1
|
Wan Q, Sun X, Su C, Cai J, Zhan H, Sun Y, Qu F, Zhang Y, Mu Y, Chen X, Feng C. Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control. Int J Biol Macromol 2025:139715. [PMID: 39798732 DOI: 10.1016/j.ijbiomac.2025.139715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB). This design retains the hierarchical porous structure of DB in SG matrix, and granting the SG/DB the capability to disperse ultrafast, achieving dissolution in both water and blood within 3 s. The DB and SG released by disintegration of SG/DB can activate intrinsic coagulation pathway and strengthen fibrin clot gelation through the anchoring interface effect, even realizing coagulation of anticoagulant whole blood without calcium ion activation. Animal studies showed 10%T-SG/DB has superior hemostatic properties to various commercially available hemostatic materials (rat liver and artery, 100 s; rabbit liver, artery, and heart, 3.2, 4.6, and 2.9 min, respectively), reducing bleeding by 30 % compared to QuikClot Combat Gauze®, and is easily removable without residue.
Collapse
Affiliation(s)
- Qinglan Wan
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jingyu Cai
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Hao Zhan
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yunji Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Furui Qu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yan Zhang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China.
| |
Collapse
|
2
|
Yu Z, Fu X, Lucas T, Zhao H, Chen C, Dubail I, Chen Y, Patriarche G, Gateau J, Gazeau F, Jamet A, Lepoitevin M, Serre C. MOF-Enhanced Phototherapeutic Wound Dressings Against Drug-Resistant Bacteria. Adv Healthc Mater 2025; 14:e2402418. [PMID: 39460484 DOI: 10.1002/adhm.202402418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Phototherapy is a low-risk alternative to traditional antibiotics against drug-resistant bacterial infections. However, optimizing phototherapy agents, refining treatment conditions, and addressing misuse of agents, remain a formidable challenge. This study introduces a novel concept leveraging the unique customizability of metal-organic frameworks (MOFs) to house size-matched dye molecules in "single rooms". The mesoporous iron(III) carboxylate nanoMOF, MIL-100(Fe), and the hydrophobic heptamethine cyanine photothermal dye (Cy7), IR775, are selected as model systems. Their combination is predicted to minimize dye-dye interactions, leading to exceptional photostability and efficient light-to-heat conversion. Furthermore, MIL-100(Fe) preserves the antimicrobial nature of hydrophobic IR775, enabling it to disrupt bacterial cell envelopes. Through electrospinning, MIL-100(Fe)@IR775 nanoparticles are shaped into a gelatin-based film dressing for the treatment of skin wounds infected by Methicillin-resistant Staphylococcus aureus (MRSA). Activation of the dressing requires only a portable near-infrared light-emitting diode (NIR LED) and induces both low-dose photodynamic therapy (LPDT) and mild-temperature photothermal therapy (MPTT). Combined with the antimicrobial properties of IR775 and ferroptosis-like lipid peroxidation induced by MIL-100(Fe), the photoactive dressing eradicates MRSA and the healing is as quick as the uninfected wounds. This safe, cost-effective, and multifunctional therapeutic wound dressing offers a promising solution to overcome the current bottleneck in phototherapy.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Xiali Fu
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Theotim Lucas
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Paris, 75006, France
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, Paris, F-75006, France
| | - Heng Zhao
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Changchong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Iharilalao Dubail
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Gilles Patriarche
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, Palaiseau, 91120, France
| | - Jérôme Gateau
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, Paris, F-75006, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Paris, 75006, France
| | - Anne Jamet
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| |
Collapse
|
3
|
Qiao Y, Zhao X, Wang S, Wang H, Zhou P, Wang X, Ding W, Li X, Wu Y, Zhang L, Chen C, Sun D. Enhanced adhesive hydrogel for emergency hemostasis by balancing adhesion and cohesion. Int J Biol Macromol 2025; 284:138075. [PMID: 39603295 DOI: 10.1016/j.ijbiomac.2024.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Hydrogel adhesives have broad application prospects in biomedical fields such as tissue engineering and emergency rescue. However, due to the high water content and defective network structure, their inherent mechanical strength is low, which seriously hinders their application. In the present work, enhanced adhesive hydrogels could be synthesized by balancing cohesion and adhesion forces. The adhesive hydrogel composed of acryloyl aspartic acid and glycine shows a more dense mesh structure through intermolecular hydrogen bond interactions. As a result, the adhesive hydrogel exhibits enhanced tissue adhesion strength, which benefit from the balance between cohesion and adhesion.
Collapse
Affiliation(s)
- Yalei Qiao
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiang Zhao
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210094, China
| | - Shunjun Wang
- Jinling Hospital, Medical School of Nanjing University, Nanjing 210094, China
| | - Hongyan Wang
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Zhou
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiangmei Wang
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinmeng Li
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yixuan Wu
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Meng X, Wang X, Zhang Z, Song L, Chen J. Recent Advancements of Nanomedicine in Breast Cancer Surgery. Int J Nanomedicine 2024; 19:14143-14169. [PMID: 39759962 PMCID: PMC11699852 DOI: 10.2147/ijn.s494364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer surgery plays a pivotal role in the multidisciplinary approaches. Surgical techniques and objectives are gradually shifting from tumor complete resection towards prolonging survival, improving cosmetic outcomes, and restoring the social and psychological well-being of patients. However, surgical treatment still faces challenges such as inadequate sensitivity in sentinel lymph node localization, the need to improve intraoperative tumor boundary localization imaging, postoperative scar healing, and the risk of recurrence, necessitating other adjunct measures for improvement. To address these challenges, specificity-optimized nanomedicines have been introduced into the surgical therapeutic landscape of breast cancer. In particular, this review involves starting with an overview of breast structure and the composition of the tumor microenvironment and then introducing the guiding principle and foundation for the design of nanomedicine. Moreover, we will take the order process of breast cancer surgery diagnosis and treatment as the starting point, and adaptively propose the roles and advantages of nanomedicine in addressing the corresponding issues. Furthermore, we also involved the prospects of utilizing advanced technological approaches. Overall, this review seeks to uncover the sophisticated design and strategies of nanomedicine from a clinical standpoint, address the challenges faced in surgical treatment, and provide insights into this subject matter.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhihao Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
5
|
Xiang D, Wang K, Wang F, Li Y, Hou Y, Hu K, Xu Y. Coagulopathy-independent injectable catechol-functionalized chitosan shape-memory material to treat non-compressible hemorrhage. Carbohydr Polym 2024; 346:122648. [PMID: 39245508 DOI: 10.1016/j.carbpol.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Uncontrolled non-compressible hemorrhage, which is often accompanied by coagulopathy, is a major cause of mortality following traumatic injuries in civilian and military populations. In this study, coagulopathy-independent injectable catechol-modified chitosan (CS-HCA) hemostatic materials featuring rapid shape recovery were fabricated by combining controlled sodium tripolyphosphate-crosslinking with hydrocaffeic acid (HCA) grafting. CS-HCA exhibited robust mechanical strength and rapid blood-triggered shape recovery. Furthermore, CS-HCA demonstrated superior blood-clotting ability, enhanced blood cell adhesion and activation, and greater protein adsorption than commercial hemostatic gauze and Celox. CS-HCA showed enhanced procoagulant and hemostatic capacities in a lethal liver-perforation wound model in rabbits, particularly in heparinized rabbits. CS-HCA is suitable for mass manufacturing and shows promise as a clinically translatable hemostat.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Kunlan Wang
- Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Xinghua Street, Daxing District, Beijing 102600, PR China
| | - Feilong Wang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Yan Li
- Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Xinghua Street, Daxing District, Beijing 102600, PR China
| | - Yulin Hou
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Kun Hu
- Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Xinghua Street, Daxing District, Beijing 102600, PR China.
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
6
|
Liu H, Mei H, Jiang H, Jiang L, Lin K, Jiang M, Ding N, Li X, Gao Z, Liu B, Lin W, Li J, Zhou J. Bioprinted Symbiotic Dressings: A Lichen-Inspired Approach to Diabetic Wound Healing with Enhanced Bioactivity and Structural Integrity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407105. [PMID: 39663708 DOI: 10.1002/smll.202407105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/13/2024] [Indexed: 12/13/2024]
Abstract
Providing oxygen and preventing infection at wound sites are effective ways to heal diabetic chronic wounds. Inspired by natural lichens, a bioprinted biogenic hydrogel (BBH) containing microalgae and probiotics is developed for diabetic chronic wound therapeutics, which offers prolonged biogenetic oxygen supply by microalgae and infection inhibition by probiotics. The rational design of symbiotic BBH with customizable structure and microorganism composition enhances wound resilience against elevated glucose levels and hypoxia, leading to the increased migration ability of fibroblasts and the angiogenic potential of human umbilical vein endothelial cells. Notably, BBH-treated diabetic wounds exhibit dense vascular distribution, reduced hypoxia levels and inflammatory responses, and enhanced epithelial differentiation and keratinization abilities. Consequently, the BBH achieves rapid tissue repairing within 3 d and restores approximately 90% of the whole skin structure within 12 d. This work presents an engineered platform for regulating biological microenvironment of diabetic wounds and provides insights for developing bioprinted hybrid microorganism systems.
