1
|
Park S, Rim D. Human exposure to air contaminants under the far-UVC system operation in an office: effects of lamp position and ventilation condition. Sci Rep 2024; 14:24465. [PMID: 39424884 PMCID: PMC11489401 DOI: 10.1038/s41598-024-75245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The far-UVC (222 nm) system has emerged as a solution for controlling airborne transmission, yet its effect on indoor air quality, particularly concerning positioning, remains understudied. In this study, we examined the impact of far-UVC lamp position on the disinfection and secondary contaminant formation in a small office. We employed a three-dimensional computational fluid dynamics (CFD) model to integrate UV intensity fields formed by different lamp positions (ceiling-mounted, wall-mounted, and stand-alone types) along with the air quality model. Our findings reveal that the ceiling-mounted type reduces human exposure to airborne pathogens by up to 80% compared to scenarios without far-UVC. For all the lamp positions, O3 concentration in the breathing zone increases by 4-6 ppb after one hour of operation. However, it should be noted that a high concentration zone (> 25 ppb) forms near the lamp when it is turned on. Moreover, ventilation plays a crucial role in determining human exposure to airborne pathogens and secondary contaminants. Increasing the ventilation rate from 0.7 h-1 to 4 h-1 reduces airborne pathogen and secondary contaminant concentrations by up to 90%. However, caution is warranted as higher ventilation rates can lead to elevated O3 indoors, especially under conditions of high outdoor O3 concentrations.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donghyun Rim
- Architectural Engineering Department, Pennsylvania State University, 408 Engineering Collaborative Research and Education (ECoRE) Building, University Park, PA, USA.
| |
Collapse
|
2
|
Salonen H, Salthammer T, Castagnoli E, Täubel M, Morawska L. Cleaning products: Their chemistry, effects on indoor air quality, and implications for human health. ENVIRONMENT INTERNATIONAL 2024; 190:108836. [PMID: 38917624 DOI: 10.1016/j.envint.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The use of cleaning and disinfecting products both at work and at home increased during the COVID-19 pandemic. Those products often include surfactants, acids/bases, carcinogens such as chloroform, and endocrine-disrupting chemicals, such as cyclosiloxanes, phthalates, and synthetic fragrances, which may cause harmful health effects among professional cleaners as well as among people exposed at home or in their workplaces. The aim of this study was to synthesize the effects of the commonly used chemical, surface cleaning and disinfecting products on indoor air quality, focusing on chemical and particulate matter pollutants, exposure, and human health in residential and public buildings. We also provide a summary of recommendations to avoid harmful exposure and suggest future research directions. PubMed, Google Scholar, Scopus, and Web of Science (WoS) were used to search the literature. Analysis of the literature revealed that the use of cleaning products and disinfectants increase occupants' exposure to a variety of harmful chemical air contaminants and to particulate matter. Occupational exposure to cleaning and disinfectant products has been linked to an increased risk of asthma and rhinitis. Residential exposure to cleaning products has been shown to have an adverse effect on respiratory health, particularly on asthma onset, and on the occurrence of asthma(-like) symptoms among children and adults. Efforts to reduce occupants' exposure to cleaning chemicals will require lowering the content of hazardous substances in cleaning products and improving ventilation during and after cleaning. Experimentally examined, best cleaning practices as well as careful selection of cleaning products can minimize the burden of harmful air pollutant exposure indoors. In addition, indirect ways to reduce exposure include increasing people's awareness of the harmfulness of cleaning chemicals and of safe cleaning practices, as well as clear labelling of cleaning and disinfecting products.
Collapse
Affiliation(s)
- Heidi Salonen
- Aalto University (Aalto), Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland; Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Tunga Salthammer
- Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia; Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, 38108 Braunschweig, Germany.
| | - Emmanuelle Castagnoli
- Aalto University (Aalto), Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland
| | - Martin Täubel
- Finnish Institute for Health and Welfare, Department Health Security, Environmental Health Unit, PO Box 95, FIN-70701 Kuopio, Finland
| | - Lidia Morawska
- Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (WHO CC for Air Quality and Health), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
3
|
Morawska L, Li Y, Salthammer T. Lessons from the COVID-19 pandemic for ventilation and indoor air quality. Science 2024; 385:396-401. [PMID: 39052782 DOI: 10.1126/science.adp2241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the beginning of 2020 presented the world with its greatest health challenge in decades. It soon became clear that governments were unprepared to respond appropriately to this crisis. National and international public health authorities were confused about the transmission routes of the virus and the control measures required to protect against it. In particular, the need to reduce the risk of infection through sufficient and effective ventilation of indoor spaces was given little attention. In this review, we discuss insights and key lessons learned from the COVID-19 pandemic regarding the role of ventilation as an effective means against airborne transmission of pathogens and, more broadly, for supporting good indoor air quality.
