transfer phenomenon. The enlightened outcomes of these molecules can pave a new route to develop efficient organic solar cell devices using these molecules, especially DT1, DT4, and DT5.
Collapse
Affiliation(s)
- Maham Majeed
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zouhaier Aloui
- Chemistry
Department, College of Science, King Khalid
University (KKU), P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Manel Essid
- Chemistry
Department, College of Science, King Khalid
University (KKU), P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Muhammad Ans
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
12
|
Wang WF, Liu KQ, Niu C, Wang YS, Yao YR, Yin ZC, Chen M, Ye SQ, Yang S, Wang GW. Electrosynthesis of buckyballs with fused-ring systems from PCBM and its analogue. Nat Commun 2023; 14:8052. [PMID: 38052783 DOI: 10.1038/s41467-023-43774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM), a star molecule in the fullerene field, has found wide applications in materials science. Herein, electrosynthesis of buckyballs with fused-ring systems has been achieved through radical α-C-H functionalization of the side-chain ester for both PCBM and its analogue, [6,6]-phenyl-C61-propionic acid methyl ester (PCPM), in the presence of a trace amount of oxygen. Two classes of buckyballs with fused bi- and tricyclic carbocycles have been electrochemically synthesized. Furthermore, an unknown type of a bisfulleroid with two tethered [6,6]-open orifices can also be efficiently generated from PCPM. All three types of products have been confirmed by single-crystal X-ray crystallography. A representative intramolecularly annulated isomer of PCBM has been applied as an additive to inverted planar perovskite solar cells and boosted a significant enhancement of power conversion efficiency from 15.83% to 17.67%.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kai-Qing Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yun-Shu Wang
- Hefei No. 1 High School, Hefei, Anhui, 230601, P. R. China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zheng-Chun Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Muqing Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P. R. China
| | - Shi-Qi Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
13
|
Liu TX, Wang X, Xia S, Chen M, Li M, Yang P, Ma N, Hu Z, Yang S, Zhang G, Wang GW. Dearomative Ring-Fused Azafulleroids and Carbazole-Derived Metallofullerenes: Reactivity Dictated by Encapsulation in a Fullerene Cage. Angew Chem Int Ed Engl 2023; 62:e202313074. [PMID: 37789646 DOI: 10.1002/anie.202313074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Herein, we report divergent additions of 2,2'-diazidobiphenyls to C60 and Sc3 N@Ih -C80 . In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60 . In contrast, the corresponding reaction with Sc3 N@Ih -C80 switches to the C-H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5, whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Muqing Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China
| | - Mingjie Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panting Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ziqi Hu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
14
|
Umeyama T, Mizutani D, Ikeda Y, Osterloh WR, Yamamoto F, Kato K, Yamakata A, Higashi M, Urakami T, Sato H, Imahori H. An emissive charge-transfer excited-state at the well-defined hetero-nanostructure interface of an organic conjugated molecule and two-dimensional inorganic nanosheet. Chem Sci 2023; 14:11914-11923. [PMID: 37920360 PMCID: PMC10619621 DOI: 10.1039/d3sc03604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Precise engineering of excited-state interactions between an organic conjugated molecule and a two-dimensional semiconducting inorganic nanosheet, specifically the manipulation of charge-transfer excited (CTE) states, still remains a challenge for state-of-the-art photochemistry. Herein, we report a long-lived, highly emissive CTE state at structurally well-defined hetero-nanostructure interfaces of photoactive pyrene and two-dimensional MoS2 nanosheets via an N-benzylsuccinimide bridge (Py-Bn-MoS2). Spectroscopic measurements reveal that no charge-transfer state is formed in the ground state, but the locally-excited (LE) state of pyrene in Py-Bn-MoS2 efficiently generates an unusual emissive CTE state. Theoretical studies elucidate the interaction of MoS2 vacant orbitals with the pyrene LE state to form a CTE state that shows a distinct solvent dependence of the emission energy. This is the first example of organic-inorganic 2D hetero-nanostructures displaying mixed luminescence properties by an accurate design of the bridge structure, and therefore represents an important step in their applications for energy conversion and optoelectronic devices and sensors.