Collapse
Affiliation(s)
- Hai Liu
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Hongxiang Mei
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hejin Jiang
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kaifeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Minwen Jiang
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Ning Ding
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Xiaojie Li
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Ziqi Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Lin
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Juan Li
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Li J, Xu T, Chen J, He X, Ma R, Lu X, Yuan J, Yao M, Tang Y, Li J. A Small-Molecule NIR-II Probe for the Diagnosis of Hemorrhagic Diseases. Adv Healthc Mater 2024; 13:e2402333. [PMID: 39126238 DOI: 10.1002/adhm.202402333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Numerous hemorrhagic disorders, particularly those presenting deep hemorrhage, pose diagnostic challenges, often leading to delayed treatment and severe outcomes. Near-infrared (NIR)-II fluorescence imaging offers advantages such as deep tissue penetration, real-time visualization, and a high signal-to-background ratio, making it highly suitable for diagnosing hemorrhagic diseases. In this study, an NIR-II fluorescent probe LJ-2P carrying carboxylic and phosphoric acid groups is successfully applied for imaging hemorrhagic diseases. LJ-2P demonstrates a strong affinity for fibrinogen and fibrin clots both computationally and experimentally, thus exhibiting increased brightness upon coagulation. As compared to Indocyanine Green, LJ-2P provides a longer imaging window, higher imaging specificity, and signal-to-background ratio, as well as superior photobleaching resistance in three disease models: gastric, pulmonary, and cerebral hemorrhages. These results reveal that LJ-2P demonstrates enhanced imaging capabilities, enabling precise identification of hemorrhagic sites.
Collapse
Affiliation(s)
- Jinwei Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Tongtong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiabei Chen
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan He
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Renwei Ma
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiuhong Lu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jialu Yuan
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Minghua Yao
- Department of Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yaohui Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jianfeng Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
8
|
Bhoopathy J, Vedakumari Sathyaraj W, Yesudhason BV, Rajendran S, Dharmalingam S, Seetharaman J, Muthu R, Murugesan R, Raghunandhakumar S, Anandasadagopan SK. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:35-45. [PMID: 38112317 DOI: 10.1080/21691401.2023.2293784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.
Collapse
Affiliation(s)
- Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Selvarajan Rajendran
- Centre for Nano Science and Technology, Alagappa College of Technology Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jayashri Seetharaman
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ranjitha Muthu
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | - Ramachandran Murugesan
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | | | | |
Collapse
|
9
|
Rahaman MS, Arin A, Farwa U, Park M, Bae SH, Lee BT. ECM derivatized alginate augmenting bio-functionalities of lyophilized mat for skin and liver wound treatment. Biomaterials 2024; 311:122698. [PMID: 38968688 DOI: 10.1016/j.biomaterials.2024.122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Peptides and molecular residues sourced from the fragmentation of the extracellular matrix (ECM) can exacerbate a plethora of cellular functions. We selected a natural ECM-derived complex peptide mixture to functionalize sodium alginate. Three alginate derivatives (sodium alginate conjugated with ECM) SALE-1, SALE-2, and SALE-3 were synthesized using the lowest (10 % w/w), moderate (50 % w/w), and highest (100 % w/w) concentrations of ECM. Thereafter, they were used to fabricate three groups of mat scaffolds EMAT-1 (ECM derivatized alginate thrombin-mat), EMAT-2, and EMAT-3, respectively by the freeze-drying process. To enhance the hemostatic activity, thrombin was loaded onto the scaffolds. Another group, AT, without any derivatized alginate was additionally included in order to comparative analysis. Physical characteristics revealed that the porous mat scaffold showed enhancement in degradation and swelling ability with the increase in ECM content. The higher cell proliferation, migration, and cell viability were noticed in the higher ECM-containing samples EMAT-2 and EMAT-3. In vivo studies using rodent hepatic and rabbit ear models were carried out to ensure the hemostatic ability of the scaffolds. EMAT-2 and EMAT-3 demonstrate excellent liver regeneration ability in rat models. Moreover, the rat cutaneous wound model depicted that EMAT-3 dramatically elevated the skin's healing ability, thereby rendering it an excellent candidate for future clinical application in wound healing.
Collapse
Affiliation(s)
- Md Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Asuva Arin
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan-31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Sang Ho Bae
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan-31151, Republic of Korea.
| |
Collapse
|
10
|
Zhou Q, Shi Z, Xia L, Mi J, Zhang Y, Xu X, Pan J. Breaking the boundaries of wound closure: A novel polyurethane tissue adhesive with enhanced healing properties. J Biomed Mater Res A 2024; 112:2301-2313. [PMID: 39044597 DOI: 10.1002/jbm.a.37770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Over the past few decades, there have been advancements in the development of high-performance tissue adhesives as alternatives to traditional sutures and staples for rapid and effective wound closure post-surgery. While tissue adhesives offer advantages such as ease of use, short application time, and minimal tissue damage, they also face challenges related to biocompatibility, biodegradability, and adhesive strength. In this study, L-lysine diisocyanate (LDI) and trimethylolpropane (TMP) were utilized as the primary raw materials to produce a prepolymer terminated with NCO, resulting in the development of a new biocompatible polyurethane tissue adhesive (TMP-LDI). Additionally, SiO2 nanoparticles were incorporated into the prepolymer, significantly enhancing the adhesive strength of the TMP-LDI tissue adhesive through the "nanobridging effect," achieving a strength of 170.4 kPa. Furthermore, the SiO2/TMP-LDI tissue adhesive exhibited satisfactory temperature change during curing and degradation performance. In vitro and in vivo studies demonstrated that SiO2/TMP-LDI exhibited good biocompatibility, efficient hemostasis, antimicrobial properties, and the ability to promote wound healing. This research presents a novel approach for the development of tissue adhesives with superior adhesive performance.
Collapse
Affiliation(s)
- Qiangqiang Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Zhaocheng Shi
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Liyao Xia
- Research Base of Textile Materials for Flexible Electronics and Biomedical Applications, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, China
| | - Jing Mi
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Yuejiao Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Xiaobo Xu
- Hefei Stomatological Hospital, Hefei Clinical College of Stomatology, Anhui Medical University, Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Jie Pan
- Shanghai Fengxian Stomatological Hospital, Shanghai, China
| |
Collapse
|
11
|
Sarkhel S, Jaiswal A. Emerging Frontiers in In Situ Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61503-61529. [PMID: 39479880 DOI: 10.1021/acsami.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
With a surge in the number of accidents and chronic wounds worldwide, there is a growing need for advanced hemostatic and wound care solutions. In this regard, in situ forming hydrogels have emerged as a revolutionary biomaterial due to their inherent properties, which include biocompatibility, biodegradability, porosity, and extracellular matrix (ECM)-like mechanical strength, that render them ideal for biomedical applications. This review demonstrates the advancements of in situ forming hydrogels, tracing their evolution from injectable to more sophisticated forms, such as sprayable and 3-D printed hydrogels. These hydrogels are designed to modulate the pathophysiology of wounds, enhancing hemostasis and facilitating wound repair. The review presents different methodologies for in situ forming hydrogel synthesis, spanning a spectrum of physical and chemical cross-linking techniques. Furthermore, it showcases the adaptability of hydrogels to the dynamic requirements of wound healing processes. Through a detailed discussion, this article sheds light on the multifunctional capabilities of these hydrogels such as their antibacterial, anti-inflammatory, and antioxidant properties. This review aims to inform and inspire continued advancement in the field, ultimately contributing to the development of sophisticated wound care solutions that meet the complexity of clinical needs.
Collapse
Affiliation(s)
- Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| |
Collapse
|
12
|
Fanaee S, Austin W, Filiaggi M, Adibnia V. External Bleeding and Advanced Biomacromolecules for Hemostasis. Biomacromolecules 2024; 25:6936-6966. [PMID: 39463174 DOI: 10.1021/acs.biomac.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Hemorrhage is a significant medical problem that has been an active area of research over the past few decades. The human body has a complex response to bleeding that leads to blood clot formation and hemostasis. Many biomaterials based on various biomacromolecules have been developed to either accelerate or improve the body's natural response to bleeding. This review examines the mechanisms of hemostasis, types of bleeding, and the in vitro or in vivo models and techniques used to study bleeding and hemostatic materials. It provides a detailed overview of the diverse hemostatic materials, including those that are highly absorbent, wet adhesives, and those that accelerate the biochemical cascade of blood clotting. These materials are currently marketed, under preclinical testing, or being researched. In exploring the latest advancements in hemostatic technologies, this paper highlights the potential of these materials to significantly improve bleeding control in clinical and emergency situations.
Collapse
Affiliation(s)
- Sajjad Fanaee
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - William Austin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mark Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Zeng J, Lu M, Wang Y, Zhao X, Zhao Y. Photothermal Fish Gelatin-Graphene Microneedle Patches for Chronic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405847. [PMID: 39248682 DOI: 10.1002/smll.202405847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Microneedles are demonstrated as an effective strategy for chronic wound treatment. Great endeavors are devoted to developing microneedles with natural compositions and potent functions to promote therapeutic effects for wound healing. Herein, a novel graphene oxide-integrated methacrylated fish gelatin (GO-FGelMA) microneedle patch encapsulated with bacitracin and vascular endothelial growth factor (VEGF) is developed for chronic wound management. As the natural components and porous structures of FGelMA, the fabricated microneedle patches display satisfactory biocompatibility and drug-loading ability. Owing to the integration of graphene oxide, the microneedle patches can realize promoted drug release via near-infrared (NIR) irradiation. Besides, the encapsulated bacitracin and VEGF endow the microneedle patches with the ability to inhibit bacterial growth and promote angiogenesis. It is demonstrated that the GO-FGelMA microneedle patches with efficient drug release exert a positive influence on the wound healing process through reduced inflammation, enhanced wound closure, and improved tissue regeneration. Thus, it is believed that the proposed drugs-loaded GO-FGelMA microneedle patches will hold great potential in future chronic wound treatment.