Collapse
Affiliation(s)
- Lidia Morawska
- Queensland University of Technology, International Laboratory for Air Quality and Health, Brisbane, QLD 4000, Australia
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Tunga Salthammer
- Queensland University of Technology, International Laboratory for Air Quality and Health, Brisbane, QLD 4000, Australia
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig 38108, Germany
| |
Collapse
|
4
|
Park S, Won Y, Rim D. Formation and Transport of Secondary Contaminants Associated with Germicidal Ultraviolet Light Systems in an Occupied Classroom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12051-12061. [PMID: 38922431 DOI: 10.1021/acs.est.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Germicidal ultraviolet light (GUV) systems are designed to control airborne pathogen transmission in buildings. However, it is important to acknowledge that certain conditions and system configurations may lead GUV systems to produce air contaminants including oxidants and secondary organic aerosols (SOA). In this study, we modeled the formation and dispersion of oxidants and secondary contaminants generated by the operation of GUV systems employing ultraviolet C 254 and 222 nm. Using a three-dimensional computational fluid dynamics model, we examined the breathing zone concentrations of chemical species in an occupied classroom. Our findings indicate that operating GUV 222 leads to an approximate increase of 10 ppb in O3 concentration and 5.2 μg·m-3 in SOA concentration compared to a condition without GUV operation, while GUV 254 increases the SOA concentration by about 1.2 μg·m-3, with a minimal impact on the O3 concentration. Furthermore, increasing the UV fluence rate of GUV 222 from 1 to 5 μW·cm-2 results in up to 80% increase in the oxidants and SOA concentrations. For GUV 254, elevating the UV fluence rate from 30 to 50 μW·cm-2 or doubling the radiating volume results in up to 50% increase in the SOA concentration. Note that indoor airflow patterns, particularly buoyancy-driven airflow (or displacement ventilation), lead to 15-45% lower SOA concentrations in the breathing zone compared to well-mixed airflow. The results also reveal that when the ventilation rate is below 2 h-1, operating GUV 254 has a smaller impact on human exposure to secondary contaminants than GUV 222. However, GUV 254 may generate more contaminants than GUV 222 when operating at high indoor O3 levels (>15 ppb). These results suggest that the design of GUV systems should consider indoor O3 levels and room ventilation conditions.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youngbo Won
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Farmer DK, Vance ME, Poppendieck D, Abbatt J, Alves MR, Dannemiller KC, Deeleepojananan C, Ditto J, Dougherty B, Farinas OR, Goldstein AH, Grassian VH, Huynh H, Kim D, King JC, Kroll J, Li J, Link MF, Mael L, Mayer K, Martin AB, Morrison G, O'Brien R, Pandit S, Turpin BJ, Webb M, Yu J, Zimmerman SM. The chemical assessment of surfaces and air (CASA) study: using chemical and physical perturbations in a test house to investigate indoor processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 38953218 DOI: 10.1039/d4em00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.
Collapse
Affiliation(s)
- Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | | | - Jon Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Michael R Alves
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | | | - Jenna Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Brian Dougherty
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Olivia R Farinas
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jon C King
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Jesse Kroll
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Liora Mael
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew B Martin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel O'Brien
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
6
|
Chen Z, Liu J, Li Z, Zheng P, Gao B, Al-Farraj S, Sillanpää M. Acid etching post-treatment enhanced fungal sterilization performance of copper-manganese-cerium oxide in liquid and aerosol: Materials and molecular biological mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134372. [PMID: 38669933 DOI: 10.1016/j.jhazmat.2024.134372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Bioaerosol is one of the main ways to spread respiratory infectious diseases. In order to further improve the sterilization efficiency of copper-manganese-cerium oxide (CuMnCeOx), the post-treatment method based on acid etching was adopted. The results showed that sterilization efficiency of the treated CuMnCeOx could reach 99% in aerosol with space velocity of 1400 h-1. L(+)-ascorbic acid successfully promoted the formation of Cu+, oxygen vacancies and the generation of reactive oxygen species (ROS) on the surface of the treated CuMnCeOx. During sterilization in liquid system, the transcriptome identified 316 differentially expressed genes, including 270 up-regulated genes and 46 down-regulated genes. Differentially expressed genes were significantly enriched in cell wall (GO:0005618) and external encapsulating structure (GO:0030312). Up-regulated genes were shown in regulation of reactive oxygen species biosynthetic processes (GO:1903409, GO:1903426, GO:1903428) and positive regulation all of reactive oxygen species metabolic process (GO:2000379), indicating that ROS induced cell death by destroying cell wall.
Collapse
Affiliation(s)
- Zhao Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhiyi Li
- Powerchina Northwest Engineering Corporation Limited, Xi'an 710065, China
| | - Peiyuan Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Lewandowski RB, Stępińska M, Osuchowski Ł, Kasprzycka W, Dobrzyńska M, Mierczyk Z, Trafny EA. The HOCl dry fog-is it safe for human cells? PLoS One 2024; 19:e0304602. [PMID: 38809935 PMCID: PMC11135740 DOI: 10.1371/journal.pone.0304602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
This study aims to investigate if high-concentration HOCl fogging disinfection causes cytotoxicity and genotoxicity to cultured primary human skin fibroblasts. The cells were exposed to a dry fog of HOCl produced from solutions with a concentration of 300 ppm (5.72 mM) or 500 ppm (9.53 mM). After four times when fibroblasts were exposed to aerosolized HOCl at a concentration of 500 ppm for 9 minutes, significant cytotoxicity and genotoxicity effects were observed. Significant changes in the morphology of fibroblasts and cell death due to membrane disruption were observed, independent of the number of exposures. Flow cytometry analyses performed under these experimental conditions indicated a decrease in the number of cells with an intact cell membrane in the exposed samples compared to the sham samples, dropping to 49.1% of the total cells. Additionally, under the same conditions, the neutral comet assay results demonstrated significant DNA damage in the exposed cells. However, no analogous damages were found when the cells were exposed to aerosolized HOCl generated from a 300-ppm solution for 3 minutes, whether once or four times. Therefore, we have concluded that aerosolized HOCl in dry fog, with a concentration exceeding 300 ppm, can cause cytotoxic and genotoxic effects on human skin fibroblasts.
