1
|
Randolph CE, Walker KA, Yu R, Beveridge C, Manchanda P, Chopra G. Glial Biologist's Guide to Mass Spectrometry-Based Lipidomics: A Tutorial From Sample Preparation to Data Analysis. Glia 2025; 73:474-494. [PMID: 39751169 PMCID: PMC11784846 DOI: 10.1002/glia.24665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Neurological diseases are associated with disruptions in the brain lipidome that are becoming central to disease pathogenesis. Traditionally perceived as static structural support in membranes, lipids are now known to be actively involved in cellular signaling, energy metabolism, and other cellular activities involving membrane curvature, fluidity, fusion or fission. Glia are critical in the development, health, and function of the brain, and glial regulation plays a major role in disease. The major pathways of glial dysregulation related to function are associated with downstream products of metabolism including lipids. Taking advantage of significant innovations and technical advancements in instrumentation, lipidomics has emerged as a popular omics discipline, serving as the prevailing approach to comprehensively define metabolic alterations associated with organismal development, damage or disease. A key technological platform for lipidomics studies is mass spectrometry (MS), as it affords large-scale profiling of complex biological samples. However, as MS-based techniques are often refined and advanced, the relative comfort level among biologists with this instrumentation has not followed suit. In this review, we aim to highlight the importance of the study of glial lipids and to provide a concise record of best practices and steps for MS-based lipidomics. Specifically, we outline procedures for glia lipidomics workflows ranging from sample collection and extraction to mass spectrometric analysis to data interpretation. To ensure these approaches are more accessible, this tutorial aims to familiarize glia biologists with sample handling and analysis techniques for MS-based lipidomics, and to guide non-experts toward generating high quality lipidomics data.
Collapse
Affiliation(s)
| | | | - Ruilin Yu
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Connor Beveridge
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Palak Manchanda
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer Science (By Courtesy)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug DiscoveryWest LafayetteIndianaUSA
- Purdue Institute for Integrative NeuroscienceWest LafayetteIndianaUSA
- Purdue Institute of InflammationImmunology and Infectious DiseaseWest LafayetteIndianaUSA
- Purdue Institute for Cancer ResearchWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare EngineeringWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Felippe TVD, Toro DM, de Carvalho JCS, Nobre-Azevedo P, Rodrigues LFM, Oliveira BTM, da Silva-Neto PV, Vilela AFL, Almeida F, Faccioli LH, Sorgi CA. High-resolution targeted mass spectrometry for comprehensive quantification of sphingolipids: clinical applications and characterization of extracellular vesicles. Anal Biochem 2025; 698:115732. [PMID: 39622401 DOI: 10.1016/j.ab.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Sphingolipids (SL), a class of membrane lipids, play important roles in numerous biological processes. Their significant structural diversity poses challenges for accurate quantification. To address this, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for sphingolipidomics, capable of profiling these lipids comprehensively. In this study, we utilized LC-MS/MS with high-resolution mass spectrometry (MRMHR) to develop a targeted method for the identification and quantification of various SL species. This method, based on validated parameters such as precursor/fragment ions (m/z) and retention time, demonstrated high sensitivity and accuracy, successfully identifying SL species across 12 distinct classes. Its open-panel design also facilitates the analysis of new SL-species targets. Notably, using this approach, we identified 40 SL species in plasma samples from COVID-19 patients, and we determined the influence of matrix metalloproteinase-3 (MMP-3) expression on the positive downstream of SL metabolism. Beyond plasma analysis, this method has potential applications in other biomedical contexts, such as extracellular vesicles (EVs), describing the cargo of sphingosine-1-phosphate (S1P) on macrophage-derived EVs. The establishment of this targeted workflow enabling precise quantification of a wide range of SL species, holds promise for identifying novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thiago V D Felippe
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Pedro Nobre-Azevedo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Luiz F M Rodrigues
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Bianca T M Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Adriana F L Vilela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil.
| |
Collapse
|
3
|
Dong X, Shao J, Wu X, Dong J, Tang P. Lipidomic profiling reveals the protective mechanism of nitrogen-controlled atmosphere on brown rice quality during storage. Food Chem 2025; 473:143081. [PMID: 39884227 DOI: 10.1016/j.foodchem.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Rice, a globally important staple, requires effective preservation methods to maintain its quality during extended storage. This study explored the efficacy of nitrogen-controlled atmosphere (NCA) storage in preserving the quality of brown rice during a one-year period using UHPLC-MS/MS based lipidomic profiling. A total of 1013 lipids were identified and categorized into five main groups. Specific lipids including triglycerides (TG), diglycerides (DG), phosphatidylethanolamines (PE), cardiolipins (CL), and ceramides (Cer), were highlighted as potential biomarkers for assessing rice rancidity. NCA storage significantly suppressed lipase and lipoxygenase activities, reducing lipid hydrolysis and oxidation to effectively delayed rice quality deterioration. Furthermore, NCA regulated glycerolipid and glycerophospholipid metabolisms, promoting lipid remodeling while reducing the degradation of TGs and phospholipids. This regulation preserved cellular membrane integrity, limited fatty acid release, and mitigate rancidity and quality loss during storage. These findings elucidate the mechanism by which NCA storage delays deterioration and extends the stored rice shelf-life.
Collapse
Affiliation(s)
- Xue Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jin Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Xueyou Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jialin Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Peian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
4
|
Castro-Alves V, Nguyen AH, Barbosa JMG, Orešič M, Hyötyläinen T. Liquid and gas-chromatography-mass spectrometry methods for exposome analysis. J Chromatogr A 2025; 1744:465728. [PMID: 39893915 DOI: 10.1016/j.chroma.2025.465728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Mass spectrometry-based methods have become fundamental to exposome research, providing the capability to explore a broad spectrum of chemical exposures. Liquid and gas chromatography coupled with low/high-resolution mass spectrometry (MS) are among the most frequently employed platforms due to their sensitivity and accuracy. However, these approaches present challenges, such as the inherent complexity of MS data and the expertise of biologists, chemists, clinicians, and data analysts to integrate and interpret MS data with other datasets effectively. The "omics" era advances rapidly, driven by developments of AI-based algorithms and an increase in accessible data; nevertheless, further efforts are necessary to ensure that exposomics outputs are comparable and reproducible, thus enhancing research findings. This review outlines the principles of MS-based methods for the exposome analytical pipeline, from sample collection to data analysis. We summarize and review both standard and cutting-edge strategies in exposome research, covering sample preparation, focusing on MS-based platforms, data acquisition strategies, and data annotation. The ultimate goal of this review is to highlight applications that enable the simultaneous analysis of endogenous metabolites and xenobiotics, which can help enhance our understanding of the impact of human exposure on health and disease and support personalized healthcare.
Collapse
Affiliation(s)
| | - Anh Hoang Nguyen
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
5
|
Peterka O, Langová A, Jirásko R, Holčapek M. Bioinert UHPLC system improves sensitivity and peak shapes for ionic metabolites. J Chromatogr A 2025; 1740:465588. [PMID: 39662336 DOI: 10.1016/j.chroma.2024.465588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
The analysis of ionic compounds by liquid chromatography is challenging due to the interaction of analytes with the metal surface of the instrument and the column, leading to poor peak shape and decreased sensitivity. The use of bioinert materials in the chromatographic system minimizes these unrequired interactions. In this work, the ultrahigh-performance liquid chromatography (UHPLC) with bioinert components was connected to a high-resolution mass spectrometer to develop a method for untargeted metabolomic analysis. 81 standards of metabolites were used for the development and optimization of the method. In comparison to the conventional chromatographic system, the application of bioinert technology resulted in significantly improved peak shapes and increased sensitivity, especially for metabolites containing phosphate groups. The calibration curves were constructed for the evaluation of the method performance, showing a wide dynamic range, low limit of detection, and linear regression coefficients higher than 0.99 for all standards. The optimized method was applied to the analysis of NIST SRM 1950 human plasma, which allowed the detection of 156 metabolites and polar lipids based on the combination of mass accuracy in the full-scan mass spectra in both polarity modes, characteristic fragment ions in MS/MS, and logical chromatographic behavior leading to the high confidence level of annotation/identification. We have demonstrated an improvement in the peak shapes and sensitivity of ionic metabolites using bioinert technology, which indicates the potential for the analysis of other ionic compounds, e.g., molecules containing phosphate groups.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Alena Langová
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic.
| |
Collapse
|
6
|
Sarkar J, Singh R, Chandel S. Understanding LC/MS-Based Metabolomics: A Detailed Reference for Natural Product Analysis. Proteomics Clin Appl 2025; 19:e202400048. [PMID: 39474988 DOI: 10.1002/prca.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 01/14/2025]
Abstract
Liquid chromatography, when used in conjunction with mass spectrometry (LC/MS), is a powerful tool for conducting accurate and reproducible investigations of numerous metabolites in natural products (NPs). LC/MS has gained prominence in metabolomic research due to its high throughput, the availability of multiple ionization techniques and its ability to provide comprehensive metabolite coverage. This unique method can significantly influence various scientific domains. This review offers a comprehensive overview of the current state of LC/MS-based metabolomics in the investigation of NPs. This review provides a thorough overview of the state of the art in LC/MS-based metabolomics for the investigation of NPs. It covers the principles of LC/MS, various aspects of LC/MS-based metabolomics such as sample preparation, LC modes, method development, ionization techniques and data pre-processing. Moreover, it presents the applications of LC/MS-based metabolomics in numerous fields of NPs research such as including biomarker discovery, the agricultural research, food analysis, the study of marine NPs and microbiological research. Additionally, this review discusses the challenges and limitations of LC/MS-based metabolomics, as well as emerging trends and developments in this field.
Collapse
Affiliation(s)
- Jyotirmay Sarkar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
7
|
Pakkir Shah AK, Walter A, Ottosson F, Russo F, Navarro-Diaz M, Boldt J, Kalinski JCJ, Kontou EE, Elofson J, Polyzois A, González-Marín C, Farrell S, Aggerbeck MR, Pruksatrakul T, Chan N, Wang Y, Pöchhacker M, Brungs C, Cámara B, Caraballo-Rodríguez AM, Cumsille A, de Oliveira F, Dührkop K, El Abiead Y, Geibel C, Graves LG, Hansen M, Heuckeroth S, Knoblauch S, Kostenko A, Kuijpers MCM, Mildau K, Papadopoulos Lambidis S, Portal Gomes PW, Schramm T, Steuer-Lodd K, Stincone P, Tayyab S, Vitale GA, Wagner BC, Xing S, Yazzie MT, Zuffa S, de Kruijff M, Beemelmanns C, Link H, Mayer C, van der Hooft JJJ, Damiani T, Pluskal T, Dorrestein P, Stanstrup J, Schmid R, Wang M, Aron A, Ernst M, Petras D. Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data. Nat Protoc 2025; 20:92-162. [PMID: 39304763 DOI: 10.1038/s41596-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 09/22/2024]
Abstract
Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.