Collapse
Affiliation(s)
- Junjie Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Minhui Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
14
|
Wang X, Liu C, Liu C, Shi Z, Liu X, Huang F. A chitosan macroporous hydrogel integrating enrichment, adsorption and delivery of blood clotting components for rapid hemostasis. Int J Biol Macromol 2024; 281:136482. [PMID: 39406331 DOI: 10.1016/j.ijbiomac.2024.136482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Traditional hemostatic hydrogels face considerable limitations in achieving rapid control of severe bleedings, a crucial factor in reducing casualties in both military and civilian settings. This study presents a chitosan-based hemostatic hydrogel with interconnected secondary macropores designed to enhance interactions with blood clotting components by reducing diffusion resistance and increasing contact area. The macropores were created using a straightforward process involving NaOH-mediated SiO2 template dissolution and NH3 generation. The resulting macroporous structure increased the hydrogel's overall porosity without compromising its viscoelasticity. Functional studies demonstrated that the macroporous hydrogel effectively concentrated and adsorbed blood clotting components, while also facilitating the delivery of artificially embedded clotting factor to further expedite clot formation. These combined actions resulted in improve hemostatic efficacy, reducing whole blood clotting time by over 94 % in vitro. Furthermore, in vivo studies using rat tail amputation and liver injury models showed a reduction in blood loss by over 65 % and a decrease in bleeding time by over 70 %. Additionally, the porous chitosan hydrogel exhibited minimal biotoxicity and promoted biodegradability in vivo. In conclusion, this work introduces a macroporous chitosan-based hemostatic hydrogel with great potential for rapid hemorrhage control.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Xiaodan Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
15
|
Dou W, Zeng X, Zhang C, Wang X, Zhu Y, Zhu S, Liu C, Ji W, Fan Q, Gao Y, Zhao K, Zhao J, Hou X, Yuan X, Liu H, Li Y, Li S. Epidermal growth factor-incorporated hydrogen bond crosslinked hemostatic microparticles capable of timely response to accidental bleeding for prehospital rescue. Int J Biol Macromol 2024; 281:136452. [PMID: 39389484 DOI: 10.1016/j.ijbiomac.2024.136452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Prehospital rescue of accidental massive bleeding is crucial for saving lives. However, currently available hemostatic materials are still in infancy in treating accidental bleeding due to the challenges in fully satisfying the complex outdoor hemostatic requirements. Herein, we designed an epidermal growth factor (EGF)- incorporated, microparticle-formed, high-strength, dynamic environment-stable hemostatic gel system for prehospital rescue. Carboxyl and dimethylamide were employed as the hydrogen bond (H-bond) groups and were carefully engineered into the microparticles (DHMs). We demonstrated that the unique H-bond crosslinked micronized structure enabled the DHM-based gelling system to adequately meet the outdoor hemostatic requirements. The stable H-bond groups allow the DHMs to be stored at room temperature and be easily carried around. The small sizes (150-250 μm) of the DHMs enabled the filling of irregular defects, and upon encountering water, these DHMs integrated into hydrogels (DHMs-gels) with high mechanical strength (1.61 MPa), strong tissue adhesiveness (66.5 kPa) and stable performance under dynamic environments. In vivo results showed that the EGF-incorporated DHMs-gels (DHMs-EGF gel) achieved a 100 % survival rate in a simulated rescue process and promoted wound healing. Simultaneously possessing multiple prehospital rescue-required properties, the hemostatic DHMs-EGF may become an effective tool for emergency rescue.
Collapse
Affiliation(s)
- Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; School of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Chenyang Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Ye Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; School of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Chan Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Weijun Ji
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qingmei Fan
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, Shandong Province, China
| | - Yonglin Gao
- School of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, Shandong Province, China.
| | - Yansheng Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, Shandong Province, China.
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China.
| |
Collapse
|
16
|
Shakya KR, Mansoori N, Anand A, Sharma V, Verma V. Agarose Cryogels Loaded with Polydopamine Microspheres for Sustainable Wound Care with Enhanced Hemostatic and Antioxidant Properties. ACS APPLIED BIO MATERIALS 2024; 7:6808-6822. [PMID: 39350639 DOI: 10.1021/acsabm.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Excessive bleeding presents a grave risk to life, especially in scenarios involving deep wounds such as those inflicted by gunshots and accidental stabs. Despite advancements in wound care management, existing commercial hemostatic agents have limitations, necessitating the development of enhanced solutions. In this study, we developed cryogels using agarose and polydopamine microspheres as a hemostatic dressing to effectively manage profuse bleeding. The resulting cryogels demonstrated impressive attributes, such as high absorption capacity (>4000%), shape recovery ability, antioxidant properties, and excellent biocompatibility in mammalian cell lines. Particularly noteworthy was the rapid blood clotting observed in vitro, with the agarose/PDA cryogels achieving complete clotting within just 90 s. Subsequent validation in the rat trauma model further underscored their hemostatic efficacy, with clotting times of 40 and 53 s recorded in tail amputation and liver puncture models, respectively. The porous structure and hydrophilicity of the cryogels facilitated superior blood absorption and retention, while the amine groups of polydopamine played a pivotal role in enhancing blood clotting activity. This study represents a significant step forward in utilizing agarose/polydopamine cryogels as advanced materials for hemostatic wound dressings, promising an impactful contribution to wound therapy.
Collapse
Affiliation(s)
- Kaushal R Shakya
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nasim Mansoori
- Department of Surgical Discipline, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anmol Anand
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Sharma
- Department of Surgical Discipline, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
17
|
Luo Q, Luo J, Luan Z, Xu K, Tian L, Zhang K, Peng X, Yuan M, Zheng C, Shu Z, Zhang Y, Tan S, Dan R, Mequanint K, Fan C, Xing M, Yang S. Blue Laser Triggered Hemostatic Peptide Hydrogel for Gastrointestinal Bleeding Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405290. [PMID: 39011814 DOI: 10.1002/adma.202405290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Indexed: 07/17/2024]
Abstract
In an emergency, nonvariceal upper gastrointestinal bleeding (NVUGIB), endoscopic hemostasis is considered the gold standard intervention. However, current endoscopic hemostasis is very challenging to manage bleeding in large-diameter or deep lesions highly prone to rebleeding risk. Herein, a novel hemostatic peptide hydrogel (HPH) is reported, consisting of a self-assembly peptide sequence CFLIVIGSIIVPGDGVPGDG (PFV) and gelatin methacryloyl (GelMA), which can be triggered by blue laser endoscopy (BLE) for nonvariceal upper gastrointestinal bleeding treatment without recurring bleeding concerns. Upon contact with GelMA solution, PFV immediately fibrillates into β-sheet nanofiber and solvent-induced self-assembly to form HPH gel. HPH nanofiber networks induced ultrafast coagulation by enveloping blood cells and activating platelets and coagulation factors even to the blood with coagulopathy. Besides its remarkable hemostatic performance in artery and liver injury models, HPH achieves instant bleeding management in porcine NVUGIB models within 60 s by preventing the rebleeding risk. This work demonstrates an extraordinary hemostatic agent for NVUGIB intervention by BLE for the first time, broadening potential application scenarios, including patients with coagulopathy and promising clinical prospects.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Jie Luo
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Zhaohui Luan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
| | - Lixing Tian
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, No.183, Xinqiao Street, Chongqing, 400037, China
| | - Xue Peng
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Mengxue Yuan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Chuanhao Zheng
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Yuchen Zhang
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Shali Tan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Ruijue Dan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A 5B9, Canada
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, No. 183, Xinqiao Street, Chongqing, 400037, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China
| |
Collapse
|
18
|
Hwang SM, Kim E, Wu J, Kim MH, Lee H, Park WH. Temperature- and pH-induced dual-crosslinked methylcellulose/chitosan-gallol conjugate composite hydrogels with improved mechanical, tissue adhesive, and hemostatic properties. Int J Biol Macromol 2024; 277:134098. [PMID: 39048009 DOI: 10.1016/j.ijbiomac.2024.134098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Gauze or bandages are commonly used to effectively control bleeding during trauma and surgery. However, conventional treatment methods can sometimes lead to secondary damages. In recent years, there has been increased interest in developing adhesive hemostatic hydrogels as a safer alternative for achieving hemostasis. Methylcellulose (MC) is a well-known thermo-sensitive polymer with excellent biocompatibility that is capable of forming a hydrogel through physical crosslinking owing to its inherent thermo-reversible properties. However, the poor mechanical properties of the MC hydrogel comprising a single crosslinked network (SN) limit its application as a hemostatic material. To address this issue, we incorporated a chitosan-gallol (CS-GA) conjugate, which has the ability to form chemical crosslinks through self-crosslinking reactions under specific pH conditions, into the MC hydrogel to reinforce the MC hydrogel network. The resulting MC/CS-GA hydrogel with a dual-crosslinked network (DN), involving both physical and chemical crosslinks, exhibited synergistic effects of the two types of crosslinks. Thus, compared with those of the SN hydrogel, the composite DN hydrogel exhibited significantly enhanced mechanical strength and tissue adhesive properties. Moreover, the DN hydrogel presented excellent biological activity in vitro. Additionally, in rat hepatic hemorrhage models, the DN hydrogel exhibited high hemostatic efficiency, showcasing its multifunctional capabilities.