Collapse
Affiliation(s)
- Rafał Bogdan Lewandowski
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Małgorzata Stępińska
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Łukasz Osuchowski
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Wiktoria Kasprzycka
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Monika Dobrzyńska
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Elżbieta Anna Trafny
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| |
Collapse
|
8
|
Link MF, Robertson R, Claflin MS, Poppendieck D. Quantification of Byproduct Formation from Portable Air Cleaners Using a Proposed Standard Test Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7916-7923. [PMID: 38683040 PMCID: PMC11132699 DOI: 10.1021/acs.est.3c09331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In response to the COVID-19 pandemic, air cleaning technologies were promoted as useful tools for disinfecting public spaces and combating airborne pathogen transmission. However, no standard method exists to assess the potentially harmful byproduct formation from air cleaners. Through a consensus standard development process, a draft standard test method to assess portable air cleaner performance was developed, and a suite of air cleaners employing seven different technologies was tested. The test method quantifies not only the removal efficiency of a challenge chemical suite and ultrafine particulate matter but also byproduct formation. Clean air delivery rates (CADRs) are used to quantify the chemical and particle removal efficiencies, and an emission rate framework is used to quantify the formation of formaldehyde, ozone, and other volatile organic compounds. We find that the tested photocatalytic oxidation and germicidal ultraviolet light (GUV) technologies produced the highest levels of aldehyde byproducts having emission rates of 202 and 243 μg h-1, respectively. Additionally, GUV using two different wavelengths, 222 and 254 nm, both produced ultrafine particulate matter.
Collapse
Affiliation(s)
- Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Rileigh Robertson
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | |
Collapse
|
9
|
Sateriale D, Forgione G, De Cristofaro GA, Continisio L, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces. BIOTECH 2024; 13:12. [PMID: 38804294 PMCID: PMC11130963 DOI: 10.3390/biotech13020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, natural substances derived from plants, which exhibit broad antimicrobial properties, could be a viable alternative for air and surface sanitation. The objective of this study has been to investigate the efficacy of thyme essential oil (TEO) in environmental sanitation processes. In Vitro assays through agar well diffusion, disk volatilization and tube dilution methods revealed significant antimicrobial activity of TEO 100% against foodborne and environmental isolates, with both bacteriostatic/fungistatic and bactericidal/fungicidal effects. Therefore, aqueous solutions of TEO 2.5% and 5% were formulated for air sanitation through nebulization and surface disinfection via direct contact. Bioaerosol samples and surface swabs were analyzed before and after sanitation, demonstrating the efficacy of aqueous solutions of TEO in reducing mesophilic and psychrophilic bacteria and environmental fungi levels in both air and on surfaces. The obtained results prove the antimicrobial potential of aqueous solutions of TEO in improving indoor air quality and surface cleanliness, suggesting thyme essential oil as an effective and safe natural sanitizer with minimal environmental impact compared to dangerous chemical disinfectants.
Collapse
Affiliation(s)
- Daniela Sateriale
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy; (D.S.); (G.F.); (G.A.D.C.); (M.P.)
| | - Giuseppina Forgione
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy; (D.S.); (G.F.); (G.A.D.C.); (M.P.)
| | - Giuseppa Anna De Cristofaro
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy; (D.S.); (G.F.); (G.A.D.C.); (M.P.)
| | - Leonardo Continisio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.C.); (C.P.); (R.C.); (P.S.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.C.); (C.P.); (R.C.); (P.S.)
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.C.); (C.P.); (R.C.); (P.S.)
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.C.); (C.P.); (R.C.); (P.S.)
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy; (D.S.); (G.F.); (G.A.D.C.); (M.P.)
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy; (D.S.); (G.F.); (G.A.D.C.); (M.P.)
| |
Collapse
|
10
|
Ebrahimifakhar A, Poursadegh M, Hu Y, Yuill DP, Luo Y. A systematic review and meta-analysis of field studies of portable air cleaners: Performance, user behavior, and by-product emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168786. [PMID: 38008326 DOI: 10.1016/j.scitotenv.2023.168786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Indoor air quality is important for the health of building occupants, and public interest in controlling indoor airborne pathogens increased dramatically with the COVID-19 pandemic. Pollutant concentrations can be controlled locally using portable air cleaners (sometimes called air purifiers), which allow occupants to apply air cleaning technology to meet their needs in the location and times that they find appropriate. This paper provides a systematic review of scientific literature that describes field studies of the effectiveness of portable air cleaners. Over 500 papers were considered, and 148 were reviewed in detail, to extract 35 specific research results (e.g., particulate removal performance) or characteristics (e.g., type of building). These were aggregated to provide an overview of results and approaches to this type of research, and to provide meta-analyses of the results. The review includes: descriptions of the geographical location of the research; rate of publications over time; types of buildings and occupants in the field study; types of air cleaner technology being tested; pollutants being measured; resulting pollutant removal effectiveness; patterns of usage and potential barriers to usage by occupants; and the potential for by-product emissions in some air cleaner technologies. An example result is that 83 of the 148 papers measured reductions in fine particulates (PM2.5) and found a mean reduction of 49 % with standard deviation of 20 %. The aggregated results were approximately normally distributed, ranging from finding no significant reduction up to a maximum above 90 % reduction. Sixteen of the 148 papers considered gaseous pollutants, such as volatile organic compounds, nitrogen dioxide, and ozone; 36 papers considered biological pollutants, such as bacteria, viruses, pollen, fungi, etc. An important challenge, common to several studies, is that occupants run the air cleaners for shorter periods and on low airflow rate settings, because of concerns about noise, drafts, and electricity cost, which significantly reduces air cleaning effectiveness.
