1
|
Gorachand B, Lakshmi PR, Ramachary DB. Direct organocatalytic chemoselective synthesis of pharmaceutically active benzothiazole/benzoxazole-triazoles. Org Biomol Chem 2025. [PMID: 39849920 DOI: 10.1039/d4ob01527d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.
Collapse
Affiliation(s)
- Badaraita Gorachand
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Pandhiti R Lakshmi
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | | |
Collapse
|
2
|
Chen Y, Clay N, Phan N, Lothrop E, Culkins C, Robinson B, Stubblefield A, Ferguson A, Kimmel BR. Molecular Matchmakers: Bioconjugation Techniques Enhance Prodrug Potency for Immunotherapy. Mol Pharm 2025; 22:58-80. [PMID: 39570179 DOI: 10.1021/acs.molpharmaceut.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cancer patients suffer greatly from the severe off-target side effects of small molecule drugs, chemotherapy, and radiotherapy─therapies that offer little protection following remission. Engineered immunotherapies─including cytokines, immune checkpoint blockade, monoclonal antibodies, and CAR-T cells─provide better targeting and future tumor growth prevention. Still, issues such as ineffective activation, immunogenicity, and off-target effects remain primary concerns. "Prodrug" therapies─classified as therapies administered as inactive and then selectively activated to control the time and area of release─hold significant promise in overcoming these concerns. Bioconjugation techniques (e.g., natural linker conjugation, bioorthogonal reactions, and noncanonical amino acid incorporation) enable the rapid and homogeneous synthesis of prodrugs and offer selective loading of immunotherapeutic agents to carrier molecules and protecting groups to prevent off-target effects after administration. Several prodrug activation mechanisms have been highlighted for cancer therapeutics, including endogenous activation by hypoxic or acidic conditions common in tumors, exogenous activation by targeted bioorthogonal cleavage, or stimuli-responsive light activation, and dual-stimuli activation, which adds specificity by combining these mechanisms. This review will explore modern prodrug conjugation and activation options, focusing on how these strategies can enhance immunotherapy responses and improve patient outcomes. We will also discuss the implications of computational methodology for therapy design and recommend procedures to determine how and where to conjugate carrier systems and "prodrug" groups onto therapeutic agents to enhance the safety and control of these delivery platforms.
Collapse
Affiliation(s)
- Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Natalie Clay
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ariana Stubblefield
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alani Ferguson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Zhang J, Hao A, Xing P. Oxidation Triggered Supramolecular Chirality. NANO LETTERS 2024; 24:16191-16199. [PMID: 39653603 DOI: 10.1021/acs.nanolett.4c05255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Topochemical reactions normally occurring in the solid and crystalline state exhibit solvent-free and catalyst-free properties, with high atom economy properties, which have been widely applied in materials science and polymer synthesis. Herein, we explore the potential of topochemical reactions for controlling the emergence of supramolecular chirality and the precise fabrication of chiroptical materials. Boronic acid pinacol esters (BPin) were conjugated to naphthalimides containing an inherent chiral cholesteryl group linked by alkyl or benzene spacers. The BPin segments were oxidized by H2O2 to form hydroxyl groups, which enhanced luminescence, reduced steric effects, and increased amphiphilicity. The inherent liposomal aggregates underwent in situ oxidation and transformed into 1D nanoarchitectures, exhibiting macroscopic chirality, active Cotton effects, and circularly polarized luminescence. Oxidation could also initiate an intimate interplay between the building units and the guest molecule, by which the chirality and chiroptical evolution in the multiple component chiral assembly system were realized.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
4
|
Taguchi J, Tokunaga K, Tabuchi H, Nishiyama T, Kii I, Hosoya T. 1,3-Butadiynyl sulfide-based compact trialkyne platform molecule for sequential assembly of three azides. Chem Commun (Camb) 2024; 60:14581-14584. [PMID: 39499544 DOI: 10.1039/d4cc05205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A compact trialkyne platform with a silyl-protected 1,3-butadiynyl sulfide moiety and a terminal alkyne group has been developed for sequential regioselective transition metal-catalyzed triazole formation reactions with three azides. This method enabled the facile construction of a low-molecular-weight triazole library and the synthesis of middle-molecular-weight trifunctional probes for protein modification.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kento Tokunaga
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hitomi Tabuchi
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takashi Nishiyama
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Isao Kii
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Takamitsu Hosoya
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
5
|
Poghosyan AS, Khachatryan EA, Mkrtchyan AF, Mirzoyan V, Hovhannisyan AM, Ghazaryan KR, Minasyan EV, Langer P, Saghyan AS. Synthesis of enantiomerically enriched β-substituted analogs of (S)-α-alanine containing 1-phenyl-1H-1,2,3-triazole groups. Amino Acids 2024; 56:67. [PMID: 39627616 PMCID: PMC11615008 DOI: 10.1007/s00726-024-03430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
A synthesis of new enantiomerically enriched derivatives of (S)-α-aminopropionic acid, containing in the β-position 1,2,3-triazole groups coupled with a o-, m- and p-substituted phenyl residue, was developed based on Cu(I) catalyzed [3 + 2] cycloaddition of azides with alkynes. As the starting materials was used the square-planar Ni(II)complex of the Schiff base of propargylglycine with the chiral auxiliary BPB (Benzylprolylbenzophenone) and 1,4-substituted phenyl azides. The assignment of the (S)-absolute configuration of the α-carbon atom of the amino acid residue of the main diastereomeric complexes of the cycloaddition products was carried out on the basis of positive Cotton effects in the region of 480-580 nm of the circular dichroism spectra. The target amino acids were isolated from acid hydrolysates of diastereomeric complexes using ion-exchange demineralization and crystallization from aqueous ethanol. Additional confirmation of the absolute configuration and determination of the enantiomeric purity of the target amino acids were carried out by chiral HPLC analysis. As a result, seven new non-proteinogenic (S)-α-amino acids, containing in the β-position a 1,2,3-triazole moiety, were synthesized.
Collapse
Affiliation(s)
- Artavazd S Poghosyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia
| | - Emma A Khachatryan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Anna F Mkrtchyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia.
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia.
| | - Volodya Mirzoyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Anahit M Hovhannisyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Karapet R Ghazaryan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Ela V Minasyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Peter Langer
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany.
| | - Ashot S Saghyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia.
