1
|
Zhang BW, Fajer M, Chen W, Moraca F, Wang L. Leveraging the Thermodynamics of Protein Conformations in Drug Discovery. J Chem Inf Model 2024. [PMID: 39681511 DOI: 10.1021/acs.jcim.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As the name implies, structure-based drug design requires confidence in the holo complex structure. The ability to clarify which protein conformation to use when ambiguity arises would be incredibly useful. We present a large scale validation of the computational method Protein Reorganization Free Energy Perturbation (PReorg-FEP) and demonstrate its quantitative accuracy in selecting the correct protein conformation among candidate models in apo or ligand induced states for 14 different systems. These candidate conformations are pulled from various drug discovery related campaigns: cryptic conformations induced by novel hits in lead identification, binding site rearrangement during lead optimization, and conflicting structural biology models. We also show an example of a pH-dependent conformational change, relevant to protein design.
Collapse
Affiliation(s)
- Bin W Zhang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Mikolai Fajer
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Wei Chen
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Francesca Moraca
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Lingle Wang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| |
Collapse
|
2
|
Ali AAAI, Dorbath E, Stock G. Allosteric Communication Mediated by Protein Contact Clusters: A Dynamical Model. J Chem Theory Comput 2024; 20:10731-10739. [PMID: 39576941 DOI: 10.1021/acs.jctc.4c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Describing the puzzling phenomenon of long-range communication between distant protein sites, allostery is of paramount importance in biomolecular regulation and signal transduction. It is commonly assumed to arise from a conformational rearrangement of the protein, although the underlying dynamical process has remained largely elusive. This study introduces a dynamical model of allosteric communication based on "contact clusters"─localized groups of highly correlated contacts that facilitate interactions between secondary structures. The model shows that allostery involves a multistep process with cooperative contact changes within clusters and communication between distant clusters mediated by rigid secondary structures. Considering time-dependent experiments on a photoswitchable PDZ3 domain, extensive (in total ∼500 μs) molecular dynamics simulations are conducted that directly monitor the photoinduced allosteric transition. The structural reorganization is illustrated by the time evolution of the contact clusters and the ligand, which effects the nonlocal coupling between distant clusters. A time scale analysis reveals dynamics from nano- to microseconds, which are in excellent agreement with the experimentally measured time scales. While the simulation of larger systems may require enhanced sampling techniques, it is expected that the general picture of allostery mediated by communicating contact clusters will still be applicable.
Collapse
Affiliation(s)
- Ahmed A A I Ali
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Emanuel Dorbath
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Liu X, Guo P, Yu Q, Gao SQ, Yuan H, Tan X, Lin YW. Site-specific incorporation of 19F-nulcei at protein C-terminus to probe allosteric conformational transitions of metalloproteins. Commun Biol 2024; 7:1613. [PMID: 39627324 PMCID: PMC11615248 DOI: 10.1038/s42003-024-07331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Allosteric conformational change is an important paradigm in the regulation of protein function, which is typically triggered by the binding of small cofactors, metal ions or protein partners. Here, we found those conformational transitions can be effectively monitored by 19F NMR, facilitated by a site-specific 19F incorporation strategy at the protein C-terminus using asparaginyl endopeptidase (AEP). Three case studies show that C-terminal 19F-nuclei can reveal protein dynamics not only adjacent but also distal to C-terminus, including those occurring in a hemoprotein neuroglobin (Ngb), calmodulin (CaM), and a cobalt metalloregulator (CoaR) responding to both cobalt and tetrapyrrole. In Ngb, the heme orientation disorder is affected by missense mutations that perturb backbone rigidity or surface charges close to the heme axial ligands. In CaM, the C-terminal 19F-nuclei is an ideal probe for detecting the binding states of Ca2+, peptides and inhibitors. Furthermore, multiple 19F-moieties were incorporated into the two domains of CoaR, revealing the intrinsically disordered C-terminal metal binding tail might be an allosteric conformational switch to maintain cobalt homeostasis and balance corrinoid biosynthesis. This study demonstrates that the AEP-based 19F-modification strategy can be applied to various targets to study allosteric regulation, especially for those biological processes modulated by the protein C-terminus.
Collapse
Affiliation(s)
- Xichun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
| | - Pengfei Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Qiufan Yu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Kannan A, Naganathan AN. Engineering the native ensemble to tune protein function: Diverse mutational strategies and interlinked molecular mechanisms. Curr Opin Struct Biol 2024; 89:102940. [PMID: 39393291 DOI: 10.1016/j.sbi.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Natural proteins are fragile entities, intrinsically sensitive to perturbations both at the level of sequence and their immediate environment. Here, we highlight the diverse strategies available for engineering function through mutations influencing backbone conformational entropy, charge-charge interactions, and in the loops and hinge regions, many of which are located far from the active site. It thus appears that there are potentially numerous ways to microscopically vary the identity of residues and the constituent interactions to tune function. Functional modulation could occur via changes in native-state stability, altered thermodynamic coupling extents within the folded structure, redistributed dynamics, or through modulation of the population of conformational substates. As these mechanisms are intrinsically linked and given the pervasive long-range effects of mutations, it is crucial to consider the interaction network as a whole and fully map the native conformational landscape to place mutational effects in the context of allostery and protein evolution.
Collapse
Affiliation(s)
- Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
5
|
Baratam K, Srivastava A. SOP-MULTI: A Self-Organized Polymer-Based Coarse-Grained Model for Multidomain and Intrinsically Disordered Proteins with Conformation Ensemble Consistent with Experimental Scattering Data. J Chem Theory Comput 2024; 20:10179-10198. [PMID: 39499823 DOI: 10.1021/acs.jctc.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Multidomain proteins with long flexible linkers and full-length intrinsically disordered proteins (IDPs) are best defined as an ensemble of conformations rather than a single structure. Determining high-resolution ensemble structures of such proteins poses various challenges by using tools from experimental structural biophysics. Integrative approaches combining available low-resolution ensemble-averaged experimental data and in silico biomolecular reconstructions are now often used for the purpose. However, extensive Boltzmann weighted conformation sampling for large proteins, especially for ones where both the folded and disordered domains exist in the same polypeptide chain, remains a challenge. In this work, we present a 2-site per amino-acid resolution SOP-MULTI force field for simulating coarse-grained models of multidomain proteins. SOP-MULTI combines two well-established self-organized polymer models─: (i) SOP-SC models for folded systems and (ii) SOP-IDP for IDPs. For the SOP-MULTI, we introduce cross-interaction terms between the beads belonging to the folded and disordered regions to generate conformation ensembles for full-length multidomain proteins such as hnRNP A1, TDP-43, G3BP1, hGHR-ECD, TIA1, HIV-1 Gag, polyubiquitin, and FUS. When back-mapped to all-atom resolution, SOP-MULTI trajectories faithfully recapitulate the scattering data over the range of the reciprocal space. We also show that individual folded domains preserve native contacts with respect to solved folded structures, and root-mean-square fluctuations of residues in folded domains match those obtained from all-atom molecular dynamics simulation trajectories of the same folded systems. SOP-MULTI force field is made available as a LAMMPS-compatible user package along with setup codes for generating the required files for any full-length protein with folded and disordered regions.
Collapse
Affiliation(s)
- Krishnakanth Baratam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
6
|
Hossain MA, Islam MR, Faruk O, Zendo T, Uddin MA, Khan H, Islam MR. Unveiling the biosynthesis mechanism of novel lantibiotic homicorcin: an in silico analysis. Sci Rep 2024; 14:28893. [PMID: 39572767 PMCID: PMC11582666 DOI: 10.1038/s41598-024-80514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
Jute endophyte Staphylococcus hominis strain MBL_AB63 was reported to produce a novel antimicrobial peptide, 'homicorcin'. This exhibits potential activity against a broad spectrum of Gram-positive bacteria. Eight genes were predicted to be involved in the sequential maturation of this peptide antibiotic, which includes structural (homA), dehydratase (homB), cyclase (homC), peptidase (homP), immunity (homI), oxidoreductase (homO), ATP-binding cassette transporter (homT1), and permease (homT2), respectively. Among the modification enzymes, HomB, HomC, and HomP exhibit sequence similarities with class I lantibiotic dehydratase, cyclase, and leader peptidase, respectively. The current study investigated the sequential modifications and secretion of homicorcin by constructing robust computational protein models and analyzing their interaction patterns using protein-protein docking techniques. To enhance comprehension of the protein arrangement, their subcellular localization was also extrapolated. The findings demonstrate a network of proteins that works in a synchronized manner, where HomC functions as an intermediary between HomB and the transporter (HomT). Following its dehydration by HomB and cyclization by HomC, the pro-homicorcin is taken out of the cell by the transporter and processed by HomP, resulting in the production of matured, processed homicorcin. This biosynthesis model for homicorcin will lay the groundwork for the sustainable and efficient production of this peptide antibiotic.