Collapse
Affiliation(s)
- Amir Ebrahimifakhar
- Delos Labs, Delos, New York, NY 10014, USA; Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Mehrdad Poursadegh
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yifeng Hu
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA; Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - David P Yuill
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yu Luo
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, NY 10027, USA.
| |
Collapse
|
11
|
Ji X, Liang J, Wang Y, Liu X, Li Y, Liu Q, Liu R. Synthetic Antioxidants as Contaminants of Emerging Concern in Indoor Environments: Knowns and Unknowns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21550-21557. [PMID: 38085701 DOI: 10.1021/acs.est.3c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Synthetic antioxidants, including synthetic phenolic antioxidants (SPAs), amine antioxidants (AAs), and organophosphite antioxidants (OPAs), are essential additives for preventing oxidative aging in various industrial and consumer products. Increasing attention has been paid to the environmental contamination caused by these chemicals, but our understanding of synthetic antioxidants is generally limited compared to other emerging contaminants such as plasticizers and flame retardants. Many people spend a significant portion (normally greater than 80%) of their time indoors, meaning that they experience widespread and persistent exposure to indoor contaminants. Thus, this Perspective focuses on the problem of synthetic antioxidants as indoor environmental contaminants. The wide application of antioxidants in commercial products and their demonstrated toxicity make them an important family of indoor contaminants of emerging concern. However, significant knowledge gaps still need to be bridged: novel synthetic antioxidants and their related transformation products need to be identified in indoor environments, different dust sampling strategies should be employed to evaluate human exposure to these contaminants, geographic scope and sampling scope of research on indoor contamination should be broadened, and the partition coefficients of synthetic antioxidants among different media need to be investigated.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qifan Liu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Deeleepojananan C, Grassian VH. Gas-Phase and Surface-Initiated Reactions of Household Bleach and Terpene-Containing Cleaning Products Yield Chlorination and Oxidation Products Adsorbed onto Indoor Relevant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20699-20707. [PMID: 38010858 PMCID: PMC10720375 DOI: 10.1021/acs.est.3c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
The use of household bleach cleaning products results in emissions of highly oxidative gaseous species, such as hypochlorous acid (HOCl) and chlorine (Cl2). These species readily react with volatile organic compounds (VOCs), such as limonene, one of the most abundant compounds found in indoor enviroments. In this study, reactions of HOCl/Cl2 with limonene in the gas phase and on indoor relevant surfaces were investigated. Using an environmental Teflon chamber, we show that silica (SiO2), a proxy for window glass, and rutile (TiO2), a component of paint and self-cleaning surfaces, act as a reservoir for adsorption of gas-phase products formed between HOCl/Cl2 and limonene. Furthermore, high-resolution mass spectrometry (HRMS) shows that the gas-phase reaction products of HOCl/Cl2 and limonene readily adsorb on both SiO2 and TiO2. Surface-mediated reactions can also occur, leading to the formation of new chlorine- and oxygen-containing products. Transmission Fourier-transform infrared (FTIR) spectroscopy of adsorption and desorption of bleach and terpene oxidation products indicates that these chlorine- and oxygen-containing products strongly adsorb on both SiO2 and TiO2 surfaces for days, providing potential sources of human exposure and sinks for additional heterogeneous reactions.
Collapse
Affiliation(s)
- Cholaphan Deeleepojananan
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Barber VP, Goss MB, Franco Deloya LJ, LeMar LN, Li Y, Helstrom E, Canagaratna M, Keutsch FN, Kroll JH. Indoor Air Quality Implications of Germicidal 222 nm Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15990-15998. [PMID: 37827494 PMCID: PMC10607233 DOI: 10.1021/acs.est.3c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
One strategy for mitigating the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus, is irradiation by germicidal UV light (GUV). A particularly promising approach is 222 nm light from KrCl excimer lamps (GUV222); this inactivates airborne pathogens and is thought to be relatively safe for human skin and eye exposure. However, the impact of GUV222 on the composition of indoor air has received little experimental study. Here, we conduct laboratory experiments in a 150 L Teflon chamber to examine the formation of secondary species by GUV222. We show that GUV222 generates ozone (O3) and hydroxyl radicals (OH), both of which can react with volatile organic compounds to form oxidized volatile organic compounds and secondary organic aerosol particles. Results are consistent with a box model based on the known photochemistry. We use this model to simulate GUV222 irradiation under more realistic indoor air scenarios and demonstrate that under some conditions, GUV222 irradiation can lead to levels of O3, OH, and secondary organic products that are substantially elevated relative to normal indoor conditions. The results suggest that GUV222 should be used at low intensities and in concert with ventilation, decreasing levels of airborne pathogens while mitigating the formation of air pollutants.
Collapse
Affiliation(s)
- Victoria P. Barber
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew B. Goss
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lesly J. Franco Deloya
- Department
of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lexy N. LeMar
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yaowei Li
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Erik Helstrom
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Manjula Canagaratna
- Center
for Aerosol and Cloud Chemistry, Aerodyne
Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Frank N. Keutsch
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jesse H. Kroll
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Jorga SD, Liu T, Wang Y, Hassan S, Huynh H, Abbatt JPD. Kinetics of hypochlorous acid reactions with organic and chloride-containing tropospheric aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1645-1656. [PMID: 37721367 DOI: 10.1039/d3em00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Chlorine plays an important role in tropospheric oxidation processes, in both marine and continental environments. Although modeling studies have explored the importance of halogen chemistry, uncertainty remains in associated chemical mechanisms and fundamental kinetics parameters. Prior kinetics measurements of multiphase halogen recycling reactions have been largely performed with dilute, bulk solutions, leaving unexplored more realistic chemical systems which have high solute concentrations and are internally mixed with both halide and organic components. Here, we address the multiphase kinetics of gaseous HOCl using an aerosol flow tube and aerosol mass spectrometer to study its reactions with particulate chloride, using atmospherically relevant particle acidity, solute concentrations, and ionic strength. We also investigate the chemistry that results when biomass burning (BB) aerosol components and chloride are internally mixed. Using pH-buffered deliquesced particles, we show that the rate constant for reaction of dissolved HOCl with H+ and Cl- at high relative humidity (RH) (80-85%) is within a factor of two of the literature value for bulk phase conditions. However, at lower RH values (60-70%) where the particles are considerably more concentrated, the rate constant for chloride loss from the particles is an order of magnitude higher. For pure organic compounds commonly found in biomass burning (BB) aerosol, such as coniferaldehyde, salicylic acid and furfural, an increase in the aerosol chlorine content occurs with HOCl exposure, indicating the formation of organochlorine species. Together, these independent findings explain results for internally mixed aerosol particles with both chloride and BB components present where we observed behavior consistent with both chloride loss and organochlorine formation occurring simultaneously upon HOCl exposure. Our results indicate that chlorine recycling via HOCl uptake by chloride-containing particles will occur in the atmosphere efficiently over a wide range of RH conditions, even when reactive organic compounds are present in the same particles as chloride. Simultaneously, formation of organochlorine compounds, which are commonly toxic, is likely occurring when reactive organic components are present.