Collapse
Affiliation(s)
- Abzer K Pakkir Shah
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Axel Walter
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Filip Ottosson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Marcelo Navarro-Diaz
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Judith Boldt
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research, Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jarmo-Charles J Kalinski
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Eftychia Eva Kontou
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - James Elofson
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Alexandros Polyzois
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Carolina González-Marín
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Shane Farrell
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME, USA
| | - Marie R Aggerbeck
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Thapanee Pruksatrakul
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Nathan Chan
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Yunshu Wang
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Magdalena Pöchhacker
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Corinna Brungs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | - Andres Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda de Oliveira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Kai Dührkop
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Christian Geibel
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Lana G Graves
- Department of Environmental Systems Analysis, University of Tübingen, Tübingen, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Simon Knoblauch
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Anastasiia Kostenko
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Kevin Mildau
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Tilman Schramm
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Karoline Steuer-Lodd
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Paolo Stincone
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Sibgha Tayyab
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Giovanni Andrea Vitale
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Berenike C Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Shipei Xing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Marquis T Yazzie
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Martinus de Kruijff
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Hannes Link
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Christoph Mayer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Justin J J van der Hooft
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Tito Damiani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Robin Schmid
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mingxun Wang
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Allegra Aron
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark.
| | - Daniel Petras
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA.
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany.
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
8
|
Virgiliou C, Gika HG, Theodoridis G. HILIC-MS/MS Multi-targeted Method for Metabolomics Applications. Methods Mol Biol 2025; 2891:181-204. [PMID: 39812983 DOI: 10.1007/978-1-0716-4334-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Metabolomics aims at identification and quantitation of key end point metabolites, basically polar, in order to study changes in biochemical activities in response to pathophysiological stimuli or genetic modifications. Targeted profiling assays enjoying a growing popularity over the last years with LC-MS/MS as a powerful tool for development of such (semi-)quantitative methods for a large number of metabolites. Here we describe a method for absolute quantitation of ca. 100 metabolites belonging to key metabolite classes such as sugars, amino acids, nucleotides, organic acids, and amines with a hydrophilic interaction liquid chromatography (HILIC) system comprised with ultra (high) performance liquid chromatography (UHPLC) with detection on a triple quadrupole mass spectrometer operating in both positive and negative modes.
Collapse
Affiliation(s)
- Christina Virgiliou
- Department of Chemical Engineering, Aristotle University, Thessaloniki, Greece.
- Biomic Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation, Aristotle University, Thessaloniki, Greece.
| | - Helen G Gika
- Biomic Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation, Aristotle University, Thessaloniki, Greece
- Department of Medicine, Aristotle University, Thessaloniki, Greece
| | - Georgios Theodoridis
- Biomic Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation, Aristotle University, Thessaloniki, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
10
|
Bogusiewicz J, Kupcewicz B, Wnuk K, Gaca-Tabaszewska M, Furtak J, Harat M, Buszko K, Bojko B. The impact of sampling time point on the lipidome composition. J Pharm Biomed Anal 2024; 251:116429. [PMID: 39178482 DOI: 10.1016/j.jpba.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/15/2024] [Accepted: 08/17/2024] [Indexed: 08/25/2024]
Abstract
Lipidomic profiling has been reported as an effective approach for characterizing and differentiating brain tumors. However, since lipids can undergo non-specific enzymatic and nonenzymatic reactions due to tissue disruption, it is critical to consider the preanalytical phase of the diagnostic process (e.g., optimizing the sampling time and sampling conditions). Thus, this study assesses the ways in which the time point of sampling impacts the lipidome composition of brain tumors. Two histologically distinct brain tumors-namely, meningiomas and gliomas-were sampled using solid-phase microextraction (SPME) fibers at two time points: on-site directly after removal, and after 12 months of storage at -30 °C. The samples were analyzed via HILIC chromatography coupled with HRMS, which enabled the detection of a wide range of features, including phospholipids and sphingolipids, as well as changes in the profiles of these compounds. The samples obtained from the stored tissues tended to have elevated levels of analytes with lower m/z values. In addition, the samples obtained from the fresh and stored tissues were easily distinguished based on their lipidome compositions, regardless of the histological tumor type. Notably, while storage did not affect the possibility of differentiating meningiomas and gliomas, the biological interpretation of the obtained results were prone to bias.
Collapse
Affiliation(s)
- Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-089, Poland
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-089, Poland
| | - Kacper Wnuk
- Department of Biostatistics and Biomedical Systems Theory, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-067, Poland
| | - Magdalena Gaca-Tabaszewska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-089, Poland
| | - Jacek Furtak
- Medical Faculty, University of Science and Technology in Bydgoszcz, Bydgoszcz 85-796, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz 85-681, Poland
| | - Marek Harat
- Medical Faculty, University of Science and Technology in Bydgoszcz, Bydgoszcz 85-796, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz 85-681, Poland
| | - Katarzyna Buszko
- Department of Biostatistics and Biomedical Systems Theory, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-067, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-089, Poland.
| |
Collapse
|
11
|
Low J, Altman R, Badolian A, Cuaresma AB, Briseño C, Keshet U, Fiehn O, Stahelin RV, Nikolaidis N. Heat-Induced Phosphatidylserine Changes Drive HSPA1A's Plasma Membrane Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626454. [PMID: 39713339 PMCID: PMC11661080 DOI: 10.1101/2024.12.02.626454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Heat shock protein A1A (HSPA1A) is a molecular chaperone crucial in cell survival. In addition to its cytosolic functions, HSPA1A translocates to heat-shocked and cancer cells' plasma membrane (PM). In cancer, PM-localized HSPA1A (mHSPA1A) is associated with increased tumor aggressiveness and therapeutic resistance, suggesting that preventing its membrane localization could have therapeutic value. This translocation depends on HSPA1A's interaction with PM phospholipids, including phosphatidylserine (PS). Although PS binding regulates HSPA1A's membrane localization, the exact trigger for this movement remains unclear. Given that lipid modifications are a cancer hallmark, we hypothesized that PS is a crucial lipid driving HSPA1A translocation and that heat-induced changes in PS levels trigger HSPA1A's PM localization in response to heat stress. We tested this hypothesis using pharmacological inhibition and RNA interference (RNAi) targeting PS synthesis, combined with confocal microscopy, lipidomics, and western blotting. Lipidomic analysis and PS-specific biosensors confirmed a heat shock-induced PS increase, peaking immediately post-stress. Inhibition of PS synthesis with fendiline and RNAi significantly reduced HSPA1A's PM localization, while depletion of cholesterol or fatty acids had minimal effects, confirming specificity for PS. Further experiments showed that PS saturation and elongation changes did not significantly impact HSPA1A's PM localization, indicating that the total PS increase, rather than specific PS species, is the critical factor. These findings reshape current models of HSPA1A trafficking, demonstrating that PS is a crucial regulator of HSPA1A's membrane translocation during the heat shock response. This work offers new insights into lipid-regulated protein trafficking and highlights the importance of PS in controlling cellular responses to stress.
Collapse
Affiliation(s)
- Jensen Low
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Rachel Altman
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Allen Badolian
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Azalea Blythe Cuaresma
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Carolina Briseño
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Uri Keshet
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
12
|
McAtamney A, Ferranti A, Ludvik DA, Yildiz FH, Mandel MJ, Hayward T, Sanchez LM. Microbial Metabolomics' Latest SICRIT: Soft Ionization by Chemical Reaction In-Transfer Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3049-3056. [PMID: 39344164 PMCID: PMC11622237 DOI: 10.1021/jasms.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Microbial metabolomics studies are a common approach for identifying microbial strains that have a capacity to produce new chemistries both in vitro and in situ. A limitation to applying microbial metabolomics to the discovery of new chemical entities is the rediscovery of known compounds, or "known unknowns." One factor contributing to this rediscovery is that the majority of laboratories use one ionization source─electrospray ionization (ESI)─to conduct metabolomics studies. Although ESI is an efficient, widely adopted ionization method, its widespread use may contribute to the reidentification of known metabolites. Here, we present the use of a dielectric barrier discharge ionization (DBDI) for microbial metabolomics applications through the use of soft ionization chemical reaction in-transfer (SICRIT). Additionally, we compared SICRIT to ESI using two different Vibrio species: Vibrio fischeri, a symbiotic marine bacterium, and Vibrio cholerae, a pathogenic bacterium. Overall, we found that the SICRIT source ionizes a different set of metabolites than ESI, and it has the ability to ionize lipids more efficiently than ESI in the positive mode. This work highlights the value of using more than one ionization source for the detection of metabolites.