Collapse
Affiliation(s)
- Md Amzad Hossain
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rakibul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Omar Faruk
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - M Aftab Uddin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
7
|
Jiang Z, van Vlimmeren AE, Karandur D, Semmelman A, Shah NH. Deep mutational scanning of a multi-domain signaling protein reveals mechanisms of regulation and pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593907. [PMID: 39091798 PMCID: PMC11291063 DOI: 10.1101/2024.05.13.593907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Multi-domain signaling enzymes are often regulated through extensive inter-domain interactions, and disruption of inter-domain interfaces by mutations can lead to aberrant signaling and diseases. For example, the tyrosine phosphatase SHP2 contains two phosphotyrosine recognition domains that auto-inhibit its catalytic domain. SHP2 is canonically activated by binding of these non-catalytic domains to phosphoproteins, which destabilizes the auto-inhibited state, but numerous mutations at the main auto-inhibitory interface have been shown to hyperactivate SHP2 in cancers and developmental disorders. Hundreds of clinically observed mutations in SHP2 have not been characterized, but their locations suggest alternative modes of dysregulation. We performed deep mutational scanning on full-length SHP2 and the isolated phosphatase domain to dissect mechanisms of SHP2 dysregulation. Our analysis revealed mechanistically diverse mutational effects and identified key intra- and inter-domain interactions that contribute to SHP2 activity, dynamics, and regulation. Our datasets also provide insights into the potential pathogenicity of previously uncharacterized clinical variants.
Collapse
|
8
|
Lee E, Rauscher S. The Conformational Space of the SARS-CoV-2 Main Protease Active Site Loops Is Determined by Ligand Binding and Interprotomer Allostery. Biochemistry 2024. [PMID: 39513739 DOI: 10.1021/acs.biochem.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is essential for viral replication and is, therefore, an important drug target. Here, we investigate two flexible loops in Mpro that play a role in catalysis. Using all-atom molecular dynamics simulations, we analyze the structural ensemble of Mpro in an apo state and substrate-bound state. We find that the flexible loops can adopt open, intermediate (partly open), and closed conformations in solution, which differs from the partially closed state observed in crystal structures of Mpro. When the loops are in closed or intermediate states, the catalytic residues are more likely to be in close proximity, which is crucial for catalysis. Additionally, we find that substrate binding to one protomer of the homodimer increases the frequency of intermediate states in the bound protomer while also affecting the structural propensity of the apo protomer's flexible loops. Using dynamic network analysis, we identify multiple allosteric pathways connecting the two active sites of the homodimer. Common to these pathways is an allosteric hotspot involving the N-terminus, a critical region that comprises part of the binding pocket. Taken together, the results of our simulation study provide detailed insight into the relationships between the flexible loops and substrate binding in a prime drug target for COVID-19.
Collapse
Affiliation(s)
- Ethan Lee
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
9
|
Ozguney B, Mohanty P, Mittal J. RNA binding tunes the conformational plasticity and intradomain stability of TDP-43 tandem RNA recognition motifs. Biophys J 2024; 123:3844-3855. [PMID: 39354713 PMCID: PMC11560306 DOI: 10.1016/j.bpj.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a nuclear RNA/DNA-binding protein with pivotal roles in RNA-related processes such as splicing, transcription, transport, and stability. The high binding affinity and specificity of TDP-43 toward its cognate RNA sequences (GU-rich) is mediated by highly conserved residues in its tandem RNA recognition motif (RRM) domains (aa: 104-263). Importantly, the loss of RNA binding to the tandem RRMs caused by physiological stressors and chemical modifications promotes cytoplasmic mislocalization and pathological aggregation of TDP-43. Despite the substantial implications of RNA binding in TDP-43 function and pathology, its precise effects on the intradomain stability, and conformational dynamics of the tandem RRMs is not properly understood. Here, we employed all-atom molecular dynamics (MD) simulations to assess the effect of RNA binding on the conformational landscape and intradomain stability of TDP-43 tandem RRMs. RNA limits the overall conformational space of the tandem RRMs and promotes intradomain stability through a combination of specific base stacking interactions and transient electrostatic interactions. In contrast, tandem RRMs exhibit a high intrinsic conformational plasticity in the absence of RNA, which, surprisingly, is accompanied by a tendency of RRM1 to adopt partially unfolded conformations. Overall, our simulations reveal how RNA binding dynamically tunes the structural and conformational landscape of TDP-43 tandem RRMs, contributing to physiological function and mitigating pathological aggregation.
Collapse
Affiliation(s)
- Busra Ozguney
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas.
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas; Department of Chemistry, Texas A&M University, College Station, Texas; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Chen G, Khan IM, Zhang T, Campanella OH, Miao M. Alternansucrase as a key enabling tool of biotransformation from molecular features to applications: A review. Int J Biol Macromol 2024; 279:135096. [PMID: 39214198 DOI: 10.1016/j.ijbiomac.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alternansucrase (ASR), classified in GH70, produces unique α-glucans with alternating α-1,3 and α-1,6 glycosidic linkages in the backbone chain from renewable sucrose which is easily obtained from nature with low cost. ASR has synthesized many products with valuable functionalities that hold enormous commercial interest and promising applications. The influence of biocatalysis and fermentation parameters on the yields, and properties of products are critical for the propositions made to promote the enzyme application. Investigations on ASR have been compiled in the review to provide information on the enzyme, products and parameters. This review summarizes studies on the characteristics, conversion mechanism, products, and beneficial applications of ASR and exhibits structure-based technologies to improve enzyme activity, specificity, and thermostability for industrial applications. Finally, prospects for further development are also proposed for various ASR applications in food and other fields.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Osvaldo H Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
12
|
Hatstat AK, Kormos R, Xu V, DeGrado WF. A designed Zn 2+ sensor domain transmits binding information to transmembrane histidine kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621206. [PMID: 39553995 PMCID: PMC11565981 DOI: 10.1101/2024.10.30.621206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Generating stimulus-responsive, allosteric signaling de novo is a significant challenge in protein design. In natural systems like bacterial histidine kinases (HKs), signal transduction occurs when ligand binding initiates a signal that is amplified across biological membranes over long distances to induce large-scale rearrangements and phosphorylation relays. Here, we ask whether our understanding of protein design and multi-domain, intramolecular signaling has progressed sufficiently to enable engineering of a HK with tunable de novo components. We generated de novo metal-binding sensor domains and substituted them for the native sensor domain of a transmembrane HK, affording chimeras that transduce signals initiated from a de novo sensor. Signaling depended on the designed sensor's stability and the interdomain linker's phase and length. These results show the usefulness of de novo design to elucidate biochemical mechanisms and principles for design of new signaling systems.