Collapse
Affiliation(s)
- Tomokazu Umeyama
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo Himeji Hyogo 671-2280 Japan
| | - Daizu Mizutani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Yuki Ikeda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - W Ryan Osterloh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Futa Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo Himeji Hyogo 671-2280 Japan
| | - Kosaku Kato
- Graduate School of Natural Science and Technology, Okayama University Okayama 700-8530 Japan
| | - Akira Yamakata
- Graduate School of Natural Science and Technology, Okayama University Okayama 700-8530 Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Takumi Urakami
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Kyoto 606-8501 Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University Kyoto 606-8501 Japan
| |
Collapse
|
15
|
Steudel FM, Ubasart E, Leanza L, Pujals M, Parella T, Pavan GM, Ribas X, von Delius M. Synthesis of C 60 /[10]CPP-Catenanes by Regioselective, Nanocapsule-Templated Bingel Bis-Addition. Angew Chem Int Ed Engl 2023; 62:e202309393. [PMID: 37607866 DOI: 10.1002/anie.202309393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
The addition of two unsymmetric malonate esters to the Buckminster fullerene C60 can lead to 22 spectroscopically distinguishable isomeric products and therefore represents a formidable synthesis challenge. In this work, we achieve 87 % selectivity for the formation of a single (in,out-trans-3) isomer by combining three approaches: (i) we use a starting material, in which the two malonates are covalently connected (tether approach); (ii) we form the strong supramolecular complex of C60 with the shape-persistent [10]CPP macrocycle (template approach) and (iii) we embed this complex further within a self-assembled nanocapsule (shadow mask approach). Variation of the spacer chain shed light on the limitations of the approach and the ring dynamics in the unusual [2]catenanes were studied in silico with atomistic resolution. This work significantly widens the scope of mechanically interlocked architectures comprising cycloparaphenylenes (CPP).
Collapse
Affiliation(s)
- Fabian M Steudel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ernest Ubasart
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Luigi Leanza
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Míriam Pujals
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962, Lugano-Viganello, Switzerland
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
16
|
Chao D, Liu TX, Zhang P, Xia S, Zhang G. Copper-Mediated Radical-Induced Ring-Opening Relay Cascade Carboannulation Reaction of [60]Fullerene with Cyclobutanone Oxime Esters: Access to [60]Fullerene-Fused Cyclopentanes. J Org Chem 2023; 88:13076-13088. [PMID: 37651613 DOI: 10.1021/acs.joc.3c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An unexpected copper-mediated radical-induced ring-opening relay cascade carboannulation reaction of [60]fullerene with cyclobutanone oxime esters is presented for the preparation of various Cl-/Br-incorporated [60]fullerene-fused cyclopentanes. The unique relay cascade transformation uses inexpensive copper salts as promoters and halogen sources and features simple redox-neutral conditions and a broad substrate scope, providing a practical access to a class of novel five-membered carbocycle-fused fullerenes.
Collapse
Affiliation(s)
- Di Chao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
17
|
Xu LJ, Yang WW, Han FS, Gao X. Transition-metal-mediated benzylation of C 60 with benzyl chlorides. Org Biomol Chem 2023; 21:2331-2336. [PMID: 36815307 DOI: 10.1039/d3ob00039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Benzyl bromides have been widely used for fullerene functionalization. However, the use of benzyl chlorides, a more affordable but less reactive counterpart of benzyl bromides, has been rarely reported. Herein, a new metal-mediated benzylation of C60 with benzyl chlorides is presented. In this method, with the combinatorial use of Mn powder and Cu(OAc)2, various benzyl chloride derivatives could react with C60 to afford 1,4-dibenzylated products in 12-53% yields. A mechanistic study by in situ visible near infrared (vis-NIR) spectroscopy and various control experiments suggests that, unlike the conventional anionic pathway that uses benzyl bromides, the transition-metal-mediated benzylation of C60 with benzyl chlorides proceeds via a metal-mediated iterative single electron transfer process.
Collapse
Affiliation(s)
- Li-Jun Xu
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China. .,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Wei Yang
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Fu-She Han
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China. .,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Gao
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China. .,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Nagarjuna P, Gupta V, Bagui A, Singh SP. Molecular engineering of new electron acceptor for highly efficient solution processable organic solar cells using state-of-the-art polymer donor PffBT4T-2OD. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Sun C, Yang P, Nan Z, Tian C, Cai Y, Chen J, Qi F, Tian H, Xie L, Meng L, Wei Z. Well-Defined Fullerene Bisadducts Enable High-Performance Tin-Based Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205603. [PMID: 36562082 DOI: 10.1002/adma.202205603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Tin-based perovskite solar cells (TPSCs) are attracting intense research interest due to their excellent optoelectric properties and eco-friendly features. To further improve the device performance, developing new fullerene derivatives as electron transporter layers (ETLs) is highly demanded. Four well-defined regioisomers (trans-2, trans-3, trans-4, and e) of diethylmalonate-C60 bisadduct (DCBA) are isolated and well characterized. The well-defined molecular structure enables us to investigate the real structure-dependent effects on photovoltaic performance. It is found that the chemical structures of the regioisomers not only affect their energy levels, but also lead to significant differences in their molecular packings and interfacial contacts. As a result, the devices with trans-2, trans-3, trans-4, and e as ETLs yield efficiencies of 11.69%, 14.58%, 12.59%, and 10.55%, respectively, which are higher than that of the as-prepared DCBA-based (10.28%) device. Notably, the trans-3-based device also demonstrates a certified efficiency of 14.30%, representing one of the best-performing TPSCs.