Collapse
Affiliation(s)
- Sun Min Hwang
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Eunu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jingxian Wu
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Sangju 37224, South Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
19
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
20
|
Song W, Choi YH, Moon YG, Lee C, Sundaram MN, Hwang NS. Mussel-inspired sulfated hyaluronan cryogel patch with antioxidant, anti-inflammatory, and drug-loading properties for multifunctional wound adhesives. Bioact Mater 2024; 40:582-596. [PMID: 39239260 PMCID: PMC11375143 DOI: 10.1016/j.bioactmat.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Wounds, characterized by the disruption of the continuity of body tissues resulting from external trauma, manifest in diverse types and locations. Although numerous wound dressings are available for various wound scenarios, it remains challenging to find an integrative wound dressing capable of addressing diverse wound situations. We focused on utilizing sulfated hyaluronan (sHA), known for its anti-inflammatory properties and capacity to load cationic drugs. By conjugating catechol groups to sHA (sHA-CA), we achieved several advantages in wound healing: 1) Fabrication of patches through crosslinking with catechol-modified high-molecular-weight hyaluronan (HA(HMW)-CA), 2) Adhesiveness that enabled stable localization, 3) Radical scavenging that could synergize with the immunomodulation of sHA. The sHA-CA patches demonstrated therapeutic efficacy in three distinct murine wound models: diabetic wound, hepatic hemorrhage, and post-surgical adhesion. Collectively, these findings underscore the potential of the sHA-CA patch as a promising candidate for the next-generation wound dressing.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - M Nivedhitha Sundaram
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
21
|
Michaels J, Kaleva AI, Bateman L, Wakelam O, Stephens J. Application of the Self-Assembling Peptide Hydrogel RADA16 for Hemostasis during Tonsillectomy: A Feasibility Study. J Funct Biomater 2024; 15:271. [PMID: 39330246 PMCID: PMC11432850 DOI: 10.3390/jfb15090271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Tonsillectomy is a common surgical procedure but carries a high risk of readmission for secondary bleeding and pain. This study evaluated the feasibility and effectiveness of using the hemostatic self-assembling peptide hydrogel RADA16 (PuraBond, 3-D Matrix SAS; Caluire et Cuire, France) to control bleeding from the tonsillectomy wound bed. Readmission/re-operation rates were compared between a prospective case series of 21 primarily adult tonsillectomy patients treated with topical RADA16 and an untreated historical Control group of 164 patients who underwent tonsillectomy by 10 surgeons at a single tertiary hospital in the UK between March 2019 and June 2022. Cumulative readmission rates for any reason were 2-fold elevated in Control subjects (18.9%; n = 31/164 subjects) compared to patients treated intra-operatively with RADA16 hemostatic hydrogel (9.5%; n = 2/21) (p = 0.378). Readmission rates for postoperative bleeding were 3-fold higher in Controls (14.6%; n = 24/164 subjects) than in the RADA16-treated group (4.8%; n = 1/21) (p = 0.317). A similar rate of retreatment for pain was recorded in the Control (4.3%; n = 7/164) and RADA16 (4.8%; n = 1/21) groups (p = 0.999). Two Control subjects (1.2%) required re-operation for recalcitrant bleeding; no RADA16 subject (0.0%) required re-operation for any reason. No device-related adverse events occurred in the RADA16 group. Surgeons were pleased with the easy learning curve and technical feasibility associated with intra-operatively administering RADA16 hemostatic hydrogel. Intra-operative hemostasis using RADA16 peptide hydrogel was straightforward and was associated with a trend of 3-fold lower rates of readmission for postoperative bleeding events than untreated Control subjects.
Collapse
Affiliation(s)
- Joshua Michaels
- Department of Otolaryngology, North West Anglia NHS Foundation Trust, Peterborough PE3 9GZ, UK
| | - Anna I Kaleva
- Department of Otolaryngology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Laura Bateman
- Royal Hospitals Bath NHS Foundation Trust, Bath BA1 3NG, UK
| | - Oliver Wakelam
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk NR4 7UY, UK
| | - Joanna Stephens
- East and North Hertfordshire NHS Trust, Stevenage SG1 4AB, UK
| |
Collapse
|
22
|
Wang X, Yang Y, Yang F, Mu B, Wang A. Insight into hemostatic performance and mechanism of natural mixed-dimensional Attapulgite clay. BIOMATERIALS ADVANCES 2024; 162:213932. [PMID: 38917648 DOI: 10.1016/j.bioadv.2024.213932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Clay minerals have attracted wide attention as biomedical materials due to the unique crystal structure, abundant morphology and good biocompatibility. However, the relevant studies on the abundant natural mixed clay deposits were scarcely reported. Herein, the hemostatic performance of natural mixed-dimensional attapulgite clay (MDAPT) composed of one-dimensional attapulgite and multiple two-dimensional clay were systematically investigated based on the structural evolution using oxalic acid for different time. The results of hemostatic evaluation showed that MDAPT leached by oxalic acid with 1 h presented the shortest clotting time (134 ± 12.17 s), a 15.09 % and 41.74 % reduction of relative hemoglobin absorbance at 180 s and 120 s when compared with the control group, respectively, and an increase of 19.45 % of the blood clotting index in vitro, as well as MDAPT obtained the shortest bleeding time (158.5 ± 6.9 s), nearly 66 % and 31 % reduction blood loss as compared to the blank group and the YNBY group in vivo. This improvement was primarily ascribed to the synergistic effect of lamellar non-expandable illite, and nano rod-like attapulgite. Furthermore, the rapid hemostasis of MDAPT was also due to the joint effect of superhydrophobic property toward blood, minimizing blood loss, surface negative charge, metal ions from MDAPT structural skeleton, promoting an average increase of 21 % for platelet activation. The results suggested that MDAPT could be served as a promising efficient inorganic hemostatic materials, which provided a feasible strategy to realize the high-valued utilization of natural mixed clay resources.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yinfeng Yang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, PR China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Bin Mu
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
23
|
Wu Z, Ding Y, Qin Z, Sun Z, Wang Z, Cao X. Hemostatic Dressing Immobilized with ε-poly-L-lysine and Alginate Coated Mesoporous Bioactive Glass Prevents Blood Permeation by Pseudo-Dewetting Behavior. Adv Healthc Mater 2024; 13:e2400958. [PMID: 38770831 DOI: 10.1002/adhm.202400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The integration of hemostats with cotton fabrics is recognized as an effective approach to improve the hemostatic performance of dressings. However, concerns regarding the uncontrollable absorption of blood by hydrophilic dressings and the risk of distal thrombosis from shed hemostatic agents are increasingly scrutinized. To address these issues, this work develops an advanced dressing (AQG) with immobilized nano-scale mesoporous bioactive glass (MBG) to safely and durably augment hemostasis. The doubly immobilized MBGs, pre-coated with ε-poly-L-lysine and alginate, demonstrate less than 1% detachment after ultrasonic washing. Notably, this MBG layer significantly promotes the adhesion, aggregation, and activation of red blood cells and platelets, adhered five times more red blood cells and 29 times more platelets than raw dressing, respectively. Specially, with the rapid formation of protein corona and amplification of thrombin, dense fibrin network is built on MBG layer and then blocked blood permeation transversely and longitudinally, showing an autophobic pseudo-dewetting behavior and allowing AQG to concentrate blood in situ and culminate in faster hemostasis with lower blood loss. Furthermore, the potent antibacterial properties of AQG extend its potential for broader application in daily care and clinical setting.
Collapse
Affiliation(s)
- Zilin Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yilin Ding
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhihao Qin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhipeng Sun
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
24
|
Deng J, Zhao Z, Yeo XY, Yang C, Yang J, Ferhan AR, Jin B, Oh C, Jung S, Suresh S, Cho NJ. Plant-Based Shape Memory Cryogel for Hemorrhage Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311684. [PMID: 39011812 DOI: 10.1002/adma.202311684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The escalating global demand for sustainable manufacturing, motivated by concerns over energy conservation and carbon footprints, encounters challenges due to insufficient renewable materials and arduous fabrication procedures to fulfill specific requirements in medical and healthcare systems. Here, biosafe pollen cryogel is engineered as effective hemostats without additional harmful crosslinkers to treat deep noncompressible wounds. A straightforward and low-energy approach is involved in forming stable macroporous cryogel, benefiting from the unique micro-hierarchical structures and chemical components of non-allergenic plant pollen. It is demonstrated that the pollen cryogel exhibits rapid water/blood-triggered shape-memory properties within 2 s. Owing to their inherent nano/micro hierarchical structure and abundant chemical functional groups on the pollen surface, the pollen cryogel shows effective hemostatic performance in a mouse liver penetration model, which is easily removed after usage. Overall, the self-crosslinking pollen cryogel in this work pioneers a framework of potential clinical applications for the first-hand treatment on deep noncompressible wounds.
Collapse
Affiliation(s)
- J Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Z Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - X Y Yeo
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - J Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - A R Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - B Jin
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Oh
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Jung
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - N-J Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
25
|
Baidya A, Budiman A, Jain S, Oz Y, Annabi N. Engineering Tough and Elastic Polyvinyl Alcohol-Based Hydrogel with Antimicrobial Properties. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300173. [PMID: 39650171 PMCID: PMC11620288 DOI: 10.1002/anbr.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made towards designing hydrogels for soft tissue repair, engineering hydrogels that resemble load-bearing tissues is still considered a great challenge due to their specific mechano-physical demands. Here, we report microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)-based hydrogels for potential applications in repairing or replacing different load-bearing tissues. The synergy of freeze-thawing and the Hofmeister effect, which controlled the spatial arrangement and aggregation of polymer chains, facilitated the formation of micro-structured frameworks with tunable porosity. While the maximum mechanical strength, toughness, and stretchability of the engineered hydrogel were ~390 kPa, ~388 kJ/m3, and ~170%, respectively, the Young's modulus based on compression testing was found to be in the range of ~0.02 - 0.30 MPa, highlighting the all-in-one mechanically enriched nature of the hydrogel system. Furthermore, the minimal swelling and degradation rate of the engineered hydrogel met the specific requirements of load-bearing tissues. Finally, excellent antibacterial resistance as well as in vitro biocompatibility of the hydrogel demonstrated its potential for the replacement of load-bearing tissues.
