1
|
Hou Y, Liu Y, Yang Y, Xu S, Yang F. Exposure to MC-LR activates the RAF/ERK signaling pathway, leading to renal inflammation and tissue damage in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:301-309. [PMID: 39714096 DOI: 10.1080/15287394.2024.2435632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Exposure to microcysatin-LR (MC-LR) is known to result in kidney damage, however the underlying mechanisms involved in MC-LR-initiated renal injury are not known. Thus, the aim of this study was to examine the effects of exposure to MC-LR on human embryo kidney (HEK 293) cell in vitro and male C57BL/6 in vivo. In the in vitro study, HEK 293 cells were incubated with MC-LR (20 µM) for 24 hr. Treatment with MC-LR significantly increased the protein expression of RAF and ERK as well as mRNA expression levels of inflammatory cytokines TNF-α, IL-6, and IL-1β. These findings were confirmed when HEK 293 cells were co-incubated with ERK inhibitor U0126 and MC-LR demonstrating a decrease in protein expression of RAF, ERK, and mRNA levels of pro-inflammatory cytokines. Male C57BL/6 mice were intraperitoneally (ip) injected with MC-LR (20 µg/kg) daily for 21 days. Histopathological analysis demonstrated significant glomerular and tubular damage with inflammatory infiltration. The expression levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly elevated following MC-LR treatment. Administration of MC-LR asignificantly enhanced the protein phosphorylation levels of RAF and ERK. Data demonstrated that exposure to MC-LR induced morphological tissue damage and renal inflammatory reactions by activating the RAF/ERK signaling pathway.
Collapse
Affiliation(s)
- Yiwen Hou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ying Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuaishuai Xu
- Nanjing Gulou District Center for Disease Control and Prevention, Nanjing, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Lin W, Liao L, Ling L, Luo H, Jiang Y, Li X, Yao Y, Yang P. Combined effects of co-exposure to microcystin-LR and polystyrene microplastics on growth, brain pathology and thyroid hormone homeostasis in adult zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117855. [PMID: 39919588 DOI: 10.1016/j.ecoenv.2025.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
The concurrent presence of algal blooms and microplastics pollution in natural water bodies poses a novel threat. However, the joint effects of microcystin-LR (MCLR) in combination with polystyrene microplastics (PSMPs) on the thyroid endocrine system of adult fish remains unclear. In our study, male zebrafish (Danio rerio) were exposed to environmentally relevant concentrations of MCLR alone (0, 0.8, 4, 20 μg/L) and a mix of MCLR and PSMPs (100 μg/L) for 60 days. Alterations in brain histology, thyroid hormone (TH) levels, and the transcription levels of hypothalamic-pituitary-thyroid (HPT)-axis genes were used to assess the thyroid function. In the MCLR-only treatment groups, we observed mild brain tissue damage characterized by glial scarring and hyperemia. The presence of PSMPs exacerbated the brain damage cause by MCLR, resulting in more pronounced ventriculomegaly and hyperemia. No significant changes in whole-body thyroxine (T4) and triiodothyronine (T3) levels were observed in the MCLR-only groups, while a significant decrease was noted in the groups co-exposed to MCLR and PSMPs. Additionally, significant alterations in crh, tshβ, ttr, trα, and trβ expression levels in the combined exposure groups provided further confirmation that MCLR and PSMPs jointly cause thyroid endocrine disruption. Our findings suggest that the fish can trigger a compensatory mechanism to maintain thyroid hormone homeostasis in response to environmentally relevant concentrations of MCLR. However, the presence of PSMPs disrupts this self-regulatory equilibrium, thereby exacerbates the thyroid endocrine disruption cause by MCLR in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde 415000, China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Huimin Luo
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410125, China
| | - Ying Jiang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Xinru Li
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Yilong Yao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; College of Agricultural and Forestry Science and Technology, Hunan Applied Technology University, Changde 415000, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde 415000, China.
| |
Collapse
|
3
|
Wang Y, Zeng Y, Ren X, Qiu J, Pan J, Yang F. A probe-mediated fluorescent biosensor for MC-LR detection using exonuclease III as a signal amplifier. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39902730 DOI: 10.1039/d4ay02027h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Microcystin-lr (MC-LR) is one of the most toxic and ubiquitous microcystins (MCs) released by cyanobacteria. Exposure to MC-LR can cause multiple organ damage and even death of the organism. Therefore, creating highly sensitive and dependable methods for detecting trace MC-LR is crucial. Herein, we developed a novel fluorescence aptasensor aided by exonuclease III (Exo III) for the highly sensitive detection of MC-LR. In the presence of MC-LR, the affinity interaction between MC-LR and aptamer A was triggered, leading to the release of blocker B. This unbound blocker can initiate Exo III-mediated signal amplification to digest the probe H, thereby recovering the fluorescence signal for readout. The proposed Exo III-assisted sensing platform demonstrated remarkable sensitivity and selectivity, achieving a limit of detection (LOD) of 0.37 ng L-1. Furthermore, it is robust and has been effectively utilized on water samples, achieving acceptable recovery rates (95.04-107.01%). With excellent sensitivity, high selectivity, efficient signal amplification, and fluorescence readout, the proposed biosensor offered a new and reliable alternative for the detection of trace MC-LR in the environment and the early warning of algal toxins.
Collapse
Affiliation(s)
- Yuyan Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ying Zeng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China
| | - Jiafeng Pan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
He J, Zhang F, Fang M, Zhang Y, Zhu C, Xiang S, Yu D, Wu H, Shu Y. Alteration of intestinal microbiota-intestinal barrier interaction interferes with intestinal health after microcystin-LR exposure in Lithobates catesbeianus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107249. [PMID: 39826206 DOI: 10.1016/j.aquatox.2025.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
There remains uncertainty regarding the influence of microcystin-leucine arginine (MC-LR) on amphibian intestinal health, specifically how MC-LR interferes with intestinal microbiota following exposure to environmental concentrations. In this study, Lithobates catesbeianus tadpoles were exposed to varying MC-LR concentrations (0, 0.5, and 2 µg/L) over a 30-day period. The aim was to investigate how altered interactions between tadpole intestinal microbiota and the intestinal barrier influence intestinal health following MC-LR exposure. Following exposure to the MC-LR at low ambient concentrations, tadpole intestinal tissue was damaged. It had increased permeability, reduced pathogen inhibition capacity, and impaired digestive function. Additionally, there was a significant increase in lipopolysaccharide content and upregulation of downstream response genes, including TLR4, MyD88, and NF-κB, within the intestinal tissue. Therefore, eosinophils' count and pro-inflammatory cytokines' expression increased. In addition, MC-LR exposure induced oxidative stress and mitochondrial structural damage by increasing the levels of reactive oxygen species in intestinal tissue. CytoC and Bax transcription, as well as caspase 9 and caspase 3 activities, increased significantly. Significant downregulation of Bcl-2 transcription promoted apoptosis in tadpole intestinal cells. MC-LR exposure disrupted intestinal microbiota and metabolism in tadpoles. Correlation analysis revealed a strong association between intestinal microbiota and oxidative stress, inflammation, immunity, and tissue damage in the intestine. Conclusively, this study provides the first demonstration that MC-LR significantly affects amphibian intestinal microbiota, highlighting tadpoles' susceptibility to environmental risks posed by MC-LR.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Fengqi Zhang
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Minglan Fang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Yuchen Zhang
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Changjing Zhu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Shangfei Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Desheng Yu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
5
|
Kong M, Passa EA, Sanan T, Mohammed AN, Forster ALB, Justen PT, de la Cruz A, Westrick JA, O'Shea K, Ren B, Nadagouda MN, Yadav JS, Duan X, Richardson SD, Dionysiou DD. Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl 2 Treatment Be the Answer? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1421-1433. [PMID: 39764602 DOI: 10.1021/acs.est.4c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits. Still, much is unknown regarding potential disinfection byproduct formation and associated toxicity, which can occur from the reaction of chlorine and other reactive species with MCs and algal and natural organic matter. To ensure UV/chlorine guarding drinking water for human consumption, the degradation and detoxification of four of the most problematic MC variants, namely, MC-LR, -RR, -YR, and -LA, which differ in amino acid substituents, were evaluated using UV/chlorine and compared to results from chlorination. Overall, UV/chlorine effectively enhanced MC degradation kinetics and generated less halogenated disinfection byproducts in the target analysis of 11 types of DBPs_C1-3 from 7 classes, total organic chlorine, and nontarget analysis revealing 35 higher molecular weight DBPs_C46-52, which maintained the MC structures. Reactivity and cytotoxicity changes varied based on the individual amino acid moieties within the cyclic heptapeptide structure common to all MCs. Analogous trends in MC reactivity were observed in degradation kinetics and mixed MC competition reactions, aligning with individual amino acid structure-reactivity. Cytotoxicity results indicated no significant unintended toxic consequences from MC_DBPs. Our results suggest that UV/chlorine treatment offers an efficient strategy for treating MCs in drinking water.