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia.
| |
Collapse
|
6
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Da Costa GP, Sacramento M, Barcellos AM, Alves D. Comprehensive Review on the Synthesis of [1,2,3]Triazolo[1,5-a]Quinolines. CHEM REC 2024; 24:e202400107. [PMID: 39413121 DOI: 10.1002/tcr.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 10/18/2024]
Abstract
This report outlines the evolution and recent progress about the different protocols to synthesize the N-heterocycles fused hybrids, specifically [1,2,3]triazolo[1,5-a]quinoline. This review encompasses a broad range of approaches, describing several reactions for obtaining this since, such as dehydrogenative cyclization, oxidative N-N coupling, Dieckmann condensation, intramolecular Heck, (3+2)-cycloaddition, Ullman-type coupling and direct intramolecular arylation reactions. We divided this review in three section based in the starting materials to synthesize the target [1,2,3]triazolo[1,5-a]quinolines. Starting materials containing quinoline or triazole units previously formed, as well as starting materials which both quinoline and triazole units are formed in situ. Different methods of obtaining are described, such as metal-free or catalyzed conditions, azide-free, using conventional heating or alternative energy sources, such as electrochemical and photochemical methods. Mechanistic insights underlying the reported reactions were also described in this comprehensive review.
Collapse
Affiliation(s)
- Gabriel P Da Costa
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Pesquisa em Síntese Orgânica Sustentável-PSOS, Universidade Federal do Rio Grande-FURG, Escola de Química e Alimentos-EQA, Av. Itália km 8, s/n-Campus Carreiros, 96.203-900, Rio Grande, RS
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
8
|
Navazeni M, Zolfigol MA, Torabi M, Khazaei A. Application of magnetic deep eutectic solvents as an efficient catalyst in the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:34668-34678. [PMID: 39479491 PMCID: PMC11520567 DOI: 10.1039/d4ra05177g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Magnetic deep eutectic solvents (MDESs) are adjuvants and an emerging subclass of heterogeneous catalysts in organic transformations. Herein, choline chloride (Ch/Cl) embedded on naphthalene bis-urea-supported magnetic nanoparticles, namely, Fe3O4@SiO2@DES1, was constructed by a special approach. This compound was scrutinized and characterized by instrumental techniques such as FTIR, thermogravimetry and derivative thermogravimetry (TGA/DTG), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) analyses. Potential catalytic activity of Fe3O4@SiO2@DES1 was impressive, facilitating the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a multicomponent method with 65-98% yields. Enhanced rates, high yields, mild reaction conditions, and recycling and reusability of Fe3O4@SiO2@DES1 are the distinct benefits of this catalytic organic synthetic methodology.
Collapse
Affiliation(s)
- Monireh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
9
|
Tlahuext-Aca A, Nguyen QD, Gao Y, Sati GC, Zhao J, Valco D. Palladium-Catalyzed Cross-Coupling of Aryl Bromides and Chlorides with Trimethylsilylalkynes under Mild Conditions. J Org Chem 2024; 89:13762-13767. [PMID: 39219445 DOI: 10.1021/acs.joc.4c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we disclose a palladium-catalyzed cross-coupling of aryl bromides and chlorides with trimethylsilylalkynes under mild reaction conditions. This method utilizes commercially available and air stable palladium precatalysts and avoids the use of copper cocatalysts. Moreover, it allows for the synthesis of a wide range of disubstituted alkynes in high yields with excellent functional group tolerance. The utility of the developed method was further demonstrated via the late-stage alkynylation of pharmaceuticals and natural bioactive compounds.
Collapse
Affiliation(s)
- Adrian Tlahuext-Aca
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Quyen D Nguyen
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Yang Gao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Girish C Sati
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Jinpeng Zhao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Daniel Valco
- Corteva Agriscience, Reactive Chemicals SME, Indianapolis, Indiana 46268, United States
| |
Collapse
|
10
|
Kumar N, Kumar A. Enzyme-Catalyzed Regioselective Synthesis of 4-Hetero-Functionalized 1,5-Disubstituted 1,2,3-Triazoles. Org Lett 2024; 26:7514-7519. [PMID: 39230948 DOI: 10.1021/acs.orglett.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Enzyme-catalyzed novel protocols for the regioselective construction of fully substituted 1,2,3-triazoles by employing 2-azido-1,3,5-triazine (ADT) as a 1,3-dipole for the cycloaddition reaction with the activated alkene in an aqueous medium have been developed. Various 4-heterosubstituted-1,2,3-triazoles were readily assembled in good to excellent yields with high regioselectivity. This reaction also features wide substrate scope, strong functional group tolerance, gram-scale synthesis, and an environmentally friendly process.
Collapse
Affiliation(s)
- Navaneet Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Picnic Spot Road, Lucknow 226015, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Venrooij KR, de Bondt L, Bonger KM. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Top Curr Chem (Cham) 2024; 382:24. [PMID: 38971884 PMCID: PMC11227474 DOI: 10.1007/s41061-024-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Bioorthogonal click chemistry has played a transformative role in many research fields, including chemistry, biology, and medicine. Click reactions are crucial to produce increasingly complex bioconjugates, to visualize and manipulate biomolecules in living systems and for various applications in bioengineering and drug delivery. As biological (model) systems grow more complex, researchers have an increasing need for using multiple orthogonal click reactions simultaneously. In this review, we will introduce the most common bioorthogonal reactions and discuss their orthogonal use on the basis of their mechanism and electronic or steric tuning. We provide an overview of strategies to create reaction orthogonality and show recent examples of mutual orthogonal chemistry used for simultaneous biomolecule labeling. We end by discussing some considerations for the type of chemistry needed for labeling biomolecules in a system of choice.
Collapse
Affiliation(s)
- Kevin R Venrooij
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lucienne de Bondt
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Pathak T, Bose A. 1,5-disubstituted 1,2,3-triazolylated carbohydrates and nucleosides. Carbohydr Res 2024; 541:109126. [PMID: 38823061 DOI: 10.1016/j.carres.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.