Collapse
Affiliation(s)
- Spiro D Jorga
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Yutong Wang
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Sumaiya Hassan
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
15
|
Li J, Link MF, Pandit S, Webb MH, Mayer KJ, Garofalo LA, Rediger KL, Poppendieck DG, Zimmerman SM, Vance ME, Grassian VH, Morrison GC, Turpin BJ, Farmer DK. The persistence of smoke VOCs indoors: Partitioning, surface cleaning, and air cleaning in a smoke-contaminated house. SCIENCE ADVANCES 2023; 9:eadh8263. [PMID: 37831770 PMCID: PMC10575580 DOI: 10.1126/sciadv.adh8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.
Collapse
Affiliation(s)
- Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc H. Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn J. Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Lauren A. Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Katelyn L. Rediger
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Glenn C. Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Sottani C, Favorido Barraza G, Frigerio F, Corica G, Robustelli Della Cuna FS, Cottica D, Grignani E. Effectiveness of a combined UV-C and ozone treatment in reducing healthcare-associated infections in hospital facilities. J Hosp Infect 2023; 139:207-216. [PMID: 37478911 DOI: 10.1016/j.jhin.2023.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hospital-acquired infections pose an ongoing threat to patient safety due to the presence of multi-drug-resistant organisms (MDROs) and other pathogens such as Clostridioides difficile which are dependent on thorough and effective cleaning and disinfection by personnel. METHODS This study evaluated the influence of UV-C air treatment: the air in the room was sanitized by UV-C and redirected into the room. In addition, ozone was released into the room to treat actual surfaces in low-risk areas such as hospital gyms, and high- to medium-risk areas such as hospital rooms. To this aim, a portable device designed for treating the environment air was tested against nine bacterial strains including Aspergillus spp. and Clostridioides spp. RESULTS The use of UV-C air treatment during daily operations and ozone treatment achieved at least a 2-log10 pathogen reduction except for Clostridioides spp. CONCLUSION Effective prevention of C. difficile normally requires the use of combined approaches that include chemical compounds and disinfection agents whose toxicity can be harmful not only to patients but also to healthcare personnel. Thus, the proposed no-touch device may be evaluated in future research to assess the needed requirements for its possible and full implementation in hospitals.
Collapse
Affiliation(s)
- C Sottani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.
| | - G Favorido Barraza
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - F Frigerio
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - G Corica
- Istituti Clinici Scientifici Maugeri IRCCS, Lumezzane, Brescia, Italy
| | | | - D Cottica
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - E Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
17
|
Beswick A, Brookes J, Rosa I, Bailey C, Beynon C, Stagg S, Bennett N. Room-Based Assessment of Mobile Air Cleaning Devices Using a Bioaerosol Challenge. APPLIED BIOSAFETY 2023; 28:1-10. [PMID: 36895580 PMCID: PMC9991428 DOI: 10.1089/apb.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction The widespread transmission of the SARS-CoV-2 virus has increased scientific and societal interest in air cleaning technologies, and their potential to mitigate the airborne spread of microorganisms. Here we evaluate room scale use of five mobile air cleaning devices. Methods A selection of air cleaners, containing high efficiency filtration, was tested using an airborne bacteriophage challenge. Assessments of bioaerosol removal efficacy were undertaken using a decay measurement approach over 3 h, with air cleaner performance compared with bioaerosol decay rate without an air cleaner in the sealed test room. Evidence of chemical by-product emission was also checked, as were total particle counts. Results Bioaerosol reduction, exceeding natural decay, was observed for all air cleaners. Reductions ranged between devices from <2-log per m3 room air for the least effective, to a >5-log reduction for the most efficacious systems. One system generated detectable ozone within the sealed test room, but ozone was undetectable when the system was run in a normally ventilated room. Total particulate air removal trends aligned with measured airborne bacteriophage decline. Discussion Air cleaner performance differed, and this could relate to individual air cleaner flow specifications as well as test room conditions, such as air mixing during testing. However, measurable reductions in bioaerosols, beyond natural airborne decay rate, were observed. Conclusion Under the described test conditions, air cleaners containing high efficiency filtration significantly reduced bioaerosol levels. The best performing air cleaners could be investigated further with improved assay sensitivity, to enable measurement of lower residual levels of bioaerosols.