Collapse
Affiliation(s)
- Chao Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Panpan Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ziang Nan
- State Key Lab for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chengbo Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yuanting Cai
- State Key Lab for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingfu Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Fangfang Qi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Hanrui Tian
- State Key Lab for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liqiang Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
20
|
Shao G, Niu C, Liu HW, Yang H, Chen JS, Yao YR, Yang S, Wang GW. [60]Fullerene-Fused Cyclopentanes: Mechanosynthesis and Photovoltaic Application. Org Lett 2023; 25:1229-1234. [PMID: 36787186 DOI: 10.1021/acs.orglett.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The mechanochemical cascade reaction of [60]fullerene with 3-benzylidene succinimides, diethyl 2-benzylidene succinate, or 2-benzylidene succinonitrile in the presence of an inorganic base has been investigated under solvent-free and ball-milling conditions. This protocol provides an expedient method to afford various [60]fullerene-fused cyclopentanes, showing advantages of good substrate scope, short reaction time, and solvent-free and ambient reaction conditions. Furthermore, representative fullerene products have been applied in inverted planar perovskite solar cells as efficient cathode interlayers.
Collapse
Affiliation(s)
- Gang Shao
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hong-Wei Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Huan Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jun-Shen Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
21
|
Yuan K, Lv L, Xu Y, Liu Y, Li M, Zhao Y, Zhao X. Grape bunches of novel conjugated chain bonded fullerene oligomers: design of a potential electron trap carbonaceous molecular material. Phys Chem Chem Phys 2023; 25:5743-5757. [PMID: 36744403 DOI: 10.1039/d2cp05731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Developing π electron conjugated groups as covalent bonded bridges between fullerenes in their oligomers is key to optimizing and maximizing functions of the fullerene-based materials. In this work, a series of novel conjugated chain bonded fullerene C60 oligomers (CBFOs) with a well-defined nano-architecture and "grape bunches" shapes are rationally designed and viably constructed based on fullerene-carbenes by means of DFT calculations. The results show that the presently designed CBFOs present a much better electron-accepting ability together with a much lower reorganization energy than the isolated fullerene C60, and characterized as the potential ideal candidate for electron acceptors. The frontier molecular orbital and electron density analysis can well support the results of diabatic electron affinity (EAa) and vertical electron affinity (EAv) calculations. Moreover, these CBFOs exhibit strong absorption in the visible region but no obvious absorption in the ultraviolet region. In addition, the optical properties of the CBFOs and two dimensional structure are also simulated and explored theoretically. We hope that the present study would be helpful for developing covalent-bonded-fullerene based electron trap molecular materials, building blocks of nano-devices and nano-machinery applications.
Collapse
Affiliation(s)
- Kun Yuan
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Lingling Lv
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Yan Xu
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Yanzhi Liu
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yaoxiao Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.,Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
22
|
Yan XX, Niu C, Yin ZC, Lu WQ, Wang GW. Anionic alkene-azide cycloaddition (AAAC) strategy toward electrosynthesis of multifunctionalized [60]fullerene derivatives and further applications. Sci Bull (Beijing) 2022; 67:2406-2410. [PMID: 36566062 DOI: 10.1016/j.scib.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Xing-Xing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Chun Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Qiang Lu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Liu QS, Qiu WJ, Niu C, Wang GW. Palladium-Catalyzed C–H Activation/Cyclization for the Synthesis of [60]Fullerene-Fused Phosphinolactones. J Org Chem 2022; 87:15754-15761. [DOI: 10.1021/acs.joc.2c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Qing-Song Liu
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen-Jie Qiu
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
24
|
Li M, Zhao R, Dang J, Zhao X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Zhu G, Chen J, Duan J, Liao H, Zhu X, Li Z, McCulloch I, Yue W. Fluorinated Alcohol-Processed N-Type Organic Electrochemical Transistor with High Performance and Enhanced Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43586-43596. [PMID: 36112127 DOI: 10.1021/acsami.2c13310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tuning the film morphology and aggregated structure is a vital means to improve the performance of the mixed ionic-electronic conductors in organic electrochemical transistors (OECTs). Herein, three fluorinated alcohols (FAs), including 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and perfluoro-tert-butanol (PFTB), were employed as the alternative solvents for engineering the n-type small-molecule active layer gNR. Remarkedly, an impressive μC* of 5.12 F V-1 cm-1 s-1 and a normalized transconductance of 1.216 S cm-1 are achieved from the HFIP-fabricated gNR OECTs, which is three times higher than that of chloroform. The operational stability has been significantly enhanced by the FA-fabricated devices. Such enhancements can be ascribed to the aggregation-induced structural ordering by FAs during spin coating, which optimizes the microstructure of the films for a better mixed ion and electron transport. These results prove the huge research potential of FAs to improve OECT materials' processability, device performance, and stability, therefore promoting practical bio-applications.