Collapse
Affiliation(s)
- Minghao Kong
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Evangelia Anna Passa
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Toby Sanan
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Afzaal Nadeem Mohammed
- Molecular Toxicology Division, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Alexandria L B Forster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Patrick T Justen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Armah de la Cruz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kevin O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Bangxing Ren
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mallikarjuna N Nadagouda
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jagjit S Yadav
- Molecular Toxicology Division, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Xiaodi Duan
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
6
|
Zhang H, Chen J, Xie P. Unraveling the mechanisms underlying the fluorescent probe detection of microcystin-LR and its binding with CT-DNA. Int J Biol Macromol 2025; 298:139873. [PMID: 39814296 DOI: 10.1016/j.ijbiomac.2025.139873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Cyanobacteria blooms are concerning due to algal toxins like microcystin-leucine arginine (MC-LR). Despite progress in detecting MC-LR and understanding its toxic effects, including calf thymus DNA (CT-DNA) damage, the mechanisms for fluorescent probe detection of MC-LR and its binding to CT-DNA are poorly understood. In this study, we designed three fluorescent probes for MC-LR detection. Probe 1, with an acidic recognition site, is effective but influenced by solution pH. Probe 2, featuring a benzene ring structure, shows stable detection regardless of pH. Probe 3 offers the best performance, combining a long-chain and benzene ring structure. This suggests that combining these structures is beneficial for MC-LR probe design. Using Probe 3, we observed a strong interaction between MC-LR and CT-DNA. UV absorption spectroscopy, circular dichroism (CD) spectra, and molecular docking techniques provided the first evidence of MC-LR binding to CT-DNA through intercalation, with a binding saturation value of 8.33, significantly impacting CT-DNA structure. This study introduces a novel strategy for designing fluorescent probes for MC-LR detection, along with new insights into the interactions between MC-LR and CT-DNA.
Collapse
Affiliation(s)
- Huixia Zhang
- College of Life Sciences, Longyan University, Longyan 364000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China; Southwest United Graduate School, Kunming 650092, PR China.
| |
Collapse
|
7
|
Martínez-Piernas AB, Badagian N, Brena BM, Pérez-Parada A, García-Reyes JF. Identification and occurrence of microcystins in freshwaters and fish from a eutrophic dam through LC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178230. [PMID: 39721529 DOI: 10.1016/j.scitotenv.2024.178230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Microcystins (MCs) are cyclic heptapeptides originating from various cyanobacteria in eutrophic aquatic environments. Their potential consequences on ecosystems and public health underscores the need to explore MCs' occurrence. In this study, liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) analysis and a suspect screening workflow supported by open-source tools were employed for the determination of MCs in freshwater and biota samples from a eutrophic dam in Uruguay. MS2 spectra were acquired using higher-energy collisional dissociation (HCD), data-dependent acquisition (DDA), and stepped NCE of [M + H]+ and [M + 2H]2+ ions. In addition to the confirmation of 3 MCs in the samples, a comprehensive study of the acquired spectra led to the tentative identification of 30 MCs, including 2 partially described variants not previously reported. 33 MCs were determined in freshwaters, exhibiting a maximum MC concentration in a sample of 12731 μg/L. Regarding fish, the 61 % of the samples exhibited at least a positive determination. 8 MCs were detected and [D-Leu1]MC-LR, [seco-4/5]MC-LR, MC-LR, MC-RR, MC-WR, and [D-Asp3]MC-RR could be semi-quantified (3-127 μg/kg, w.w). In 2 samples, the MC-LR content per 100 g of fish was found to be close to 80 % the tolerable daily intake for chronic exposure recommended by the WHO. The identification of [seco-4/5]MC-LR in biota highlights the labile byproducts of MCs and the need for wide-scope analytical approaches. This study emphasizes the extensive range of MCs present in eutrophic freshwater environments, their accumulation in exposed biota, and their potential entry into the food web.
Collapse
Affiliation(s)
- Ana B Martínez-Piernas
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain.
| | - Natalia Badagian
- Biochemistry Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Beatriz M Brena
- Biochemistry Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Andrés Pérez-Parada
- Technological Development Department, Centro Universitario Regional del Este, Universidad de la República, Ruta 9, Rocha 27000, Uruguay.
| | - Juan F García-Reyes
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaen, Jaén, Spain
| |
Collapse
|
8
|
Adjei-Nimoh S, Rances LN, Tony MA, Nabwey HA, Lee WH. Rapid microcystin-LR detection using antibody-based electrochemical biosensors with a simplified calibration curve approach. Sci Rep 2024; 14:31968. [PMID: 39738474 DOI: 10.1038/s41598-024-83623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Harmful algal blooms (HABs) can release cyanotoxins such as microcystins (MCs), especially, microcystin-leucine-arginine (MC-LR) which is one of the commonest and most toxic, into our water bodies and can lead to several acute or chronic diseases such as liver diseases and respiratory irritation in humans. There is an increasing need for rapid and simple detection of MC-LR in water bodies for early warning of HABs. In this study, we developed an innovative on-site screening electrochemical impedance spectroscopy (EIS) biosensor with a simplified calibration curve that can rapidly detect blooms for early action in similar water bodies. The novel aspect of this research is that various chemical cleaning procedures and surface modifications were evaluated to improve the antibody-embedded electrochemical sensor performance. In addition, a simplified calibration curve was constructed from different water samples to reduce the need for frequent recalibration in practical applications. In this study, two distinct commercially available screen-printed carbon electrodes (SPCEs) were modified as a cost-effective substrate for MC-LR biosensing with anti-MC-LR/MC-LR/cysteamine-coating. The study showed that an appropriate cleaning procedure might minimize the sensor performance difference after each electrode modification. The biosensor showed excellent sensitivity toward MC-LR detection in lake water samples with a limit of detection (LOD) of 0.34 ngL-1. The simplified calibration curve was developed and used to predict unknown MC-LR concentrations in several lake water samples with a relative standard deviation (RSD) of 1.0-4.4% and a recovery of 75-112%, indicating the suitability of the developed biosensor and a streamlined calibration curve for rapid MC-LR measurements for different water bodies with similar water quality. This approach can therefore reduce the need for frequent calibration efforts and can be employed as the first line of testing for MC-LR in drinking and recreational water sources, especially in emergencies.
Collapse
Affiliation(s)
- Samuel Adjei-Nimoh
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Lance-Nicolas Rances
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Maha A Tony
- Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt
| | - Hossam A Nabwey
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj , Saudi Arabia
- Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom, 32511, Menoufia, Egypt
| | - Woo Hyoung Lee
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
9
|
Ock CS, Oh YE, Song S, No SG, Do HK, Hwang CW. Autoinducer-2 promotes microbial degradation of microcystin-LR by Leuconostoc mesenteroides BSH-02. Arch Microbiol 2024; 207:17. [PMID: 39714473 DOI: 10.1007/s00203-024-04218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Microcystin-LRs (MC-LR) produced by harmful cyanobacterial blooms (HCBs) pose significant hepatotoxic risks to both the environment and public health. Despite the identification and characterization of a limited number of MC-LR degrading bacteria, the challenge of safely removing MC-LRs from freshwater systems without disrupting aquatic ecosystems remains substantial. This study focused on the isolation of lactic acid bacteria from Bapshikhe, a traditional Korean fermented food, and investigated the mechanisms underlying the degradation of MC-LRs by these bacteria. This study also tested the hypothesis that cell wall-associated proteinases in probiotic bacteria play crucial roles in the degradation process. In addition, we verified the hypothesis that the MC-LR degradation mechanism of lactic is correlated with AI-2, a QS-inducing factor. MC-LR degrading bacteria, BSH-02, were successfully isolated from Bapshike, a Korean traditional fermented food, and identified by phylogenetic analysis as Leuconostoc mesenteroides. The BSH-02 strain effectively suppressed cyanobacterial blooms and degraded MC-LR. Ethylenediaminetetraacetic Acid (EDTA), a primary proteinase inhibitor of the BSH-02 strain, reduced the rate of microcystin removal. Based on these studies, the MC-degrading mechanism of BSH-02 was found to involve a metallopeptidase, aligning with mechanisms previously described in other studies. In addition, a correlation between metallopeptidases and AI-2 was identified using RT-qPCR. To the best of our knowledge, this is the first report of Leuconostoc mesenteroides degrading MC-LR. These findings suggest that Leuconostoc mesenteroides strain BSH-02 has high potential for the bioremediation of MC LR-contaminated water bodies.