Collapse
|
13
|
Sun J, Boyle AL, Brünle S, Ubbink M. A low-barrier proton shared between two aspartates acts as a conformational switch that changes the substrate specificity of the β-lactamase BlaC. Int J Biol Macromol 2024; 278:134665. [PMID: 39134195 DOI: 10.1016/j.ijbiomac.2024.134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Serine β-lactamases inactivate β-lactam antibiotics in a two-step mechanism comprising acylation and deacylation. For the deacylation step, a water molecule is activated by a conserved glutamate residue to release the adduct from the enzyme. The third-generation cephalosporin ceftazidime is a poor substrate for the class A β-lactamase BlaC from Mycobacterium tuberculosis but it can be hydrolyzed faster when the active site pocket is enlarged, as was reported for mutant BlaC P167S. The conformational change in the Ω-loop of the P167S mutant displaces the conserved glutamate (Glu166), suggesting it is not required for deacylation of the ceftazidime adduct. Here, we report the characterization of wild type BlaC and BlaC E166A at various pH values. The presence of Glu166 strongly enhances activity against nitrocefin but not ceftazidime, indicating it is indeed not required for deacylation of the adduct of the latter substrate. At high pH wild type BlaC was found to exist in two states, one of which converts ceftazidime much faster, resembling the open state previously reported for the BlaC mutant P167S. The pH-dependent switch between the closed and open states is caused by the loss at high pH of a low-barrier hydrogen bond, a proton shared between Asp172 and Asp179. These results illustrate how readily shifts in substrate specificity can occur as a consequence of subtle changes in protein structure.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Steffen Brünle
- Biophysical Structure Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
14
|
Rwere F, Cartee NMP, Yang Y, Waskell L. A flexible linker of 8-amino acids between the membrane binding segment and the FMN domain of cytochrome P450 reductase is necessary for optimal activity. J Inorg Biochem 2024; 259:112667. [PMID: 39032346 PMCID: PMC11298297 DOI: 10.1016/j.jinorgbio.2024.112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The diflavin NADPH-cytochrome P450 reductase (CYPOR) plays a critical role in human cytochrome P450 (CYP) activity by sequentially delivering two electrons from NADPH to CYP enzymes during catalysis. Although electron transfer to forty-eight human CYP enzymes by the FMN hydroquinone of CYPOR is well-known, the role of the linker between the NH2-terminus membrane-binding domain (MBD) and FMN domain in supporting the activity of P450 enzymes remains poorly understood. Here we demonstrate that a linker with at least eight residues is required to form a functional CYPOR-CYP2B4 complex. The linker has been shortened in two amino-acid increments from Phe44 to Ile57 using site directed mutagenesis. The ability of the deletion mutants to support cytochrome P450 2B4 (CYP2B4) catalysis and reduce ferric CYP2B4 was determined using an in vitro assay and stopped-flow spectrophotometry. Steady-state enzyme kinetics showed that shortening the linker by 8-14 amino acids inhibited (63-99%) the ability of CYPOR to support CYP2B4 activity and significantly increased the Km of CYPOR for CYP2B4. In addition, the reductase mutants decreased the rate of reduction of ferric CYP2B4 (46-95%) compared to wildtype when the linker was shortened by 8-14 residues. These results indicate that a linker with a minimum length of eight residues is necessary to enable the FMN domain of reductase to interact with CYP2B4 to form a catalytically competent complex. Our study provides evidence that the length of the MBD-FMN domain linker is a major determinant of the ability of CYPOR to support CYP catalysis and drug metabolism by P450 enzymes. PREAMBLE: This manuscript is dedicated in memory of Dr. James R. Kincaid who was the doctoral advisor to Dr. Freeborn Rwere and a longtime collaborator and friend of Dr. Lucy Waskell. Dr. James R. Kincaid was a distinguished professor of chemistry specializing in resonance Raman (rR) studies of heme proteins. He inspired Dr. Rwere (a Zimbabwean native) and three other Zimbabweans (Dr. Remigio Usai, Dr. Daniel Kaluka and Ms. Munyaradzi E. Manyumwa) to use lasers to document subtle changes occurring at heme active site of globin proteins (myoglobin and hemoglobin) and cytochrome P450 enzymes. Dr. Rwere appreciate his contributions to the development of talented Black scientists from Africa.
Collapse
Affiliation(s)
- Freeborn Rwere
- Department of Anesthesiology, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI, USA; Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, 3174 Porter Dr, Palo Alto, CA, USA.
| | - Naw May P Cartee
- Department of Anesthesiology, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI, USA
| | - Yuting Yang
- Department of Anesthesiology, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VAMC, 2215 Fuller Road, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Caetano-Anollés K, Aziz MF, Mughal F, Caetano-Anollés G. On Protein Loops, Prior Molecular States and Common Ancestors of Life. J Mol Evol 2024; 92:624-646. [PMID: 38652291 PMCID: PMC11458777 DOI: 10.1007/s00239-024-10167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
The principle of continuity demands the existence of prior molecular states and common ancestors responsible for extant macromolecular structure. Here, we focus on the emergence and evolution of loop prototypes - the elemental architects of protein domain structure. Phylogenomic reconstruction spanning superkingdoms and viruses generated an evolutionary chronology of prototypes with six distinct evolutionary phases defining a most parsimonious evolutionary progression of cellular life. Each phase was marked by strategic prototype accumulation shaping the structures and functions of common ancestors. The last universal common ancestor (LUCA) of cells and viruses and the last universal cellular ancestor (LUCellA) defined stem lines that were structurally and functionally complex. The evolutionary saga highlighted transformative forces. LUCA lacked biosynthetic ribosomal machinery, while the pivotal LUCellA lacked essential DNA biosynthesis and modern transcription. Early proteins therefore relied on RNA for genetic information storage but appeared initially decoupled from it, hinting at transformative shifts of genetic processing. Urancestral loop types suggest advanced folding designs were present at an early evolutionary stage. An exploration of loop geometric properties revealed gradual replacement of prototypes with α-helix and β-strand bracing structures over time, paving the way for the dominance of other loop types. AlphFold2-generated atomic models of prototype accretion described patterns of fold emergence. Our findings favor a ‛processual' model of evolving stem lines aligned with Woese's vision of a communal world. This model prompts discussing the 'problem of ancestors' and the challenges that lie ahead for research in taxonomy, evolution and complexity.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Callout Biotech, Albuquerque, NM, 87112, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Chong W, Zhang Z, Li Z, Meng S, Nian B, Hu Y. Hook loop dynamics engineering transcended the barrier of activity-stability trade-off and boosted the thermostability of enzymes. Int J Biol Macromol 2024; 278:134953. [PMID: 39181358 DOI: 10.1016/j.ijbiomac.2024.134953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The improvement of enzyme thermostability often accompanies the decreased activity due to the loss of the key regions' flexibility. As a representative structure, unlocking the potential of loop dynamics will not only provide new ideas for stabilization strategies, but also help to deepen the understanding of the relationship between enzyme structural dynamics and function. In this study, a creative "hook loop dynamics engineering" (HLoD) strategy was successfully proposed for simultaneously improving the thermostability and maintaining activity of the model enzyme, Candida Antarctica lipase B. A small and smart mutant library involving five key residues located at the "hook loop" was meticulously identified and systematically investigated and thus yielded a five-point multiple mutant M1 (L147S/T244P/S250P/T256D/N292D), demonstrating a remarkable 7.0-fold increase in thermostability at 60 °C compared to the wild-type (WT). Furthermore, the activity of M1 remained comparable to that of WT, effectively transcending the barrier of activity-stability trade-off. Molecular dynamics simulations revealed that the precise regulation of hook loop dynamics via intermolecular interactions, such as salt bridges and hydrogen bonding, curbed the excessive flexibility of the pivotal regions α5 and α10 at high temperatures, thus driving the substantial enhancement of the thermostability of M1. Refining the dynamics of the flexible region via HLoD, which transcended the barrier of activity-stability trade-off, exhibited to be a robust and potentially universal strategy for designing enzymes with outstanding thermostability and activity.
Collapse
Affiliation(s)
- Wenya Chong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Zihan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Zhongyu Li
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Shuaiqi Meng
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
17
|
Damberger F, Krepl M, Arora R, Beusch I, Maris C, Dorn G, Šponer J, Ravindranathan S, Allain FT. N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition. Nucleic Acids Res 2024; 52:10683-10704. [PMID: 39180402 PMCID: PMC11417363 DOI: 10.1093/nar/gkae713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.
Collapse
Affiliation(s)
- Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | - Rajika Arora
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Irene Beusch
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Georg Dorn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | | | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
19
|
Babbitt GA, Rajendran M, Lynch ML, Asare-Bediako R, Mouli LT, Ryan CJ, Srivastava H, Rynkiewicz P, Phadke K, Reed ML, Moore N, Ferran MC, Fokoue EP. ATOMDANCE: Kernel-based denoising and choreographic analysis for protein dynamic comparison. Biophys J 2024; 123:2705-2715. [PMID: 38515299 PMCID: PMC11393699 DOI: 10.1016/j.bpj.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Comparative methods in molecular evolution and structural biology rely heavily upon the site-wise analysis of DNA sequence and protein structure, both static forms of information. However, it is widely accepted that protein function results from nanoscale nonrandom machine-like motions induced by evolutionarily conserved molecular interactions. Comparisons of molecular dynamics (MD) simulations conducted between homologous sites representative of different functional or mutational states can potentially identify local effects on binding interaction and protein evolution. In addition, comparisons of different (i.e., nonhomologous) sites within MD simulations could be employed to identify functional shifts in local time-coordinated dynamics indicative of logic gating within proteins. However, comparative MD analysis is challenged by the large fraction of protein motion caused by random thermal noise in the surrounding solvent. Therefore, properly denoised MD comparisons could reveal functional sites involving these machine-like dynamics with good accuracy. Here, we introduce ATOMDANCE, a user-interfaced suite of comparative machine learning-based denoising tools designed for identifying functional sites and the patterns of coordinated motion they can create within MD simulations. ATOMDANCE-maxDemon4.0 employs Gaussian kernel functions to compute site-wise maximum mean discrepancy between learned features of motion, thereby assessing denoised differences in the nonrandom motions between functional or evolutionary states (e.g., ligand bound versus unbound, wild-type versus mutant). ATOMDANCE-maxDemon4.0 also employs maximum mean discrepancy to analyze potential random amino acid replacements allowing for a site-wise test of neutral versus nonneutral evolution on the divergence of dynamic function in protein homologs. Finally, ATOMDANCE-Choreograph2.0 employs mixed-model analysis of variance and graph network to detect regions where time-synchronized shifts in dynamics occur. Here, we demonstrate ATOMDANCE's utility for identifying key sites involved in dynamic responses during functional binding interactions involving DNA, small-molecule drugs, and virus-host recognition, as well as understanding shifts in global and local site coordination occurring during allosteric activation of a pathogenic protease.