Collapse
Affiliation(s)
- Genming Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hailiang Liao
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Theoretical Study on the Diels–Alder Reaction of Fullerenes: Analysis of Isomerism, Aromaticity, and Solvation. ORGANICS 2022. [DOI: 10.3390/org3040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fullerenes are reactive as dienophiles in Diels–Alder reactions. Their distinctive molecular shape and properties result in interesting and sometimes elusive reaction patterns. Herein, to contribute to the understanding of fullerene reactivity, we evaluate the energies of reactions for Diels–Alder cycloadditions of C60, C70, and IC60MA with anthracene (Ant), by means of DFT computational analysis in vacuum and solution. The methods used showed little differentiation between the reactivity of the different fullerenes. The C70-Ant adducts where addition takes place near the edge of the fullerene were found to be the most stable regioisomers. For the IC60MA-Ant adducts, the calculated energies of reaction increase in the order: equatorial > trans-3 > trans-2 ≈ trans-4 ≈ trans-1 > cis-3 > cis-2. The change in the functional suggests the existence of stabilizing dispersive interactions between the surface of the fullerene and the addends. HOMA (harmonic oscillator model of aromaticity) analysis indicated an increase in aromaticity in the fullerene hexagons adjacent to the bonded addend. This increase is bigger in the rings of bisadduct isomers that are simultaneously adjacent to both addends, which helps explain the extra stability of the equatorial isomers. Solvation by m-xylene decreases the exothermicity of the reactions studied but has little distinguishing effect on the possible isomers. Thermal corrections reduce the exothermicity of the reactions by ~10 kJ∙mol−1.
Collapse
|
27
|
Niu C, Xu Z, Huang X, Wang WF, Yin ZC, Wang GW. Electrosynthesis of Decorated Basket Molecules: [60]Fullerene-Fused 12-Membered Macrolactones. Org Lett 2022; 24:5530-5534. [PMID: 35862872 DOI: 10.1021/acs.orglett.2c01948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electrosynthesis of decorated basket molecules, that is, [60]fullerene-fused 12-membered macrolactones, has been achieved efficiently for the first time by the electrochemical reduction of [60]fullerene-fused 6-membered lactones and subsequent ring expansion with 1,2-bis(1-bromoalkyl)benzenes. The observed isomeric distributions of the obtained macrolactones are elucidated by theoretical calculations. The product structures have been firmly established by single-crystal X-ray analyses.
Collapse
Affiliation(s)
- Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiwei Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinmin Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei-Feng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng-Chun Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
28
|
Electrochemically Promoted Benzylation of [60]Fullerooxazolidinone. NANOMATERIALS 2022; 12:nano12132281. [PMID: 35808117 PMCID: PMC9268232 DOI: 10.3390/nano12132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022]
Abstract
Benzylation of the electrochemically generated dianion from N-p-tolyl-[60]fullerooxazolidinone with benzyl bromide provides three products with different addition patterns. The product distribution can be dramatically altered by varying the reaction conditions. Based on spectral characterizations, these products have been assigned as mono-benzylated 1,4-adduct and bis-benzylated 1,2,3,16- and 1,4,9,25-adducts, respectively. The assigned 1,2,3,16-adduct has been further established by X-ray diffraction analysis. It is believed that the 1,4-adduct is obtained by decarboxylative benzylation of the dianionic species, while bis-benzylated 1,2,3,16- and 1,4,9,25-adducts are achieved via a rearrangement process. In addition, the electrochemical properties of these products have been studied.
Collapse
|
29
|
Lemos R, Ortiz F, Almagro L, Makowski K, Martin N, Albericio F, Suárez M, Rodríguez H. Morphological behavior of fullerene‐steroid hybrid derivatives. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Reinier Lemos
- Laboratorio de Síntesis Orgánica, Facultad de Química Universidad de la Habana La Habana Cuba
| | - Fiorella Ortiz
- School of Chemical Sciences and Engineering Yachay Tech University Urququi Ecuador
| | - Luis Almagro
- Laboratorio de Síntesis Orgánica, Facultad de Química Universidad de la Habana La Habana Cuba
| | - Kamil Makowski
- Departament of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC‐CSIC) Barcelona Spain
- CIBER‐BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine, and Department of Organic Chemistry University of Barcelona Barcelona Spain
| | - Nazario Martin
- Departamento de Química Orgánica, Facultad de Ciencias Químicas Universidad Complutense de Madrid Madrid Spain
| | - Fernando Albericio
- Departament of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC‐CSIC) Barcelona Spain
- CIBER‐BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine, and Department of Organic Chemistry University of Barcelona Barcelona Spain
- School of Chemistry and Physics University of KwaZul‐Natal Durban South Africa
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química Universidad de la Habana La Habana Cuba
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering Yachay Tech University Urququi Ecuador
| |
Collapse
|
30
|
Chen XR, Zhang JX, Zhu SK, Li YW, Yang R, Xuan J, Li F. Transition-Metal-Free Domino Reaction of [60]Fullerene, Indole, and DMSO/HCl: One-Pot Access to Diverse N-Substituted [60]Fulleroindole Derivatives. J Org Chem 2022; 87:7945-7954. [PMID: 35671227 DOI: 10.1021/acs.joc.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented multicomponent domino reaction of [60]fullerene, indole, and DMSO/HCl has been developed for the one-pot efficient synthesis of diverse N-substituted [60]fulleroindole derivatives. This methodology features simple operation, low cost, and transition-metal-circumvented and good functional group tolerance in indole.