Collapse
Affiliation(s)
- Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
13
|
Nakahata M, Hashidzume A. Density Function Theory Study on the Energy and Circular Dichroism Spectrum for Methylene-Linked Triazole Diads Depending on the Substitution Position and Conformation. Molecules 2024; 29:2931. [PMID: 38930995 PMCID: PMC11206612 DOI: 10.3390/molecules29122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Since the discovery of metal-catalyzed azide-alkyne cycloadditions, 1,2,3-triazoles have been widely used as linkers for various residues. 1,2,3-Triazole is an aromatic five-membered cyclic compound consisting of three nitrogen and two carbon atoms with large dipoles that absorb UV light. In the past decade, we have been working on the synthesis of dense triazole polymers possessing many 1,2,3-triazole residues linked through a carbon atom in their backbone as a new type of functional polymer. Recently, we reported that stereoregular dense triazole uniform oligomers exhibit a circular dichroism signal based on the chiral arrangement of two neighboring 1,2,3-triazole residues. In this study, to investigate the chiral conformation of two neighboring 1,2,3-triazole residues in stereoregular dense triazole uniform oligomers, density functional theory (DFT) calculations were performed using 1,2,3-triazole diads with different substitution positions and conformations as model compounds and compared with our previous results.
Collapse
Affiliation(s)
| | - Akihito Hashidzume
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan;
| |
Collapse
|
14
|
Wang L, Zhang J, Li C, Dang W, Guo W, Xie J, Zhou F, Zhang Q. Access to 2,4-Disubstituted Pyrrole-Based Polymer with Long-Wavelength and Stimuli-Responsive Properties via Copper-Catalyzed [3+2] Polycycloaddition. Macromol Rapid Commun 2024; 45:e2300652. [PMID: 38407457 DOI: 10.1002/marc.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.
Collapse
Affiliation(s)
- Lingna Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianbo Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanbin Dang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junjian Xie
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fengtao Zhou
- School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
15
|
Rivero P, Ivanova V, Barril X, Casampere M, Casas J, Fabriàs G, Díaz Y, Matheu MI. Targeting dihydroceramide desaturase 1 (Des1): Syntheses of ceramide analogues with a rigid scaffold, inhibitory assays, and AlphaFold2-assisted structural insights reveal cyclopropenone PR280 as a potent inhibitor. Bioorg Chem 2024; 145:107233. [PMID: 38422591 DOI: 10.1016/j.bioorg.2024.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.
Collapse
Affiliation(s)
- Pablo Rivero
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain
| | - Varbina Ivanova
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Xavier Barril
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Mireia Casampere
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Josefina Casas
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Gemma Fabriàs
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Díaz
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| | - M Isabel Matheu
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| |
Collapse
|
16
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
17
|
Paioti PHS, Lounsbury KE, Romiti F, Formica M, Bauer V, Zandonella C, Hackey ME, Del Pozo J, Hoveyda AH. Click processes orthogonal to CuAAC and SuFEx forge selectively modifiable fluorescent linkers. Nat Chem 2024; 16:426-436. [PMID: 38093093 PMCID: PMC11326532 DOI: 10.1038/s41557-023-01386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/25/2023] [Indexed: 03/07/2024]
Abstract
The appeal of catalytic click chemistry is largely due to the copper-catalysed azide-alkyne cycloaddition (CuAAC) process, which is orthogonal to the more recently introduced sulfur-fluoride exchange (SuFEx). However, the triazole rings generated by CuAAC are not readily modifiable, and SuFEx connectors cannot be selectively functionalized, attributes that would be attractive in a click process. Here we introduce bisphosphine-copper-catalysed phenoxydiazaborinine formation (CuPDF), a link-and-in situ modify strategy for merging a nitrile, an allene, a diborane and a hydrazine. We also present copper- and palladium-catalysed quinoline formation (Cu/PdQNF), which is applicable in aqueous media, involving an aniline as the modifier. CuPDF and Cu/PdQNF are easy to perform and deliver robust, alterable and tunable fluorescent hubs. CuPDF and Cu/PdQNF are orthogonal to SuFEx and CuAAC, despite the latter and CuPDF also being catalysed by an organocopper species. These advantages were applied to protecting group-free syntheses of sequence-defined branched oligomers, a chemoselectively amendable polymer, three drug conjugates and a two-drug conjugate.
Collapse
Affiliation(s)
- Paulo H S Paioti
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Katherine E Lounsbury
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Michele Formica
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Valentin Bauer
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Claudio Zandonella
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France
| | - Meagan E Hackey
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Amir H Hoveyda
- Supramolecular Science and Engineering Institute, University of Strasbourg, Strasbourg, France.
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
18
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
19
|
Maddeshiya T, Jaiswal MK, Tamrakar A, Mishra G, Awasthi C, Pandey MD. Pyrene Appendant Triazole-based Chemosensors for Sensing Applications. Curr Org Synth 2024; 21:421-435. [PMID: 37345247 DOI: 10.2174/1570179420666230621124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/23/2023]
Abstract
Over the last two decades, the design and development of fluorescent chemosensors for the targeted detection of Heavy Transition-metal (HTM) ions, anions, and biological analytes, have drawn much interest. Since the introduction of click chemistry in 2001, triazole moieties have become an increasingly prominent theme in chemosensors. Triazoles generated via click reactions are crucial for sensing various ions and biological analytes. Recently, the number of studies in the field of pyrene appendant triazole moieties has risen dramatically, with more sophisticated and reliable triazole-containing chemosensors for various analytes of interest described. This tutorial review provides a general overview of pyrene appendant-triazole-based chemosensors that can detect a variety of metal cations, anions, and neutral analytes by using modular click-derived triazoles.