Collapse
Affiliation(s)
- Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Annabella Budiman
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Tong L, Zhang D, Huang Z, Gao F, Zhang S, Chen F, Liu C. Calcium Ion-Coupled Polyphosphates with Different Degrees of Polymerization for Bleeding Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43244-43256. [PMID: 39136271 DOI: 10.1021/acsami.4c06698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of efficient hemostatic materials is crucial for achieving rapid hemorrhage control and effective wound healing. Inorganic polyphosphate (polyP) is recognized as an effective modulator of the blood coagulation process. However, the specific effect of polyP chain length on coagulation is not yet fully understood. Furthermore, calcium ions (Ca2+) are essential for the coagulation process, promoting multiple enzyme-catalyzed reactions within the coagulation cascade. Hence, calcium ion-coupled polyphosphate powders with three different degrees of polymerization (CaPP-n, n = 20, 50, and 1500) are synthesized by an ion-exchange reaction. CaPP exhibits a crystalline phase at a low polymerization degree and transitions to an amorphous phase as the polymerization degree increases. Notably, the addition of Ca2+ enhances the wettability of polyP, and CaPP promotes hemostasis, with varying degrees of effectiveness related to chain length. CaPP-50 exhibits the most promising hemostatic performance, with the lowest blood clotting index (BCI, 12.1 ± 0.7%) and the shortest clotting time (302.0 ± 10.5 s). By combining Ca2+ with polyP of medium-chain length, CaPP-50 demonstrates an enhanced ability to accelerate the adhesion and activation of blood cells, initiate the intrinsic coagulation cascade, and form a stable blood clot, outperforming both CaPP-20 and CaPP-1500. The hemostatic efficacy of CaPP-50 is further validated using rat liver bleeding and femoral artery puncture models. CaPP-50 is proven to possess hemostatic properties comparable to those of commercial calcium-based zeolite hemostatic powder and superior to kaolin. In addition, CaPP-50 exhibits excellent biocompatibility and long-term storage stability. These results suggest that CaPP-50 has significant clinical and commercial potential as an active inorganic hemostatic agent for rapid control of bleeding.
Collapse
Affiliation(s)
- Laiqiang Tong
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fan Gao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shaozan Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
27
|
Huang H, Liao S, Zhang D, Liang W, Xu K, Zhang Y, Lang M. A macromolecular cross-linked alginate aerogel with excellent concentrating effect for rapid hemostasis. Carbohydr Polym 2024; 338:122148. [PMID: 38763731 DOI: 10.1016/j.carbpol.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Collapse
Affiliation(s)
- Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shiyang Liao
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China
| | - Dong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wencheng Liang
- College of chemical and material engineering, Quzhou University, 78 North Jiuhua Road, Zhejiang 324000, PR China
| | - Keqing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China.
| | - Yadong Zhang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510515, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
28
|
Mukherjee S, Sasmal PK, Reddy KP, Pal A, Pal D, Nandi SK, Chanda A, Ahmed S, Datta P. Spatiotemporally Controlled Release of Etamsylate from Bioinspired Peptide-Functionalized Nanoparticles Arrests Bleeding Rapidly and Improves Clot Stability in a Rabbit Internal Hemorrhage Model. ACS Biomater Sci Eng 2024; 10:5014-5026. [PMID: 38982893 DOI: 10.1021/acsbiomaterials.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Achieving rapid clotting and clot stability are important unmet goals of clinical management of noncompressible hemorrhage. This study reports the development of a spatiotemporally controlled release system of an antihemorrhagic drug, etamsylate, in the management of internal hemorrhage. Gly-Arg-Gly-Asp-Ser (GRGDS) peptide-functionalized chitosan nanoparticles, with high affinity to bind with the GPIIa/IIIb receptor of activated platelets, were loaded with the drug etamsylate (etamsylate-loaded GRGDS peptide-functionalized chitosan nanoparticles; EGCSNP). Peptide conjugation was confirmed by LCMS, and the delivery system was characterized by DLS, SEM, XRD, and FTIR. In vitro study exhibited 90% drug release till 48 h fitting into the Weibull model. Plasma recalcification time and prothrombin time tests of GRGDS-functionalized nanoparticles proved that clot formation was 1.5 times faster than nonfunctionalized chitosan nanoparticles. The whole blood clotting time was increased by 2.5 times over clot formed under nonfunctionalized chitosan nanoparticles. Furthermore, the application of rheometric analysis revealed a 1.2 times stiffer clot over chitosan nanoparticles. In an in vivo liver laceration rabbit model, EGCSNP spatially localized at the internal injury site within 5 min of intravenous administration, and no rebleeding was recorded up to 3 h. The animals survived for 3 weeks after the injury, indicating the strong potential of the system for the management of noncompressible hemorrhage.
Collapse
Affiliation(s)
- Soumyadip Mukherjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Anubroto Pal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 70037, West Bengal, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 70037, West Bengal, India
| | - Abhijit Chanda
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| |
Collapse
|
29
|
Sarkar P, Pugazhendhi AS, Coathup M, Mukhopadhyay K. Antibacterial sponge for rapid noncompressible hemostatic treatment: spatiotemporal studies using a noninvasive model. Biomater Sci 2024; 12:4155-4169. [PMID: 38916074 DOI: 10.1039/d4bm00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Hemorrhage is one of the leading causes of preventable death. While minor injuries can be treated mainly by conventional methods, deep and irregular wounds with profuse bleeding present significant challenges, some of which can be life-threatening and fatal. This underscores the need to develop easily applicable FDA-approved hemostatic treatments that can effectively stanch blood loss at the point of care before professional medical care. A silicone-based bandage system (SilFoam), a non-compressible, self-expanding, antibacterial hemostatic treatment, is reported here. Its two-component system reacts in situ upon mixing to form a stretchable sponge that acts as a 'tamponade' by expanding within seconds with the evolution of oxygen gas from the interaction of the reactive components present in the formulation. This generates autogenous pressure on the wound that can effectively arrest heavy bleeding within minutes. Possessing optimal adhesive properties, the expanded sponge can be easily removed, rendering it optimal for hemostatic wound dressing. With recent advances in biotechnological research, there is a growing awareness of the potential issues associated with in vivo trials, spanning ethical, psychological, economic, and physiological concerns like burnout and fatigue. Bearing this in mind, a unique manikin system simulating a deep abdominal wound has been employed to investigate SilFoam's hemostatic efficacy with different blood-flow rates using a non-invasive model that aims to provide an easy, fast, and economical route to test hemostatic treatments before in vivo studies. This is the first time an Ag2O-based oxygen-induced foaming system has been reported as a hemostatic agent.
Collapse
Affiliation(s)
- Pritha Sarkar
- Department of Materials Science and Engineering, University of Central Florida, Orlando, USA.
| | | | - Melanie Coathup
- Biionix Cluster and College of Medicine, University of Central Florida, Orlando, USA
| | - Kausik Mukhopadhyay
- Department of Materials Science and Engineering, University of Central Florida, Orlando, USA.
| |
Collapse
|
30
|
Chen L, Zeng S, Zhang H, Jiang Z, Zhou H, Yu S, Yu Q, Li M, Huang C, Shi P, Liu K, Yang L. Synergistic effect of protein foams and polysaccharide on the invisible hemostasis of acellular dermal matrix sponges. Int J Biol Macromol 2024; 274:133138. [PMID: 38901509 DOI: 10.1016/j.ijbiomac.2024.133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Efficient management of hemorrhage is vital for preventing hemorrhagic shock and safeguarding wounds against infection. Inspired by the traditional Chinese steamed bread-making process, which involves kneading, foaming, and steaming, we devised a hemostatic sponge by amalgamating an acellular dermal matrix gel, hydroxyethyl starch, and rice hydrolyzed protein. The integration of hydroxyethyl starch bolstered the sponge's mechanical and hemostatic attributes, while the inclusion of rice hydrolyzed protein, acting as a natural foaming agent, enhanced its porosity This augmentation facilitated rapid blood absorption, accelerated clot formation, and stimulated the clotting cascade. Experimental findings underscore the exceptional biocompatibility and physicochemical characteristics of the hemostatic sponge, positioning it on par with commercially available collagen hemostatic sponges for hemorrhage control. Mechanistically, the sponge fosters aggregation and activation of red blood cells and platelets, expediting coagulation kinetics both in vivo and in vitro. Notably, this hemostatic sponge activates the clotting cascade sans crosslinking agents, offering a premium yet cost-effective biomaterial with promising clinical applicability.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Shuaidan Zeng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Qiuyi Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China
| | - Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Kun Liu
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, China.
| |
Collapse
|
31
|
Yang Y, He G, Pan Z, Zhang K, Xian Y, Zhu Z, Hong Y, Zhang C, Wu D. An Injectable Hydrogel with Ultrahigh Burst Pressure and Innate Antibacterial Activity for Emergency Hemostasis and Wound Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404811. [PMID: 38875445 DOI: 10.1002/adma.202404811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Uncontrolled bleeding and wound infections following severe trauma pose significant challenges for existing tissue adhesives, primarily due to their weak wet adhesion, slow adhesion formation, cytotoxicity concerns, and lack of antibacterial properties. Herein, an injectable hydrogel (denoted as ES gel) with rapid, robust adhesive sealing and inherent antibacterial activity based on ε-polylysine and a poly(ethylene glycol) derivative is developed. The engineered hydrogel exhibits rapid gelation behavior, high mechanical strength, strong adhesion to various tissues, and can sustain an ultrahigh burst pressure of 450 mmHg. It also presents excellent biocompatibility, biodegradability, antibacterial properties, and on-demand removability. Significantly improved hemostatic efficacy of ES gel compared to fibrin glue is demonstrated using various injury models in rats and rabbits. Remarkably, the adhesive hydrogel can effectively halt lethal non-compressible hemorrhages in visceral organs (liver, spleen, and heart) and femoral artery injury models in fully anticoagulated pigs. Furthermore, the hydrogel outperforms commercial products in sutureless wound closure and repair in the rat liver defect, skin incision, and infected full-thickness skin wound models. Overall, this study highlights the promising clinical applications of ES gel for managing uncontrolled hemorrhage, sutureless wound closure, and infected wound repair.