Collapse
Affiliation(s)
- Allyson McAtamney
- Department
of Chemistry and Biochemistry, University
of California, 1156 High St. Santa Cruz, California 95064, United States
| | | | - Denise A. Ludvik
- Department
of Medical Microbiology and Immunology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Fitnat H. Yildiz
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California 95064, United States
| | - Mark J. Mandel
- Department
of Medical Microbiology and Immunology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | - Laura M. Sanchez
- Department
of Chemistry and Biochemistry, University
of California, 1156 High St. Santa Cruz, California 95064, United States
| |
Collapse
|
13
|
Seo JH, Koh J, Cho HJ, Kim H, Lee Y, Kim SJ, Yoon PW, Kim W, Bae SJ, Kim H, Yoo HJ, Lee SH. Sphingolipid metabolites as potential circulating biomarkers for sarcopenia in men. J Cachexia Sarcopenia Muscle 2024; 15:2476-2486. [PMID: 39229927 PMCID: PMC11634516 DOI: 10.1002/jcsm.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and function. Sarcopenia is a multifactorial disorder, including metabolic disturbance; therefore, metabolites may be used as circulating biomarkers for sarcopenia. We aimed to investigate potential biomarkers of sarcopenia using metabolomics. METHODS After non-targeted metabolome profiling of plasma from mice of an aging mouse model of sarcopenia, sphingolipid metabolites and muscle cells from the animal model were evaluated using targeted metabolome profiling. The associations between sphingolipid metabolites identified from mouse and cell studies and sarcopenia status were assessed in men in an age-matched discovery (72 cases and 72 controls) and validation (36 cases and 128 controls) cohort; women with sarcopenia (36 cases and 36 controls) were also included as a discovery cohort. RESULTS Both non-targeted and targeted metabolome profiling in the experimental studies showed an association between sphingolipid metabolites, including ceramides (CERs) and sphingomyelins (SMs), and sarcopenia. Plasma SM (16:0), CER (24:1), and SM (24:1) levels in men with sarcopenia were significantly higher in the discovery cohort than in the controls (all P < 0.05). There were no significant differences in plasma sphingolipid levels for women with or without sarcopenia. In men in the discovery cohort, an area under the receiver-operating characteristic curve (AUROC) of SM (16:0) for low muscle strength and low muscle mass was 0.600 (95% confidence interval [CI]: 0.501-0.699) and 0.647 (95% CI: 0.557-0.737). The AUROC (95% CI) of CER (24:1) and SM (24:1) for low muscle mass in men was 0.669 (95% CI: 0.581-0.757) and 0.670 (95% CI: 0.582-0.759), respectively. Using a regression equation combining CER (24:1) and SM (16:0) levels, a sphingolipid (SphL) score was calculated; an AUROC of the SphL score for sarcopenia was 0.712 (95% CI: 0.626-0.798). The addition of the SphL score to HGS significantly improved the AUC from 0.646 (95% CI: 0.575-0.717; HGS only) to 0.751 (95% CI: 0.671-0.831, P = 0.002; HGS + SphL) in the discovery cohort. The predictive ability of the SphL score for sarcopenia was confirmed in the validation cohort (AUROC = 0.695, 95% CI: 0.591-0.799). CONCLUSIONS SM (16:0), reflecting low muscle strength, and CER (24:1) and SM (16:0), reflecting low muscle mass, are potential circulating biomarkers for sarcopenia in men. Further research on sphingolipid metabolites is required to confirm these results and provide additional insights into the metabolomic changes relevant to the pathogenesis and diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Health Service Medical CenterVeterans Medical Research InstituteSeoulSouth Korea
| | - Jung‐Min Koh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Han Jin Cho
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Hanjun Kim
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Young‐Sun Lee
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Pil Whan Yoon
- Department of Orthopedic SurgerySeoul Now HospitalAnyangSouth Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sung Jin Bae
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hong‐Kyu Kim
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hun Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
14
|
Rahmawati D, Adan MFY, Ikram MMM, Iman MN, Fukusaki E, Putri SP. Effect of sodium metabisulfite treatment and storage condition on metabolic profile of young coconut (Cocos nucifera L.). J Biosci Bioeng 2024; 138:515-521. [PMID: 39343696 DOI: 10.1016/j.jbiosc.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
Young coconuts (Cocos nucifera L.) used for export are trimmed to reduce their size and weight to lower transport costs. However, trimmed coconuts have a shorter shelf life due to microbial spoilage and surface discoloration caused by enzymatic browning. To minimize these effects, trimmed coconuts were dipped in an anti-browning agent, sodium metabisulfite (SMB), and stored under ambient conditions. However, there have been no reports on the effects of SMB treatment on metabolome changes in the flesh and water of young coconuts. Hence, this study investigated the metabolite changes in trimmed young coconuts after SMB treatment under different storage conditions using a gas chromatography (GC)/mass spectrometry (MS) metabolomic profiling approach. Tall young coconut samples were trimmed and treated with a 2% SMB solution for 5 min before storage at 25 °C or 4 °C for 2-4 weeks. Coconut flesh and water samples were collected after storage for 0, 2, and 4 weeks, and were subjected to GC-MS analysis. The results showed that the major metabolites affected by coconut deterioration were amino acids, sugars, and sugar alcohols. SMB treatment and/or refrigeration can help prevent metabolite changes in the flesh and water of young coconuts. In the future, improvements in storage conditions based on metabolite profiles should be explored.
Collapse
Affiliation(s)
- Della Rahmawati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Food Technology, Faculty of Life Science and Technology, Swiss German University, Tangerang, Banten 15143, Indonesia
| | - Mary Faith Yamballa Adan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Muhammad Maulana Malikul Ikram
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Marvin Nathanael Iman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
15
|
Rodríguez RM, de Assis LVM, Calvo E, Colom-Pellicer M, Quesada-Vázquez S, Cruz-Carrión Á, Escoté X, Oster H, Aragonès G, Mulero M. Grape-Seed Proanthocyanidin Extract (GSPE) Modulates Diurnal Rhythms of Hepatic Metabolic Genes and Metabolites, and Reduces Lipid Deposition in Cafeteria-Fed Rats in a Time-of-Day-Dependent Manner. Mol Nutr Food Res 2024; 68:e2400554. [PMID: 39523911 DOI: 10.1002/mnfr.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/30/2024] [Indexed: 11/16/2024]
Abstract
SCOPE Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health issue with increasing prevalence. Polyphenols, such as grape seed proanthocyanidin extract (GSPE), are bioactive compounds present in plants and represent an interesting therapeutical approach for MASLD. METHODS AND RESULTS This study questioned whether the timing of GSPE administration impacts liver diurnal metabolism and steatosis in a rat obesity model. Results from hepatic lipid profiling and diurnal metabolic gene expression and metabolomics reveal that rats fed with a cafeteria (CAF) diet show impaired glucose homeostasis and enhanced lipogenesis in the liver, contributing to liver steatosis. Chronic consumption of GSPE in the inactive or active phase is associated with beneficial effects as the restoration of rhythms of transcripts and metabolites is observed. However, only when given in the active phase, GSPE treatment decreases hepatic triglyceride levels. Using an in vitro hepatocyte model, the study identifies that catechin, one of the main phenolic compounds found in the GSPE extract, is a potential mediator in ameliorating the effects of CAF-induced liver steatosis. CONCLUSION Taken altogether, the findings show that the beneficial effects of GSPE on MASLD development depend on the treatment time.
Collapse
Affiliation(s)
- Romina M Rodríguez
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
| | | | - Enrique Calvo
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, Reus, 43201, Spain
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
| | | | - Álvaro Cruz-Carrión
- United States Department of Agriculture and The Agricultural Research Service (USDA-ARS), Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, AR, 72202, USA
| | - Xavier Escoté
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, 43204, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, Reus, 43201, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, Reus, 43201, Spain
| |
Collapse
|
16
|
Panzenboeck L, Schoeny H, Stelzer B, Foels E, Glas M, Pühringer M, Hirschmann D, Loetsch D, Dorfer C, Rampler E, Koellensperger G. Triple acquisition mass spectrometry (TRAM) combining targeted and non-targeted metabolomics in a single run. Anal Chim Acta 2024; 1331:343314. [PMID: 39532411 DOI: 10.1016/j.aca.2024.343314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND We introduce TRAM, a triple acquisition strategy on a high-speed quadrupole time-of-flight mass spectrometer for merging non-targeted and targeted metabolomics into one run. TRAM stands for "quasi-simultaneous" acquisition of (1) a full scan MS1, (2) top 30 data-dependent MS2 (DDA), and (3) targeted scheduled MS2 for multiple reaction monitoring (MRM) within measurement cycles of ∼1 s. TRAM combines the selectivity and sensitivity of state-of-the-art targeted MRM-based methods with the full scope of non-targeted analysis enabled by high-resolution mass spectrometry. RESULTS In this work, we deploy a workflow based on hydrophilic interaction liquid chromatography (HILIC). For a broad panel of metabolites, we provide chromatographic retention times, and optimized conditions as a basis for targeted MRM experiments, listing accurate masses and sum formulas for fragment ions (including fully 13C labeled analogs). Validation experiments showed that TRAM offered (1) linear working ranges and limits of quantification comparable to MRM-only methods, (2) enabled accurate quantification in SRM 1950 human plasma reference material, and (3) was equivalent to DDA-only approaches in non-targeted metabolomics. Metabolomics in human cerebrospinal fluid showcased the power of the strategy, emphasizing the need for high coverage/high throughput metabolomics in clinical studies. SIGNIFICANCE Acquiring up to 30 data-dependent spectra per MS cycle while still offering gold standard absolute quantification down to low nanomolar concentrations, TRAM allows in-depth profiling and reduces required sample volume, time, cost, and environmental impact.
Collapse
Affiliation(s)
- Lisa Panzenboeck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria
| | - Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Bruno Stelzer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Elisabeth Foels
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria; Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marvin Glas
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Marlene Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria
| | - Dorian Hirschmann
- Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Daniela Loetsch
- Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Mandal V, Ajabiya J, Khan N, Tekade RK, Sengupta P. Advances and challenges in non-targeted analysis: An insight into sample preparation and detection by liquid chromatography-mass spectrometry. J Chromatogr A 2024; 1737:465459. [PMID: 39476774 DOI: 10.1016/j.chroma.2024.465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024]
Abstract
Unknown impurities, metabolites and harmful pollutants present in pharmaceutical products, biological and environmental samples, respectively are of high concern in terms of their detection and quantification. The targeted analysis aims to quantify known chemical entities, but it lacks the ability to identify unknown components present in a sample. Non-targeted analysis is an analytical approach that can be made applicable to various disciplines of science to effectively search for unknown chemical, biological, or environmental entities that can answer various baffling mysteries of research. It employs various high-end analytical techniques that can specifically screen out multiple unknown compounds from complex mixtures. Non-targeted analysis is also applicable for complex studies such as metabolomics to search unidentified metabolites of new chemical entities. This review critically discusses the current advancements in non-targeted analysis related to the analysis of pharmaceutical, biological, and environmental samples. Various steps like sample collection, handling, preparation, extraction, its analysis using advanced techniques like high-resolution mass spectrometry, liquid chromatography mass spectrometry, and lastly interpretation of the huge amounts of complex data obtained upon analysis of complex matrices have been discussed broadly in this article. Besides the advantages of non-targeted analysis over targeted analysis, limitations, bioinformatics tools, sources of error, and research gaps have been critically analyzed.