Collapse
Affiliation(s)
- Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gargi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chhama Awasthi
- Department of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi, 110016, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
20
|
Jaiswal MK, Gupta A, Ansari FJ, Pandey VK, Tiwari VK. Recent Progress on Synthesis of Functionalized 1,5-Disubstituted Triazoles. Curr Org Synth 2024; 21:513-558. [PMID: 38804327 DOI: 10.2174/1570179420666230418123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2024]
Abstract
Immediately after the invention of 'Click Chemistry' in 2002, the regioselective 1,2,3- triazole scaffolds resulted from respective organic azides and terminal alkynes under Cu(I) catalysis have been well recognized as the functional heterocyclic core at the centre of modern organic chemistry, medicinal chemistry, and material sciences. This CuAAC reaction has several notable features including excellent regioselectivity, high-to-excellent yields, easy to execute, short reaction time, modular in nature, mild condition, readily available starting materials, etc. Moreover, the resulting regioselective triazoles can serve as amide bond isosteres, a privileged functional group in drug discovery and development. More than hundreds of reviews had been devoted to the 'Click Chemistry' in special reference to 1,4-disubstituted triazoles, while only little efforts were made for an opposite regioisomer i.e., 1,5-disubstituted triazole. Herein, we have presented various classical approaches for an expeditious synthesis of a wide range of biologically relevant 1,5- disubstituted 1,2,3-triazole analogues. The syntheses of such a class of diversly functionalized triazoles have emerged as a crucial investigation in the domain of chemistry and biology. This tutorial review covers the literature assessment on the development of various synthetic protocols for the functionalized 1,5-disubstituted triazoles reported during the last 12 years.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
21
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Liu TT, Cui YS. One-Pot Access to Boron-Doped Fused Heterocycles via Domino Cyclization of Bis-Diazidoboranes with Isonitrile. Chemistry 2023; 29:e202302683. [PMID: 37753737 DOI: 10.1002/chem.202302683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Boron-doped fused heterocycles have shown great potential in the field of functional materials. This study reports on the synthesis of a new class of bis-diazidoboranes and the discovery of their cycloaddition reaction with isonitriles. Triply fused boron-doped heterocyclic compounds were constructed in a one-pot process through a domino cycloaddition, providing an effective route for constructing complex boron-doped heterocyclic systems.
Collapse
Affiliation(s)
- Tong-Tong Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
23
|
Arandhara PJ, Behera BK, Biswas S, Saikia AK. Synthesis of 1,2,3-triazole-fused N-heterocycles from N-alkynyl hydroxyisoindolinones and sodium azide via the Huisgen reaction. Org Biomol Chem 2023; 21:8772-8781. [PMID: 37877886 DOI: 10.1039/d3ob01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
An efficient methodology for the synthesis of dihydro[1,2,3]triazolo-pyrimidoisoindolones and dihydro[1,2,3]triazolo-diazepinoisoindolones has been developed using the Huisgen reaction from sodium azide and alkyne substituted amido alcohols in moderate to good yields. The reaction involves the in situ generation of the N-acyliminium ion intermediate, which undergoes a nucleophilic attack by the azide ion, followed by a [3 + 2]-intramolecular azide-alkyne cycloaddition reaction. Importantly, the reaction proceeds without the involvement of any transition metal catalyst. This methodology can be further utilized for the synthesis of dihydro[1,2,3]triazolo-pyrimidoisoindolthiones via thionation of amides.
Collapse
Affiliation(s)
- Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
24
|
Jaiswal MK, Tiwari VK. Growing Impact of Intramolecular Click Chemistry in Organic Synthesis. CHEM REC 2023; 23:e202300167. [PMID: 37522634 DOI: 10.1002/tcr.202300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Click Chemistry, a modular, rapid, and one of the most reliable tool for the regioselective 1,2,3-triazole forming [3+2] reaction of organic azide and terimal alkyne is widely explored in various emerging domains of research ranging from chemical biology to catalysis and medicinal chemistry to material science. This regioselective reaction from a diverse range of azido-alkyne scaffolds has been well performed in both intermolecular as well as intramolecular fashions. In comparison to the intermolecular metal (Cu/Ru/Ni) variant of 'Click Chemistry', the intramolecular click tool is little addressed. The intramolecular click chemistry is exemplified as a mordern tool of cyclization which involves metal-catalyzed (CuAAC/RuAAC) cyclization, organo-catalyzed cyclization, and thermal-induced topochemical reaction. Thus, we report herein the recent approaches on intramolecular azide-alkyne cycloaddition 'Click Chemistry' with their wide-spread emerging applications in the developement of a diverse range of molecules including fused-heterocycles, well-defined peptidomemics, and macrocyclic architectures of various notable features.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
25
|
Zaitsev KV, Veshchitsky GA, Oprunenko YF, Kharcheva AV, Moiseeva AA, Gloriozov IP, Lermontova EK. 1,2-Bis(triazolyl)tetraphenyldigermanes: Synthesis, Structure and Properties. Chem Asian J 2023:e202300753. [PMID: 37886881 DOI: 10.1002/asia.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Using the [3+2] cycloaddition reaction of [HC≡C-GePh2 -]2 (1) and a number of RCH2 N3 , this work described the synthesis of a series of novel heterocyclic digermanes, bitriazoles [1,4-C2 HN3 (CH2 R)GePh2 -]2 , 2-12 (R=Ph, p-Tol, p-C6 H4 NMe2 , p-C6 H4 OMe, p-C6 H4 Br, m-C6 H4 NO2 , 2-Naphth, CH2 -p-OC6 H4 CHO, CH2 -p-OC6 H4 COOMe, CH2 P(O)(OEt)2 , COOEt), difficult to produce by other methods. The structural peculiarities of these compounds were studied in detail by NMR spectroscopy and by XRD analysis (for 6, 9 and 10). The properties of 1-12 were studied by UV/vis and luminescence emission spectroscopy, electrochemistry and DFT calculations, indicating an effective conjugation in their molecules.