Collapse
Affiliation(s)
- Yu Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zheng Pan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Kaiwen Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Ziran Zhu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 Xinhu Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
32
|
Chen K, Wang K, Pan Y, Zhang Y, Zhang J, Ji S, Yin M, Liu C, Qu X. Swift Covalent Gelation Coupled with Robust Wet Adhesive Powder: A Novel Approach for Acute Massive Hemorrhage Control in Dynamic and High-Pressure Wound Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311859. [PMID: 38643382 DOI: 10.1002/smll.202311859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Indexed: 04/22/2024]
Abstract
The quest for efficient hemostatic agents in emergency medicine is critical, particularly for managing massive hemorrhages in dynamic and high-pressure wound environments. Traditional self-gelling powders, while beneficial due to their ease of application and rapid action, fall short in such challenging conditions. To bridge this gap, the research introduces a novel self-gelling powder that combines ultrafast covalent gelation and robust wet adhesion, presenting a significant advancement in acute hemorrhage control. This ternary system comprises ε-polylysine (ε-PLL) and 4-arm polyethylene glycol succinyl succinate (4-arm-PEG-NHS) forming the hydrogel framework. Na2HPO4 functions as the "H+ sucker" to expedite the amidation reaction, slashing gelation time to under 10 s, crucial for immediate blood loss restriction. Moreover, PEG chains' hydrophilicity facilitates efficient absorption of interfacial blood, increasing the generated hydrogel's cross-linking density and strengthens its tissue bonding, thereby resulting in excellent mechanical and wet adhesion properties. In vitro experiments reveal the optimized formulation's exceptional tissue compliance, procoagulant activity, biocompatibility and antibacterial efficacy. In porcine models of heart injuries and arterial punctures, it outperforms commercial hemostatic agent Celox, confirming its rapid and effective hemostasis. Conclusively, this study presents a transformative approach to hemostasis, offering a reliable and potent solution for the emergency management of massive hemorrhage.
Collapse
Affiliation(s)
- Kangli Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Yi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiajun Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Shizhao Ji
- Department of Burn Surgery, Institute of Burns, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism Shanghai, Shanghai, 200237, China
| |
Collapse
|
33
|
Li S, Dou W, Zhu S, Zeng X, Ji W, Li X, Chen N, Li Y, Liu C, Fan H, Gao Y, Zhao J, Liu H, Hou X, Yuan X. Epidermal growth factor-loaded, dehydrated physical microgel-formed adhesive hydrogel enables integrated care of wet wounds. Int J Biol Macromol 2024; 275:133655. [PMID: 38969029 DOI: 10.1016/j.ijbiomac.2024.133655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Integrated wound care, a sequential process of promoting wound hemostasis, sealing, and healing, is of great clinical significance. However, the wet environment of wounds poses formidable challenges for integrated care. Herein, we developed an epidermal growth factor (EGF)-loaded, dehydrated physical microgel (DPM)-formed adhesive hydrogel for the integrated care of wet wounds. The DPMs were designed using the rational combination of hygroscopicity and reversible crosslinking of physical hydrogels. Unlike regular bioadhesives, which consider interfacial water as a barrier to adhesion, DPMs utilize water to form desirable adhesive structures. The hygroscopicity allowed the DPMs to absorb interfacial water and subsequently, the interfacial adhesion was realized by the interactions between tissue and DPMs. The reversible crosslinks further enabled DPMs to integrate into hydrogels (DPM-Gels), thus achieving wet adhesion. Importantly, the water-absorbing gelation mode of DPMs enabled facile loading of biologically active EGF to promote wound healing. We demonstrated that the DPM-Gels possessed wet tissue adhesive performance, with about 40 times the wet adhesive strength of fibrin glue and about 4 times the burst pressure of human blood pressure. Upon application at the injury site, the EGF-loaded DPM-Gels sequentially promoted efficient wound hemostasis, stable sealing, and quick healing, achieving integrated care of wet wounds.
Collapse
Affiliation(s)
- Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China.
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; College of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Weijun Ji
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yansheng Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, Shandong Province, China
| | - Chan Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Honglei Fan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 265503, Shandong Province, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
34
|
Bhowmik S, Baral B, Rit T, Jha HC, Das AK. Design and synthesis of a nucleobase functionalized peptide hydrogel: in vitro assessment of anti-inflammatory and wound healing effects. NANOSCALE 2024; 16:13613-13626. [PMID: 38958597 DOI: 10.1039/d4nr01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
35
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
36
|
Xia Y, Yan S, Wei H, Zhang H, Hou K, Chen G, Cao R, Zhu M. Multifunctional Porous Bilayer Artificial Skin for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34578-34590. [PMID: 38946497 DOI: 10.1021/acsami.4c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Meeting the exacting demands of wound healing encompasses rapid coagulation, superior exudate absorption, high antibacterial efficacy, and imperative support for cell growth. In this study, by emulating the intricate structure of natural skin, we prepare a multifunctional porous bilayer artificial skin to address these critical requirements. The bottom layer, mimicking the dermis, is crafted through freeze-drying a gel network comprising carboxymethyl chitosan (CMCs) and gelatin (GL), while the top layer, emulating the epidermis, is prepared via electrospinning poly(l-lactic acid) (PLLA) nanofibers. With protocatechuic aldehyde and gallium ion complexation (PA@Ga) as cross-linking agents, the bottom PA@Ga-CMCs/GL layer featured an adjustable pore size (78-138 μm), high hemostatic performance (67s), and excellent bacterial inhibition rate (99.9%), complemented by an impressive liquid-absorbing capacity (2000% swelling rate). The top PLLA layer, with dense micronanostructure and hydrophobic properties, worked as a shield to effectively thwarted liquid or bacterial penetration. Furthermore, accelerated wound closure, reduced inflammatory responses, and enhanced formation of hair follicles and blood vessels are achieved by the porous artificial skin covered on the surface of wound. Bilayer artificial skin integrates the advantages of nanofibers and freeze-drying porous materials to effectively replicate the protective properties of the epidermal layer of the skin, as well as the cell migration and tissue regeneration of the dermis. This bioabsorbable artificial skin demonstrates structural and functional comparability to real skin, which would advance the field of wound care through its multifaceted capabilities.
Collapse
Affiliation(s)
- Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Sai Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huidan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Han Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
37
|
Wang Y, Yang X, Yang Z, Xia H, Si X, Hao J, Yan D, Li H, Peng K, Sun J, Shi C, Li H, Li W. Additive-free Absorbable Keratin Sponge With Procoagulant Activity for Noncompressible Hemostasis. Biomacromolecules 2024; 25:3930-3945. [PMID: 38820501 DOI: 10.1021/acs.biomac.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The development of a natural, additive-free, absorbable sponge with procoagulant activity for noncompressible hemostasis remains a challenging task. In this study, we extracted high molecular weight keratin (HK) from human hair and transformed it into a hemostatic sponge with a well-interconnected pore structure using a foaming technique, freeze-drying, and oxidation cross-linking. By controlling the cross-linking degree, the resulting sponge demonstrated excellent liquid absorption ability, shape recovery characteristics, and robust mechanical properties. The HK10 sponge exhibited rapid liquid absorption, expanding up to 600% within 5 s. Moreover, the HK sponge showed superior platelet activation and blood cell adhesion capabilities. In SD rat liver defect models, the sponges demonstrated excellent hemostatic performance by sealing the wound and expediting coagulation, reducing the hemostatic time from 825 to 297 s. Furthermore, HK sponges have excellent biosafety, positioning them as a promising absorbable sponge with the potential for the treatment of noncompressible hemostasis.