Collapse
Affiliation(s)
- Vivek Mandal
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Jinal Ajabiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
18
|
Marín-Sáez J, Hernández-Mesa M, Cano-Sancho G, García-Campaña AM. Analytical challenges and opportunities in the study of endocrine disrupting chemicals within an exposomics framework. Talanta 2024; 279:126616. [PMID: 39067205 DOI: 10.1016/j.talanta.2024.126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Exposomics aims to measure human exposures throughout the lifespan and the changes they produce in the human body. Exposome-scale studies have significant potential to understand the interplay of environmental factors with complex multifactorial diseases widespread in our society and whose origin remain unclear. In this framework, the study of the chemical exposome aims to cover all chemical exposures and their effects in human health but, today, this goal still seems unfeasible or at least very challenging, which makes the exposome for now only a concept. Furthermore, the study of the chemical exposome faces several methodological challenges such as moving from specific targeted methodologies towards high-throughput multitargeted and non-targeted approaches, guaranteeing the availability and quality of biological samples to obtain quality analytical data, standardization of applied analytical methodologies, as well as the statistical assignment of increasingly complex datasets, or the identification of (un)known analytes. This review discusses the various steps involved in applying the exposome concept from an analytical perspective. It provides an overview of the wide variety of existing analytical methods and instruments, highlighting their complementarity to develop combined analytical strategies to advance towards the chemical exposome characterization. In addition, this review focuses on endocrine disrupting chemicals (EDCs) to show how studying even a minor part of the chemical exposome represents a great challenge. Analytical strategies applied in an exposomics context have shown great potential to elucidate the role of EDCs in health outcomes. However, translating innovative methods into etiological research and chemical risk assessment will require a multidisciplinary effort. Unlike other review articles focused on exposomics, this review offers a holistic view from the perspective of analytical chemistry and discuss the entire analytical workflow to finally obtain valuable results.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120, Almeria, Spain.
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain.
| | | | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain
| |
Collapse
|
19
|
La Gioia D, Salviati E, Basilicata MG, Felici C, Botrugno OA, Tonon G, Sommella E, Campiglia P. Leveraging the potential of 1.0-mm i.d. columns in UHPLC-HRMS-based untargeted metabolomics. Anal Bioanal Chem 2024:10.1007/s00216-024-05588-z. [PMID: 39443364 DOI: 10.1007/s00216-024-05588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Untargeted metabolomics UHPLC-HRMS workflows typically employ narrowbore 2.1-mm inner diameter (i.d.) columns. However, the wide concentration range of the metabolome and the need to often analyze small sample amounts poses challenges to these approaches. Reducing the column diameter could be a potential solution. Herein, we evaluated the performance of a microbore 1.0-mm i.d. setup compared to the 2.1-mm i.d. benchmark for untargeted metabolomics. The 1.0-mm i.d. setup was implemented on a micro-UHPLC system, while the 2.1-mm i.d. on a standard UHPLC, both coupled to quadrupole-orbitrap HRMS. On polar standard metabolites, a sensitivity gain with an average 3.8-fold increase over the 2.1-mm i.d., along with lower LOD (LODavg 1.48 ng/mL vs. 6.18 ng/mL) and LOQ (LOQavg 4.94 ng/mL vs. 20.60 ng/mL), was observed. The microbore method detected and quantified all metabolites at LLOQ with respect to 2.1, also demonstrating good repeatability with lower CV% for retention times (0.29% vs. 0.63%) and peak areas (4.65% vs. 7.27%). The analysis of various samples, in both RP and HILIC modes, including different plasma volumes, dried blood spots (DBS), and colorectal cancer (CRC) patient-derived organoids (PDOs), in full scan-data dependent mode (FS-DDA) reported a significant increase in MS1 and MS2 features, as well as MS/MS spectral matches by 38.95%, 39.26%, and 18.23%, respectively. These findings demonstrate that 1.0-mm i.d. columns in UHPLC-HRMS could be a potential strategy to enhance coverage for low-amount samples while maintaining the same analytical throughput and robustness of 2.1-mm i.d. formats, with reduced solvent consumption.
Collapse
Affiliation(s)
- Danila La Gioia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudia Felici
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| |
Collapse
|
20
|
Chappel JR, Kirkwood-Donelson KI, Dodds JN, Fleming J, Reif DM, Baker ES. Streamlining Phenotype Classification and Highlighting Feature Candidates: A Screening Method for Non-Targeted Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) Data. Anal Chem 2024; 96:15970-15979. [PMID: 39292613 PMCID: PMC11480931 DOI: 10.1021/acs.analchem.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Nontargeted analysis (NTA) is increasingly utilized for its ability to identify key molecular features beyond known targets in complex samples. NTA is particularly advantageous in exploratory studies aimed at identifying phenotype-associated features or molecules able to classify various sample types. However, implementing NTA involves extensive data analyses and labor-intensive annotations. To address these limitations, we developed a rapid data screening capability compatible with NTA data collected on a liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) platform that allows for sample classification while highlighting potential features of interest. Specifically, this method aggregates the thousands of IMS-MS spectra collected across the LC space for each sample and collapses the LC dimension, resulting in a single summed IMS-MS spectrum for screening. The summed IMS-MS spectra are then analyzed with a bootstrapped Lasso technique to identify key regions or coordinates for phenotype classification via support vector machines. Molecular annotations are then performed by examining the features present in the selected coordinates, highlighting potential molecular candidates. To demonstrate this summed IMS-MS screening approach, we applied it to clinical plasma lipidomic NTA data and exposomic NTA data from water sites with varying contaminant levels. Distinguishing coordinates were observed in both studies, enabling the evaluation of phenotypic molecular annotations and resulting in screening models capable of classifying samples with up to a 25% increase in accuracy compared to models using annotated data.
Collapse
Affiliation(s)
- Jessie R Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jonathon Fleming
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
21
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
22
|
Hendley AM, Ashe S, Urano A, Ng M, Phu TA, Peng XL, Luan C, Finger AM, Jang GH, Kerper NR, Berrios DI, Jin D, Lee J, Riahi IR, Gbenedio OM, Chung C, Roose JP, Yeh JJ, Gallinger S, Biankin AV, O'Kane GM, Ntranos V, Chang DK, Dawson DW, Kim GE, Weaver VM, Raffai RL, Hebrok M. nSMase2-mediated exosome secretion shapes the tumor microenvironment to immunologically support pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614610. [PMID: 39399775 PMCID: PMC11468832 DOI: 10.1101/2024.09.23.614610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical. nSMase2 elimination prolongs survival of KPC mice, hinders vasculature development, and fosters a robust immune response. nSMase2 loss leads to recruitment of cytotoxic T cells, N1-like neutrophils, and abundant infiltration of anti-tumorigenic macrophages in the pancreatic preneoplastic microenvironment. Mechanistically, we demonstrate that nSMase2-expressing PDA cell small extracellular vesicles (sEVs) reduce survival of KPC mice; PDA cell sEVs generated independently of nSMase2 prolong survival of KPC mice and reprogram macrophages to a proinflammatory phenotype. Collectively, our study highlights previously unappreciated opposing roles for exosomes, based on biogenesis pathway, during PDA progression. Graphical abstract
Collapse
|
23
|
Khan I, Timsina L, Chauhan R, Ingersol C, Wang DR, Rinne E, Muraru R, Mohan G, Minto RE, Van Natta BW, Hassanein AH, Kelley-Patteson C, Sinha M. Oxylipins in Breast Implant-Associated Systemic Symptoms. Aesthet Surg J 2024; 44:NP695-NP710. [PMID: 38857184 PMCID: PMC11403815 DOI: 10.1093/asj/sjae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND A subset of females with breast implants have reported a myriad of nonspecific systemic symptoms collectively termed systemic symptoms associated with breast implants (SSBI). SSBI symptoms are similar to manifestations associated with autoimmune and connective tissue disorders. Breast tissue is rich in adipose cells, comprised of lipids. Insertion of an implant creates an oxidative environment leading to lipid oxidation. Oxylipins can influence immune responses and inflammatory processes. OBJECTIVES In this study we explored the abundance of a spectrum of oxylipins in the periprosthetic tissue surrounding the breast implant. Because oxylipins are immunogenic, we sought to determine if they were associated with the SSBI patients. We have also attempted to determine if the common manifestations exhibited by such patients have any association with oxylipin abundance. METHODS The study included 120 patients divided into 3 cohorts. We analyzed 46 patients with breast implants exhibiting manifestations associated with SSBI; 29 patients with breast implants not exhibiting manifestations associated with SSBI (control cohort I, non-SSBI); and 45 patients without implants (control cohort II, no-implant tissue). Lipid extraction and oxylipin quantification were performed with liquid chromatography mass spectrometry (LC-MS/MS). LC-MS/MS targeted analysis of the breast adipose tissue was performed. RESULTS Of the 15 oxylipins analyzed, 5 exhibited increased abundance in the SSBI cohort when compared to the non-SSBI and no-implant cohorts. CONCLUSIONS The study documents the association of the oxylipins with each manifestation reported by the patient. This study provides an objective assessment of the subjective questionnaire, highlighting which symptoms may be more relevant than the others. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Mithun Sinha
- Corresponding Author: Dr Mithun Sinha, Indiana University School of Medicine, 975 W Walnut St, Medical Research Library Building, Suite # 444A, Indianapolis, IN 46202, USA. E-mail:
| |
Collapse
|
24
|
Vu N, Maile TM, Gollapudi S, Gaun A, Seitzer P, O'Brien JJ, Hackett SR, Zavala-Solorio J, McAllister FE, Kolumam G, Keyser R, Bennett BD. Automated preparation of plasma lipids, metabolites, and proteins for LC/MS-based analysis of a high-fat diet in mice. J Lipid Res 2024; 65:100607. [PMID: 39067520 PMCID: PMC11399584 DOI: 10.1016/j.jlr.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Blood plasma is one of the most commonly analyzed and easily accessible biological samples. Here, we describe an automated liquid-liquid extraction platform that generates accurate, precise, and reproducible samples for metabolomic, lipidomic, and proteomic analyses from a single aliquot of plasma while minimizing hands-on time and avoiding contamination from plasticware. We applied mass spectrometry to examine the metabolome, lipidome, and proteome of 90 plasma samples to determine the effects of age, time of day, and a high-fat diet in mice. From 25 μl of mouse plasma, we identified 907 lipid species from 16 different lipid classes and subclasses, 233 polar metabolites, and 344 proteins. We found that the high-fat diet induced only mild changes in the polar metabolome, upregulated apolipoproteins, and induced substantial shifts in the lipidome, including a significant increase in arachidonic acid and a decrease in eicosapentaenoic acid content across all lipid classes.