Collapse
Affiliation(s)
- Xin-Rui Chen
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun-Xiang Zhang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Shuai-Kang Zhu
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yi-Wen Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Rong Yang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Fei Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
31
|
Rousseva S, Raul BAL, van Kooij FS, Kuevda AV, Birudula S, Hummelen JC, Pshenichnikov MS, Chiechi RC. Investigating the dielectric properties and exciton diffusion in C 70 derivatives. Phys Chem Chem Phys 2022; 24:13763-13772. [PMID: 35612289 DOI: 10.1039/d2cp00791f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, the dielectric constant (εr) of organic semiconductors (OSCs) has been of interest in the organic photovoltaic (OPV) community due to its potential influence on the exciton binding energy. Despite progress in the design of high εr OSCs and the accurate measurement of the εr, the effects of the synthetic strategies on specific (opto)electronic properties of the OSCs remain uncertain. In this contribution, the effects of εr on the optical properties of five new C70 derivatives and [70]PCBM are investigated. Together with [70]PCBM, the derivatives have a range of εr values that depend on the polarity and length of the side chains. The properties of the singlet excitons are investigated in detail with steady-state and time-resolved spectroscopy and the exciton diffusion length is measured. All six derivatives show similar photophysical properties in the neat films. However, large differences in the crystallinity of the fullerene films influence the exciton dynamics in blend films. This work shows that design principles for OSCs with a higher εr can have a very different influence on the performance of traditional BHJ devices and in neat films and it is important to consider the neat film properties when investigating the optoelectronic properties of new materials for OPV.
Collapse
Affiliation(s)
- Sylvia Rousseva
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Benedito A L Raul
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Felien S van Kooij
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Alexey V Kuevda
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Srikanth Birudula
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Jan C Hummelen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
32
|
Liu QS, Qiu WJ, Lu WQ, Wang GW. Copper-mediated synthesis of fullerooxazoles from [60]fullerene and N-hydroxybenzimidoyl cyanides. Org Biomol Chem 2022; 20:3535-3539. [PMID: 35388873 DOI: 10.1039/d2ob00239f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel and efficient copper-mediated [3 + 2] heteroannulation reaction of [60]fullerene with N-hydroxybenzimidoyl cyanides has been developed for the synthesis of fullerooxazoles. A possible reaction mechanism involving unique C-CN and N-OH bond cleavages and subsequent C-OH bond formation for N-hydroxybenzimidoyl cyanides is proposed to explain the generation of fullerooxazoles. In addition, the formed fullerooxazoles can be further electrochemically transformed into amidated 1,2-hydrofullerenes.
Collapse
Affiliation(s)
- Qing-Song Liu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Wen-Jie Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Wen-Qiang Lu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Guan-Wu Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
33
|
Su YT, Yin ZC, Wang GW. Palladium-Catalyzed Three-Component 1,4-Alkoxyarylation Reaction of [60]Fullerene. J Org Chem 2022; 87:4051-4060. [PMID: 35201777 DOI: 10.1021/acs.joc.1c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The palladium-catalyzed three-component alkoxyarylation reaction of [60]fullerene with primary/secondary alcohols and aryl iodides generates a series of 1,4-(alkoxy)(aryl)[60]fullerene derivatives. Plausible reaction pathways for the formation of 1,4-(alkoxy)(aryl)[60]fullerenes are proposed. In addition, the electrochemical properties of the synthesized 1,4-alkoxyarylation adducts are investigated.