Collapse
Affiliation(s)
- Yuzhen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Ziwei Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Hangbin Xia
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jiahui Hao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Dongxue Yan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Huili Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ke Peng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jie Sun
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
38
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
39
|
He G, Xian Y, Lin H, Yu C, Chen L, Chen Z, Hong Y, Zhang C, Wu D. An injectable and coagulation-independent Tetra-PEG hydrogel bioadhesive for post-extraction hemostasis and alveolar bone regeneration. Bioact Mater 2024; 37:106-118. [PMID: 39022616 PMCID: PMC11252469 DOI: 10.1016/j.bioactmat.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/20/2024] Open
Abstract
Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment, which remains an unmet clinical challenge. Herein, an injectable Tetra-PEG hydrogel that possesses rapid gelation, firm tissue adhesion, high mechanical strength, suitable degradability, and excellent biocompatibility is developed as a sutureless and coagulation-independent bioadhesive for the management of extraction sockets. Our results demonstrate that the rapid and robust adhesive sealing of the extraction socket by the Tetra-PEG hydrogel can provide reliable protection for the underlying wound and stabilize blood clots to facilitate tissue healing. In vivo experiments using an anticoagulated rat tooth extraction model show that the hydrogel significantly outperformed clinically used cotton and gelatin sponge in hemostatic efficacy, wound closure, alveolar ridge preservation, and in situ alveolar bone regeneration. Histomorphological evaluations reveal the mechanisms for accelerated bone repair through suppressed long-term inflammation, elevated collagen deposition, higher osteoblast activity, and enhanced angiogenesis. Together, our study highlights the clinical potential of the developed injectable Tetra-PEG hydrogel for treating anticoagulant-related post-extraction hemorrhage and improving socket healing.
Collapse
Affiliation(s)
- Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huajun Lin
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chengcheng Yu
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Luyuan Chen
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Zhihui Chen
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
40
|
Zhu X, Huang S, Ma S, Liu M, Kim YR, Xu Y, Luo K. Facile Synthesis of Multifunctional Mesoporous Starch-Based Microparticle for Effective Hemostasis and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30742-30754. [PMID: 38841831 DOI: 10.1021/acsami.4c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Uncontrolled hemorrhage and infection are the principal causes of mortality associated with trauma in both military and civilian medical settings. Modified starch granules have emerged as a safe hemostatic agent for irregular and noncompressible wounds, but their performance is constrained by limited hemostasis efficiency and modest antibacterial activity. This study reported a directed self-assembly approach for a multifunctional mesoporous starch-based microparticle loaded with chitosan and calcium ions (Ca@MSMP) used for rapid hemostasis and wound healing. Directed self-assembly of uniform Ca@MSMP with a hierarchical hollow structure in the presence of chitosan was confirmed by scanning electron microscopy (SEM) analysis and pore structure analysis. The resulting Ca@MSMP exhibited a well-defined spherical shape and uniform size of 1 μm and demonstrated excellent antibacterial activity (>95%) without hemolytic activity. Importantly, Ca@MSMP enhanced blood coagulation and platelet aggregation via the synergistic effect of rapid calcium release and chitosan-mediated electrostatic interactions, leading to a significant decrease in blood loss and reduction in hemostasis time in rat tail amputation and liver injury models. In comparative analyses, Ca@MSMP significantly outperformed the commercial hemostatic agent Quickclean, notably enhancing the healing of full-thickness skin wounds in vivo by effectively preventing infection. These results underscore the potential of this innovative hemostatic material in diverse clinical scenarios, offering effective solutions for the management of bleeding in wounds that are irregularly shaped and noncompressible.
Collapse
Affiliation(s)
- Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuyao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mengyao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, South Korea
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| |
Collapse
|
41
|
Fang Y, Lin Y, Wang L, Weng Y, Chen Q, Liu H. Clotting Blood into an Adhesive Gel by Hemostatic Powder Based on Cationic/Anionic Polysaccharides and Laponite. Biomacromolecules 2024; 25:3335-3344. [PMID: 38717974 DOI: 10.1021/acs.biomac.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hemostatic powder is widely employed for emergency bleeding control due to its ability to conform to irregularly shaped wounds, ease of use, and stable storage. However, current powders exhibit limited tissue adhesion and insufficient support for thrombus formation, making them easily washed away by blood. In this study, a hybrid powder (QAL) was produced by mixing quaternized chitosan (QCS) powder, catechol-modified alginate (Cat-SA) powder, and laponite (Lap) powder. Upon addition of QAL, the blood quickly transformed to a robust and adhesive blood gel. The adhesion strength of the blood gel was up to 31.33 ± 1.56 kPa. When compared with Celox, QAL showed superior performance in promoting hemostasis. Additionally, QAL exhibited effectiveness in eliminating bacteria while also demonstrating outstanding biocompatibility with cells and blood. These favorable properties, including strong coagulation, adhesion to wet tissue, antibacterial activity, biosafety, ease of use, and stable storage, make QAL a promising emergency hemostatic agent.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| |
Collapse
|
42
|
Zhang X, Ning F, Chen Y, Dong CM. All-in-one polysaccharide hydrogel with resistant vascular burst pressure and cooperative wound microenvironment regulation for fatal arterial hemorrhage and diabetic wound healing. Int J Biol Macromol 2024; 272:132736. [PMID: 38830494 DOI: 10.1016/j.ijbiomac.2024.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Fatal massive hemorrhage and diabetic wound healing are world widely challenging in surgical managements, and uncontrolled bleeding, chronic inflammation and damaged remodeling heavily hinder the whole healing processes. Considering hemostasis, inflammation and wound microenvironment cooperatively affect the healing progression, we design all-in-one beta-glucan (BG) hybrid hydrogels reinforced with laponite nanoclay that demonstrate tunable tissue adhesion, resistant vascular burst pressure and cooperative wound microenvironment regulation for arterial hemostasis and diabetic wound prohealing. Those hydrogels had honeycomb-like porous microstructure with average pore size of 7-19 μm, tissue adhesion strength of 18-46 kPa, and vascular burst pressure of 58-174 mmHg to achieve superior hemostasis in rat liver and femoral artery models. They could effectively scavenge reactive oxygen species, transform macrophages from proinflammatory M1 into prohealing M2, and shorten the inflammation duration via synergistic actions of BG and nitric oxide (NO). Single treatment of NO-releasing BG hybrid hydrogels attained complete closure of diabetic wounds within 14 days, orchestrated to accelerate the epithelization and dermis growth, and restored normal vascularization, achieving high performance healing with optimal collagen deposition and hair follicle regeneration. Consequently, this work opens up a new avenue to design all-in-one polysaccharide hydrogels for applications in massive bleeding hemostats and diabetic wound dressings.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fangrui Ning
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
43
|
Zhao G, Lu G, Fan H, Wei L, Yu Q, Li M, Li H, Yu N, Wang S, Lu M. Herbal Products-Powered Thermosensitive Hydrogel with Phototherapy and Microenvironment Reconstruction for Accelerating Multidrug-Resistant Bacteria-Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400049. [PMID: 38416676 DOI: 10.1002/adhm.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Indexed: 03/01/2024]
Abstract
Wound healing and infection remain significant challenges due to the ineffectiveness against multidrug-resistant (MDR) bacteria and the complex oxidative wound microenvironments. To address these issues, thymoquinone-reinforced injectable and thermosensitive TQ@PEG-PAF-Cur hydrogels with dual functions of microenvironment reshaping and photodynamic therapy are developed. The hydrogel comprises natural compound thymoquinone (TQ) and poly (ethylene glycol)-block-poly (alanine-co-phenyl alanine) copolymers (PEG-PAF) conjugated with natural photosensitizer curcumin (Cur). The incorporation of TQ and Cur reduces the sol-to-gel transition temperature of TQ@PEG-PAF-Cur to 30°C, compared to PEG-PAF hydrogel (37°C), due to the formation of strong hydrogen bonding, matching the wound microenvironment temperature. Under blue light excitation, TQ@PEG-PAF-Cur generates significant amounts of reactive oxygen species such as H2O2, 1O2, and ·OH, exhibiting rapid and efficient bactericidal capacities against methicillin-resistant Staphylococcus aureus and broad spectrum β-lactamases Escherichia coli via photodynamic therapy (PDT). Additionally, Cur effectively inhibits the expressions of proinflammatory cytokines in skin tissue-forming cells. As a result, the composite hydrogel can rapidly transform into a gel to cover the wound, reshape the wound microenvironment, and accelerate wound healing in vivo. This collaborative antibacterial strategy provides valuable insights to guide the development of multifunctional materials for efficient wound healing.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Guanghua Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Huizhen Fan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ming Li
- Departments of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Hanqing Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shen Wang
- Departments of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| |
Collapse
|
44
|
Hu J, Hu Y, Kang M, Liu X, Wu B, Wang L, Wei Y, Huang D. Sodium alginate/carboxycellulose/polydopamine composite microspheres for rapid hemostasis of deep irregular wounds. Colloids Surf B Biointerfaces 2024; 238:113905. [PMID: 38593680 DOI: 10.1016/j.colsurfb.2024.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/11/2024]
Abstract
Hemostasis of deep irregular wounds is a severe problem in clinical practice. The development of rapid-acting hemostatic agents for deep and irregular wound is urgently needed. Here, sodium alginate/carboxycellulose/polydopamine (SA/CNF/PDA) microspheres was prepared by reverse emulsification and crosslinking with Ca2+, and SA/CNF/PDA composite hemostatic microspheres with porous structure were obtained by freeze-drying. SA/CNF/PDA composite hemostatic microspheres exhibited excellent porosity and water absorption which could rapidly absorb blood on the wound surface. Moreover, SA/CNF/PDA composite microspheres demonstrated remarkable hemostatic capabilities both in vitro and in vivo. It exhibited strong hemostatic performance in models of mouse tail-break and liver damage. Especially in liver injury model, it was completely hemostatic in 95 s, and blood loss (19.3 mg). The hemostatic efficacy of the SA/CNF/PDA composite microspheres was amplified through the stimulation of both exogenous and endogenous coagulation pathways. Therefore, SA/CNF/PDA composite hemostatic microspheres are suitable for rapid hemostasis of deep irregular wounds which are potential rapid hemostatic material for surgical application.