Collapse
Affiliation(s)
- Kirill V Zaitsev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 3, 119991, Moscow, Russia
| | - Gleb A Veshchitsky
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 3, 119991, Moscow, Russia
| | - Yuri F Oprunenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 3, 119991, Moscow, Russia
| | - Anastasia V Kharcheva
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 2, 119991, Moscow, Russia
| | - Anna A Moiseeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 3, 119991, Moscow, Russia
| | - Igor P Gloriozov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 3, 119991, Moscow, Russia
| | - Elmira Kh Lermontova
- N.S. Kurnakov General and Inorganic Chemistry Institute, Russian Academy of Sciences, Leninskii prospect, 31, 119991, Moscow, Russia
| |
Collapse
|
26
|
Jaiswal MK, Gupta A, Yadav MS, Pandey VK, Tiwari VK. Organocatalyzed Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazolyl Glycoconjugates. Chemistry 2023; 29:e202301749. [PMID: 37432103 DOI: 10.1002/chem.202301749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
A novel organocatalyzed [3+2] cycloaddition reaction of nitroolefins with glycosyl azides as well as organic azides has been developed for successful construction of 1,5-disubstituted triazolyl glycoconjugates. This metal-free and acid-free, regioselective synthetic protocol proceeds in the presence of only Schreiner thiourea organocatalysts, which enable the required activation of nitroolefins through double hydrogen bonding. The straightforward, operationally simple, and regioselectivity of this methodology, complementing to the classical RuAAC catalyzed synthesis of 1,5-disubstituted 1,2,3-triazoles. In the presence of catalytic amount of Schreiner thiourea organocatalyst, organic azides react with a broad array of nitroolefins producing a series of diverse 1,5-disubstituted 1,2,3- triazoles in good yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
27
|
Chen L, Li Y, Bai X, Dong D, Pan M, Huang L, Huang R, Long X, Li Y. Ru(OAc) 3-Catalyzed Regioselective Difunctionalization of Alkynes: Access to ( E)-2-Bromo-1-alkenyl Sulfonates. Org Lett 2023; 25:7025-7029. [PMID: 37708078 DOI: 10.1021/acs.orglett.3c02623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
A new approach is proposed for the divergent and regioselective synthesis of (E)-2-bromo-1-phenylvinyl trifluoromethanesulfonates through alkyne difunctionalization by employing a compatible system of abundantly available alkynes, N-bromosuccinimide (NBS), and trimethylsilyl trifluoromethanesulfonate (TMSOTf) catalyzed by ruthenium(III) acetate [Ru(OAc)3]. It is a novel method for the preparation of vinyl triflate and it offers a fundamental basis for the development of advanced functional compounds, including drugs and organic functional materials. Unlike previously reported methods, the proposed protocol can tolerate a broad range of functional groups. Alkynes derived from bioactive molecules, such as l(-)-borneol, demonstrate the potential value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Lu Chen
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ya Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Xiaoyan Bai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Dian Dong
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Meiwei Pan
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ling Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Runqin Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Xiaotong Long
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
28
|
Guarrochena X, Kaudela B, Mindt TL. Automated solid-phase synthesis of metabolically stabilized triazolo-peptidomimetics. J Pept Sci 2023; 29:e3488. [PMID: 36912359 PMCID: PMC10909554 DOI: 10.1002/psc.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
The use of 1,4-disubstituted 1,2,3-triazoles as trans-amide bond surrogates has become an important tool for the synthesis of metabolically stabilized peptidomimetics. These heterocyclic bioisosters are generally incorporated into the peptide backbone by applying a diazo-transfer reaction followed by CuAAC (click chemistry) with an α-amino alkyne. Even though the manual synthesis of backbone-modified triazolo-peptidomimetics has been reported by us and others, no procedure has yet been described for an automated synthesis using peptide synthesizers. In order to efficiently adapt these reactions to an automated setup, different conditions were explored, putting special emphasis on the required long-term stability of both the diazo-transfer reagent and the Cu(I) catalyst in solution. ISA·HCl is the reagent of choice to accomplish the diazo-transfer reaction; however, it was found instable in DMF, the most commonly used solvent for SPPS. Thus, an aqueous solution of ISA·HCl was used to prevent its degradation over time, and the composition in the final diazo-transfer reaction was adjusted to preserve suitable swelling conditions of the resins applied. The CuAAC reaction was performed without difficulties using [Cu (CH3 CN)4 ]PF6 as a catalyst and TBTA as a stabilizer to prevent oxidation to Cu(II). The optimized automated two-step procedure was applied to the synthesis of structurally diverse triazolo-peptidomimetics to demonstrate the versatility of the developed methodology. Under the optimized conditions, five triazolo-peptidomimetics (8-5 amino acid residues) were synthesized efficiently using two different resins. Analysis of the crude products by HPLC-MS revealed moderate to good purities of the desired triazolo-peptidomimetics (70-85%). The synthesis time ranged between 9 and 12.5 h.
Collapse
Affiliation(s)
- Xabier Guarrochena
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna, Medical University of ViennaViennaAustria
| | - Barbara Kaudela
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
| | - Thomas L. Mindt
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna, Medical University of ViennaViennaAustria
| |
Collapse
|
29
|
Bugatti K. A Brief Guide to Preparing a Peptide-Drug Conjugate. Chembiochem 2023; 24:e202300254. [PMID: 37288718 DOI: 10.1002/cbic.202300254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
Peptide-drug conjugates (PDCs) have recently emerged as interesting hybrid constructs not only for targeted therapy, but also for the early diagnosis of different pathologies. In most cases, the crucial step in the PDC synthesis is the final conjugation step, where a specific drug is bound to a particular peptide-/peptidomimetic-targeting unit. Thus, this concept paper aims to give a short guide to determining the finest conjugation reaction, by considering in particular the reaction conditions, the stability of the linker and the major pros and cons of each reaction. Based on the recent PDCs reported in literature, the most common and efficient conjugation methods will be systematically presented and compared, generating a short guide to consult while planning the synthesis of a novel peptide-drug conjugate.
Collapse
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
30
|
Villarreal-Parra M, Di Gresia GE, Labadie GR, Vallejos MM. Understanding the Fate of the Banert Cascade of Propargylic Azides: Sigmatropic versus Prototropic Pathway. J Org Chem 2023. [PMID: 37418758 DOI: 10.1021/acs.joc.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The Banert cascade is an efficient synthetic strategy for obtaining 4,5-disubstituted 1,2,3-triazoles. The reaction can proceed via a sigmatropic or prototropic mechanism depending on the substrate and the conditions. In this work, the mechanisms of both pathways from propargylic azides with different electronic features were investigated using density functional theory, quantum theory of atoms in molecules, and natural bond orbital approaches. The calculated energy barriers were consistent with the experimental data. Three patterns of electron density distribution on the transition structures were observed, which reflected the behaviors of the reactants in the Banert cascade. The stronger conjugative effects were associated with lower/higher free activation energies of sigmatropic/prototropic reactions, respectively. A clear relationship between the accumulation of the charge at the C3 atom of propargylic azides with the energy barriers for prototropic reactions was found. Thus, the obtained results would allow the prediction of the reaction's course by evaluating reactants.