Collapse
Affiliation(s)
- Yi-Tan Su
- Department of Medical Imaging, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng-Chun Yin
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
34
|
Lu WQ, Yin ZC, Liu QS, Wang GW. Copper‐Promoted Cascade Radical Reaction of [60]Fullerene with Arylglyoxals and Further Derivatization. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen- Qiang Lu
- University of Science and Technology of China Department of Chemistry 96, Jinzhai Road 230026 Hefei CHINA
| | - Zheng-Chun Yin
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Qing-Song Liu
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Guan-Wu Wang
- University of Science and Techlonogy of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
35
|
Photovoltaic Device Application of a Hydroquinone-Modified Conductive Polymer and Dual-Functional Molecular Si Surface Passivation Technology. Polymers (Basel) 2022; 14:polym14030478. [PMID: 35160467 PMCID: PMC8839862 DOI: 10.3390/polym14030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decades, the conductive polymer PEDOT:PSS has been introduced in Si-based hybrid solar cells, gaining noticeable research interest and being considered a promising candidate for next generation solar cells which can achieve both of low manufacturing cost and high power conversion efficiency. This study succeeded in improving the electrical conductivity of PEDOT:PSS to 937 S/cm through a simple process of adding hydroquinone (HQ) to the pristine PEDOT:PSS solution. The results also showed that the addition of HQ to PEDOT:PSS(HQ-PEDOT:PSS) could not only dramatically improve the conductivity but also well-sustain the work function characteristics of PEDOT:PSS by promoting the formation of more continuous conductive-PEDOT channels without removing the insulating PSS. In this report, we reveal that the application of the HQ-PEDOT:PSS to the Si/PEDOT:PSS HSC could significantly improve the short-circuit current and open-circuit voltage characteristics to increase the power conversion efficiency of the HSCs compared to the conventional approaches. Moreover, we also treated the Si surface with the organic monomer, benzoquinone (BQ) to (1) passivate the excess Si surface defect states and (2) to improve the properties of the Si/PEDOT:PSS interface. We show that BQ treatment is able to dramatically increase the minority carrier lifetime induced by effective chemical and field-effect passivation in addition to enhancing the wettability of the Si surface with the PEDOT:PSS solution. As a result, the power conversion efficiency was increased by 10.6% by introducing HQ and BQ into the fabrication process of the Si/PEDOT:PSS HSC.
Collapse
|
36
|
Liu TX, Wu H, Ma N, Zhang C, Zhang P, Ma J, Zhang G. Acid-Responsive Dissociation of Ferrocene Compounds: Diels–Alder Diene Equivalents for Selective Preparation of [60]Fullerene-Fused Bicyclo[2.2.1]hept-5-enes. J Org Chem 2022; 87:3104-3113. [DOI: 10.1021/acs.joc.1c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Han Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuanjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
37
|
Brotsman VA, Lukonina NS, Malkin NA, Rybalchenko AV, Belov NM, Goryunkov AA. Difluoromethylenation of fullerene C 70 provides isomeric diversity and availability of equatorial [5,6]-homofullerene C 70(CF 2). Phys Chem Chem Phys 2022; 24:16816-16826. [DOI: 10.1039/d2cp01922a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report synthesis, isolation, and spectroscopic characterization of the novel [5,6]-open C70(CF2) isomer III along with the already known [6,6]-closed and [6,6]-open C70(CF2) isomers I and II. The compounds were...
Collapse
|
38
|
BinSabt MH, Alazemi A, Al-Matar HM, Balch AL, Shalaby MA. Pyrazole-, isoxazole- and pyrrole-ring fused derivatives of C 60: synthesis and electrochemical properties as well as morphological characterization. NEW J CHEM 2022. [DOI: 10.1039/d2nj00421f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrazole-, isoxazole- and pyrrole-ring fused derivatives of C60.
Collapse
Affiliation(s)
- Mohammad H. BinSabt
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| | - Abdulrahman Alazemi
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| | - Hamad M. Al-Matar
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| | - Alan L. Balch
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Mona A. Shalaby
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
39
|
Su YT, Yin ZC, Wang GW. Palladium-catalyzed three-component 1,4-aminoarylation of [60]fullerene with aryl iodides and N-methoxysulfonamides, and further transformations. Org Chem Front 2022. [DOI: 10.1039/d2qo00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The palladium-catalyzed three-component 1,4-aminoarylation of [60]fullerene afforded 1,4-(aryl)(sulfonamide)[60]fullerenes, of which the sulfonamide group could be replaced by a (hetero)aryl, malonate ester or allyl group in the presence of FeCl3.
Collapse
Affiliation(s)
- Yi-Tan Su
- Department of Medical Imaging, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng-Chun Yin
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Department of Medical Imaging, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
40
|
Liu Z, Yin ZC, Lu WQ, Zhou DB, Wang GW. Unexpected Diels-Alder reaction of [60]fullerene with electron-deficient ferrocenes as cyclopentadiene surrogates. Chem Commun (Camb) 2021; 57:13389-13392. [PMID: 34825247 DOI: 10.1039/d1cc05749a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unexpected Diels-Alder reaction of [60]fullerene (C60) with ferrocenes bearing electron-withdrawing groups as cyclopentadiene surrogates has been developed to selectively afford single isomers of [2 + 4] cycloadducts of C60. Mechanistic studies indicate that cyclopentadienes are in situ generated from electron-deficient ferrocenes in the presence of an oxidant and an acid, followed by [2 + 4] cycloadditions with dienophiles. A Michael addition reaction using a Grignard reagent has been utilized to transform the Diels-Alder adducts of C60 into more stable fullerene derivatives.