Collapse
Affiliation(s)
- Chan-Soo Ock
- Department of Life Science, Handong Global University, Pohang, 37554, South Korea
| | - Ye-Eun Oh
- Department of Life Science, Handong Global University, Pohang, 37554, South Korea
| | - Suyoung Song
- Department of Life Science, Handong Global University, Pohang, 37554, South Korea
| | - Sang-Gun No
- Advanced Geo-Materials Research Department, Korea Institute of Geoscience and Mineral Resources (KIGAM), Pohang, South Korea
| | - Hyung-Ki Do
- Department of Life Science, Handong Global University, Pohang, 37554, South Korea
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang, 37554, South Korea.
| |
Collapse
|
10
|
Lin W, Hu F, Zou W, Wang S, Shi P, Li L, Yang J, Yang P. Rice Straw-Derived Biochar Mitigates Microcystin-LR-Induced Hepatic Histopathological Injury and Oxidative Damage in Male Zebrafish via the Nrf2 Signaling Pathway. Toxins (Basel) 2024; 16:549. [PMID: 39728807 DOI: 10.3390/toxins16120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish (Danio rerio) were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment. After 30 days exposure, our findings suggested that the existence of BC significantly decreased MC-LR bioavailability in liver. Furthermore, histopathological analysis revealed that BC mitigated MC-LR-induced hepatic lesions, which were characterized by mild damage, such as vacuolization, pyknotic nuclei, and swollen mitochondria. Compared to the groups exposed solely to MC-LR, decreased malondialdehyde (MDA) and increased catalase (CAT) and superoxide dismutase (SOD) were noticed in the mixture groups. Concurrently, significant changes in the mRNA expression levels of Nrf2 pathway genes (cat, sod1, gstr, keap1a, nrf2a, and gclc) further proved that BC reduces the oxidative damage induced by MC-LR. These findings demonstrate that BC decreases MC-LR bioavailability in the liver, thereby alleviating MC-LR-induced hepatotoxicity through the Nrf2 signaling pathway in zebrafish. Our results also imply that BC could serve as a potentially environmentally friendly material for mitigating the detrimental effects of MC-LR on fish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Wansheng Zou
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Suqin Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Pengling Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| |
Collapse
|
11
|
Soegianto A, Mukholladun W, Putranto TWC, Marchellina A, Manaf LBA, Irnidayanti Y, Hartl MGJ, Payus CM. Evidence of microcystin bioaccumulation and its effects on structural alterations in various shrimp (Litopenaeus vannamei Boone, 1931) tissues from shrimp aquaculture in the northern coastal region of East Java, Indonesia. MARINE POLLUTION BULLETIN 2024; 211:117467. [PMID: 39700704 DOI: 10.1016/j.marpolbul.2024.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Microcystins are generated by diverse cyanobacteria in shrimp ponds marked by high nutrient levels. The study examined microcystin-leucine arginine (MC-LR) in the pond water, gills, hepatopancreas, and muscle of shrimp (Litopenaeus vannamei) from shrimp ponds on the northern coast of East Java and its effects on their histological structures. In shrimp ponds dominated by cyanobacteria particularly Microcystis and Oscillatoria, MC-LR levels were high. In pond water, Microcystis and Oscillatoria levels increased along with NO2-, NH4+, clarity, and salinity. Shrimp tissues, such as the gills and hepatopancreas, experienced elevated MC-LR concentrations as a consequence of the MC-LR toxin increase in pond water. Shrimp inhabitants of ponds with elevated MC-LR concentrations exhibited significant changes in histological architecture, like hyperplasia in gill tissue and extensive vacuolation in hepatopancreas tissue. L. vannamei muscle samples show MC-LR amounts below the WHO's recommended daily intake of 0.04 μg/kg body weight/day, indicating no health risks to humans.
Collapse
Affiliation(s)
- Agoes Soegianto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Wildanun Mukholladun
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ary Marchellina
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Latifah Binti Abd Manaf
- Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Yulia Irnidayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Mark G J Hartl
- Institute for Life and Earth Sciences, Centre for Marine Biodiversity and Biotechnology, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK.
| | - Carolyn Melissa Payus
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
12
|
Wu H, Yan M, Wu T, Han X. MC-LR disrupts dopamine synthesis in the substantia nigra of midbrain by enhancing the chaperone-mediated autophagy pathway through direct binding to ERK2. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136181. [PMID: 39413523 DOI: 10.1016/j.jhazmat.2024.136181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Microcystins are environmental toxins produced by freshwater cyanobacteria. Microcystin-LR (MC-LR) is one of the most abundant and harmful isomers. MC-LR poses a serious threat to human health. MC-LR could penetrate the blood-brain barrier of mice and accumulate in the substantia nigra (SN) of the midbrain, leading to a reduction in dopamine levels and Parkinson's disease (PD)-like motor dysfunction in mice. The reduction in dopamine levels is a key factor contributing to movement disorders in humans with PD. Dopamine is synthesized in the dopaminergic neurons of the SN by the actions of tyrosine hydroxylase (TH) and dihydroxyphenylalanine decarboxylase (DDC). In this study, we found that MC-LR could enter dopaminergic neurons in the SN and directly bound to extracellular signal-regulated kinase 2 (ERK2), enhancing ERK2 stability. ERK2 further enhanced the transcriptional activity of Heat Shock Protein Family A Member 8 (HSPA8) and promoted the expression of Heat shock cognate 71 kDa protein (HSC70), which in turn amplified the chaperone-mediated autophagy (CMA) pathway and accelerated the degradation of TH and DDC. This affected the dopamine synthesis process, resulting in a significant reduction in dopamine levels. The study is the first to reveal that ERK2 was a direct target of MC-LR, and further enhanced CMA affecting dopamine synthesis, which has important theoretical and practical significance for environmental safety management.
Collapse
Affiliation(s)
- Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
13
|
Cottrill KA, Miles CO, Krajewski LC, Cunningham BR, Bragg W, Boise NR, Victry KD, Wunschel DS, Wahl KL, Hamelin EI. Identification of novel microcystins in algal extracts by a liquid chromatography-high-resolution mass spectrometry data analysis pipeline. HARMFUL ALGAE 2024; 139:102739. [PMID: 39567074 DOI: 10.1016/j.hal.2024.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Microcystins are an emergent public health problem. These toxins are secondary metabolites of harmful cyanobacterial blooms, with blooms becoming more prevalent with eutrophication of water. Exposure to microcystins can result in sickness, liver damage, and even death. Over 300 microcystins have been identified to date, with differences in toxicity based on the specific amino acid composition. Because of this diversity in microcystins, as well as the likelihood of detecting as yet undiscovered microcystins, it is vital to establish a methodological workflow to identify any microcystin in a complex sample, regardless of the availability of a reference standard. Additionally, ascribing varying levels of confidence to these identifications is critical to effectively communicate discoveries. METHODS A liquid-chromatography-high-resolution mass spectrometry method was utilized to identify microcystins present in cyanobacterial extracts from a strain of Microcystis aeruginosa and an Aphanizomenon sp. First, microcystin congeners with available standards were identified in the cyanobacterial extract. These known-unknown microcystins were considered to have the highest confidence identifications due to availability of accurate masses, retention times, and library spectra for comparison. Utilizing the spectra of these microcystins, relatively high-abundance diagnostic product-ions were identified and employed to screen the data for additional candidate microcystins. Microcystins without a standard that had an exact mass matching a microcystin published in CyanoMetDB were considered semi-known-unknown microcystins. The remaining microcystins were considered unknown-unknown microcystins. The identities of the microcystins determined herein were additionally supported by product-ion analysis, thiol reactivity, esterification reactions, neutral loss analysis, and literature contextualization. RESULTS In total, utilizing the systematic workflow presented herein, 23 microcystins were identified in the M. aeruginosa culture, including two not published previously: [d-Asp3]MC-LCit and the incompletely identified MC-L(C7H11NO3).