Collapse
Affiliation(s)
- Gregory A Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York.
| | - Madhusudan Rajendran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Miranda L Lynch
- Hauptmann Woodward Medical Research Institute, Buffalo, New York
| | - Richmond Asare-Bediako
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Leora T Mouli
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Cameron J Ryan
- McQuaid Jesuit High School Computer Club, Rochester, New York
| | | | - Patrick Rynkiewicz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Kavya Phadke
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Makayla L Reed
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Nadia Moore
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Maureen C Ferran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Ernest P Fokoue
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York.
| |
Collapse
|
20
|
Daniyan MO. pyGROMODS: a Python package for the generation of input files for molecular dynamic simulation with GROMACS. J Biomol Struct Dyn 2024; 42:7207-7220. [PMID: 37489036 DOI: 10.1080/07391102.2023.2239929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
The pyGROMODS, an easy-to-use cross-platform python-based package, with a graphical user interface, for the generation of molecular dynamic (MD) input files and running MD simulation (MDS) of proteins, peptides, and protein-ligand complex using GROMACS, is here presented. Four routes, with underlining Python scripts, are implemented in pyGROMODS for the generation of MD input files. They are 'RLmulti' for processing multi-ligand protein complex, 'RLmany' for processing multiple ligands against a single protein target, 'RLsingle' for processing multiple pairs of proteins and ligands, and 'PPmore' for processing peptides or proteins without ligands or non-standard residues. In addition, using the package, the generated input files or appropriate input files from other sources can be uploaded to run MDS with GROMACS. The pyGROMODS is implemented with a unique ability to search the host machine systems for the installation of the required software, update and/or install required Python packages, allow the user to pre-define working directory, and generate unique workflow organization with well-defined folders and files in a well-organized manner. The pyGROMODS, which is released under the MIT License, is freely available for download via the GitHub (https://github.com/Dankem/pyGROMODS) and Zenodo (https://doi.org/10.5281/zenodo.7912747) repositories. The precompiled executables can also be downloaded from Zenodo (https://doi.org/10.5281/zenodo.8087090), and a video tutorial can be downloaded from https://youtu.be/I4OKc6uVx1M.Communicated by Ramaswamy H. Sarma.
Collapse
|
21
|
Wang M, Xia S, Jiang C, He S, Xia J, Wang Z, Yuan X, Liu L, Chen J. Aggregation Inducing Reversible Conformational Isomerization of Surface Staple in Au 18SR 14 Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311895. [PMID: 38660823 DOI: 10.1002/smll.202311895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The conformation of molecules and materials is crucial in determining their properties and applications. Here, this work explores the reversible transformation between two distinct conformational isomers in metal nanoclusters. This work demonstrates the successful manipulation of a controllable and reversible isomerization of Au18SR14 within an aqueous solution through two distinct methods: ethanol addition and pH adjustment. The initial driver is the alteration of the solution environment, leading to the aggregation of Au18SR14 protected by ligands with smaller steric hindrance. At the atomic level, the folding mode of the unique Au4SR5 staple underpins the observed structural transformation. The reversal of staple conformation leads to color shifting between green and orange-red, and tailors a second emission peak at 725 nm originating from charge transfer from the thiolate to the Au9 core. This work not only deepens the understanding of the surface structure and dual-emission of metal nanoparticles, but also enhances the comprehension of their isomerization.
Collapse
Affiliation(s)
- Meng Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Shan Xia
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, 30 Puzhu South Road, Pukou District, Nanjing, Jiangsu, 210009, P. R. China
| | - Chengjia Jiang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Shuyi He
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
- Qingdao Boting Hydrogen Age Ocean Technol R&D Ctr, Qingdao Boting Technol Co Ltd, Shandong Hydrogen Times Marine Technology Co Ltd, Qingdao, 266100, P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Liren Liu
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, 30 Puzhu South Road, Pukou District, Nanjing, Jiangsu, 210009, P. R. China
| | - Jishi Chen
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
- Qingdao Boting Hydrogen Age Ocean Technol R&D Ctr, Qingdao Boting Technol Co Ltd, Shandong Hydrogen Times Marine Technology Co Ltd, Qingdao, 266100, P. R. China
| |
Collapse
|
22
|
Wang T, Zhang X, Zhang O, Chen G, Pan P, Wang E, Wang J, Wu J, Zhou D, Wang L, Jin R, Chen S, Shen C, Kang Y, Hsieh CY, Hou T. Highly Accurate and Efficient Deep Learning Paradigm for Full-Atom Protein Loop Modeling with KarmaLoop. RESEARCH (WASHINGTON, D.C.) 2024; 7:0408. [PMID: 39055686 PMCID: PMC11268956 DOI: 10.34133/research.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling. Our results demonstrate that KarmaLoop considerably outperforms conventional and DL-based methods of loop modeling in terms of both accuracy and efficiency, with the average RMSDs of 1.77 and 1.95 Å for the CASP13+14 and CASP15 benchmark datasets, respectively, and manifests at least 2 orders of magnitude speedup in general compared with other methods. Consequently, our comprehensive evaluations indicate that KarmaLoop provides a state-of-the-art DL solution for protein loop modeling, with the potential to hasten the advancement of protein engineering, antibody-antigen recognition, and drug design.
Collapse
Affiliation(s)
- Tianyue Wang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Odin Zhang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ercheng Wang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jialu Wu
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Donghao Zhou
- Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Langcheng Wang
- Department of Pathology,
New York University Medical Center, New York, NY 10016, USA
| | - Ruofan Jin
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- College of Life Sciences,
Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shicheng Chen
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
23
|
Roy P, Walter Z, Berish L, Ramage H, McCullagh M. Motif-VI loop acts as a nucleotide valve in the West Nile Virus NS3 Helicase. Nucleic Acids Res 2024; 52:7447-7464. [PMID: 38884215 PMCID: PMC11260461 DOI: 10.1093/nar/gkae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
The Orthoflavivirus NS3 helicase (NS3h) is crucial in virus replication, representing a potential drug target for pathogenesis. NS3h utilizes nucleotide triphosphate (ATP) for hydrolysis energy to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. Intermediate states along the ATP hydrolysis cycle and conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. Extensive molecular dynamics simulations of West Nile virus NS3h+ssRNA in the apo, ATP, ADP+Pi and ADP bound states were used to model the conformational ensembles along this cycle. Energetic and structural clustering analyses depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). Based on these results, MVIL mutants (D471L, D471N and D471E) were found to have a substantial reduction in ATPase activity and RNA replication compared to the wild-type. Simulations of the mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.
Collapse
Affiliation(s)
- Priti Roy
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
24
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Sinha K, Basu I, Shah Z, Shah S, Chakrabarty S. Leveraging Bidirectional Nature of Allostery To Inhibit Protein-Protein Interactions (PPIs): A Case Study of PCSK9-LDLR Interaction. J Chem Inf Model 2024; 64:3923-3932. [PMID: 38615325 DOI: 10.1021/acs.jcim.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Ipsita Basu
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Zacharia Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Salim Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| |
Collapse
|
26
|
Chen X, Zhang X, Qin M, Chen J, Wang M, Liu Z, An L, Song X, Yao L. Protein Allostery Study in Cells Using NMR Spectroscopy. Anal Chem 2024; 96:7065-7072. [PMID: 38652079 DOI: 10.1021/acs.analchem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Protein allostery is commonly observed in vitro. But how protein allostery behaves in cells is unknown. In this work, a protein monomer-dimer equilibrium system was built with the allosteric effect on the binding characterized using NMR spectroscopy through mutations away from the dimer interface. A chemical shift linear fitting method was developed that enabled us to accurately determine the dissociation constant. A total of 28 allosteric mutations were prepared and grouped to negative allosteric, nonallosteric, and positive allosteric modulators. ∼ 50% of mutations displayed the allosteric-state changes when moving from a buffered solution into cells. For example, there were no positive allosteric modulators in the buffered solution but eight in cells. The change in protein allostery is correlated with the interactions between the protein and the cellular environment. These interactions presumably drive the surrounding macromolecules in cells to transiently bind to the monomer and dimer mutational sites and change the free energies of the two species differently which generate new allosteric effects. These surrounding macromolecules create a new protein allostery pathway that is only present in cells.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xueying Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Qin
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jingfei Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mengting Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Liaoyuan An
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiangfei Song
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
27
|
Salomonsson J, Wallner B, Sjöstrand L, D'Arcy P, Sunnerhagen M, Ahlner A. Transient interdomain interactions in free USP14 shape its conformational ensemble. Protein Sci 2024; 33:e4975. [PMID: 38588275 PMCID: PMC11001199 DOI: 10.1002/pro.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.