Collapse
Affiliation(s)
- Zhan Liu
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zheng-Chun Yin
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Wen-Qiang Lu
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Dian-Bing Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Guan-Wu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
41
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Modelling of Stem Cells Microenvironment Using Carbon-Based Scaffold for Tissue Engineering Application-A Review. Polymers (Basel) 2021; 13:4058. [PMID: 34883564 PMCID: PMC8658938 DOI: 10.3390/polym13234058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
42
|
Li Y, Kopcha WP, Emge TJ, Sun Y, Zhang J. Isocyanide-Induced Annulation Leading to Cyclopento-, Methano-, and Cyclopentano-[60]Fullerene Derivatives. Org Lett 2021; 23:8867-8872. [PMID: 34739256 DOI: 10.1021/acs.orglett.1c03371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-component annulation reactions of C60, alkyl isocyanide, and dimethyl acetylenedicarboxylate (DMAD) or unsymmetric alkynes are investigated to afford cyclopent-2-en-1-imino- and ketenimine methano-[60]fullerene derivatives, which, upon hydration in the presence of acid, yield the corresponding fullerene amides. Dimethyl 2,3-pentadienedioate, the allene counterpart of DMAD, and ethyl buta-2,3-dienoate undergo four-component annulation with C60, alkyl isocyanide, and water under similar conditions to yield cyclopentano-[60]fullerene derivatives with similar amide groups.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
43
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
44
|
Martinis EM, Montellano A, Sartorel A, Carraro M, Prato M, Bonchio M. Microwave‐Assisted 1,3‐Dipolar Cycloaddition of Azomethine Ylides to [60]Fullerene: Thermodynamic Control of Bis‐Addition with Ionic Liquids Additives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Estefanía M. Martinis
- Department of Chemical Sciences University of Padova and ITM-CNR Via Marzolo, 1 35131 Padova Italy
- Faculty of Engineering - National University of Cuyo - National Scientific and Technical Research Council Centro Universitario M5502JMA Mendoza Argentina
| | - Alejandro Montellano
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via Giorgieri 1 34127 Trieste Italy
| | - Andrea Sartorel
- Department of Chemical Sciences University of Padova and ITM-CNR Via Marzolo, 1 35131 Padova Italy
| | - Mauro Carraro
- Department of Chemical Sciences University of Padova and ITM-CNR Via Marzolo, 1 35131 Padova Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via Giorgieri 1 34127 Trieste Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramón182 20014 Donostia San Sebastián Spain
- Basque Foundation for Science Ikerbasque Bilbao 48013 Spain
| | - Marcella Bonchio
- Department of Chemical Sciences University of Padova and ITM-CNR Via Marzolo, 1 35131 Padova Italy
| |
Collapse
|
45
|
|
46
|
Artigas A, Castanyer C, Roig N, Lledó A, Solà M, Pla‐Quintana A, Roglans A. Synthesis of Fused Dihydroazepine Derivatives of Fullerenes by a Rh‐Catalyzed Cascade Process. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Albert Artigas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona (UdG), Facultat de Ciències C/Maria Aurèlia Capmany, 69 17003- Girona Catalunya Spain
| | - Cristina Castanyer
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona (UdG), Facultat de Ciències C/Maria Aurèlia Capmany, 69 17003- Girona Catalunya Spain
| | - Nil Roig
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona (UdG), Facultat de Ciències C/Maria Aurèlia Capmany, 69 17003- Girona Catalunya Spain
| | - Agustí Lledó
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona (UdG), Facultat de Ciències C/Maria Aurèlia Capmany, 69 17003- Girona Catalunya Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona (UdG), Facultat de Ciències C/Maria Aurèlia Capmany, 69 17003- Girona Catalunya Spain
| | - Anna Pla‐Quintana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona (UdG), Facultat de Ciències C/Maria Aurèlia Capmany, 69 17003- Girona Catalunya Spain
| | - Anna Roglans
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona (UdG), Facultat de Ciències C/Maria Aurèlia Capmany, 69 17003- Girona Catalunya Spain
| |
Collapse
|
47
|
Hasegawa S, Meichsner SL, Holstein JJ, Baksi A, Kasanmascheff M, Clever GH. Long-Lived C 60 Radical Anion Stabilized Inside an Electron-Deficient Coordination Cage. J Am Chem Soc 2021; 143:9718-9723. [PMID: 34156243 DOI: 10.1021/jacs.1c02860] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fullerene C60 and its derivatives are widely used in molecular electronics, photovoltaics, and battery materials, because of their exceptional suitability as electron acceptors. In this context, single-electron transfer on C60 generates the C60• - radical anion. However, the short lifetime of free C60• - hampers its investigation and application. In this work, we dramatically stabilize the usually short-lived C60• - species within a self-assembled M2L4 coordination cage consisting of a triptycene-based ligand and Pd(II) cations. The electron-deficient cage strongly binds C60 by providing a curved inner π-surface complementary to the fullerene's globular shape. Cyclic voltammetry revealed a positive potential shift for the first reduction of encapsulated C60, which is indicative of a strong interaction between confined C60• - and the cationic cage. Photochemical one-electron reduction with 1-benzyl-1,4-dihydronicotinamide allows selective and quantitative conversion of the confined C60 molecule in millimolar acetonitrile solution at room temperature. Radical generation was confirmed by nuclear magnetic resonance, electron paramagnetic resonance, ultraviolet-visible-near-infrared spectroscopy and electrospray ionization mass spectrometry. The lifetime of C60• - within the cage was determined to be so large that it could still be detected after one month under an inert atmosphere.