Collapse
Affiliation(s)
- Kirsten A Cottrill
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, USA; Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada; Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| | - Logan C Krajewski
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - Brady R Cunningham
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - William Bragg
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Noelani R Boise
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Kristin D Victry
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - David S Wunschel
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Karen L Wahl
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Elizabeth I Hamelin
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| |
Collapse
|
14
|
Jin B, Li X, Zhang Q, Zhou W, Liu Y, Dong Z, Chen G, Liu D. Toxicity assessment of microcystin-leucine arginine in planarian Dugesia japonica. Integr Zool 2024; 19:1135-1150. [PMID: 37849408 DOI: 10.1111/1749-4877.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Microcystin-leucine arginine (MC-LR), a representative cyanobacterial toxin, poses an increasing and serious threat to aquatic ecosystems. Despite investigating its toxic effects in various organisms and cells, the toxicity to tissue regeneration and stem cells in vivo still needs to be explored. Planarians are ideal regeneration and toxicology research models and have profound implications in ecotoxicology evaluation. This study conducted a systemic toxicity evaluation of MC-LR, including morphological changes, growth, regeneration, and the underlying cellular and molecular changes after MC-LR exposure, which were investigated in planarians. The results showed that exposure to MC-LR led to time- and dose-dependent lethal morphological changes, tissue damage, degrowth, and delayed regeneration in planarians. Furthermore, MC-LR exposure disturbed the activities of antioxidants, including total superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and total antioxidant capacity, leading to oxidative stress and DNA damage, and then reduced the number of dividing neoblasts and promoted apoptosis. The results demonstrated that oxidative stress and DNA damage induced by MC-LR exposure caused apoptosis. Excessive apoptosis and suppressed neoblast activity led to severe homeostasis imbalance. This study explores the underlying mechanism of MC-LR toxicity in planarians and provides a basis for the toxicity assessment of MC-LR to aquatic organisms and ecological risk evaluation.
Collapse
Affiliation(s)
- Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xiangjun Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qingling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wen Zhou
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Yingyu Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
15
|
Wan L, Huang R, Zhou Y, Guo J, Jiao Y, Gao J. Effects of Ciprofloxacin on the Production and Composition of Cellular Microcystins in Microcystis aeruginosa. TOXICS 2024; 12:759. [PMID: 39453179 PMCID: PMC11511219 DOI: 10.3390/toxics12100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Antibiotics can affect the photosynthetic system of Microcystis, potentially altering the balance of carbon and nitrogen, which may influence the synthesis of different microcystin (MC) congeners. However, the regulatory mechanisms by which antibiotics affect the synthesis of various MC congeners in Microcystis remain unknown. In this study, the effects of ciprofloxacin (CIP) on the growth, carbon and nitrogen balance, amino acid composition, mcyB gene expression, and production of different MC congeners were investigated in two toxin-producing strains of Microcystis aeruginosa. The results show that CIP exposure significantly inhibited the growth of both strains, achieving an inhibition rate of 71.75% in FACHB-315 and 41.13% in FACHB-915 at 8 μg/L CIP by the end of the cultivation. The intracellular C:N ratio in FACHB-315 increased by 51.47%, while no significant change was observed in FACHB-915. The levels of leucine, tyrosine, and arginine, as identified and quantified by UPLC-MS/MS, were significantly altered at higher CIP concentrations, leading to a reduction in leucine percentage and a notable increase in tyrosine in both strains, which contributed to a reduction in MC-LR proportion and an increase in MC-RR and MC-YR proportion. Additionally, the expression of the mcyB gene was upregulated by as much as 5.57 times, indicating that antibiotic stress could enhance MC synthesis at the genetic level, contributing to the increased toxicity of cyanobacteria. These findings emphasize the significant role of CIP in the biochemical processes of M. aeruginosa, particularly in MC synthesis and composition, providing valuable insights into the ecological risks posed by antibiotics and harmful cyanobacteria.
Collapse
Affiliation(s)
- Liang Wan
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Rong Huang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yan Zhou
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Jiahao Guo
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yiying Jiao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Jian Gao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
16
|
Yan P, Guo M, Gan Y, Zhu M, Han X, Wu J. Early pregnancy exposure to Microcystin-LR compromises endometrial decidualization in mice via the PI3K/AKT/FOXO1 signaling pathway. CHEMOSPHERE 2024; 366:143466. [PMID: 39369752 DOI: 10.1016/j.chemosphere.2024.143466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Previous experimental studies have found that exposure to Microcystin-leucine arginine can impact pregnancy outcomes in female mice. The impact of MC-LR on early pregnancy in mammals is not yet well understood. Both mice and humans need to undergo decidualization to maintain pregnancy. In this study, we tried to evaluate whether MC-LR affects decidualization process in mice. Our research showed that MC-LR decreased maternal weight gain, uterine weight, and implantation site weight. These findings suggested that MC-LR exerted adverse effects on decidualization. In mice, we examined decreased number of polyploid decidual cells, but marked proliferation of mouse endometrial stromal cells the expression levels of prolactin (PRL)and insulin-like growth factor binding protein 1 (IGFBP1) were significantly downregulated in the decidual tissue and primary endometrial stromal cells following MC-LR treatment. Furthermore, further in vitro experiments identified that MC-LR promoted endometrial stromal cell division and cycle transition. Lastly, our study demonstrated that MC-LR impaired decidualization through the PI3K/AKT/FOXO1 pathway. Collectively, these data suggested that exposure to MC-LR impaired decidualization during early pregnancy.
Collapse
Affiliation(s)
- Pinru Yan
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Meihong Guo
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Mengjiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Jiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
17
|
Tan Q, Chu H, Wei J, Yan S, Sun X, Wang J, Zhu L, Yang F. Astaxanthin Alleviates Hepatic Lipid Metabolic Dysregulation Induced by Microcystin-LR. Toxins (Basel) 2024; 16:401. [PMID: 39330859 PMCID: PMC11435617 DOI: 10.3390/toxins16090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Microcystin-LR (MC-LR), frequently generated by cyanobacteria, has been demonstrated to raise the likelihood of liver disease. Few previous studies have explored the potential antagonist against MC-LR. Astaxanthin (ASX) has been shown to possess various beneficial effects in regulating lipid metabolism in the liver. However, whether ASX could alleviate MC-LR-induced hepatic lipid metabolic dysregulation is as yet unclear. In this work, the important roles and mechanisms of ASX in countering MC-LR-induced liver damage and lipid metabolic dysregulation were explored for the first time. The findings revealed that ASX not only prevented weight loss but also enhanced liver health after MC-LR exposure. Moreover, ASX effectively decreased triglyceride, total cholesterol, aspartate transaminase, and alanine aminotransferase contents in mice that were elevated by MC-LR. Histological observation showed that ASX significantly alleviated lipid accumulation and inflammation induced by MC-LR. Mechanically, ASX could significantly diminish the expression of genes responsible for lipid generation (Srebp-1c, Fasn, Cd36, Scd1, Dgat1, and Pparg), which probably reduced lipid accumulation induced by MC-LR. Analogously, MC-LR increased intracellular lipid deposition in THLE-3 cells, while ASX decreased these symptoms by down-regulating the expression of key genes in the lipid synthesis pathway. Our results implied that ASX played a crucial part in lipid synthesis and effectively alleviated MC-LR-induced lipid metabolism dysregulation. ASX might be developed as a novel protectant against hepatic impairment and lipid metabolic dysregulation associated with MC-LR. This study offers new insights for further management of MC-LR-related metabolic diseases.