Collapse
Affiliation(s)
- Johannes Salomonsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Alexandra Ahlner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Yaseen AR, Suleman M, Jabeen A, Nezami L, Qadri AS, Arif A, Arshad I, Iqbal K, Yaqoob T, Khan Z. Design and computational evaluation of a novel multi-epitope hybrid vaccine against monkeypox virus: Potential targets and immunogenicity assessment for pandemic preparedness. Biologicals 2024; 86:101770. [PMID: 38749079 DOI: 10.1016/j.biologicals.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Monkeypox is a type of DNA-enveloped virus that belongs to the orthopoxvirus family, closely related to the smallpox virus. It can cause an infectious disease in humans known as monkeypox disease. Although there are multiple drugs and vaccines designed to combat orthopoxvirus infections, with a primary focus on smallpox, the recent spread of the monkeypox virus to over 50 countries have ignited a mounting global concern. This unchecked viral proliferation has raised apprehensions about the potential for a pandemic corresponding to the catastrophic impact of COVID-19. This investigation explored the structural proteins of monkeypox virus as potential candidates for designing a novel hybrid multi-epitope vaccine. The epitopes obtained from the selected proteins were screened to ensure their non-allergenicity, non-toxicity, and antigenicity to trigger T and B-cell responses. The interaction of the vaccine with toll-like receptor-3 (TLR-3) and major histocompatibility complexes (MHCs) was assessed using Cluspro 2.0. To establish the reliability of the docked complexes, a comprehensive evaluation was conducted using Immune and MD Simulations and Normal Mode Analysis. However, to validate the computational results of this study, additional in-vitro and in-vivo research is essential.
Collapse
Affiliation(s)
- Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Aqsa Jabeen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Laiba Nezami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| | - Abdul Salam Qadri
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan; Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Ayesha Arif
- Centre for Applied Molecular biology (CAMB), University of the Punjab, Lahore, 54590, Pakistan.
| | - Iram Arshad
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Khadija Iqbal
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Tasuduq Yaqoob
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
29
|
Roccatano D. A molecular dynamics simulation study of glycine/serine octapeptides labeled with 2,3-diazabicyclo[2.2.2]oct-2-ene fluorophore. J Chem Phys 2024; 160:145101. [PMID: 38587229 DOI: 10.1063/5.0190073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
The compound 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is a versatile fluorophore widely used in Förster resonance energy transfer (FRET) spectroscopy studies due to its remarkable sensitivity, enabling precise donor-acceptor distance measurements, even for short peptides. Integrating time-resolved and FRET spectroscopies with molecular dynamics simulations provides a robust approach to unravel the structure and dynamics of biopolymers in a solution. This study investigates the structural behavior of three octapeptide variants: Trp-(Gly-Ser)3-Dbo, Trp-(GlyGly)3-Dbo, and Trp-(SerSer)3-Dbo, where Dbo represents the DBO-containing modified aspartic acid, using molecular dynamics simulations. Glycine- and serine-rich amino acid fragments, common in flexible protein regions, play essential roles in functional properties. Results show excellent agreement between end-to-end distances, orientational factors from simulations, and the available experimental and theoretical data, validating the reliability of the GROMOS force field model. The end-to-end distribution, modeled using three Gaussian distributions, reveals a complex shape, confirmed by cluster analysis highlighting a limited number of significant conformations dominating the peptide landscape. All peptides predominantly adopt a disordered state in the solvent, yet exhibit a compact shape, aligning with the model of disordered polypeptide chains in poor solvents. Conformations show marginal dependence on chain composition, with Ser-only chains exhibiting slightly more elongation. This study enhances our understanding of peptide behavior, providing valuable insights into their structural dynamics in solution.
Collapse
Affiliation(s)
- Danilo Roccatano
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
30
|
Ohler A, Taylor PE, Bledsoe JA, Iavarone AT, Gilbert NC, Offenbacher AR. Identification of the Thermal Activation Network in Human 15-Lipoxygenase-2: Divergence from Plant Orthologs and Its Relationship to Hydrogen Tunneling Activation Barriers. ACS Catal 2024; 14:5444-5457. [PMID: 38601784 PMCID: PMC11003420 DOI: 10.1021/acscatal.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The oxidation of polyunsaturated fatty acids by lipoxygenases (LOXs) is initiated by a C-H cleavage step in which the hydrogen atom is transferred quantum mechanically (i.e., via tunneling). In these reactions, protein thermal motions facilitate the conversion of ground-state enzyme-substrate complexes to tunneling-ready configurations and are thus important for transferring energy from the solvent to the active site for the activation of catalysis. In this report, we employed temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX-MS) to identify catalytically linked, thermally activated peptides in a representative animal LOX, human epithelial 15-LOX-2. TDHDX-MS of wild-type 15-LOX-2 was compared to two active site mutations that retain structural stability but have increased activation energies (Ea) of catalysis. The Ea value of one variant, V427L, is implicated to arise from suboptimal substrate positioning by increased active-site side chain rotamer dynamics, as determined by X-ray crystallography and ensemble refinement. The resolved thermal network from the comparative Eas of TDHDX-MS between wild-type and V426A is localized along the front face of the 15-LOX-2 catalytic domain. The network contains a clustering of isoleucine, leucine, and valine side chains within the helical peptides. This thermal network of 15-LOX-2 is different in location, area, and backbone structure compared to a model plant lipoxygenase from soybean that exhibits a low Ea value of catalysis compared to the human ortholog. The presented data provide insights into the divergence of thermally activated protein motions in plant and animal LOXs and their relationships to the enthalpic barriers for facilitating hydrogen tunneling.
Collapse
Affiliation(s)
- Amanda Ohler
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Paris E. Taylor
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Jasmine A. Bledsoe
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Anthony T. Iavarone
- QB3/Chemistry
Mass Spectrometry Facility, University of
California, Berkeley, Berkeley, California 94720, United States
| | - Nathaniel C. Gilbert
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Adam R. Offenbacher
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
31
|
Pasala C, Sharma S, Roychowdhury T, Moroni E, Colombo G, Chiosis G. N-Glycosylation as a Modulator of Protein Conformation and Assembly in Disease. Biomolecules 2024; 14:282. [PMID: 38540703 PMCID: PMC10968129 DOI: 10.3390/biom14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Elisabetta Moroni
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
| | - Giorgio Colombo
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
32
|
Cheah LC, Sainsbury F, Vickers CE. Translational fusion of terpene synthases for metabolic engineering: Lessons learned and practical considerations. Methods Enzymol 2024; 699:121-161. [PMID: 38942501 DOI: 10.1016/bs.mie.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The step catalyzed by terpene synthases is a well-recognized and significant bottleneck in engineered terpenoid bioproduction. Consequently, substantial efforts have been devoted towards increasing metabolic flux catalyzed by terpene synthases, employing strategies such as gene overexpression and protein engineering. Notably, numerous studies have demonstrated remarkable titer improvements by applying translational fusion, typically by fusing the terpene synthase with a prenyl diphosphate synthase that catalyzes the preceding step in the pathway. The main appeal of the translational fusion approach lies in its simplicity and orthogonality to other metabolic engineering tools. However, there is currently limited understanding of the underlying mechanism of flux enhancement, owing to the unpredictable and often protein-specific effects of translational fusion. In this chapter, we discuss practical considerations when engineering translationally fused terpene synthases, drawing insights from our experience and existing literature. We also provide detailed experimental workflows and protocols based on our previous work in budding yeast (Saccharomyces cerevisiae). Our intention is to encourage further research into the translational fusion of terpene synthases, anticipating that this will contribute mechanistic insights not only into the activity, behavior, and regulation of terpene synthases, but also of other enzymes.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Centre for Disease Preparedness, East Geelong, VIC, Australia.