Collapse
Affiliation(s)
- Miguel Villarreal-Parra
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Gabriel E Di Gresia
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Margarita M Vallejos
- Instituto de Química Básica y Aplicada del NEA (IQUIBA-NEA, UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
31
|
Jiang Q, Zhan W, Liu X, Bai L, Wang M, Xu Y, Liang G. Assembly drives regioselective azide-alkyne cycloaddition reaction. Nat Commun 2023; 14:3935. [PMID: 37402737 DOI: 10.1038/s41467-023-39658-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
Azide-alkyne cycloaddition reaction is a very common organic reaction to synthesize nitrogen-containing heterocycles. Once catalyzed by Cu(I) or Ru(II), it turns out to be a click reaction and thus is widely applied in chemical biology for labeling. However, besides their poor regioselectivity towards this reaction, these metal ions are not biologically friendly. Hence, it is an urgent need to develop a metal-free azide-alkyne cycloaddition reaction for biomedical applications. In this work, we found that, in the absence of metal ions, supramolecular self-assembly in an aqueous solution could realize this reaction with excellent regioselectivity. Nap-Phe-Phe-Lys(azido)-OH firstly self-assembled into nanofibers. Then, Nap-Phe-Phe-Gly(alkynyl)-OH at equivalent concentration approached to react with the assembly to yield the cycloaddition product Nap-Phe-Phe-Lys(triazole)-Gly-Phe-Phe-Nap to form nanoribbons. Due to space confinement effect, the product was obtained with excellent regioselectivity. Employing the excellent properties of supramolecular self-assembly, we are applying this strategy to realize more reactions without metal ion catalysis.
Collapse
Affiliation(s)
- Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Lin Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Manli Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China.
| |
Collapse
|
32
|
Abujubara H, Hintzen JCJ, Rahimi S, Mijakovic I, Tietze D, Tietze AA. Substrate-derived Sortase A inhibitors: targeting an essential virulence factor of Gram-positive pathogenic bacteria. Chem Sci 2023; 14:6975-6985. [PMID: 37389257 PMCID: PMC10306101 DOI: 10.1039/d3sc01209c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
The bacterial transpeptidase Sortase A (SrtA) is a surface enzyme of Gram-positive pathogenic bacteria. It has been shown to be an essential virulence factor for the establishment of various bacterial infections, including septic arthritis. However, the development of potent Sortase A inhibitors remains an unmet challenge. Sortase A relies on a five amino acid sorting signal (LPXTG), by which it recognizes its natural target. We report the synthesis of a series of peptidomimetic inhibitors of Sortase A based on the sorting signal, supported by computational binding analysis. By employing a FRET-compatible substrate, our inhibitors were assayed in vitro. Among our panel, we identified several promising inhibitors with IC50 values below 200 μM, with our strongest inhibitor - LPRDSar - having an IC50 of 18.9 μM. Furthermore, it was discovered that three of our compounds show an effect on growth and biofilm inhibition of pathogenic Staphylococcus aureus, with the inclusion of a phenyl ring seemingly key to this effect. The most promising compound in our panel, BzLPRDSar, could inhibit biofilm formation at concentrations as low as 32 μg mL-1, manifesting it as a potential future drug lead. This could lead to treatments for MRSA infections in clinics and diseases such as septic arthritis, which has been directly linked with SrtA.
Collapse
Affiliation(s)
- Helal Abujubara
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg Kemigården 4 412 96 Göteborg Sweden
| | - Jordi C J Hintzen
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg Kemigården 4 412 96 Göteborg Sweden
| | - Shadi Rahimi
- Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Kemivägen 10 412 96 Göteborg Sweden
| | - Ivan Mijakovic
- Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Kemivägen 10 412 96 Göteborg Sweden
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark DK-2800 Kongens Lyngby Denmark
| | - Daniel Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg Kemigården 4 412 96 Göteborg Sweden
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg Kemigården 4 412 96 Göteborg Sweden
| |
Collapse
|
33
|
Molteni G, Ponti A. Is DFT Accurate Enough to Calculate Regioselectivity? The Case of 1,3-Dipolar Cycloaddition of Azide to Alkynes and Alkenes. Chemphyschem 2023; 24:e202300114. [PMID: 36896728 DOI: 10.1002/cphc.202300114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/11/2023]
Abstract
The importance of regioselectivity in 1,3-dipolar cycloadditions (DCs) makes it surprising that no benchmarking study on this problem has appeared. We investigated whether DFT calculations are an accurate tool to predict the regioselectivity of uncatalyzed thermal azide 1,3-DCs. We considered the reaction between HN3 and 12 dipolarophiles, comprising ethynes HC≡C-R and ethenes H2 C=CH-R (R=F, OH, NH2 , Me, CN, CHO), which cover a broad range of electron demand and conjugation ability. We established benchmark data by the W3X protocol [complete-basis-set-extrapolated CCSD(T)-F12 energy with T-(T) and (Q) corrections and MP2-calculated core/valence and relativistic effects] and showed that core/valence effects and high-order excitations are important for accurate regioselectivity. Regioselectivities calculated using an extensive set of density functional approximations (DFAs) were compared with benchmark data. Range-separated and meta-GGA hybrids gave the best results. Good treatment of self-interaction and electron exchange are the key features for accurate regioselectivity. Dispersion correction slightly improves agreement with W3X results. The best DFAs provide the isomeric TS energy difference with an expected error ≈0.7 mh and errors ≈2 mh can occur. The isomer yield provided by the best DFA has an expected error of ±5 %, though errors up to 20 % are not rare. At present, an accuracy of 1-2 % is unfeasible but it seems that we are not far from achieving this goal.
Collapse
Affiliation(s)
- Giorgio Molteni
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Via C. Golgi 19, 20133, Milano, Italy
| |
Collapse
|
34
|
Protich Z, Lowder LL, Hughes RP, Wu J. Regiodivergent (3 + 2) annulation reactions of oxyallyl cations. Chem Sci 2023; 14:5196-5203. [PMID: 37206390 PMCID: PMC10189855 DOI: 10.1039/d2sc06999g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
We report a new method for the regiodivergent dearomative (3 + 2) reaction between 3-substituted indoles and oxyallyl cations. Access to both regioisomeric products is possible and is contingent on the presence or absence of a bromine atom on the substituted oxyallyl cation. In this way, we are able to prepare molecules that contain highly-hindered, stereodefined, vicinal, quaternary centers. Detailed computational studies employing energy decomposition analysis (EDA) at the DFT level establishes that regiochemical control arises from either reactant distortion energy or orbital mixing and dispersive forces, depending on the oxyallyl cation. Examination of the Natural Orbitals for Chemical Valence (NOCV) confirms that indole acts as the nucleophilic partner in the annulation reaction.