Collapse
Affiliation(s)
- Qinmei Tan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hanyu Chu
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, China
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Sisi Yan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoya Sun
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jiangping Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha 410219, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Affiliated Nanhua Hospital University of South China, Hengyang 421000, China
| |
Collapse
|
18
|
Wei N, Hu C, Dittmann E, Song L, Gan N. The biological functions of microcystins. WATER RESEARCH 2024; 262:122119. [PMID: 39059200 DOI: 10.1016/j.watres.2024.122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Microcystins are potent hepatotoxins predominantly produced by bloom-forming freshwater cyanobacteria (e.g., Microcystis, Planktothrix, Dolichospermum). Microcystin biosynthesis involves large multienzyme complexes and tailoring enzymes encoded by the mcy gene cluster. Mutation, recombination, and deletion events have shaped the mcy gene cluster in the course of evolution, resulting in a large diversity of microcystin congeners and the natural coexistence of toxic and non-toxic strains. The biological functions of microcystins and their association with algal bloom formation have been extensively investigated over the past decades. This review synthesizes recent advances in decoding the biological role of microcystins in carbon/nitrogen metabolism, antioxidation, colony formation, and cell-to-cell communication. Microcystins appear to adopt multifunctional roles in cyanobacteria that reflect the adaptive plasticity of toxic cyanobacteria to changing environments.
Collapse
Affiliation(s)
- Nian Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Elke Dittmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
19
|
Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol 2024; 98:2743-2762. [PMID: 38795135 DOI: 10.1007/s00204-024-03784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Marine toxins produced by marine organisms threaten human health and impose a heavy public health burden on coastal countries. Lately, there has been an emergence of marine toxins in regions that were previously unaffected, and it is believed that climate change may be a significant factor. This paper systematically summarizes the impact of climate change on the risk of marine toxins in terms of changes in seawater conditions. From our findings, climate change can cause ocean warming, acidification, stratification, and sea-level rise. These climatic events can alter the surface temperature, salinity, pH, and nutrient conditions of seawater, which may promote the growth of various algae and bacteria, facilitating the production of marine toxins. On the other hand, climate change may expand the living ranges of marine organisms (such as algae, bacteria, and fish), thereby exacerbating the production and spread of marine toxins. In addition, the sources, distribution, and toxicity of ciguatoxin, tetrodotoxin, cyclic imines, and microcystin were described to improve public awareness of these emerging marine toxins. Looking ahead, developing interdisciplinary cooperation, strengthening monitoring of emerging marine toxins, and exploring more novel approaches are essential to better address the risks of marine toxins posed by climate change. Altogether, the interrelationships between climate, marine ecology, and marine toxins were analyzed in this study, providing a theoretical basis for preventing and managing future health risks from marine toxins.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
Yang J, Zhang Z, Du X, Wang Y, Meng R, Ge K, Wu C, Liang X, Zhang H, Guo H. The effect and mechanism of combined exposure of MC-LR and NaNO 2 on liver lipid metabolism. ENVIRONMENTAL RESEARCH 2024; 252:119113. [PMID: 38729410 DOI: 10.1016/j.envres.2024.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Microcystin-LR (MC-LR) and sodium nitrite (NaNO2) co-exist in the environment and are hepatotoxic. The liver has the function of lipid metabolism, but the impacts and mechanisms of MC-LR and NaNO2 on liver lipid metabolism are unclear. Therefore, we established a chronic exposure model of Balb/c mice and used LO2 cells for in vitro verification to investigate the effects and mechanisms of liver lipid metabolism caused by MC-LR and NaNO2. The results showed that after 6 months of exposure to MC-LR and NaNO2, the lipid droplets content was increased, and the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were raised in the liver (P < 0.05). Moreover, MC-LR and NaNO2 synergistically induced hepatic oxidative stress by decreasing total superoxide dismutase (T-SOD) activity and glutathione (GSH) levels and increasing malondialdehyde (MDA) content levels. In addition, the levels of Nrf2, HO-1, NQO1 and P-AMPK was decreased and Keap1 was increased in the Nrf2/HO-1 pathway. The key factors of lipid metabolism, SREBP-1c, FASN and ACC, were up-regulated in the liver. More importantly, there was a combined effect on lipid deposition of MC-LR and NaNO2 co-exposure. In vitro experiments, MC-LR and NaNO2-induced lipid deposition and changes in lipid metabolism-related changes were mitigated after activation of the Nrf2/HO-1 signaling pathway by the Nrf2 activator tertiary butylhydroquinone (TBHQ). Additionally, TBHQ alleviated the rise of reactive oxygen species (ROS) in LO2 cells induced by MC-LR and NaNO2. Overall, our findings indicated that MC-LR and NaNO2 can cause abnormal liver lipid metabolism, and the combined effects were observed after MC-LR and NaNO2 co-exposure. The Nrf2/HO-1 signal pathway may be a potential target for prevention and control of liver toxicity caused by MC-LR and NaNO2.
Collapse
Affiliation(s)
- Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
21
|
Ouyang X, Wahlsten M, Pollari M, Delbaje E, Jokela J, Fewer DP. Identification of a homoarginine biosynthetic gene from a microcystin biosynthetic pathway in Fischerella sp. PCC 9339. Toxicon 2024; 243:107733. [PMID: 38670499 DOI: 10.1016/j.toxicon.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microcystins (MCs) are a family of chemically diverse toxins produced by numerous distantly related cyanobacteria. They are potent inhibitors of eukaryotic protein phosphatases 1 and 2A and are responsible for the toxicosis and death of wild and domestic animals around the world. Microcystins are synthesized on large enzyme complexes comprised of peptide synthetases, polyketide synthases, and additional modifying enzymes. Bioinformatic analysis identified the presence of an additional uncharacterized enzyme in the microcystin (mcy) biosynthetic gene cluster in Fischerella sp. PCC 9339, which we named McyK, that lacked a clearly defined role in the biosynthesis of microcystin. Further bioinformatic analysis suggested that McyK belongs to the inosamine-phosphate amidinotransferase family and could be involved in synthesizing homo amino acids. Quadrupole time-of-flight tandem mass spectrometry (Q-TOFMS/MS) analysis confirmed that Fischerella sp. PCC 9339 produces MC-Leucine2-Homoarginine4(MC-LHar) and [Aspartic acid3]MC-Leucine2-Homoarginine4 ([Asp3]MC-LHar) as the dominant chemical variants. We hypothesized that the McyK enzyme might be involved in the production of microcystin variants containing homoarginine (Har) in the strain. Heterologous expression of a codon-optimized mcyK gene in Escherichia coli confirmed that McyK is responsible for the synthesis of L-Har. These results confirm the production of MC-LHar, a novel microcystin chemical variant [Asp3]MC-LHar, and a new microcystin biosynthetic enzyme involved in supply of the rare homo-amino acid Har to the microcystin biosynthetic pathway in Fischerella sp. PCC 9339. This study provides new insights into the logic underpinning the biosynthesis of microcystin chemical variants and broadens our knowledge of structural diversity of the microcystin family of toxins.
Collapse
Affiliation(s)
- Xiaodan Ouyang
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, FI-00014, Helsinki, Finland
| | - Endrews Delbaje
- Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, 14040-903, Ribeirão Preto, Brazil
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland.
| |
Collapse
|
22
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
23
|
Wei J, Luo J, Peng T, Zhou P, Zhang J, Yang F. Comparative genomic analysis and functional investigations for MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria in ecology. ENVIRONMENTAL RESEARCH 2024; 248:118336. [PMID: 38295970 DOI: 10.1016/j.envres.2024.118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.