Collapse
Affiliation(s)
- Shota Hasegawa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Shari L Meichsner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Ananya Baksi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
48
|
Kano H, Hayashi H, Matsuo K, Fujiki M, Yamada H, Aratani N. Deep-red circularly polarised luminescent C 70 derivatives. Sci Rep 2021; 11:12072. [PMID: 34103595 PMCID: PMC8187662 DOI: 10.1038/s41598-021-91451-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Optically active fullerenes, including C60 and C70 derivatives carrying organic substituents, are used in a range of applications because of their unique spectroscopic, catalytic, and chiral recognition properties. However, their inherent photoexcited chirality is yet to be elucidated because of their very poor fluorescence quantum yield (Φf). We synthesised a new chiral C70 derivative, X70A, with 20% yield, by reacting bis-borylated xanthene with C70 in a one-step double addition reaction, followed by a successful optical resolution. The isolation of two separate X70A enantiomers was confirmed by mirror-image circular dichroism spectroscopy in the range of 300–750 nm. In toluene, the enantiomeric pair of X70A clearly revealed mirror-image circularly polarised luminescence (CPL) spectra with a high |glum| value of 7.0 × 10−3 at 690 nm. The first fullerene-based deep-red CPL of X70A should provide a new guideline for the design of chiral nanocarbon materials.
Collapse
Affiliation(s)
- Haruka Kano
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Hironobu Hayashi
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Kyohei Matsuo
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Michiya Fujiki
- Division of R&D, True2Materials PTE. Ltd., 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
49
|
Liu Z, Yin ZC, Lu WQ, Niu C, Chen M, Yang S, Wang GW. Cu(I)-Catalyzed Synthesis of [60]Fullerene-Fused Lactams and Further Electrochemical Functionalization. Org Lett 2021; 23:4051-4056. [PMID: 33974803 DOI: 10.1021/acs.orglett.1c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel and efficient Cu(I)-catalyzed radical heteroannulation reaction of [60]fullerene (C60) with α-bromo acetamides has been disclosed for the direct synthesis of diverse C60-fused lactams. Furthermore, the formed C60-fused lactams can be served as a versatile platform for further electrochemical functionalization to prepare 1,2-, 1,4-, 1,2,3,16-, and 1,4,9,25-adducts of C60. In addition, a representative fullerene product has been applied as an overcoating layer of the electron-transporting layer in n-type perovskite solar cell.
Collapse
Affiliation(s)
- Zhan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng-Chun Yin
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen-Qiang Lu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
50
|
Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C 60. Nat Chem 2021; 13:420-427. [PMID: 33859394 DOI: 10.1038/s41557-021-00658-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
Molecular Russian dolls (matryoshkas) have proven useful for testing the limits of preparative supramolecular chemistry but applications of these architectures to problems in other fields are elusive. Here we report a three-shell, matryoshka-like complex-in which C60 sits inside a cycloparaphenylene nanohoop, which in turn is encapsulated inside a self-assembled nanocapsule-that can be used to address a long-standing challenge in fullerene chemistry, namely the selective formation of a particular fullerene bis-adduct. Spectroscopic evidence indicates that the ternary complex is sufficiently stable in solution for the two outer shells to affect the addition chemistry of the fullerene guest. When the complex is subjected to Bingel cyclopropanation conditions, the exclusive formation of a single trans-3 fullerene bis-adduct was observed in a reaction that typically yields more than a dozen products. The selectivity facilitated by this matryoshka-like approach appears to be a general phenomenon and could be useful for applications where regioisomerically pure C60 bis-adducts have been shown to have superior properties compared with isomer mixtures.
Collapse
Affiliation(s)
- Ernest Ubasart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Oleg Borodin
- Institute of Organic Chemistry, Ulm University, Ulm, Germany
| | - Carles Fuertes-Espinosa
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Youzhi Xu
- Institute of Organic Chemistry, Ulm University, Ulm, Germany
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Laura Gómez
- Serveis Tècnics de Recerca, Universitat de Girona, Girona, Spain
| | | | - Felipe Gándara
- Materials Science Institute of Madrid, Spanish National Research Council, Madrid, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm, Germany.
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain.
| |
Collapse
|