Collapse
Affiliation(s)
- Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Rob Keyser
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|
25
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
26
|
Rakusanova S, Cajka T. Metabolomics and Lipidomics for Studying Metabolic Syndrome: Insights into Cardiovascular Diseases, Type 1 & 2 Diabetes, and Metabolic Dysfunction-Associated Steatotic Liver Disease. Physiol Res 2024; 73:S165-S183. [PMID: 39212142 PMCID: PMC11412346 DOI: 10.33549/physiolres.935443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolomics and lipidomics have emerged as tools in understanding the connections of metabolic syndrome (MetS) with cardiovascular diseases (CVD), type 1 and type 2 diabetes (T1D, T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review highlights the applications of these omics approaches in large-scale cohort studies, emphasizing their role in biomarker discovery and disease prediction. Integrating metabolomics and lipidomics has significantly advanced our understanding of MetS pathology by identifying unique metabolic signatures associated with disease progression. However, challenges such as standardizing analytical workflows, data interpretation, and biomarker validation remain critical for translating research findings into clinical practice. Future research should focus on optimizing these methodologies to enhance their clinical utility and address the global burden of MetS-related diseases.
Collapse
Affiliation(s)
- S Rakusanova
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
27
|
Wu S, Panganiban KJ, Lee J, Li D, Smith EC, Maksyutynska K, Humber B, Ahmed T, Agarwal SM, Ward K, Hahn M. Peripheral Lipid Signatures, Metabolic Dysfunction, and Pathophysiology in Schizophrenia Spectrum Disorders. Metabolites 2024; 14:475. [PMID: 39330482 PMCID: PMC11434505 DOI: 10.3390/metabo14090475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction is commonly observed in schizophrenia spectrum disorders (SSDs). The causes of metabolic comorbidity in SSDs are complex and include intrinsic or biological factors linked to the disorder, which are compounded by antipsychotic (AP) medications. The exact mechanisms underlying SSD pathophysiology and AP-induced metabolic dysfunction are unknown, but dysregulated lipid metabolism may play a role. Lipidomics, which detects lipid metabolites in a biological sample, represents an analytical tool to examine lipid metabolism. This systematic review aims to determine peripheral lipid signatures that are dysregulated among individuals with SSDs (1) with minimal exposure to APs and (2) during AP treatment. To accomplish this goal, we searched MEDLINE, Embase, and PsychINFO databases in February 2024 to identify all full-text articles written in English where the authors conducted lipidomics in SSDs. Lipid signatures reported to significantly differ in SSDs compared to controls or in relation to AP treatment and the direction of dysregulation were extracted as outcomes. We identified 46 studies that met our inclusion criteria. Most of the lipid metabolites that significantly differed in minimally AP-treated patients vs. controls comprised glycerophospholipids, which were mostly downregulated. In the AP-treated group vs. controls, the significantly different metabolites were primarily fatty acyls, which were dysregulated in conflicting directions between studies. In the pre-to-post AP-treated patients, the most impacted metabolites were glycerophospholipids and fatty acyls, which were found to be primarily upregulated and conflicting, respectively. These lipid metabolites may contribute to SSD pathophysiology and metabolic dysfunction through various mechanisms, including the modulation of inflammation, cellular membrane permeability, and metabolic signaling pathways.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Kristoffer J. Panganiban
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Dan Li
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
| | - Emily C.C. Smith
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Kateryna Maksyutynska
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Bailey Humber
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Tariq Ahmed
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4,Canada
| | - Kristen Ward
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Michigan Medicine Health System, Ann Arbor, MI 48109, USA
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4,Canada
| |
Collapse
|
28
|
Gao Z, Lu Y, Li M, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Application of Pan-Omics Technologies in Research on Important Economic Traits for Ruminants. Int J Mol Sci 2024; 25:9271. [PMID: 39273219 PMCID: PMC11394796 DOI: 10.3390/ijms25179271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The economic significance of ruminants in agriculture underscores the need for advanced research methodologies to enhance their traits. This review aims to elucidate the transformative role of pan-omics technologies in ruminant research, focusing on their application in uncovering the genetic mechanisms underlying complex traits such as growth, reproduction, production performance, and rumen function. Pan-omics analysis not only helps in identifying key genes and their regulatory networks associated with important economic traits but also reveals the impact of environmental factors on trait expression. By integrating genomics, epigenomics, transcriptomics, metabolomics, and microbiomics, pan-omics enables a comprehensive analysis of the interplay between genetics and environmental factors, offering a holistic understanding of trait expression. We explore specific examples of economic traits where these technologies have been pivotal, highlighting key genes and regulatory networks identified through pan-omics approaches. Additionally, we trace the historical evolution of each omics field, detailing their progression from foundational discoveries to high-throughput platforms. This review provides a critical synthesis of recent advancements, offering new insights and practical recommendations for the application of pan-omics in the ruminant industry. The broader implications for modern animal husbandry are discussed, emphasizing the potential for these technologies to drive sustainable improvements in ruminant production systems.
Collapse
Affiliation(s)
- Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
29
|
Ogrinc N, Barka EA, Clément C, Salzet M, Sanchez L, Fournier I. In Vivo and Real-Time Metabolic Profiling of Plant-Microbe Interactions in Leaves, Stems, and Roots of Bacterially Inoculated Chardonnay Plantlets using SpiderMass. Anal Chem 2024. [PMID: 39155838 DOI: 10.1021/acs.analchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
There is growing interest in limiting the use of fungicides and implementing innovative, environmentally friendly strategies, such as the use of beneficial bacteria-triggered immunity, to protect grapevines from natural pathogens. Therefore, we need rapid and innovative ways to translate the knowledge of the molecular mechanisms underlying the activation of grapevine defenses against pathogens to induced resistance. Here, we have implemented an in vivo minimally invasive approach to study the interaction between plants and beneficial bacteria based on metabolic signatures. Paraburkholderia phytofirmans strain PsJN and PsJN-grapevine were used as bacterial and plant-bacterium interaction models, respectively. Using an innovative tool, SpiderMass, based on water-assisted laser desorption ionization with an IR microsampling probe, we simultaneously detect metabolic and lipidomic species. A metabolomic spectrum was thus generated, which was used to build a library and identify the most variable and discriminative peaks between the two conditions. We then showed that caftaric acid (m/z 311.04), caftaric acid dimer (m/z 623.09), derived caftaric acid (m/z 653.15), and quercetin-O-glucuronide tended to accumulate in grapevine leaves after root bacterization with PsJN. In addition, together with these phenolic messengers, we identified lipid biomarkers such as palmitic acid, linoleic acid, and α-linoleic acid as important messengers of enhanced defense mechanisms in Chardonnay plantlets. Taken together, SpiderMass is the next-generation methodology for studying plant-microorganism metabolic interactions with the prospect of in vivo real-time analysis in viticulture.
Collapse
Affiliation(s)
- Nina Ogrinc
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Essaïd Ait Barka
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Christophe Clément
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Michel Salzet
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Lisa Sanchez
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| | - Isabelle Fournier
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| |
Collapse
|
30
|
Shen C, Yu S, Tan X, Luo G, Yu Z, Ju J, Yang L, Huang Y, Li S, Ji R, Zhao C, Fang J. Infestation of Rice Striped Stem Borer ( Chilo suppressalis) Larvae Induces Emission of Volatile Organic Compounds in Rice and Repels Female Adult Oviposition. Int J Mol Sci 2024; 25:8827. [PMID: 39201513 PMCID: PMC11354779 DOI: 10.3390/ijms25168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Plants regulate the biosynthesis and emission of metabolic compounds to manage herbivorous stresses. In this study, as a destructive pest, the pre-infestation of rice striped stem borer (SSB, Chilo suppressalis) larvae on rice (Oryza sativa) reduced the subsequent SSB female adult oviposition preference. Widely targeted volatilomics and transcriptome sequencing were used to identify released volatile metabolic profiles and differentially expressed genes in SSB-infested and uninfested rice plants. SSB infestation significantly altered the accumulation of 71 volatile organic compounds (VOCs), including 13 terpenoids. A total of 7897 significantly differentially expressed genes were identified, and genes involved in the terpenoid and phenylpropanoid metabolic pathways were highly enriched. Correlation analysis revealed that DEGs in terpenoid metabolism-related pathways were likely involved in the regulation of VOC biosynthesis in SSB-infested rice plants. Furthermore, two terpenoids, (-)-carvone and cedrol, were selected to analyse the behaviour of SSB and predators. Y-tube olfactometer tests demonstrated that both (-)-carvone and cedrol could repel SSB adults at higher concentrations; (-)-carvone could simultaneously attract the natural enemies of SSB, Cotesia chilonis and Trichogramma japonicum, and cedrol could only attract T. japonicum at lower concentrations. These findings provide a better understanding of the response of rice plants to SSB and contribute to the development of new strategies to control herbivorous pests.
Collapse
Affiliation(s)
- Chen Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Shan Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Xinyang Tan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
| | - Guanghua Luo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Zhengping Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
| | - Jiafei Ju
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Lei Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Yuxuan Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Shuai Li
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Chunqing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
| | - Jichao Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| |
Collapse
|
31
|
Beger RD, Goodacre R, Jones CM, Lippa KA, Mayboroda OA, O'Neill D, Najdekr L, Ntai I, Wilson ID, Dunn WB. Analysis types and quantification methods applied in UHPLC-MS metabolomics research: a tutorial. Metabolomics 2024; 20:95. [PMID: 39110307 PMCID: PMC11306277 DOI: 10.1007/s11306-024-02155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Different types of analytical methods, with different characteristics, are applied in metabolomics and lipidomics research and include untargeted, targeted and semi-targeted methods. Ultra High Performance Liquid Chromatography-Mass Spectrometry is one of the most frequently applied measurement instruments in metabolomics because of its ability to detect a large number of water-soluble and lipid metabolites over a wide range of concentrations in short analysis times. Methods applied for the detection and quantification of metabolites differ and can either report a (normalised) peak area or an absolute concentration. AIM OF REVIEW In this tutorial we aim to (1) define similarities and differences between different analytical approaches applied in metabolomics and (2) define how amounts or absolute concentrations of endogenous metabolites can be determined together with the advantages and limitations of each approach in relation to the accuracy and precision when concentrations are reported. KEY SCIENTIFIC CONCEPTS OF REVIEW The pre-analysis knowledge of metabolites to be targeted, the requirement for (normalised) peak responses or absolute concentrations to be reported and the number of metabolites to be reported define whether an untargeted, targeted or semi-targeted method is applied. Fully untargeted methods can only provide (normalised) peak responses and fold changes which can be reported even when the structural identity of the metabolite is not known. Targeted methods, where the analytes are known prior to the analysis, can also report fold changes. Semi-targeted methods apply a mix of characteristics of both untargeted and targeted assays. For the reporting of absolute concentrations of metabolites, the analytes are not only predefined but optimized analytical methods should be developed and validated for each analyte so that the accuracy and precision of concentration data collected for biological samples can be reported as fit for purpose and be reviewed by the scientific community.