Collapse
Affiliation(s)
- Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Pengji Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Jiajia Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
24
|
Lin W, Hu F, Liu F, Liao L, Ling L, Li L, Yang J, Yang P. Microcystin-LR and polystyrene microplastics jointly lead to hepatic histopathological damage and antioxidant dysfunction in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123789. [PMID: 38490526 DOI: 10.1016/j.envpol.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 μg/L) and a mixture of MC-LR and PSMPs (100 μg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 μg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China.
| |
Collapse
|
25
|
He Y, Ouyang K, Yang H, Wang L, Wang X, Li D, Li L. The impact of ammonia and microcystin-LR on neurobehavior and glutamate/gamma-aminobutyric acid balance in female zebrafish (Danio rerio): ROS and inflammation as key pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170914. [PMID: 38354808 DOI: 10.1016/j.scitotenv.2024.170914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Ammonia and microcystin-LR (MC-LR) are both toxins that can be in eutrophic waters during cyanobacterial blooms. While previous studies have focused on the effects of ammonia exposure on fish neurobehavioral toxicity, little attention has been given to the effects of MC-LR and combined exposures to both. This study exposed adult female zebrafish to ammonia (30 mg/L) and MC-LR (10 μg/L) alone and in combination for 30 days to investigate their neurotoxic effects and underlying mechanisms. Behavioral results showed that exposure to ammonia and MC-LR, both alone and in combination, led to decreased locomotor activity and increased anxiety in fish. Histomorphological analysis revealed the formation of thrombi and vacuolization in the brain across all exposure groups. Exposure to ammonia and MC-LR resulted in significant increases in MDA contents, decreases in Mn-SOD activities, and alterations in GSH contents compared to the control. Single and combined exposure to ammonia and MC-LR also induced the release of inflammatory factors (IL-1β and TNF-α) by activating the NOD/NF-κB signaling pathway. Furthermore, both ammonia and MC-LR significantly changed the expression of genes related to the glutamatergic and GABAergic systems, elevated Glu and GABA contents, as well as increased the Glu/GABA ratio, indicating that a shift towards increased Glu levels. Overall, these findings suggested that exposure to MC-LR and ammonia, individually and in combination, could decrease locomotor activity and increase anxiety of female zebrafish. This was likely due to brain damage from over-activated ROS and the release of pro-inflammatory cytokines, which led to a disruption in the balance of glutamatergic and GABAergic systems. However, there was no significant interaction between MC-LR and ammonia in fish neurobehavioral toxicity.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
26
|
Liu YL, Liu JY, Zhu XX, Wei JH, Mi SL, Liu SY, Li XL, Zhang WW, Zhao LL, Wang H, Xu DX, Gao L. Pubertal exposure to Microcystin-LR arrests spermatogonia proliferation by inducing DSB and inhibiting SIRT6 dependent DNA repair in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116191. [PMID: 38460408 DOI: 10.1016/j.ecoenv.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 μg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.
Collapse
Affiliation(s)
- Yu-Lin Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jia-Yu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xin-Xin Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jian-Hua Wei
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Shuang-Ling Mi
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Su-Ya Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiu-Liang Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei-Wei Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ling-Li Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Lan Gao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
27
|
Yang Q, Huang L, Yang N, Cui H, Zhao Y, Li Z, Tong Y. Transgenerational effects of extracts containing Microcystin-LR exposure on reproductive toxicity and offspring growth inhibition in a model organism zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106860. [PMID: 38354462 DOI: 10.1016/j.aquatox.2024.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Cyanobacteria cell lysates release numerous toxic substances (e.g., cyanotoxins) into the water, posing a serious threat to human health and aquatic ecosystems. Microcystins (MCs) are among the most abundant cyanotoxins in the cell lysates, with microcystin-LR (MC-LR) being one of the most common and highly toxic congeners. In this study, zebrafish (Danio rerio) were exposed to different levels MC-LR that from extracts of Microcystis aeruginosa. Changes in the MC-LR accumulations, organ coefficients, and antioxidant enzyme activities in the zebrafish were analyzed. Transgenerational reproductive toxicity of MC-LR in the maternal and paternal generations was further investigated, as well as the influences of extracts containing MC-LR exposures of the F1 on the growth of zebrafish. The study found that high levels of MC-LR could be detected in the major organs of adult zebrafish, particularly in spleen. Notably, concentration of MC-LR in the spermary was significantly higher than that in the ovarium. MC-LR could induce oxidative damage by affecting the activities of catalase and superoxide dismutase. Inherited from F0, MC-LR led to impaired development in the F1 generation. Difference in offspring survival rates could be observed in the groups with different MC-LR levels of maternal and paternal exposures. This study reveals transgenerational effects of MC-LR on the reproductive toxicity and offspring growth inhibition to the aquatic organisms, which should be emphasized in the future ecological risk assessment.
Collapse
Affiliation(s)
- Qing Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Lanlan Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Ning Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Hongyang Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
28
|
Premathilaka SH, Westrick JA, Isailovic D. Identification of Serine-Containing Microcystins by UHPLC-MS/MS Using Thiol and Sulfoxide Derivatizations and Detection of Novel Neutral Losses. Anal Chem 2024; 96:775-786. [PMID: 38170221 DOI: 10.1021/acs.analchem.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Microcystins (MCs) are hepatotoxic cyclic heptapeptides produced by cyanobacteria, and their structural diversity has led to the discovery of more than 300 congeners to date. However, with known amino acid combinations, many more MC congeners are theoretically possible, suggesting many remain unidentified. Herein, two novel serine (Ser)-containing MCs were putatively identified in a Lake Erie cyanobacterial harmful algal bloom (cyanoHAB), using high-resolution UHPLC-MS as well as thiol and sulfoxide derivatization procedures. These MCs contain an α,β-unsaturated carbonyl on methyl dehydroalanine (Mdha) residue that undergoes Michael addition to produce a thiol-derivatized MC. Derivatization reactions using various thiolation reagents were followed by MS/MS, and two Python codes were used for data analysis and structural elucidation of MCs. Two novel MCs containing Ser at position 1 (i.e., next to Mdha) were putatively identified as [Ser1]MC-RR and [Ser1]MC-YR. Using thiol- and sulfoxide-modified [Ser1]MCs, identifications were confirmed by the observation of specific neutral losses of the oxidized thiols or sulfoxides in CID-MS/MS spectra in both positive and negative electrospray ionization (ESI) modes. These novel neutral losses are unique for MCs with Mdha and an adjacent Ser residue. Data suggest that a gas-phase reaction occurs between oxygen from adjacent Ser residue and sulfur of the Mdha-bonded thiol or sulfoxide, which leads to the formation and detection of stable cyclic MC ions in MS/MS spectra at m/z values corresponding to the loss of oxidized thiols or oxidized sulfoxides from Ser1-containing MCs.
Collapse
Affiliation(s)
- Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
29
|
Li Y, Qin M, Han S, Wang Y, Gao C, Niu W, Xia X. Elimination of Microcystis aeruginosa through Leuconostoc mesenteroides DH and its underlying mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168290. [PMID: 37939934 DOI: 10.1016/j.scitotenv.2023.168290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Microcystis aeruginosa is ubiquitously found in various water bodies and can produce microcystins (MCs), which threaten the health of aquatic animals and human beings. The elimination of excessive M. aeruginosa is beneficial for the protection of the ecosystems and public health. In this regard, algae-lysing bacteria have been extensively studied as an effective measure for their eradication. However, the active substances generated by algae-lysing bacteria are limited. For this study, we reveal that the phenyllactic acid (PLA) produced by Leuconostoc mesenteroides DH exhibits high efficacy for the removal of M. aeruginosa, and explore the elimination mechanism of strain DH on M. aeruginosa. It was found that a cell-free supernatant of strain DH possessed high removal activities against M. aeruginosa. Abundant reactive oxygen species were induced in algal cells following exposure to strain DH supernatant, as well as superoxide dismutase and catalase responses. Furthermore, the integrity of algal cell membranes and photosynthesis was seriously damaged. Interestingly, added exogenous eugenol significantly inhibited the synthesis of active substance produced by strain DH, which further identified that PLA is one of the active substances that contribute to the eradication of M. aeruginosa on the basis of metabolomics analysis. Our finding demonstrated, for the first time, that PLA (as an anti-cyanobacterial compound) can be used for the removal of M. aeruginosa, which provides a theoretical basis for the control of M. aeruginosa.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Chao Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Wenfang Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
30
|
Li W, Baliu-Rodriguez D, Premathilaka SH, Thenuwara SI, Kimbrel JA, Samo TJ, Ramon C, Kiledal EA, Rivera SR, Kharbush J, Isailovic D, Weber PK, Dick GJ, Mayali X. Microbiome processing of organic nitrogen input supports growth and cyanotoxin production of Microcystis aeruginosa cultures. THE ISME JOURNAL 2024; 18:wrae082. [PMID: 38718148 PMCID: PMC11126159 DOI: 10.1093/ismejo/wrae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.