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia; School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia; BioBuilt Solutions, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Kalogeropoulos K, Bohn MF, Jenkins DE, Ledergerber J, Sørensen CV, Hofmann N, Wade J, Fryer T, Thi Tuyet Nguyen G, Auf dem Keller U, Laustsen AH, Jenkins TP. A comparative study of protein structure prediction tools for challenging targets: Snake venom toxins. Toxicon 2024; 238:107559. [PMID: 38113945 DOI: 10.1016/j.toxicon.2023.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Protein structure determination is a critical aspect of biological research, enabling us to understand protein function and potential applications. Recent advances in deep learning and artificial intelligence have led to the development of several protein structure prediction tools, such as AlphaFold2 and ColabFold. However, their performance has primarily been evaluated on well-characterised proteins and their ability to predict sturtctures of proteins lacking experimental structures, such as many snake venom toxins, has been less scrutinised. In this study, we evaluated three modelling tools on their prediction of over 1000 snake venom toxin structures for which no experimental structures exist. Our findings show that AlphaFold2 (AF2) performed the best across all assessed parameters. We also observed that ColabFold (CF) only scored slightly worse than AF2, while being computationally less intensive. All tools struggled with regions of intrinsic disorder, such as loops and propeptide regions, and performed well in predicting the structure of functional domains. Overall, our study highlights the importance of exercising caution when working with proteins with no experimental structures available, particularly those that are large and contain flexible regions. Nonetheless, leveraging computational structure prediction tools can provide valuable insights into the modelling of protein interactions with different targets and reveal potential binding sites, active sites, and conformational changes, as well as into the design of potential molecular binders for reagent, diagnostic, or therapeutic purposes.
Collapse
Affiliation(s)
| | - Markus-Frederik Bohn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Jann Ledergerber
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Chemistry and Applied Bioscience, ETH Zurich, Zurich, Switzerland
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nils Hofmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas Fryer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Giang Thi Tuyet Nguyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
34
|
García-Morales A, Pulido NO, Balleza D. Relation between flexibility and intrinsically disorder regions in thermosensitive TRP channels reveal allosteric effects. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:77-90. [PMID: 37777680 DOI: 10.1007/s00249-023-01682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 10/02/2023]
Abstract
How a protein propagates the conformational changes throughout its structure remains largely unknown. In thermosensitive TRP channels, this allosteric communication is triggered by ligand interaction or in response to temperature changes. Because dynamic allostery suggests a dynamic role of disordered regions, in this work we set out to thoroughly evaluate these regions in six thermosensitive TRP channels. Thus, by contrasting the intrinsic flexibility of the transmembrane region as a function of the degree of disorder in those proteins, we discovered several residues that do not show a direct correlation in both parameters. This kind of structural discrepancy revealed residues that are either reported to be dynamic, functionally relevant or are involved in signal propagation and probably part of allosteric networks. These discrepant, potentially dynamic regions are not exclusive of TRP channels, as this same correlation was found in the Kv Shaker channel.
Collapse
Affiliation(s)
- Abigail García-Morales
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Calz. Miguel Angel de Quevedo 2779 Col Formando Hogar, 91897, Veracruz, Ver, Mexico
| | - Nancy O Pulido
- Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Cuernavaca, Mexico
| | - Daniel Balleza
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Calz. Miguel Angel de Quevedo 2779 Col Formando Hogar, 91897, Veracruz, Ver, Mexico.
| |
Collapse
|
35
|
Castelli M, Marchetti F, Osuna S, F. Oliveira AS, Mulholland AJ, Serapian SA, Colombo G. Decrypting Allostery in Membrane-Bound K-Ras4B Using Complementary In Silico Approaches Based on Unbiased Molecular Dynamics Simulations. J Am Chem Soc 2024; 146:901-919. [PMID: 38116743 PMCID: PMC10785808 DOI: 10.1021/jacs.3c11396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Protein functions are dynamically regulated by allostery, which enables conformational communication even between faraway residues, and expresses itself in many forms, akin to different "languages": allosteric control pathways predominating in an unperturbed protein are often unintuitively reshaped whenever biochemical perturbations arise (e.g., mutations). To accurately model allostery, unbiased molecular dynamics (MD) simulations require integration with a reliable method able to, e.g., detect incipient allosteric changes or likely perturbation pathways; this is because allostery can operate at longer time scales than those accessible by plain MD. Such methods are typically applied singularly, but we here argue their joint application─as a "multilingual" approach─could work significantly better. We successfully prove this through unbiased MD simulations (∼100 μs) of the widely studied, allosterically active oncotarget K-Ras4B, solvated and embedded in a phospholipid membrane, from which we decrypt allostery using four showcase "languages": Distance Fluctuation analysis and the Shortest Path Map capture allosteric hotspots at equilibrium; Anisotropic Thermal Diffusion and Dynamical Non-Equilibrium MD simulations assess perturbations upon, respectively, either superheating or hydrolyzing the GTP that oncogenically activates K-Ras4B. Chosen "languages" work synergistically, providing an articulate, mutually coherent, experimentally consistent picture of K-Ras4B allostery, whereby distinct traits emerge at equilibrium and upon GTP cleavage. At equilibrium, combined evidence confirms prominent allosteric communication from the membrane-embedded hypervariable region, through a hub comprising helix α5 and sheet β5, and up to the active site, encompassing allosteric "switches" I and II (marginally), and two proposed pockets. Upon GTP cleavage, allosteric perturbations mostly accumulate on the switches and documented interfaces.
Collapse
Affiliation(s)
- Matteo Castelli
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
| | - Filippo Marchetti
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
- INSTM, via G. Giusti 9, 50121 Florence, Italy
- E4
Computer Engineering, via Martiri delle libertà 66, 42019 Scandiano (RE), Italy
| | - Sílvia Osuna
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Girona, Catalonia E-17071, Spain
- ICREA, Barcelona, Catalonia E-08010, Spain
| | - A. Sofia F. Oliveira
- Centre for
Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Adrian J. Mulholland
- Centre for
Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Stefano A. Serapian
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
36
|
Sha L, He WS, Zheng T, Fei Y, Fang Y, Yang H, Chen G. Structure-directed bioengineering the lid1 of cold-adapted Pseudomonas sp. TB11 esterase to boost catalytic capacity. Int J Biol Macromol 2024; 255:128302. [PMID: 37992944 DOI: 10.1016/j.ijbiomac.2023.128302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Structure-guided bioengineering enzymes has been an efficient strategy to obtain biocatalyst with desirable properties. In this study, the cold-adapted esterase from Pseudomonas sp. (CPE) was optimized through bioinformatic-based structured-guided bioengineering on lid1 region. Substitutions of non-conserved Q55 led to noticeable increase in hydrolysis without sacrificing enzyme thermostability, activating effects of Ca2+ and organic solvents. Compared to the wild type, both of Q55V and Q55N among the constructed variants exhibited about a 2.0-fold and 6.5-fold higher hydrolytic activity toward short-chain and long-chain substrates, respectively. In contrast, lid swapping with the lid of Thermomyces lanuginosus lipase reduced the activity and thermostability of CPE. Catalytic kinetics revealed that substitution of Q55 with Y, V, N and R enhanced the substrate affinity of CPE. Hydrolysis by Q55V remarkedly enriched the characteristic flavor components of single cream. The study sheds light on structure-guided bioengineering of lid tailoring cold-adapted esterases with desired catalytic performance to meet the demand from biotechnological applications.
Collapse
Affiliation(s)
- Linlin Sha
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resource Protection and Innovative Utilization, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tian Zheng
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yang Fei
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yu Fang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China.
| | - Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resource Protection and Innovative Utilization, Zhejiang Agriculture and Forest University, Hangzhou 311300, China.