Collapse
Affiliation(s)
- Richard D Beger
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Royston Goodacre
- Department of Biochemistry, Cell and Systems Biology, Centre for Metabolomics Research, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Christina M Jones
- Office of Advanced Manufacturing, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Katrice A Lippa
- Office of Weights and Measures, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Donna O'Neill
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Lukas Najdekr
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University Olomouc, 779 00, Olomouc, Czech Republic
| | - Ioanna Ntai
- BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Ian D Wilson
- Department of Biochemistry, Cell and Systems Biology, Centre for Metabolomics Research, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Computational and Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Warwick B Dunn
- Department of Biochemistry, Cell and Systems Biology, Centre for Metabolomics Research, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
32
|
Verri Hernandes V, Warth B. Bridging Targeted (Zeno MRM-HR) and Untargeted (SWATH) LC-HRMS in a Single Run for Sensitive Exposomics. Anal Chem 2024; 96:12710-12717. [PMID: 39056508 PMCID: PMC11307248 DOI: 10.1021/acs.analchem.4c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Traditionally, chemical exposure has been assessed by low-resolution mass spectrometry via targeted approaches due to the typically extremely low concentration of such compounds in biological samples. Nevertheless, untargeted approaches are now becoming a promising tool for a broader investigation of the exposome, covering additional compounds, their biotransformation products, and possible metabolic alterations (metabolomics). However, despite broad compound coverage, untargeted metabolomics still underperforms in ultratrace biomonitoring analysis. To overcome these analytical limitations, we present the development of the first combined targeted/untargeted LC-MS method, merging MRM-HR and SWATH experiments in one analytical run, making use of Zeno technology for improved sensitivity. Multiple reaction monitoring transitions were optimized for 135 highly diverse toxicants including mycotoxins, plasticizers, PFAS, personal care products ingredients, and industrial side products as well as potentially beneficial xenobiotics such as phytohormones. As a proof of concept, standard reference materials of human plasma (SRM 1950) and serum (SRM 1958) were analyzed with both Zeno MRM-HR + SWATH and SWATH-only methodologies. Results demonstrated a significant increase in sensitivity represented by the detection of lower concentration levels in spiked SRM materials (mean value: 2.2 and 3 times lower concentrations for SRMs 1950 and 1958, respectively). Overall, the detection frequency was increased by 68% (19 to 32 positive detections) in the MRM-HR + SWATH mode compared to the SWATH-only. This work presents a promising avenue for addressing the outstanding key challenge in the small-molecule omics field: finding a balance between high sensitivity and broad chemical coverage. It was demonstrated for exposomic applications but might be transferred to lipidomics and metabolomics workflows.
Collapse
Affiliation(s)
- Vinicius Verri Hernandes
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, 1090 Vienna, Austria
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, 1090 Vienna, Austria
| |
Collapse
|
33
|
Zeng Z, Huo J, Zhang Y, Shi Y, Wu Z, Yang Q, Zhang X. Study on the correlation and difference of qualitative information among three types of UPLC-HRMS and potential generalization in metabolites annotation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124219. [PMID: 38943690 DOI: 10.1016/j.jchromb.2024.124219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The variation of qualitative information among different types of mainstream hyphenated instruments of ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) makes data sharing and standardization, and further comparison of results consistency in metabolite annotation not easy to attain. In this work, a quantitative study of correlation and difference was first achieved to systematically investigate the variation of retention time (tR), precursor ion (MS1), and product fragment ions (MS2) generated by three typical UPLC-HRMS instruments commonly used in metabolomics area. In terms of the findings of systematic and correlated variation of tR, MS1, and MS2 between different instruments, a computational strategy for integrated metabolite annotation was proposed to reduce the influence of differential ions, which made full use of the characteristic (common) and non-common fragments for scoring assessment. The regular variations of MS2 among three instruments under four collision energy voltages of high, medium, low, and hybrid levels were respectively inspected with three technical replicates at each level. These discoveries could improve general metabolite annotation with a known database and similarity comparison. It should provide the potential for metabolite annotation to generalize qualitative information obtained under different experimental conditions or using instruments from various manufacturers, which is still a big headache in untargeted metabolomics. The mixture of standard compounds and serum samples with the addition of standards were applied to demonstrate the principle and performance of the proposed method. The results showed that it could be an optional strategy for general use in HRMS-based metabolomics to offset the difference in metabolite annotation. It has some potential in untargeted metabolomics.
Collapse
Affiliation(s)
- Zhongda Zeng
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Jinfeng Huo
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Yuxi Zhang
- Dalian ChemDataSolution Information Technology Co. Ltd., Dalian 116023, China
| | - Yingjiao Shi
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Zeying Wu
- School of Chemical Engineering and Material Sciences, Changzhou Institute of Technology, Changzhou 213032, China.
| | - Qianxu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, China.
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
34
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
35
|
McAtamney A, Ferranti A, Ludvik DA, Yildiz FH, Mandel MJ, Hayward T, Sanchez LM. Microbial metabolomics' latest SICRIT: Soft ionization by Chemical Reaction in-Transfer mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604007. [PMID: 39071417 PMCID: PMC11275794 DOI: 10.1101/2024.07.17.604007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Microbial metabolomics studies are a common approach to identifying microbial strains that have a capacity to produce new chemistries both in vitro and in situ. A limitation to applying microbial metabolomics to the discovery of new chemical entities is the rediscovery of known compounds, or "known unknowns." One contributing factor to this rediscovery is the majority of laboratories use one ionization source-electrospray ionization (ESI)-to conduct metabolomics studies. Although ESI is an efficient, widely adopted ionization method, its widespread use may contribute to the re-identification of known metabolites. Here, we present the use of a dielectric barrier discharge ionization (DBDI) for microbial metabolomics applications through the use of soft ionization chemical reaction in-transfer (SICRIT). Additionally, we compared SICRIT to ESI using two different Vibrio species-Vibrio fischeri, a symbiotic marine bacterium, and Vibrio cholerae, a pathogenic bacterium. Overall, we found that the SICRIT source ionizes a different set of metabolites than ESI, and it has the ability to ionize lipids more efficiently than ESI in positive mode. This work highlights the value of using more than one ionization source for the detection of metabolites.
Collapse
Affiliation(s)
- Allyson McAtamney
- 1156 High St, Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Denise A. Ludvik
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Laura M. Sanchez
- 1156 High St, Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
36
|
Nguyen BT, Le QV, Ahn J, Nguyen KA, Nguyen HT, Kang JS, Long NP, Kim HM. Omics analysis unveils changes in the metabolome and lipidome of Caenorhabditis elegans upon polydopamine exposure. J Pharm Biomed Anal 2024; 244:116126. [PMID: 38581931 DOI: 10.1016/j.jpba.2024.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Polydopamine (PDA) is an insoluble biopolymer with a dark brown-black color that forms through the autoxidation of dopamine. Because of its outstanding biocompatibility and durability, PDA holds enormous promise for various applications, both in the biomedical and non-medical domains. To ensure human safety, protect health, and minimize environmental impacts, the assessment of PDA toxicity is important. In this study, metabolomics and lipidomics assessed the impact of acute PDA exposure on Caenorhabditis elegans (C. elegans). The findings revealed a pronounced perturbation in the metabolome and lipidome of C. elegans at the L4 stage following 24 hours of exposure to 100 µg/mL PDA. The changes in lipid composition varied based on lipid classes. Increased lipid classes included lysophosphatidylethanolamine, triacylglycerides, and fatty acids, while decreased species involved in several sub-classes of glycerophospholipids and sphingolipids. Besides, we detected 37 significantly affected metabolites in the positive and 8 in the negative ion modes due to exposure to PDA in C. elegans. The metabolites most impacted by PDA exposure were associated with purine metabolism, biosynthesis of valine, leucine, and isoleucine; aminoacyl-tRNA biosynthesis; and cysteine and methionine metabolism, along with pantothenate and CoA biosynthesis; the citrate cycle (TCA cycle); and beta-alanine metabolism. In conclusion, PDA exposure may intricately influence the metabolome and lipidome of C. elegans. The combined application of metabolomics and lipidomics offers additional insights into the metabolic perturbations involved in PDA-induced biological effects and presents potential biomarkers for the assessment of PDA safety.
Collapse
Affiliation(s)
- Bao Tan Nguyen
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jeongjun Ahn
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ky Anh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea.
| | - Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
37
|
Yang C, Zhou D, Yu H, Chen Y, Lin H, Wu H, Deng C. Multichannel Nanogenerator-Driven Collaborative Metabolic Fingerprint Diagnostic Strategy for Early Screening and Risk Evaluation of Nonalcoholic Fatty Liver Disease. Anal Chem 2024; 96:10841-10850. [PMID: 38889297 DOI: 10.1021/acs.analchem.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), along with its progressive forms nonalcoholic steatohepatitis (NASH) and NASH fibrosis, has emerged as a global health crisis. However, the absence of robust screening and risk evaluation tools contributes to the underdiagnosis of NAFLD. Herein, we reported a multichannel nanogenerator-assisted laser desorption/ionization mass spectrometry (LDI-MS) platform for early screening and risk evaluation of NAFLD. Specifically, titanium oxide nanosheets (TiNS) and covalent-organic framework nanosheets (COFNS) were employed as nanogenerators with excellent optical properties and exhibited efficient desorption/ionization during the LDI-MS process. Only ∼0.025 μL of serum without pretreatments and separation, serum metabolic fingerprints (SMFs) can be extracted within seconds. Notably, integrated SMFs from TiNS and COFNS significantly improved diagnostic performance and achieved the area under the curve (AUC) values of 1.000 with 100% sensitivity and 100% specificity for the validation sets of global diagnosis, early diagnosis, high-risk NASH, and NASH fibrosis evaluation. Additionally, four biomarker panels were identified, and their diagnostic AUC values were more than 0.944. Ultimately, key metabolic pathways indicating the change from simple NAFLD to high-risk NASH and NASH fibrosis were uncovered. This work provided a noninvasive and high-throughput screening and risk evaluation strategy for NAFLD healthcare management, thus contributing to the precise treatment of the NALFD.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hailong Yu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yijie Chen
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hairu Lin
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, Siu CWK, King J, Mas E, Kassahn KS. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. Int J Neonatal Screen 2024; 10:42. [PMID: 39051398 PMCID: PMC11270328 DOI: 10.3390/ijns10030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven the expansion of screening programs to cover additional conditions. In the current era, the breadth of screened conditions could be further expanded by integrating omic technologies such as untargeted metabolomics and genomics. Genomic screening could offer opportunities for lifelong care beyond the newborn period. For genomic newborn screening to be effective and ready for routine adoption, it must overcome barriers such as implementation cost, public acceptability, and scalability. Metabolomics approaches, on the other hand, can offer insight into disease phenotypes and could be used to identify known and novel biomarkers of disease. Given recent advances in metabolomic technologies, alongside advances in genomics including whole-genome sequencing, the combination of complementary multi-omic approaches may provide an exciting opportunity to leverage the best of both approaches and overcome their respective limitations. These techniques are described, along with the current outlook on multi-omic-based NBS research.