Collapse
Affiliation(s)
- Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - David Baliu-Rodriguez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sharmila I Thenuwara
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Ty J Samo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Erik Anders Kiledal
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Sara R Rivera
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Jenan Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI 48104, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| |
Collapse
|
31
|
Réveillon D, Georges des Aulnois M, Savar V, Robert E, Caruana AMN, Briand E, Bormans M. Extraction and analysis by liquid chromatography - tandem mass spectrometry of intra- and extracellular microcystins and nodularin to study the fate of cyanobacteria and cyanotoxins across the freshwater-marine continuum. Toxicon 2024; 237:107551. [PMID: 38070753 DOI: 10.1016/j.toxicon.2023.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The presence of microcystins (MCs) is increasingly being reported in coastal areas worldwide. To provide reliable data regarding this emerging concern, reproducible and accurate methods are required to quantify MCs in salt-containing samples. Herein, we characterized methods of extraction and analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for nine MCs and one nodularin (NOD) variants in both cyanobacteria (intracellular) and dissolved forms (extracellular). Different approaches have been used to cope with salinity for the extraction of dissolved MCs but none assessed solid phase extraction (SPE) so far. It was found that salt had negligible effect on the SPE recovery of dissolved MCs using the C18 cartridge while an overestimation up to 67% was noted for some variants with a polymeric sorbent. The limits of detection (LOD) and quantification (LOQ) were 1.0-22 and 5.5-124 pg on column for the intracellular toxins, while 0.05-0.81 and 0.13-2.4 ng/mL were obtained for dissolved toxins. Extraction recoveries were excellent for intracellular (89-121%) and good to excellent for extracellular cyanotoxins (73-102%) while matrix effects were considered neglectable (<12% for 16/20 toxin-matrix combinations), except for the two MC-RR variants. The strategy based on the application of a corrective factor to compensate for losses proved useful as the accuracy was satisfactory (73-117% for intra- and 81-139% for extracellular cyanotoxins, bias <10% for 46/60 conditions, with a few exceptions), with acceptable precisions (intra- and inter-days variabilities <11%). We then applied this method on natural colonies of Microcystis spp. subjected to a salt shock, mimicking their estuarine transfer, in order to assess their survival and to quantify their toxins. The colonies of Microcystis spp. had both their growth and photosynthetic activity impaired at salinities from 10, while toxins remained mainly intracellular (>76%) even at salinity 20, suggesting a potential health risk and contamination of estuarine organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Myriam Bormans
- University of Rennes, CNRS, Ecobio UMR, 6553, Rennes, France
| |
Collapse
|
32
|
Lin W, Ouyang K, He Y, Yang H, Kuang Y, Li D, Li L. Combined effects of microcystin-LR and rice straw-derived biochar on the hepatic antioxidant capacity of zebrafish: Insights from LC-MS/MS-based metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166830. [PMID: 37673272 DOI: 10.1016/j.scitotenv.2023.166830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Microcystin-LR (MC-LR) produced by cyanobacteria blooms poses a serious risk to aquatic organisms. Rice straw-derived biochar (BC) is gradually being utilized as an effective adsorbent to remove water pollutants. In the present study, the combined toxicity of MC-LR and BC on hepatic antioxidant capacity and metabolic phenotype of zebrafish (Danio rerio) were conducted due to the increasing concern of eutrophication in aquatic environments. Female zebrafish were exposed to solutions of MC-LR (10 μg/L) and BC (100 μg/L) individually and in combination for 30 days. The results indicated that sub-chronic MC-LR exposure induced oxidative stress and metabolic disorders, with a significant elevation of several amino acids, glucose as well as unsaturated fatty acids. Metabolic pathway analysis showed that the ascorbate and aldarate metabolism and biosynthesis of unsaturated fatty acids were affected under MC-LR stress. Significantly increased MDA levels along with significantly decreased CAT and GPx activities were observed in the MC-LR group. Nevertheless, MDA levels, antioxidant enzyme activities, and the relevant gene expressions (cat1, nrf2a, HO-1, keap1a) returned to baseline in the co-exposure group. These findings revealed that MC-LR resulted in metabolic disorders of protein, sugar, and lipid related to energy production, and BC could relieve MC-LR-induced metabolic disorder and oxidative stress in the liver of zebrafish. However, the potential risk of BC-induced metabolic disorder should not be neglected. Our present results highlight the potential of BC as a tool for mitigating the negative impacts of MC-LR on aquatic organisms in blooms-contaminated water.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
33
|
French BW, Kaul R, George J, Haller ST, Kennedy DJ, Mukundan D. A Case Series of Potential Pediatric Cyanotoxin Exposures Associated with Harmful Algal Blooms in Northwest Ohio. Infect Dis Rep 2023; 15:726-734. [PMID: 37987403 PMCID: PMC10660511 DOI: 10.3390/idr15060065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) are increasing in prevalence and severity in the Great Lakes region, as well as both globally and locally. CyanoHABs have the potential to cause adverse effects on human health due to the production of cyanotoxins from cyanobacteria. Common routes of exposure include recreational exposure (swimming, skiing, and boating), ingestion, and aerosolization of contaminated water sources. Cyanotoxins have been shown to adversely affect several major organ systems contributing to hepatotoxicity, gastrointestinal distress, and pulmonary inflammation. We present three pediatric case reports that coincided with CyanoHABs exposure with a focus on presentation of illness, diagnostic work-up, and treatment of CyanoHAB-related illnesses. Potential cyanotoxin exposure occurred while swimming in the Maumee River and Maumee Bay of Lake Erie in Ohio during the summer months with confirmed CyanoHAB activity. Primary symptoms included generalized macular rash, fever, vomiting, diarrhea, and severe respiratory distress. Significant labs included leukocytosis and elevated C-reactive protein. All patients ultimately recovered with supportive care. Symptoms following potential cyanotoxin exposure coincide with multiple disease states representing an urgent need to develop specific diagnostic tests of exposure.
Collapse
Affiliation(s)
- Benjamin W. French
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - Rajat Kaul
- Department of Pediatrics, College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA;
| | - Jerrin George
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.G.)
| | - Deepa Mukundan
- Department of Pediatrics, College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
34
|
Cheng C, Steinman AD, Xue Q, Zhang L, Xie L. The osmotic stress of Vallisneria natans (Lour.) Hara leaves originating from the disruption of calcium and potassium homeostasis caused by MC-LR. WATER RESEARCH 2023; 245:120575. [PMID: 37688853 DOI: 10.1016/j.watres.2023.120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Aquatic plants are potentially impacted by microcystins (MCs) in lakes experiencing harmful algal blooms. However, how these plants respond, and possibly adapt to osmotic stress caused by MCs is unclear. Vallisneria natans is a pioneer taxon with a global distribution in eutrophic lakes. In this study, we investigated the effect of MC-LR on morphological structure, water retention, osmoregulatory ability, and homeostasis of calcium (Ca2+) and potassium (K+) ions in V. natans leaves. Results showed that the morphological changes caused by MC-LR included increased volumes of epidermal and mesophyll cells, changes in their lignification level, and the degradation of chloroplast structure and dissolution of starch granules. The increased moisture content and water potential with MC-LR concentration were consistent with the occurrence of osmotic stress, and the decreased osmotic potential implied the activation of osmoregulation. Soluble sugar and free amino acid concentrations increased at MC-LR treatments ≥10 μg/L, while inorganic ion K+ content increased in all MC-LR treatments. Although instantaneous K+inflow and Ca2+outflow occurred at 10 μg/L and 100 μg/L MC-LR, respectively, ≥1 μg/L MC-LR resulted in continuous K+ inflow and Ca2+ outflow within 24 h. Moreover, plasma membrane hyperpolarization was caused by MC-LR, especially at 1 and 10 μg/L. We suggest that Ca2+ efflux served as a signal molecule from the cytoplasmic matrix via Ca2+-ATPase, and the uptake of K+ was activated passively through transporters in response to MC-LR-induced plasma membrane hyperpolarization. Therefore, the uptake of K+ was a part of the response but not an adaptation to MC-LR stress, and is considered the cause for the uptake of water in leaves. Ca2+ and K+ homeostasis of V. natans leaves was disrupted by MC-LR concentrations as low as 1 μg/L, suggesting that aquatic plants in most eutrophic lakes may experience negative impacts such as Ca2+ loss, impacts to cell water balance, and alteration in cellular morphology, due to osmotic stress caused by MC-LR.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, USA
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lei Zhang
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China.
| |
Collapse
|
35
|
Yancey CE, Kiledal EA, Chaganti SR, Denef VJ, Errera RM, Evans JT, Hart LN, Isailovic D, James WS, Kharbush JJ, Kimbrel JA, Li W, Mayali X, Nitschky H, Polik CA, Powers MA, Premathilaka SH, Rappuhn NA, Reitz LA, Rivera SR, Zwiers CC, Dick GJ. The Western Lake Erie culture collection: A promising resource for evaluating the physiological and genetic diversity of Microcystis and its associated microbiome. HARMFUL ALGAE 2023; 126:102440. [PMID: 37290887 DOI: 10.1016/j.hal.2023.102440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 μg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.