Collapse
Affiliation(s)
- Alan Beswick
- Health and Safety Executive Science and Research Centre, Buxton, United Kingdom
| | - Jodi Brookes
- Health and Safety Executive Science and Research Centre, Buxton, United Kingdom
| | - Iwona Rosa
- Health and Safety Executive Science and Research Centre, Buxton, United Kingdom
| | - Claire Bailey
- Health and Safety Executive Science and Research Centre, Buxton, United Kingdom
| | | | - Stephen Stagg
- Health and Safety Executive Science and Research Centre, Buxton, United Kingdom
| | - Neil Bennett
- Health and Safety Executive Science and Research Centre, Buxton, United Kingdom
| |
Collapse
|
18
|
Rajapakse MY, Pistochini TE, Borras E, McCartney MM, Davis CE. Controlled air exchange rate method to evaluate reduction of volatile organic compounds by indoor air cleaners. CHEMOSPHERE 2023; 313:137528. [PMID: 36528164 PMCID: PMC10108428 DOI: 10.1016/j.chemosphere.2022.137528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Air cleaning technologies are needed to reduce indoor concentrations and exposure to volatile organic compounds (VOCs). Currently, air cleaning technologies lack an accepted test standard to evaluate their VOC removal performance. A protocol to evaluate the VOC removal performance of air cleaning devices was developed and piloted with two devices. This method injects a VOC mixture and carbon dioxide into a test chamber, supplies outdoor air at a standard building ventilation rate, periodically measures the VOC concentrations in the chamber using solid phase microextraction-gas chromatography-mass spectrometry over a 3-h decay period, and compares the decay rate of VOCs to carbon dioxide to measure the VOC removal air cleaning performance. The method was demonstrated with both a hydroxyl radical generator and an activated carbon air cleaner. It was shown that the activated carbon air cleaner device tested had a clean air delivery rate an order of magnitude greater than the hydroxyl radical generator device (72.10 vs 6.32 m3/h).
Collapse
Affiliation(s)
- Maneeshin Y Rajapakse
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; UC Davis Lung Center, University of California Davis, Davis, CA, USA
| | - Theresa E Pistochini
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; Western Cooling Efficiency Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Eva Borras
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; UC Davis Lung Center, University of California Davis, Davis, CA, USA
| | - Mitchell M McCartney
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; UC Davis Lung Center, University of California Davis, Davis, CA, USA; VA Northern California Health Care System, Mather, CA, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; UC Davis Lung Center, University of California Davis, Davis, CA, USA; VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
19
|
Jorga SD, Wang Y, Abbatt JPD. Reaction of HOCl with Wood Smoke Aerosol: Impacts on Indoor Air Quality and Outdoor Reactive Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1292-1299. [PMID: 36607741 DOI: 10.1021/acs.est.2c07577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High loadings of biomass burning (BB) aerosol particles from wildfire or residential heating sources can be present in both outdoor and indoor environments, where they deposit onto surfaces such as walls and furniture. These pollutants can interact with oxidants in both the aerosol and deposited forms. Hypochlorous acid (HOCl), a strong oxidant emitted during cleaning with chlorine-cleaning agents such as bleach, can attain mixing ratios of hundreds of ppbv indoors; moreover, lower mixing ratios are naturally present outdoors. Here, we report the heterogeneous reactivity of HOCl with wood smoke aerosol particles. After exposure to gas-phase HOCl, the particle chlorine content increased reaching chlorine-to-organic mass ratios of 0.07 with the chlorine covalently bound as organochlorine species, many of which are aromatic. Investigating individual potential BB components, we observed that unsaturated species such as coniferaldehyde and furfural react efficiently with HOCl. These observations indicate that organochlorine pollutants will form indoors when bleach cleaning a wildfire impacted space. The chlorine component of particles internally mixed with BB material and chloride initially increased, upon HOCl exposure, indicating that active chlorine recycling in the outdoor environment will be suppressed in the presence of BB emissions.
Collapse
Affiliation(s)
- Spiro D Jorga
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| | - Yutong Wang
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| |
Collapse
|
20
|
Ratliff KM, Oudejans L, Archer J, Calfee W, Gilberry JU, Hook DA, Schoppman WE, Yaga RW, Brooks L, Ryan S. Large-scale evaluation of microorganism inactivation by bipolar ionization and photocatalytic devices. BUILDING AND ENVIRONMENT 2023; 227:109804. [PMID: 36407013 PMCID: PMC9652099 DOI: 10.1016/j.buildenv.2022.109804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has raised awareness in the spread of disease via airborne transmission. As a result, there has been increasing interest in technologies that claim to reduce concentrations of airborne pathogens in indoor environments. The efficacy of many of these emerging technologies is not fully understood, and the testing that has been done is often conducted at a small scale and not representative of applied settings. There is currently no standard test method for evaluating air treatment technologies, making it difficult to compare results across studies or technology types. Here, a consistent testing approach in an operational-scale test chamber with a mock recirculating heating, ventilation, and air conditioning (HVAC) system was used to evaluate the efficacy of bipolar ionization and photocatalytic devices against the non-enveloped bacteriophage MS2 in the air and on surfaces. Statistically significant differences between replicate sets of technology tests and control tests (without technologies active) are apparent after 1 h, ranging to a maximum of 0.88 log10 reduction for the bipolar ionization tests and 1.8 log10 reduction for the photocatalytic device tests. It should be noted that ozone concentrations were elevated above background concentrations in the test chamber during the photocatalytic device testing. No significant differences were observed between control and technology tests in terms of the amount of MS2 deposited or inactivated on surfaces during testing. A standardized, large-scale testing approach, with replicate testing and time-matched control conditions, is necessary for contextualizing laboratory efficacy results, translating them to real-world conditions, and for facilitating technology comparisons.