Collapse
Affiliation(s)
- Alex J. Ashenden
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Ayesha Chowdhury
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Lucy T. Anastasi
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Khoa Lam
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tomas Rozek
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Enzo Ranieri
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Carol Wai-Kwan Siu
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jovanka King
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Department of Allergy and Clinical Immunology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Discipline of Paediatrics, Women’s and Children’s Hospital, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Emilie Mas
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karin S. Kassahn
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
39
|
Lemmink IB, Straub LV, Bovee TFH, Mulder PPJ, Zuilhof H, Salentijn GI, Righetti L. Recent advances and challenges in the analysis of natural toxins. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:67-144. [PMID: 38906592 DOI: 10.1016/bs.afnr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Natural toxins (NTs) are poisonous secondary metabolites produced by living organisms developed to ward off predators. Especially low molecular weight NTs (MW<∼1 kDa), such as mycotoxins, phycotoxins, and plant toxins, are considered an important and growing food safety concern. Therefore, accurate risk assessment of food and feed for the presence of NTs is crucial. Currently, the analysis of NTs is predominantly performed with targeted high pressure liquid chromatography tandem mass spectrometry (HPLC-MS/MS) methods. Although these methods are highly sensitive and accurate, they are relatively expensive and time-consuming, while unknown or unexpected NTs will be missed. To overcome this, novel on-site screening methods and non-targeted HPLC high resolution mass spectrometry (HRMS) methods have been developed. On-site screening methods can give non-specialists the possibility for broad "scanning" of potential geographical regions of interest, while also providing sensitive and specific analysis at the point-of-need. Non-targeted chromatography-HRMS methods can detect unexpected as well as unknown NTs and their metabolites in a lab-based approach. The aim of this chapter is to provide an insight in the recent advances, challenges, and perspectives in the field of NTs analysis both from the on-site and the laboratory perspective.
Collapse
Affiliation(s)
- Ids B Lemmink
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Leonie V Straub
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, P.R. China
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
40
|
Chen H, Chen J, Feng L, Shao H, Zhou Y, Shan J, Lin L, Ye J, Wang S. Integrated network pharmacology, molecular docking, and lipidomics to reveal the regulatory effect of Qingxuan Zhike granules on lipid metabolism in lipopolysaccharide-induced acute lung injury. Biomed Chromatogr 2024; 38:e5853. [PMID: 38486466 DOI: 10.1002/bmc.5853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/21/2024]
Abstract
Qingxuan Zhike granules (QXZKG), a traditional Chinese patent medication, has shown therapeutic potential against acute lung injury (ALI). However, the precise mechanism underlying its lung-protective effects requires further investigation. In this study, integrated network pharmacology, molecular docking, and lipidomics were used to elucidate QXZKG's regulatory effect on lipid metabolism in lipopolysaccharide-induced ALI. Animal experiments were conducted to substantiate the efficacy of QXZKG in reducing pro-inflammatory cytokines and mitigating pulmonary pathology. Network pharmacology analysis identified 145 active compounds that directly targeted 119 primary targets of QXZKG against ALI. Gene Ontology function analysis emphasized the roles of lipid metabolism and mitogen-activated protein kinase (MAPK) cascade as crucial biological processes. The MAPK1 protein exhibited promising affinities for naringenin, luteolin, and kaempferol. Lipidomic analysis revealed that 12 lipids showed significant restoration following QXZKG treatment (p < 0.05, FC >1.2 or <0.83). Specifically, DG 38:4, DG 40:7, PC O-40:8, TG 18:1_18:3_22:6, PI 18:2_20:4, FA 16:3, FA 20:3, FA 20:4, FA 22:5, and FA 24:5 were downregulated, while Cer 18:0;2O/24:0 and SM 36:1;2O/34:5 were upregulated in the QXZKG versus model groups. This study enhances our understanding of the active compounds and targets of QXZKG, as well as the potential of lipid metabolism in the treatment of ALI.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Shao
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ye
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
41
|
Yu Y, Zeng F, Han P, Zhang L, Yang L, Zhou F, Liu Q, Ruan Z. Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota. Int J Food Sci Nutr 2024; 75:369-384. [PMID: 38389248 DOI: 10.1080/09637486.2024.2318590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The high-fat diet would lead to excessive fat storage in the liver to form metabolic dysfunction-associated steatotic liver disease (MASLD), and the trend is burgeoning. The aim of the study is to investigate the effects of chlorogenic acid (CGA) on metabolites and gut microorganisms in MASLD mice induced by a high-fat diet. In comparison to the HF group, the TC (total cholesterol), TG (total triglycerides), LDL-C (low-density lipoprotein cholesterol), AST (aspartate aminotransferase) and ALT (alanine transaminase) levels were reduced after CGA supplement. CGA led to an increase in l-phenylalanine, l-tryptophan levels, and promoted fatty acid degradation. CGA increased the abundance of the Muribaculaceae, Bacteroides and Parabacteroides. Changes in these microbes were significantly associated with the liver metabolites level and lipid profile level. These data suggest important roles for CGA regulating the gut microbiota, liver and caecum content metabolites, and TG-, TC- and LDL-C lowering function.
Collapse
Affiliation(s)
- Yujuan Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Fumao Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Peiheng Han
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Li Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ling Yang
- Hebei Yiran Biological Technology Co., Ltd., Shijiazhuang, China
| | - Feng Zhou
- Suzhou Globalpeak High-tech Co., Ltd., Suzhou, China
| | - Qing Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Shanghai, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Zhang F, Shan S, Fu C, Guo S, Liu C, Wang S. Advanced Mass Spectrometry-Based Biomarker Identification for Metabolomics of Diabetes Mellitus and Its Complications. Molecules 2024; 29:2530. [PMID: 38893405 PMCID: PMC11173766 DOI: 10.3390/molecules29112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Over the years, there has been notable progress in understanding the pathogenesis and treatment modalities of diabetes and its complications, including the application of metabolomics in the study of diabetes, capturing attention from researchers worldwide. Advanced mass spectrometry, including gas chromatography-tandem mass spectrometry (GC-MS/MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS), etc., has significantly broadened the spectrum of detectable metabolites, even at lower concentrations. Advanced mass spectrometry has emerged as a powerful tool in diabetes research, particularly in the context of metabolomics. By leveraging the precision and sensitivity of advanced mass spectrometry techniques, researchers have unlocked a wealth of information within the metabolome. This technology has enabled the identification and quantification of potential biomarkers associated with diabetes and its complications, providing new ideas and methods for clinical diagnostics and metabolic studies. Moreover, it offers a less invasive, or even non-invasive, means of tracking disease progression, evaluating treatment efficacy, and understanding the underlying metabolic alterations in diabetes. This paper summarizes advanced mass spectrometry for the application of metabolomics in diabetes mellitus, gestational diabetes mellitus, diabetic peripheral neuropathy, diabetic retinopathy, diabetic nephropathy, diabetic encephalopathy, diabetic cardiomyopathy, and diabetic foot ulcers and organizes some of the potential biomarkers of the different complications with the aim of providing ideas and methods for subsequent in-depth metabolic research and searching for new ways of treating the disease.
Collapse
Affiliation(s)
- Feixue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Shan Shan
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China;
| | - Chenlu Fu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
- School of Pharmacy, Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
43
|
Ovbude ST, Sharmeen S, Kyei I, Olupathage H, Jones J, Bell RJ, Powers R, Hage DS. Applications of chromatographic methods in metabolomics: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124124. [PMID: 38640794 PMCID: PMC11618781 DOI: 10.1016/j.jchromb.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.
Collapse
Affiliation(s)
- Susan T Ovbude
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Harshana Olupathage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Richard J Bell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
44
|
Yuan C, Jin Y, Zhang H, Chen S, Yi J, Xie Q, Dong J, Wu C. Strategy to Empower Nontargeted Metabolomics by Triple-Dimensional Combinatorial Derivatization with MS-TDF Software. Anal Chem 2024; 96:7634-7642. [PMID: 38691624 DOI: 10.1021/acs.analchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.
Collapse
Affiliation(s)
- Caixia Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Simian Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Jiajin Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jiyang Dong
- Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
45
|
González Olmedo C, Díaz Beltrán L, Madrid García V, Palacios Ferrer JL, Cano Jiménez A, Urbano Cubero R, Pérez del Palacio J, Díaz C, Vicente F, Sánchez Rovira P. Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples. Int J Mol Sci 2024; 25:5098. [PMID: 38791138 PMCID: PMC11120904 DOI: 10.3390/ijms25105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
An early diagnosis of cancer is fundamental not only in regard to reducing its mortality rate but also in terms of counteracting the progression of the tumor in the initial stages. Breast cancer (BC) is the most common tumor pathology in women and the second deathliest cancer worldwide, although its survival rate is increasing thanks to improvements in screening programs. However, the most common techniques to detect a breast tumor tend to be time-consuming, unspecific or invasive. Herein, the use of untargeted hydrophilic interaction liquid chromatography-mass spectrometry analysis appears as an analytical technique with potential use for the early detection of biomarkers in liquid biopsies from BC patients. In this research, plasma samples from 134 BC patients were compared with 136 from healthy controls (HC), and multivariate statistical analyses showed a clear separation between four BC phenotypes (LA, LB, HER2, and TN) and the HC group. As a result, we identified two candidate biomarkers that discriminated between the groups under study with a VIP > 1 and an AUC of 0.958. Thus, targeting the specific aberrant metabolic pathways in future studies may allow for better molecular stratification or early detection of the disease.
Collapse
Affiliation(s)
- Carmen González Olmedo
- Medical Oncology Unit, University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain; (V.M.G.); (A.C.J.); (R.U.C.); (P.S.R.)