Collapse
Affiliation(s)
- Junjie Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xuanyu Liu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baogang Wu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Lining Wang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
45
|
Fang Y, Lin Y, Wang L, Chen Q, Weng Y, Liu H. Gluing blood into adhesive gel by oppositely charged polysaccharide dry powder inspired by fibrin fibers coagulation mediator. Carbohydr Polym 2024; 333:121998. [PMID: 38494208 DOI: 10.1016/j.carbpol.2024.121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Hemostatic powders that adapt to irregularly shaped wounds, allowing for easy application and stable storage, have gained popularity for first-aid hemorrhage control. However, traditional powders often provide weak thrombus support and exhibit limited tissue adhesion, making them susceptible to dislodgment by the bloodstream. Inspired by fibrin fibers coagulation mediator, we have developed a bi-component hemostatic powder composed of positively charged quaternized chitosan (QCS) and negatively charged catechol-modified alginate (Cat-SA). Upon application to the wound, the bi-component powders (QCS/Cat-SA) rapidly absorb plasma and dissolve into chains. These chains interact with each other to form a network, which can effectively bind and entraps clustered red blood cells and platelets, ultimately leading to the creation of a durable and robust thrombus. Significantly, these interconnected polymers adhere to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from these synthetic properties, QCS/Cat-SA demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox™ in both arterial injuries and non-compressible liver puncture wounds. Importantly, QCS/Cat-SA exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of QCS/Cat-SA, including strong blood clotting, wet tissue adherence, antibacterial activity, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
46
|
Wang H, Ke X, Tang S, Ren K, Chen Q, Li C, Ran W, Ding C, Yang J, Luo J, Li J. Natural Underwater Bioadhesive Offering Cohesion Modulation via Hydrogen Bond Disruptor: A Highly Injectable and in Vivo Stable Remedy for Gastric Ulcer Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307628. [PMID: 38191883 DOI: 10.1002/smll.202307628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Injectable bioadhesives are attractive for managing gastric ulcers through minimally invasive procedures. However, the formidable challenge is to develop bioadhesives that exhibit high injectability, rapidly adhere to lesion tissues with fast gelation, provide reliable protection in the harsh gastric environment, and simultaneously ensure stringent standards of biocompatibility. Here, a natural bioadhesive with tunable cohesion is developed based on the facile and controllable gelation between silk fibroin and tannic acid. By incorporating a hydrogen bond disruptor (urea or guanidine hydrochloride), the inherent network within the bioadhesive is disturbed, inducing a transition to a fluidic state for smooth injection (injection force <5 N). Upon injection, the fluidic bioadhesive thoroughly wets tissues, while the rapid diffusion of the disruptor triggers instantaneous in situ gelation. This orchestrated process fosters the formed bioadhesive with durable wet tissue affinity and mechanical properties that harmonize with gastric tissues, thereby bestowing long-lasting protection for ulcer healing, as evidenced through in vitro and in vivo verification. Moreover, it can be conveniently stored (≥3 m) postdehydration. This work presents a promising strategy for designing highly injectable bioadhesives utilizing natural feedstocks, avoiding any safety risks associated with synthetic materials or nonphysiological gelation conditions, and offering the potential for minimally invasive application.
Collapse
Affiliation(s)
- Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, P. R. China
| | - Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qi Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chichi Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenbin Ran
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, 610014, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
47
|
Yang J, Wan T, Yang K, Wang D, Chen R, Dong Q, Huang C, Zhou Y. Expansion-clotting chitosan fabrics based on unidirectional fast-absorption fibers for rapid hemorrhage control. Int J Biol Macromol 2024; 272:132930. [PMID: 38848843 DOI: 10.1016/j.ijbiomac.2024.132930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The rapid absorption of water from the blood to concentrate erythrocytes and platelets, thus triggering quick closure, is important for hemostasis. Herein, expansion-clotting chitosan fabrics are designed and fabricated by ring spinning of polylactic acid (PLA) filaments as the core layer and highly hydrophilic carboxyethyl chitosan (CECS) fibers as the sheath layer, and subsequent knitting of obtained PLA@CECS core spun yarns. Due to the unidirectional fast-absorption capacity of CECS fibers, the chitosan fabrics can achieve erythrocytes and platelets aggregate quickly by concentrating blood, thus promoting the formation of blood clots. Furthermore, the loop structure of coils formed in the knitted fabric can help them to expand by absorbing water to close their pores, providing effective sealing for bleeding. Besides, They have enough mechanical properties, anti-penetrating ability, and good tissue-adhesion ability in wet conditions, which can form a physical barrier to resist blood pressure during hemostasis and prevent them from falling off the wound, thus enhancing hemostasis synergistically. Therefore, the fabrics exhibit superior hemostatic performance in the rabbit liver, spleen, and femoral artery puncture injury model compared to the gauze group. This chitosan fabric is a promising hemostatic material for hemorrhage control.
Collapse
Affiliation(s)
- Junfeng Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Tingting Wan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Kaidan Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Daoquan Wang
- Tobacco Fujian Industrial Co., Ltd, Xiamen 361000, People's Republic of China
| | - Ruina Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Chaozhang Huang
- Tobacco Fujian Industrial Co., Ltd, Xiamen 361000, People's Republic of China.
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China; College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China.
| |
Collapse
|
48
|
Liu H, Yu S, Liu B, Xiang S, Jiang M, Yang F, Tan W, Zhou J, Xiao M, Li X, Richardson JJ, Lin W, Zhou J. Space-Efficient 3D Microalgae Farming with Optimized Resource Utilization for Regenerative Food. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401172. [PMID: 38483347 DOI: 10.1002/adma.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Photosynthetic microalgae produce valuable metabolites and are a source of sustainable food that supports life without compromising arable land. However, the light self-shading, excessive water supply, and insufficient space utilization in microalgae farming have limited its potential in the inland areas most in need of regenerative food solutions. Herein, this work develops a 3D polysaccharide-based hydrogel scaffold for vertically farming microalgae without needing liquid media. This liquid-free strategy is compatible with diverse microalgal species and enables the design of living microalgal frameworks with customizable architectures that enhance light and water utilization. This approach significantly increases microalgae yield per unit water consumption, with an 8.8-fold increase compared to traditional methods. Furthermore, the dehydrated hydrogels demonstrate a reduced size and weight (≈70% reduction), but readily recover their vitality upon rehydration. Importantly, valuable natural products can be produced in this system including proteins, carbohydrates, lipids, and carotenoids. This study streamlines microalgae regenerative farming for low-carbon biomanufacturing by minimizing light self-shading, relieving water supply, and reducing physical footprints, and democratizing access to efficient aquatic food production.
Collapse
Affiliation(s)
- Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Siqin Yu
- Department of Energy Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shuhong Xiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Minwen Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Weiwei Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jianfei Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| | - Ming Xiao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wei Lin
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| |
Collapse
|
49
|
Lu S, Wu H, Ge S, Huang L, Chen L, Connor C, Guo Z, Jiang Y, Xu BB, Peng W. A Cellulose/Chitosan Dual Cross-Linked Multifunctional and Resilient Hydrogel for Emergent Open Wound Management. Adv Healthc Mater 2024; 13:e2304676. [PMID: 38294131 PMCID: PMC11468647 DOI: 10.1002/adhm.202304676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Adhesive hydrogel holds huge potential in biomedical applications, such as hemostasis and emergent wound management during outpatient treatment or surgery. However, most adhesive hydrogels underperform to offer robust adhesions on the wet tissue, increasing the risk of hemorrhage and reducing the fault tolerance of surgery. To address this issue, this work develops a polysaccharide-based bioadhesive hydrogel tape (ACAN) consisting of dual cross-linking of allyl cellulose (AC) and carboxymethyl chitosan (CMCS). The hygroscopicity of AC and CMCS networks enables ACAN to remove interfacial water from the tissue surface and initializes a physical cross-link instantly. Subsequently, covalent cross-links are developed with amine moieties to sustain long-term and robust adhesion. The dual cross-linked ACAN also has good cytocompatibility with controllable mechanical properties matching to the tissue, where the addition of CMCS provides remarkable antibacterial properties and hemostatic capability. Moreover, compared with commercially available 3 M film, ACAN provides an ultrafast wound healing on tissue. The ACAN hybrid hydrogels have advantages such as biocompatibility and antibacterial, hemostatic, and wound healing properties, shedding new light on first-aid tape design and advancing the cellulose-based materials technology for high-performance biomedical applications.
Collapse
Affiliation(s)
- Shengchang Lu
- School of ForestryHenan Agricultural UniversityZhengzhou450002P. R. China
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional MaterialsFuzhouFujian350002P. R. China
| | - Hui Wu
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional MaterialsFuzhouFujian350002P. R. China
| | - Shengbo Ge
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Liulian Huang
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional MaterialsFuzhouFujian350002P. R. China
| | - Lihui Chen
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional MaterialsFuzhouFujian350002P. R. China
| | - Chris Connor
- Mechanical and Construction EngineeringNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Zhanhu Guo
- Mechanical and Construction EngineeringNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Yunhong Jiang
- Hub for Biotechnology in the Built EnvironmentDepartment of Applied SciencesNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Ben Bin Xu
- Mechanical and Construction EngineeringNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Wanxi Peng
- School of ForestryHenan Agricultural UniversityZhengzhou450002P. R. China
| |
Collapse
|
50
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|