| |
Collapse
|
37
|
Deng J, Yuan Y, Cui Q. Modulation of Allostery with Multiple Mechanisms by Hotspot Mutations in TetR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555381. [PMID: 37905112 PMCID: PMC10614727 DOI: 10.1101/2023.08.29.555381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Modulating allosteric coupling offers unique opportunities for biomedical applications. Such efforts can benefit from efficient prediction and evaluation of allostery hotspot residues that dictate the degree of co-operativity between distant sites. We demonstrate that effects of allostery hotspot mutations can be evaluated qualitatively and semi-quantitatively by molecular dynamics simulations in a bacterial tetracycline repressor (TetR). The simulations recapitulate the effects of these mutations on abolishing the induction function of TetR and provide a rationale for the different degrees of rescuability observed to restore allosteric coupling of the hotspot mutations. We demonstrate that the same non-inducible phenotype could be the result of perturbations in distinct structural and energetic properties of TetR. Our work underscore the value of explicitly computing the functional free energy landscapes to effectively evaluate and rank hotspot mutations despite the prevalence of compensatory interactions, and therefore provide quantitative guidance to allostery modulation for therapeutic and engineering applications.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuchen Yuan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
38
|
Liang S, Zhang C, Zhu M. Ab Initio Prediction of 3-D Conformations for Protein Long Loops with High Accuracy and Applications to Antibody CDRH3 Modeling. J Chem Inf Model 2023; 63:7568-7577. [PMID: 38018130 DOI: 10.1021/acs.jcim.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Residue-level potentials of mean force were widely used for protein backbone refinements to avoid simultaneous sampling of side-chain conformations. The interaction energy between the reduced side chains and backbone atoms was not considered explicitly. In this study, we developed novel methods to calculate the residue-atom interaction energy in combination with atomic and residue-level terms. The parameters were optimized step by step to remove the overcounting or overlap problem between different energy terms. The mixing energy functions were then used to evaluate the generated backbone conformations at the initial sampling stage of protein loop modeling (OSCAR-loop), including the interaction energy between the reduced loop residues and full atoms of the protein framework. The accuracies of top-ranked decoys were 1.18 and 2.81 Å for 8-residue and 12-residue loops, respectively. We then selected diverse decoys for side-chain modeling, backbone refinement, and energy minimization. The procedure was repeated multiple times to select one prediction with the lowest energy. Consequently, we obtained an accuracy of 0.74 Å for a prevailing test set of 12-residue loops, compared with >1.4 Å reported by other researchers. The OSCAR-loop was also effective for modeling the H3 loops of antibody complementary determining regions (CDRs) in the crystal environment. The prediction accuracy of OSCAR-loop (1.74 Å) was better than the accuracy of the Rosetta NGK method (3.11 Å) or those achieved by deep learning methods (>2.2 Å) for the CDRH3 loops of 49 targets in the Rosetta antibody benchmark. The performance of OSCAR-loop in a model environment was also discussed.
Collapse
Affiliation(s)
- Shide Liang
- Department of Computational Biology, 20n Bio Limited, Hangzhou 310018, P. R. China
- Department of Research and Development, Bio-Thera Solutions, Guangzhou 510530, P. R. China
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Mingfu Zhu
- Department of Computational Biology, 20n Bio Limited, Hangzhou 310018, P. R. China
| |
Collapse
|
39
|
Roy P, Walter Z, Berish L, Ramage H, McCullagh M. Motif-VI Loop Acts as a Nucleotide Valve in the West Nile Virus NS3 Helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569434. [PMID: 38077049 PMCID: PMC10705498 DOI: 10.1101/2023.11.30.569434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The flavivirus NS3 helicase (NS3h), a highly conserved protein, plays a pivotal role in virus replication and thus represents a potential drug target for flavivirus pathogenesis. NS3h utilizes nucleotide triphosphate, such as ATP, for hydrolysis energy (ATPase) to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. The intermediate states along the ATP binding and hydrolysis cycle, as well as the conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. We use extensive molecular dynamics simulations of apo, ATP, ADP+Pi, and ADP bound to WNV NS3h+ssRNA to model the conformational ensembles along this cycle. Energetic and structural clustering analyses on these trajectories depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). These findings were experimentally corroborated using viral replicons encoding three mutations at the D471 position. Replication assays using these mutants demonstrated a substantial reduction in viral replication compared to the wild-type. Molecular simulations of the D471 mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.
Collapse
Affiliation(s)
- Priti Roy
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| | - Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA, 19107
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA, 19107
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA, 19107
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| |
Collapse
|
40
|
Wang T, Wang L, Zhang X, Shen C, Zhang O, Wang J, Wu J, Jin R, Zhou D, Chen S, Liu L, Wang X, Hsieh CY, Chen G, Pan P, Kang Y, Hou T. Comprehensive assessment of protein loop modeling programs on large-scale datasets: prediction accuracy and efficiency. Brief Bioinform 2023; 25:bbad486. [PMID: 38171930 PMCID: PMC10764206 DOI: 10.1093/bib/bbad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Protein loops play a critical role in the dynamics of proteins and are essential for numerous biological functions, and various computational approaches to loop modeling have been proposed over the past decades. However, a comprehensive understanding of the strengths and weaknesses of each method is lacking. In this work, we constructed two high-quality datasets (i.e. the General dataset and the CASP dataset) and systematically evaluated the accuracy and efficiency of 13 commonly used loop modeling approaches from the perspective of loop lengths, protein classes and residue types. The results indicate that the knowledge-based method FREAD generally outperforms the other tested programs in most cases, but encountered challenges when predicting loops longer than 15 and 30 residues on the CASP and General datasets, respectively. The ab initio method Rosetta NGK demonstrated exceptional modeling accuracy for short loops with four to eight residues and achieved the highest success rate on the CASP dataset. The well-known AlphaFold2 and RoseTTAFold require more resources for better performance, but they exhibit promise for predicting loops longer than 16 and 30 residues in the CASP and General datasets. These observations can provide valuable insights for selecting suitable methods for specific loop modeling tasks and contribute to future advancements in the field.
Collapse
Affiliation(s)
- Tianyue Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Langcheng Wang
- Department of Pathology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Xujun Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jike Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jialu Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ruofan Jin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Donghao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shicheng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liwei Liu
- Advanced Computing and Storage Laboratory, Central Research Institute, 2012 Laboratories, Huawei Technologies Co., Ltd., Shenzhen 518129, Guangdong, China
| | - Xiaorui Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guangyong Chen
- Zhejiang Lab, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
41
|
Mashraqi MM, Alzamami A, Alturki NA, Almasaudi HH, Ahmed I, Alshamrani S, Basharat Z. Chimeric vaccine design against the conserved TonB-dependent receptor-like β-barrel domain from the outer membrane tbpA and hpuB proteins of Kingella kingae ATCC 23330. Front Mol Biosci 2023; 10:1258834. [PMID: 38053576 PMCID: PMC10694214 DOI: 10.3389/fmolb.2023.1258834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023] Open
Abstract
Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved β-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved β-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H. Almasaudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
42
|
Biggs BW, de Paz AM, Bhan NJ, Cybulski TR, Church GM, Tyo KEJ. Engineering Ca 2+-Dependent DNA Polymerase Activity. ACS Synth Biol 2023; 12:3301-3311. [PMID: 37856140 DOI: 10.1021/acssynbio.3c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Advancements in synthetic biology have provided new opportunities in biosensing, with applications ranging from genetic programming to diagnostics. Next generation biosensors aim to expand the number of accessible environments for measurements, increase the number of measurable phenomena, and improve the quality of the measurement. To this end, an emerging area in the field has been the integration of DNA as an information storage medium within biosensor outputs, leveraging nucleic acids to record the biosensor state over time. However, slow signal transduction steps, due to the time scales of transcription and translation, bottleneck many sensing-DNA recording approaches. DNA polymerases (DNAPs) have been proposed as a solution to the signal transduction problem by operating as both the sensor and responder, but there is presently a lack of DNAPs with functional sensitivity to many desirable target ligands. Here, we engineer components of the Pol δ replicative polymerase complex of Saccharomyces cerevisiae to sense and respond to Ca2+, a metal cofactor relevant to numerous biological phenomena. Through domain insertion and binding site grafting to Pol δ subunits, we demonstrate functional allosteric sensitivity to Ca2+. Together, this work provides an important foundation for future efforts in the development of DNAP-based biosensors.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra M de Paz
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Namita J Bhan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Thaddeus R Cybulski
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Quaye J, Ouedraogo D, Gadda G. Targeted Mutation of a Non-catalytic Gating Residue Increases the Rate of Pseudomonas aeruginosa d-Arginine Dehydrogenase Catalytic Turnover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71. [PMID: 37933126 PMCID: PMC10655190 DOI: 10.1021/acs.jafc.3c05328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Commercial food and l-amino acid industries rely on bioengineered d-amino acid oxidizing enzymes to detect and remove d-amino acid contaminants. However, the bioengineering of enzymes to generate faster biological catalysts has proven difficult as a result of the failure to target specific kinetic steps that limit enzyme turnover, kcat, and the poor understanding of loop dynamics critical for catalysis. Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) oxidizes most d-amino acids and is a good candidate for application in the l-amino acid and food industries. The side chain of the loop L2 E246 residue located at the entrance of the PaDADH active site pocket potentially favors the closed active site conformation and secures the substrate upon binding. This study used site-directed mutagenesis, steady-state, and rapid reaction kinetics to generate the glutamine, glycine, and leucine variants and investigate whether increasing the rate of product release could translate to an increased enzyme turnover rate. Upon E246 mutation to glycine, there was an increased rate of d-arginine turnover kcat from 122 to 500 s-1. Likewise, the kcat values increased 2-fold for the glutamine or leucine variants. Thus, we have engineered a faster biocatalyst for industrial applications by selectively increasing the rate of the PaDADH product release.