Collapse
Affiliation(s)
- Katherine M Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lukas Oudejans
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Archer
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Worth Calfee
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | - Robert W Yaga
- Jacobs Technology Inc., Research Triangle Park, NC, USA
| | - Lance Brooks
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shawn Ryan
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
21
|
Link MF, Shore A, Hamadani BH, Poppendieck D. Ozone Generation from a Germicidal Ultraviolet Lamp with Peak Emission at 222 nm. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:10.1021/acs.estlett.3c00318. [PMID: 38487621 PMCID: PMC10938353 DOI: 10.1021/acs.estlett.3c00318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Recent interest in commercial devices containing germicidal ultraviolet lamps with a peak emission wavelength at 222 nm (GUV222) has focused on mitigating virus transmission indoors while posing minimum risk to human tissue. However, 222 nm light can produce ozone (O3) in air. O3 is an undesirable component of indoor air because of health impacts from acute to chronic exposure and its ability to degrade indoor air quality through oxidation chemistry. In seven four-hour experiments we measured O3 produced from a single filtered GUV222 lamp in a 31.5 m3 stainless steel chamber. Using an emission model, we determined an O3 generation rate of 19.4 ppbv h-1 ± 0.3 ppbv h-1 (equivalent to 1.22 mg h-1 ± 0.02 mg h-1). We estimated the fluence rate from the lamp using two methods: (1) chemical actinometry using tetrachloroethylene (actinometry) and (2) geometric projection of the irradiance field from radial and angular distribution measurements of the GUV222 lamp fluence (irradiance). Using the estimated lamp fluence rates of 2.2 μW cm-2 (actinometry) and 3.2 μW cm-2 (irradiance) we predicted O3 production in our chamber within 20 % of the average measured mixing ratio. Future studies should evaluate the indoor air quality impacts of GUV222 technologies.
Collapse
Affiliation(s)
- Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Andrew Shore
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Behrang H. Hamadani
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dustin Poppendieck
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
22
|
Boecker D, Zhang Z, Breves R, Herth F, Kramer A, Bulitta C. Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc07. [PMID: 37034111 PMCID: PMC10073986 DOI: 10.3205/dgkh000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The objective is to provide a comprehensive overview of the rapidly developing field of the current state of research on in vivo use of hypochlorous acid (HOCl) to aid infection prevention and control, including naso-pharyngeal, alveolar, topical, and systemic HOCl applications. Also, examples are provided of dedicated applications in COVID-19. A brief background of HOCl's biological and chemical specifics and its physiological role in the innate immune system is provided to understand the effect of in vivo applications in the context of the body's own physiological defense mechanisms.
Collapse
Affiliation(s)
- Dirk Boecker
- TOTO Consulting LLC, San Jose CA, USA
- *To whom correspondence should be addressed: Dirk Boecker, TOTO Consulting LLC, San Jose CA, USA, E-mail:
| | - Zhentian Zhang
- Institute for Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Felix Herth
- Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Axel Kramer
- Institut of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Bulitta
- Institut für Medizintechnik, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Amberg-Weiden, Germany
| |
Collapse
|
23
|
Carroll GT, Kirschman DL. A Peripherally Located Air Recirculation Device Containing an Activated Carbon Filter Reduces VOC Levels in a Simulated Operating Room. ACS OMEGA 2022; 7:46640-46645. [PMID: 36570243 PMCID: PMC9774396 DOI: 10.1021/acsomega.2c05570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 06/13/2023]
Abstract
Electrosurgery procedures produce airborne contaminants including volatile organic compounds (VOCs). The effectiveness of commercial grade activated carbon at removing toluene, a typical VOC, from the air in an enclosed simulated operating room (OR) when interfaced with an air recirculation device was tested. The concentration of toluene in the air was measured using gas sensitive semiconductor VOC sensors. When the air recirculation device containing activated carbon was turned on, the concentration of toluene in the air decayed exponentially. When the device was off, the toluene concentration reduced much more slowly. After 130 min, a VOC sensor placed near the air recirculation device showed VOC reductions of approximately 30% when the device is on and less than 1% when the device is off. Changing the activated carbon filter after 22 h of constant use showed an abrupt increase in the rate of toluene removal.
Collapse
Affiliation(s)
- Gregory T. Carroll
- Scientific Affairs, Aerobiotix, Inc., 444 Alexandersville Road, Miamisburg, Ohio 45342, United States
| | - David L. Kirschman
- Scientific Affairs, Aerobiotix, Inc., 444 Alexandersville Road, Miamisburg, Ohio 45342, United States
| |
Collapse
|
24
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Parveen N, Chowdhury S, Goel S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85742-85760. [PMID: 35091954 PMCID: PMC8799444 DOI: 10.1007/s11356-021-18316-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
Chlorinated disinfectants are widely used in hospitals, COVID-19 quarantine facilities, households, institutes, and public areas to combat the spread of the novel coronavirus as they are effective against viruses on various surfaces. Medical facilities have enhanced their routine disinfection of indoors, premises, and in-house sewage. Besides questioning the efficiency of these compounds in combating coronavirus, the impacts of these excessive disinfection efforts have not been discussed anywhere. The impacts of chlorine-based disinfectants on both environment and human health are reviewed in this paper. Chlorine in molecular and in compound forms is known to pose many health hazards. Hypochlorite addition to soil can increase chlorine/chloride concentration, which can be fatal to plant species if exposed. When chlorine compounds reach the sewer/drainage system and are exposed to aqueous media such as wastewater, many disinfection by-products (DBPs) can be formed depending on the concentrations of natural organic matter, inorganics, and anthropogenic pollutants present. Chlorination of hospital wastewater can also produce toxic drug-derived disinfection by-products. Many DBPs are carcinogenic to humans, and some of them are cytotoxic, genotoxic, and mutagenic. DBPs can be harmful to the flora and fauna of the receiving water body and may have adverse effects on microorganisms and plankton present in these ecosystems.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
26
|
Deng H, Xu X, Wang K, Xu J, Loisel G, Wang Y, Pang H, Li P, Mai Z, Yan S, Li X, Gligorovski S. The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15377-15388. [PMID: 36279129 DOI: 10.1021/acs.est.2c04609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Zebin Mai
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Shichao Yan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou510640, China
| |
Collapse
|
27
|
Fan H, Frank ES, Tobias DJ, Grassian VH. Interactions of limonene and carvone on titanium dioxide surfaces. Phys Chem Chem Phys 2022; 24:23870-23883. [PMID: 36165087 DOI: 10.1039/d2cp03021g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limonene, a monoterpene, found in cleaning products and air fresheners can interact with a variety of surfaces in indoor environments. An oxidation product of limonene, carvone, has been reported to cause contact allergens. In this study, we have investigated the interactions of limonene and carvone with TiO2, a component of paint and self-cleaning surfaces, at 297 ± 1 K with FTIR spectroscopy and force field-based molecular dynamics and ab initio simulations. The IR absorption spectra and computational methods show that limonene forms π-hydrogen bonds with the surface O-H groups on the TiO2 surface and that carvone adsorbs on the TiO2 surface through a variety of molecular interactions including through carbonyl oxygen atoms with Ti4+ surface atoms, O-H hydrogen bonding (carbonyl O⋯HO) and π-hydrogen bonds with surface O-H groups. Furthermore, we investigated the effects of relative humidity (RH) on the adsorption of limonene and carvone on the TiO2 surface. The spectroscopic results show that the adsorbed limonene can be completely displaced by water at a relative humidity of ca. 50% RH (∼2 MLs of water) and that 25% of carvone is displaced at ca. 67% RH, which agrees with the calculated free energies of adsorption which show carvone more strongly adsorbs on the surface relative to limonene and thus would be harder to displace from the surface. Overall, this study shows how a monoterpene and its oxidation product interact with TiO2 and the impact of relative humidity on these interactions.