Collapse
Affiliation(s)
- Zachary Protich
- Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA
| | - Leah L Lowder
- Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA
| | - Jimmy Wu
- Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA
| |
Collapse
|
35
|
Taguchi R, Nakahata M, Kamon Y, Hashidzume A. Synthesis of Dense 1,2,3-Triazole Oligomers Consisting Preferentially of 1,5-Disubstituted Units via Ruthenium(II)-Catalyzed Azide-Alkyne Cycloaddition. Polymers (Basel) 2023; 15:polym15092199. [PMID: 37177345 PMCID: PMC10180885 DOI: 10.3390/polym15092199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Ruthenium(II)-catalyzed azide-alkyne cycloaddition (RuAAC) polymerization of t-butyl 4-azido-5-hexynoate (tBuAH), i.e., a heterobifunctional monomer carrying azide and alkyne moieties, was investigated in this study. RuAAC of the monofunctional precursors of tBuAH yielded a dimer possessing a 1,5-disubstituted 1,2,3-triazole moiety. 1H NMR data showed that the dimer was a mixture of diastereomers. Polymerization of tBuAH using ruthenium(II) (Ru(II)) catalysts produced oligomers of Mw ≈ (2.7-3.6) × 103 consisting of 1,5-disubstituted 1,2,3-triazole units (1,5-units) as well as 1,4-disubstituted 1,2,3-triazole units (1,4-units). The fractions of 1,5-unit (f1,5) were roughly estimated to be ca. 0.8 by comparison of signals of the methine and triazole protons in 1H NMR spectra, indicating that RuAAC proceeded preferentially and thermal Huisgen cycloaddition (HC) somehow took place during the polymerization. The oligomer samples obtained were also characterized by solubility test, size exclusion chromatography (SEC), ultraviolet-visible (UV-Vis) absorption spectroscopy, and thermogravimetric analysis (TGA). The UV-Vis and TGA data indicated that the oligomer samples contained a substantial amount of Ru(II) catalysts. To the best of our knowledge, this is the first report on dense 1,2,3-triazole oligomers consisting of 1,5-units linked via a carbon atom.
Collapse
Affiliation(s)
- Ryoichi Taguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
36
|
Zhang ZF, Su MD. Computational insights into the reactivity for the [2+5] cycloaddition reactions of norbornene-linked group 14 element/P-based and Si/group 15 element-based frustrated Lewis pairs with benzaldehyde. Phys Chem Chem Phys 2023; 25:7423-7435. [PMID: 36847783 DOI: 10.1039/d2cp05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)CO, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan. .,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
37
|
Chang C, Sung H, Lee C, Lee G. Synthesis of aryl‐functionalized, 1,5‐disubstituted 1,2,3‐triazoles and derivatives by arylation of zwitterionic ruthenium triazolato complexes. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Chao‐Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students National Taiwan Normal University New Taipei City Taiwan
| | - Hui‐Ling Sung
- Division of Preparatory Programs for Overseas Chinese Students National Taiwan Normal University New Taipei City Taiwan
| | - Chi‐Rung Lee
- Department of Applied Materials Science and Technology Minghsin University of Science and Technology Hsinchu Taiwan
| | - Gene‐Hsiang Lee
- Instrumentation Center National Taiwan University Taipei Taiwan
| |
Collapse
|
38
|
Ye P, Li HL, Pu J, Chen L, Wang S, Xu ZY, Lou SJ, Xu DQ. Iridium-catalysed thioether-directed regioselective cycloaddition of internal alkynes with azides. Org Biomol Chem 2023; 21:1389-1394. [PMID: 36655625 DOI: 10.1039/d2ob02082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report herein a cationic iridium-catalysed thioether-directed alkyne-azide cycloaddition reaction. Diverse 2-alkynyl phenyl sulfides can undergo cycloaddition with different azides in a regioselective fashion. The reaction features high efficiency, a short reaction time, and a broad substrate scope, providing modular access to complex S-containing triazoles.
Collapse
Affiliation(s)
- Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
39
|
Overview of 1,5-Selective Click Reaction of Azides with Alkynes or Their Synthetic Equivalents. Molecules 2023; 28:molecules28031400. [PMID: 36771064 PMCID: PMC9919577 DOI: 10.3390/molecules28031400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Nowadays, the click reaction of azides with alkynes has evolved rapidly and become one of the most efficient methods to synthesize 1,2,3-triazoles, which are an important class of N-containing heterocycles. While the 1,4-selective click reaction of azides with alkynes is well established to synthesize 1,4-substituted 1,2,3-triazoles, the corresponding 1,5-selective click reaction for the generation of 1,5-substituted-1,2,3-triazoles is much less explored, and there is no systematic review for the 1,5-selective click reaction. This timely review summarizes the discovery and development of 1,5-selective click reactions of azides with alkynes for the synthesis of 1,5-substituted 1,2,3-triazoles. The 1,5-selective click reactions will be divided into three types according to the critical reactive intermediates: metallacyclic intermediates, acetylide intermediate, and formal 1,5-selective azide-alkyne cycloaddition. The related mechanistic studies will also be involved in this review.
Collapse
|
40
|
Kawka A, Hajdaś G, Kułaga D, Koenig H, Kowalczyk I, Pospieszny T. Molecular structure, spectral and theoretical study of new type bile acid–sterol conjugates linked via 1,2,3-triazole ring. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Dey J, Yadav S, Raj Lakshkar R, Singh A, Ray S, Dash C. Zinc‐
bis
(imino)pyridine Complexes as Catalysts for Azide‐Alkyne Cycloaddition in Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202202239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jyotirmoy Dey
- Department of Chemistry School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri Kishangarh Rajasthan India
| | - Seema Yadav
- Department of Chemistry School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri Kishangarh Rajasthan India
| | - Ritu Raj Lakshkar
- Department of Chemistry School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri Kishangarh Rajasthan India
| | - Ajeet Singh
- Department of Chemistry Indian Institute of Technology (IIT) Indore Khandwa Road 453552 Simrol Indore India
| | - Sriparna Ray
- Department of Chemistry Faculty of Science School of Basic Sciences Manipal University Jaipur 303007 Dehmi Kalan Jaipur Rajasthan India
| | - Chandrakanta Dash
- Department of Chemistry School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri Kishangarh Rajasthan India
| |
Collapse
|
42
|
Bormann CT, Mathew C, António MM, Trotti A, Fadaei-Tirani F, Severin K. Synthesis and Reactivity of a Terminal 1-Alkynyl Triazene. J Org Chem 2022; 87:16882-16886. [PMID: 36459616 DOI: 10.1021/acs.joc.2c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
1-Alkynyl triazenes are versatile reagents in synthetic organic chemistry, but the structural diversity of this compound class has so far been limited. Herein, we describe the synthesis of a terminal 1-alkynyl triazene. Subsequent functionalization allows the preparation of 1-alkynyl triazenes with a range of functional groups including esters, alcohols, cyanides, phosphonates, and amides. Furthermore, the terminal 1-alkynyl triazene can be used for the synthesis of di- and triynes and for the preparation of (hetero)aromatic triazenes in metal-catalyzed cyclization reactions.