- Andalusian Public Foundation for Biosanitary Research in Eastern Andalusia (FIBAO), University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain
| | - Leticia Díaz Beltrán
- Medical Oncology Unit, University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain; (V.M.G.); (A.C.J.); (R.U.C.); (P.S.R.)
- Andalusian Public Foundation for Biosanitary Research in Eastern Andalusia (FIBAO), University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain
| | - Verónica Madrid García
- Medical Oncology Unit, University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain; (V.M.G.); (A.C.J.); (R.U.C.); (P.S.R.)
- Andalusian Public Foundation for Biosanitary Research in Eastern Andalusia (FIBAO), University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain
| | - José Luis Palacios Ferrer
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain;
| | - Alicia Cano Jiménez
- Medical Oncology Unit, University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain; (V.M.G.); (A.C.J.); (R.U.C.); (P.S.R.)
| | - Rocío Urbano Cubero
- Medical Oncology Unit, University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain; (V.M.G.); (A.C.J.); (R.U.C.); (P.S.R.)
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain; (J.P.d.P.); (C.D.); (F.V.)
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain; (J.P.d.P.); (C.D.); (F.V.)
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain; (J.P.d.P.); (C.D.); (F.V.)
| | - Pedro Sánchez Rovira
- Medical Oncology Unit, University Hospital of Jaén, C/Ejército Español 10, 23007 Jaén, Spain; (V.M.G.); (A.C.J.); (R.U.C.); (P.S.R.)
| |
Collapse
|
46
|
Li R, Koh JH, Park WJ, Choi Y, Kim WU. Serum and urine lipidomic profiles identify biomarkers diagnostic for seropositive and seronegative rheumatoid arthritis. Front Immunol 2024; 15:1410365. [PMID: 38765010 PMCID: PMC11099275 DOI: 10.3389/fimmu.2024.1410365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Objective Seronegative rheumatoid arthritis (RA) is defined as RA without circulating autoantibodies such as rheumatoid factor and anti-citrullinated protein antibodies; thus, early diagnosis of seronegative RA can be challenging. Here, we aimed to identify diagnostic biomarkers for seronegative RA by performing lipidomic analyses of sera and urine samples from patients with RA. Methods We performed untargeted lipidomic analysis of sera and urine samples from 111 RA patients, 45 osteoarthritis (OA) patients, and 25 healthy controls (HC). These samples were divided into a discovery cohort (n = 97) and a validation cohort (n = 84). Serum samples from 20 patients with systemic lupus erythematosus (SLE) were also used for validation. Results The serum lipidome profile of RA was distinguishable from that of OA and HC. We identified a panel of ten serum lipids and three urine lipids in the discovery cohort that showed the most significant differences. These were deemed potential lipid biomarker candidates for RA. The serum lipid panel was tested using a validation cohort; the results revealed an accuracy of 79%, a sensitivity of 71%, and a specificity of 86%. Both seropositive and seronegative RA patients were differentiated from patients with OA, SLE, and HC. Three urinary lipids showing differential expression between RA from HC were identified with an accuracy of 84%, but they failed to differentiate RA from OA. There were five lipid pathways that differed between seronegative and seropositive RA. Conclusion Here, we identified a panel of ten serum lipids as potential biomarkers that can differentiate RA from OA and SLE, regardless of seropositivity. In addition, three urinary lipids had diagnostic utility for differentiating RA from HC.
Collapse
Affiliation(s)
- Rong Li
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yongsoo Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- Division of National Product Applied Science, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
47
|
Castagnola V, Tomati V, Boselli L, Braccia C, Decherchi S, Pompa PP, Pedemonte N, Benfenati F, Armirotti A. Sources of biases in the in vitro testing of nanomaterials: the role of the biomolecular corona. NANOSCALE HORIZONS 2024; 9:799-816. [PMID: 38563642 DOI: 10.1039/d3nh00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The biological fate of nanomaterials (NMs) is driven by specific interactions through which biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition of this layer, called the biomolecular corona (BMC), depends on both the physical-chemical features of the NMs and the biological media in which the NMs are dispersed and cells grow. In this work, we demonstrate that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration, with NMs being transported by the blood. For this purpose, we undertook a comparative journey involving proteomics, lipidomics, high throughput multiparametric in vitro screening, and single molecular feature analysis to investigate the molecular details behind this in vivo/in vitro bias. Our work indirectly highlights the need to introduce novel, more physiological-like media closer in composition to human plasma to produce realistic in vitro screening data for NMs. We also aim to set the basis to reduce this in vitro-in vivo mismatch, which currently limits the formulation of NMs for clinical settings.
Collapse
Affiliation(s)
- Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Sergio Decherchi
- Data Science and Computation Facility, Istituto Italiano di Tecnologia, via Morego, 30, Genova, 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
48
|
Fernandez Requena B, Gonzalez-Riano C, Barbas C. Addressing the untargeted lipidomics challenge in urine samples: Comparative study of extraction methods by UHPLC-ESI-QTOF-MS. Anal Chim Acta 2024; 1299:342433. [PMID: 38499427 DOI: 10.1016/j.aca.2024.342433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Urine analysis has remained a fundamental and widely used method in clinical diagnostics for over a century. With its minimal invasive nature and comprehensive range of analytes, urine has established itself as a clinical diagnostic tool for various disorders, including renal, urological, metabolic, and endocrine diseases. Furthermore, urine's unique attributes make it an attractive matrix for biomarker discovery, as well as in assessing the metabolic and physiological states of patients and healthy individuals alike. However, limitations in our knowledge of average values and sources of urinary lipids decrease the wider clinical application of urinary lipidomics. In this context, untargeted lipidomics analysis relies heavily on the extraction and analysis of lipids in biological samples. Nevertheless, this type of analysis presents challenges in lipid identification due to the diverse nature of lipids. Therefore, proper sample treatment before analysis is crucial to obtain robust and reproducible lipidomic profiles. To address this gap, we conducted a comparative study of a urine pool sample collected from twenty healthy volunteers using four different lipid extraction methods: one biphasic and three monophasic protocols. The extracted lipids were then analyzed using UHPLC-MS and MS/MS, and the semi-quantification of all the accurately annotated lipid species was performed for each extraction method.
Collapse
Affiliation(s)
- Belen Fernandez Requena
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España.
| |
Collapse
|
49
|
Peña-Martín J, Belén García-Ortega M, Palacios-Ferrer JL, Díaz C, Ángel García M, Boulaiz H, Valdivia J, Jurado JM, Almazan-Fernandez FM, Arias Santiago S, Vicente F, Del Val C, Pérez Del Palacio J, Marchal JA. Identification of novel biomarkers in the early diagnosis of malignant melanoma by untargeted liquid chromatography coupled to high-resolution mass spectrometry-based metabolomics: a pilot study. Br J Dermatol 2024; 190:740-750. [PMID: 38214572 DOI: 10.1093/bjd/ljae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues to rise worldwide. If diagnosed at an early stage, it has an excellent prognosis, but mortality increases significantly at advanced stages after distant spread. Unfortunately, early detection of aggressive melanoma remains a challenge. OBJECTIVES To identify novel blood-circulating biomarkers that may be useful in the diagnosis of MM to guide patient counselling and appropriate disease management. METHODS In this study, 105 serum samples from 26 healthy patients and 79 with MM were analysed using an untargeted approach by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to compare the metabolomic profiles of both conditions. Resulting data were subjected to both univariate and multivariate statistical analysis to select robust biomarkers. The classification model obtained from this analysis was further validated with an independent cohort of 12 patients with stage I MM. RESULTS We successfully identified several lipidic metabolites differentially expressed in patients with stage I MM vs. healthy controls. Three of these metabolites were used to develop a classification model, which exhibited exceptional precision (0.92) and accuracy (0.94) when validated on an independent sample. CONCLUSIONS These results demonstrate that metabolomics using LC-HRMS is a powerful tool to identify and quantify metabolites in bodily fluids that could serve as potential early diagnostic markers for MM.
Collapse
Affiliation(s)
- Jesús Peña-Martín
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - María Belén García-Ortega
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - José Luis Palacios-Ferrer
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
- Department of Biochemistry 3 and Immunology, Faculty of Medicine
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - Javier Valdivia
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Oncology
| | - José Miguel Jurado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Oncology
| | - Francisco M Almazan-Fernandez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, San Cecilio University Hospital, Granada, Spain
| | - Salvador Arias Santiago
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Coral Del Val
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - José Pérez Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| |
Collapse
|
50
|
Wancewicz B, Pergande MR, Zhu Y, Gao Z, Shi Z, Plouff K, Ge Y. Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry. Anal Chem 2024; 96:5781-5789. [PMID: 38568106 PMCID: PMC11057979 DOI: 10.1021/acs.analchem.3c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The heart contracts incessantly and requires a constant supply of energy, utilizing numerous metabolic substrates, such as fatty acids, carbohydrates, lipids, and amino acids, to supply its high energy demands. Therefore, a comprehensive analysis of various metabolites is urgently needed for understanding cardiac metabolism; however, complete metabolome analyses remain challenging due to the broad range of metabolite polarities, which makes extraction and detection difficult. Herein, we implemented parallel metabolite extractions and high-resolution mass spectrometry (MS)-based methods to obtain a comprehensive analysis of the human heart metabolome. To capture the diverse range of metabolite polarities, we first performed six parallel liquid-liquid extractions (three monophasic, two biphasic, and one triphasic) of healthy human donor heart tissue. Next, we utilized two complementary MS platforms for metabolite detection: direct-infusion ultrahigh-resolution Fourier-transform ion cyclotron resonance (DI-FTICR) and high-resolution liquid chromatography quadrupole time-of-flight tandem MS (LC-Q-TOF-MS/MS). Using DI-FTICR MS, 9644 metabolic features were detected where 7156 were assigned a molecular formula and 1107 were annotated by accurate mass assignment. Using LC-Q-TOF-MS/MS, 21,428 metabolic features were detected where 285 metabolites were identified based on fragmentation matching against publicly available libraries. Collectively, 1340 heart metabolites were identified in this study, which span a wide range of polarities including polar (benzenoids, carbohydrates, and nucleosides) as well as nonpolar (phosphatidylcholines, acylcarnitines, and fatty acids) compounds. The results from this study will provide critical knowledge regarding the selection of appropriate extraction and MS detection methods for the analysis of the diverse classes of human heart metabolites.
Collapse
Affiliation(s)
- Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Zhan Gao
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Zhuoxin Shi
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Kylie Plouff
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| |
Collapse
|