Collapse
Affiliation(s)
- Hanyu Fan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Elianna S Frank
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
28
|
Hodshire AL, Carter E, Mattila JM, Ilacqua V, Zambrana J, Abbatt JPD, Abeleira A, Arata C, DeCarlo PF, Goldstein AH, Ruiz LH, Vance ME, Wang C, Farmer DK. Detailed Investigation of the Contribution of Gas-Phase Air Contaminants to Exposure Risk during Indoor Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12148-12157. [PMID: 35952310 PMCID: PMC9454252 DOI: 10.1021/acs.est.2c01381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/31/2023]
Abstract
Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities. The chemical composition of indoor air is distinct from outdoor air, with gaseous compounds present at higher levels and greater diversity─and thus greater predicted hazard quotients─indoors than outdoors. Common household activities like cooking and cleaning induce rapid changes in indoor air composition, raising levels of multiple compounds with high risk quotients. The HOMEChem data highlight how strongly human activities influence the air we breathe in the built environment, increasing the health risk associated with exposure to air contaminants.
Collapse
Affiliation(s)
- Anna L. Hodshire
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Ellison Carter
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| | - James M. Mattila
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Vito Ilacqua
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | - Jordan Zambrana
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | | | - Andrew Abeleira
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, Colorado 80309, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| |
Collapse
|
29
|
Kong M, Li L, Eilts SM, Li L, Hogan CJ, Pope ZC. Localized and Whole-Room Effects of Portable Air Filtration Units on Aerosol Particle Deposition and Concentration in a Classroom Environment. ACS ES&T ENGINEERING 2022; 2:653-669. [PMID: 37552723 PMCID: PMC8864773 DOI: 10.1021/acsestengg.1c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
In indoor environments with limited ventilation, recirculating portable air filtration (PAF) units may reduce COVID-19 infection risk via not only the direct aerosol route (i.e., inhalation) but also via an indirect aerosol route (i.e., contact with the surface where aerosol particles deposited). We systematically investigated the impact of PAF units in a mock classroom, as a supplement to background ventilation, on localized and whole-room surface deposition and particle concentration. Fluorescently tagged particles with a volumetric mean diameter near 2 μm were continuously introduced into the classroom environment via a breathing simulator with a prescribed inhalation-exhalation waveform. Deposition velocities were inferred on >50 horizontal and vertical surfaces throughout the classroom, while aerosol concentrations were spatially monitored via optical particle spectrometry. Results revealed a particle decay rate consistent with expectations based upon the reported clean air delivery rates of the PAF units. Additionally, the PAF units reduced peak concentrations by a factor of around 2.5 compared to the highest concentrations observed and led to a statistically significant reduction in deposition velocities for horizontal surfaces >2.5 m from the aerosol source. Our results not only confirm that PAF units can reduce particle concentrations but also demonstrate that they may lead to reduced particle deposition throughout an indoor environment when properly positioned with respect to the location of the particle source(s) within the room (e.g., where the largest group of students sit) and the predominant air distribution profile of the room.
Collapse
Affiliation(s)
- Meng Kong
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Linhao Li
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Stephanie M. Eilts
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Li Li
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Zachary C. Pope
- Well Living Lab, Rochester,
Minnesota 55902, United States
- Mayo Clinic, Department of Physiology and
Biomedical Engineering, Rochester, Minnesota 55905, United
States
| |
Collapse
|
30
|
McNeill VF. Airborne Transmission of SARS-CoV-2: Evidence and Implications for Engineering Controls. Annu Rev Chem Biomol Eng 2022; 13:123-140. [PMID: 35300517 DOI: 10.1146/annurev-chembioeng-092220-111631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing a pandemic (coronavirus disease 2019, or COVID-19) with dire consequences, including widespread death, long-term illness, and societal and economic disruption. Although initially uncertain, evidence is now overwhelming that SARS-CoV-2 is transmitted primarily through small respiratory droplets and aerosols emitted by infected individuals. As a result, many effective nonpharmaceutical interventions for slowing virus transmission operate by blocking, filtering, or diluting respiratory aerosol, particularly in indoor environments. In this review, we discuss the evidence for airborne transmission of SARS-CoV-2 and implications for engineering solutions to reduce transmission risk. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- V Faye McNeill
- Department of Chemical Engineering and Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA;
| |
Collapse
|