Collapse
Affiliation(s)
- Carl T Bormann
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christeena Mathew
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Margarida M António
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aude Trotti
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Bhattacherjee D, Kovalev IS, Kopchuk DS, Rahman M, Santra S, Zyryanov GV, Das P, Purohit R, Rusinov VL, Chupakhin ON. Mechanochemical Approach towards Multi-Functionalized 1,2,3-Triazoles and Anti-Seizure Drug Rufinamide Analogs Using Copper Beads. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227784. [PMID: 36431885 PMCID: PMC9693609 DOI: 10.3390/molecules27227784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Highly regiospecific, copper-salt-free and neat conditions have been demonstrated for the 1,3-dipolar azide-alkyne cycloaddition (AAC) reactions under mechanochemical conditions. A group of structurally challenging alkynes and heterocyclic derivatives was efficiently implemented to achieve highly functionalized 1,4-disubstituted-1,2,3-triazoles in good to excellent yield by using the Cu beads without generation of unwanted byproducts. Furthermore, the high-speed ball milling (HSBM) strategy has also been extended to the synthesis of the commercially available pharmaceutical agent, Rufinamide, an antiepileptic drug (AED) and its analogues. The same strategy was also applied for the synthesis of the Cl-derivative of Rufinamide. Analysis of the single crystal XRD data of the triazole was also performed for the final structural confirmation. The Cu beads are easily recoverable from the reaction mixture and used for the further reactions without any special treatment.
Collapse
Affiliation(s)
- Dhananjay Bhattacherjee
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| | - Matiur Rahman
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- Correspondence:
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| |
Collapse
|
44
|
Maphupha MM, Vidov A, de Koning CB, Brady D. Laccase-catalysed azide-alkyne cycloadditions: Synthesis of benzothiazole and benzimidazole fused 1,2,3-triazole derivatives by copper containing oxidoreductase enzymes. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2140588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mudzuli M. Maphupha
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Adela Vidov
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles B. de Koning
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Dean Brady
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
45
|
Metal-free synthetic approaches to 1,5-disubstituted 1,2,3-triazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
El Malah T, Farag H, Awad HM, Abdelrahman MT, Shamroukh AH. Design and Click Synthesis of Novel 1- Substituted-4-(3,4-Dimethoxyphenyl)-1 H-1,2,3-Triazole Hybrids for Anticancer Evaluation and Molecular Docking. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Tamer El Malah
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanaa Farag
- Pesticide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanem Mohamed Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Cairo, Egypt
| | - Mohamad Taha Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed Hussien Shamroukh
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
47
|
Khairbek AA, Badawi MAAH. Mechanism of Ag(I)-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Erdener D, Dervişoğlu G, Özdemir FA, Şerbetci Z, Özdemir N, Dayan O. A Hydrazine-Bridged Dinuclear Ruthenium Complex: Structural Properties and Biological Activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Kanabar D, Goyal M, Kane EI, Chavan T, Kabir A, Wang X, Shukla S, Almasri J, Goswami S, Osman G, Kokolis M, Spratt DE, Gupta V, Muth A. Small-Molecule Gankyrin Inhibition as a Therapeutic Strategy for Breast and Lung Cancer. J Med Chem 2022; 65:8975-8997. [PMID: 35758870 PMCID: PMC9524259 DOI: 10.1021/acs.jmedchem.2c00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gankyrin is an oncoprotein responsible for the development of numerous cancer types. It regulates the expression levels of multiple tumor suppressor proteins (TSPs) in liver cancer; however, gankyrin's regulation of these TSPs in breast and lung cancers has not been thoroughly investigated. Additionally, no small-molecule gankyrin inhibitor has been developed which demonstrates potent anti-proliferative activity against gankyrin overexpressing breast and lung cancers. Herein, we are reporting the structure-based design of gankyrin-binding small molecules which potently inhibited the proliferation of gankyrin overexpressing A549 and MDA-MB-231 cancer cells, reduced colony formation, and inhibited the growth of 3D spheroids in an in vitro tumor simulation model. Investigations demonstrated that gankyrin inhibition occurs through either stabilization or destabilization of its 3D structure. These studies shed light on the mechanism of small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of breast and lung cancer.
Collapse
Affiliation(s)
- Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Emma I. Kane
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester MA 01610, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Abbas Kabir
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Snehal Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Joseph Almasri
- Department of Chemistry, College of Liberal Arts and Sciences, St. John’s University, Queens NY 11439, USA
| | - Sona Goswami
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Gizem Osman
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, Queens NY 11439, USA
| | - Marino Kokolis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester MA 01610, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| |
Collapse
|
50
|
Yang X, Kemmink J, Rijkers DTS, Liskamp RMJ. Synthesis of a tricyclic hexapeptide -via two consecutive ruthenium-catalyzed macrocyclization steps- with a constrained topology to mimic vancomycin's binding properties toward D-Ala-D-Ala dipeptide. Bioorg Med Chem Lett 2022; 73:128887. [PMID: 35835378 DOI: 10.1016/j.bmcl.2022.128887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
A ring-closing metathesis (RCM) - peptide coupling - ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) strategy was developed to synthesize a tricyclic hexapeptide in which the side chain to side chain connectivity pattern resulted in a mimic with a topology that effectively mimics the bioactivity of vancomycin as a potent binder of the bacterial cell wall D-Ala-D-Ala dipeptide sequence and more importantly being an effective inhibitor of bacterial growth.
Collapse
Affiliation(s)
- Xin Yang
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Johan Kemmink
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Dirk T S Rijkers
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Rob M J Liskamp
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands; School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom; Maastricht University, Faculty of Medicine, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|