Collapse
Affiliation(s)
- Joanna
Afokai Quaye
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Daniel Ouedraogo
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Giovanni Gadda
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Department
of Biology, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Center
for Diagnostics and Therapeutics, Georgia
State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
44
|
Mughal F, Caetano-Anollés G. Evolution of Intrinsic Disorder in Protein Loops. Life (Basel) 2023; 13:2055. [PMID: 37895436 PMCID: PMC10608553 DOI: 10.3390/life13102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intrinsic disorder accounts for the flexibility of protein loops, molecular building blocks that are largely responsible for the processes and molecular functions of the living world. While loops likely represent early structural forms that served as intermediates in the emergence of protein structural domains, their origin and evolution remain poorly understood. Here, we conduct a phylogenomic survey of disorder in loop prototypes sourced from the ArchDB classification. Tracing prototypes associated with protein fold families along an evolutionary chronology revealed that ancient prototypes tended to be more disordered than their derived counterparts, with ordered prototypes developing later in evolution. This highlights the central evolutionary role of disorder and flexibility. While mean disorder increased with time, a minority of ordered prototypes exist that emerged early in evolutionary history, possibly driven by the need to preserve specific molecular functions. We also revealed the percolation of evolutionary constraints from higher to lower levels of organization. Percolation resulted in trade-offs between flexibility and rigidity that impacted prototype structure and geometry. Our findings provide a deep evolutionary view of the link between structure, disorder, flexibility, and function, as well as insights into the evolutionary role of intrinsic disorder in loops and their contribution to protein structure and function.
Collapse
Affiliation(s)
- Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Guo Z, Wang L, Rao D, Liu W, Xue M, Fu Q, Lu M, Su L, Chen S, Wang B, Wu J. Conformational Switch of the 250s Loop Enables the Efficient Transglycosylation in GH Family 77. J Chem Inf Model 2023; 63:6118-6128. [PMID: 37768640 DOI: 10.1021/acs.jcim.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Amylomaltases (AMs) play important roles in glycogen and maltose metabolism. However, the molecular mechanism is elusive. Here, we investigated the conformational dynamics of the 250s loop and catalytic mechanism of Thermus aquaticus TaAM using path-metadynamics and QM/MM MD simulations. The results demonstrate that the transition of the 250s loop from an open to closed conformation promotes polysaccharide sliding, leading to the ideal positioning of the acid/base. Furthermore, the conformational dynamics can also modulate the selectivity of hydrolysis and transglycosylation. The closed conformation of the 250s loop enables the tight packing of the active site for transglycosylation, reducing the energy penalty and efficiently preventing the penetration of water into the active site. Conversely, the partially closed conformation for hydrolysis results in a loosely packed active site, destabilizing the transition state. These computational findings guide mutation experiments and enable the identification of mutants with an improved disproportionation/hydrolysis ratio. The present mechanism is in line with experimental data, highlighting the critical role of conformational dynamics in regulating the catalytic reactivity of GHs.
Collapse
Affiliation(s)
- Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Miaomiao Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qisheng Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| |
Collapse
|
46
|
Schneider T, Sawade K, Berner F, Peter C, Kovermann M. Specifying conformational heterogeneity of multi-domain proteins at atomic resolution. Structure 2023; 31:1259-1274.e10. [PMID: 37557171 DOI: 10.1016/j.str.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The conformational landscape of multi-domain proteins is inherently linked to their specific functions. This also holds for polyubiquitin chains that are assembled by two or more ubiquitin domains connected by a flexible linker thus showing a large interdomain mobility. However, molecular recognition and signal transduction are associated with particular conformational substates that are populated in solution. Here, we apply high-resolution NMR spectroscopy in combination with dual-scale MD simulations to explore the conformational space of K6-, K29-, and K33-linked diubiquitin molecules. The conformational ensembles are evaluated utilizing a paramagnetic cosolute reporting on solvent exposure plus a set of complementary NMR parameters. This approach unravels a conformational heterogeneity of diubiquitins and explains the diversity of structural models that have been determined for K6-, K29-, and K33-linked diubiquitins in free and ligand-bound states so far. We propose a general application of the approach developed here to demystify multi-domain proteins occurring in nature.
Collapse
Affiliation(s)
- Tobias Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Sawade
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Graduate School Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Frederic Berner
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
47
|
Aziz MF, Mughal F, Caetano-Anollés G. Tracing the birth of structural domains from loops during protein evolution. Sci Rep 2023; 13:14688. [PMID: 37673948 PMCID: PMC10482863 DOI: 10.1038/s41598-023-41556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
The structures and functions of proteins are embedded into the loop scaffolds of structural domains. Their origin and evolution remain mysterious. Here, we use a novel graph-theoretical approach to describe how modular and non-modular loop prototypes combine to form folded structures in protein domain evolution. Phylogenomic data-driven chronologies reoriented a bipartite network of loops and domains (and its projections) into 'waterfalls' depicting an evolving 'elementary functionome' (EF). Two primordial waves of functional innovation involving founder 'p-loop' and 'winged-helix' domains were accompanied by an ongoing emergence and reuse of structural and functional novelty. Metabolic pathways expanded before translation functionalities. A dual hourglass recruitment pattern transferred scale-free properties from loop to domain components of the EF network in generative cycles of hierarchical modularity. Modeling the evolutionary emergence of the oldest P-loop and winged-helix domains with AlphFold2 uncovered rapid convergence towards folded structure, suggesting that a folding vocabulary exists in loops for protein fold repurposing and design.
Collapse
Affiliation(s)
- M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
48
|
Bose I, Zhao Y. Supramolecular Regulation of Catalytic Activity in Molecularly Responsive Catalysts. J Org Chem 2023; 88:12792-12796. [PMID: 37584689 PMCID: PMC11095615 DOI: 10.1021/acs.joc.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Some enzymes switch between an open form and a closed form. We report a molecularly tuned catalyst that accommodates a substrate and a signal molecule simultaneously. Binding of the signal molecule helps direct the reactive group of the substrate to the catalytic group and enhances the catalytic activity. Subtle structural changes in either the substrate or the signal molecule are readily detected. The switching mechanism also allows the catalytic reaction to be turned on and off reversibly by specific molecular signals.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| |
Collapse
|
49
|
Sharma S, Ali ME. How do the mutations in PfK13 protein promote anti-malarial drug resistance? J Biomol Struct Dyn 2023; 41:7329-7338. [PMID: 36153000 DOI: 10.1080/07391102.2022.2120539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Plasmodium falciparum develops resistance to artemisinin upon exposure to the anti-malarial drug. Various mutations in the Plasmodium falciparum Kelch13 (PfK13) protein such as Y493H, R539T, I543T and C580Y have been associated with anti-malarial drug resistance. These mutations impede the regular ubiquitination process that eventually invokes drug resistance. However, the relationship between the mutation and the mechanism of drug resistance has not yet been fully elucidated. The comparative protein dynamics are studied by performing the classical molecular dynamics (MD) simulations and subsequent analysis of the trajectories adopting root-mean-square fluctuations, the secondary-structure predictions and the dynamical cross-correlation matrix analysis tools. Here, we observed that the mutations in the Kelch-domain do not have any structural impact on the mutated site; however, it significantly alters the overall dynamics of the protein. The loop-region of the BTB-domain especially for Y493H and C580Y mutants is found to have the enhanced dynamical fluctuations. The enhanced fluctuations in the BTB-domain could affect the protein-protein (PfK13-Cullin) binding interactions in the ubiquitination process and eventually lead to anti-malarial drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| |
Collapse
|
50
|
Castelli M, Yan P, Rodina A, Digwal CS, Panchal P, Chiosis G, Moroni E, Colombo G. How aberrant N-glycosylation can alter protein functionality and ligand binding: An atomistic view. Structure 2023; 31:987-1004.e8. [PMID: 37343552 PMCID: PMC10526633 DOI: 10.1016/j.str.2023.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Protein-assembly defects due to an enrichment of aberrant conformational protein variants are emerging as a new frontier in therapeutics design. Understanding the structural elements that rewire the conformational dynamics of proteins and pathologically perturb functionally oriented ensembles is important for inhibitor development. Chaperones are hub proteins for the assembly of multiprotein complexes and an enrichment of aberrant conformers can affect the cellular proteome, and in turn, phenotypes. Here, we integrate computational and experimental tools to investigte how N-glycosylation of specific residues in glucose-regulated protein 94 (GRP94) modulates internal dynamics and alters the conformational fitness of regions fundamental for the interaction with ATP and synthetic ligands and impacts substructures important for the recognition of interacting proteins. N-glycosylation plays an active role in modulating the energy landscape of GRP94, and we provide support for leveraging the knowledge on distinct glycosylation variants to design molecules targeting GRP94 disease-associated conformational states and assemblies.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | | | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|