Collapse
Affiliation(s)
- Colleen E Yancey
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - E Anders Kiledal
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Vincent J Denef
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Reagan M Errera
- National Oceanic and Atmospheric Administration (NOAA), Great Lakes Environmental Research Laboratory (GLERL), 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Jacob T Evans
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lauren N Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, United States of America; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - William S James
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jenan J Kharbush
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Helena Nitschky
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Catherine A Polik
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - McKenzie A Powers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - Nicole A Rappuhn
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Laura A Reitz
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sara R Rivera
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Claire C Zwiers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Gregory J Dick
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America.
| |
Collapse
|
36
|
Ding Y, Bi Q, Huang D, Liao J, Yang L, Luo X, Yang P, Li Y, Yao C, Wei W, Zhang J, Li J, Huang Y, Guo DA. A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species. Food Chem 2023; 426:136670. [PMID: 37354578 DOI: 10.1016/j.foodchem.2023.136670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
The composition and quantity of amino acids (AAs) in seeds are complicated due to the various origins and modifications of different species. In this study, a novel automatic neutral loss filtering (ANLF) strategy based on accurate mass searching by Python was developed to analyze the free and hydrolyzed AA-phenyl isothiocyanate (PITC) derivatives from seeds of Gymnosperm and Angiosperm phyla. Compared with traditional strategies, ANLF showed much higher accuracy in screening AA derivatives by filtering nitrogen-containing non-AA compounds and efficiency in processing large datasets. Meanwhile, the content phenotype of 20 proteinogenic AAs from seeds of these two families was characterized by a 35-min HPLC method combined with an automated peak-matching strategy. AA profiles of 232 batches of seeds from 67 species, consisting of 19 proteinogenic AAs, 21 modified AAs, and 77 unknown AAs, would be a good reference for their application in food and medicine.
Collapse
Affiliation(s)
- Yelin Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongdong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingmei Liao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoxiao Luo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peilei Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
37
|
Kim N, Kim SY, Lee SW, Lee EH. Adsorption behavior of polyamide microplastics as a vector of the cyanotoxin microcystin-LR in environmental freshwaters. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130683. [PMID: 36610341 DOI: 10.1016/j.jhazmat.2022.130683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are ubiquitous environmental contaminants, and concern about microplastics functioning as vectors for coexisting environmental contaminants has been increasing. In this study, we evaluated the potential of microplastics as a vector for microcystins (MCs) in an aquatic environment. Six microplastics-polyvinylidene chloride, polystyrene, polyamide-6 (PA-6), polyvinyl chloride, poly(ethylene terephthalate), and polyethylene-were used in the experiments, and the PA-6 microplastics showed strong affinity toward the cyanotoxin microcystin-leucine arginine (MC-LR) with an adsorption efficiency of 89.5 ± 0.1 %. The adsorption of MC-LR onto PA-6 microplastics was well described by the pseudo-first-order kinetics and Langmuir isotherm models, and the adsorption was considered to be driven mainly by polar-polar interactions. The maximum adsorption capacity (qm) of MC-LR onto PA-6 microplastics was estimated to be 85.64-129.05 μg per g of PA-6 microplastics. Coexisting ions of NaCl, MgSO4, KH2PO4, CaCO3, and Na2HPO4 marginally affected the adsorption of MC-LR onto the PA-6 microplastics. However, water-quality parameters of conductivity and total-nitrogen content in environmental freshwaters influenced the adsorption of MC-LR onto PA-6 microplastics. The adsorption capability of PA-6 microplastics was evaluated using extracellular MCs (i.e., MC-LR, MC-YR, MC-RR, and total MCs) released from Microcystis aeruginosa cells during their growth.
Collapse
Affiliation(s)
- Namyeon Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - So Yoon Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, Republic of Korea.
| |
Collapse
|
38
|
Du X, Fu Y, Tian Z, Liu H, Xin H, Fu X, Wang F, Zhang H, Zeng X. Microcystin-LR accelerates follicular atresia in mice via JNK-mediated adherent junction damage of ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114592. [PMID: 36731181 DOI: 10.1016/j.ecoenv.2023.114592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Microcystin-LR (MC-LR), one of aquatic environmental contaminants with reproductive toxicity produced by cyanobacterial blooms, but its toxic effects and mechanisms on the ovary are not fully understood. Here, proteomic techniques and molecular biology experiments were performed to study the potential mechanism of MC-LR-caused ovarian toxicity. Results showed that protein expression profile of ovarian granulosa cells (KK-1) was changed by 17 μg/mL MC-LR exposure. Comparing with the control group, 118 upregulated proteins as well as 97 downregulated proteins were identified in MC-LR group. Function of differentially expressed proteins was found to be enriched in pathways related to adherent junction, such as cadherin binding, cell-cell junction, cell adhesion and focal adherens. Furthermore, in vitro experiments, MC-LR significantly downregulated the expression levels of proteins associated with adherent junction (β-catenin, N-cadherin, and α-catenin) as well as caused cytoskeletal disruption in KK-1 cells (P < 0.05), indicating that the adherent junction was damaged. Results of in vivo experiments have shown that after 14 days of acute MC-LR exposure (40 μg/kg), damaged adherent junction and an increased number of atretic follicles were observed in mouse ovaries. Moreover, MC-LR activated JNK, an upstream regulator of adherent junction proteins, in KK-1 cells and mouse ovarian tissues. In contrast, JNK inhibition alleviated MC-LR-induced adherent junction damage in vivo and in vitro, as well as the number of atretic follicles. Taken together, findings from the present study indicated that JNK is involved in MC-LR-induced granulosa cell adherent junction damage, which accelerated follicular atresia. Our study clarified a novel mechanism of MC-LR-caused ovarian toxicity, providing a theoretical foundation for protecting female reproductive health from environmental pollutants.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hongxia Xin
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
39
|
Zhang H, Li Y, Abdallah MF, Tan H, Li J, Liu S, Zhang R, Sun F, Li Y, Yang S. Novel one-point calibration strategy for high-throughput quantitation of microcystins in freshwater using LC-MS/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159345. [PMID: 36270352 DOI: 10.1016/j.scitotenv.2022.159345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Precise quantification of microcystins (MCs) in freshwater is crucial for environmental monitoring and human health. However, the preparation of traditional multi-sample external calibration curve (MSCC) is time consuming and prone to error. Here, a novel one-point calibration strategy including one sample multi-point calibration curve (OSCC) and in sample calibration curve (ISCC) is proposed for the quantitation of eight MCs in freshwater lakes using liquid chromatography tandem mass spectrometry (LC-MS/MS). The multiple isotopologue reaction monitoring (MIRM) of MCs and its 15N-labelled internal standards were used for OSCC and ISCC, respectively. The isotopic abundance of each MIRM channel could be calculated and measured accurately. Additionally, this strategy was comprehensively validated and showed good performance in selectivity, sensitivity, accuracy and precision as the traditional MSCC. Interestingly, OSCC could realize sample dilution by monitoring the less abundant MIRM transitions, while ISCC remove blank matrixes and generate calibration curve in each study samples. Furthermore, the proposed methodology was successfully applied to analyze several freshwater lake samples contaminated by MCs. Considering the advantages of excluding the MSCC preparation, simplified workflows and improved throughput, OSCC and ISCC will be favored for MCs monitoring and as an emerging approach in environmental pollutant control and prevention.
Collapse
Affiliation(s)
- Huiyan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Haiguang Tan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Feifei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
40
|
Du X, Liu H, Tian Z, Zhang S, Shi L, Wang Y, Guo X, Zhang B, Yuan S, Zeng X, Zhang H. PI3K/AKT/mTOR pathway mediated-cell cycle dysregulation contribute to malignant proliferation of mouse spermatogonia induced by microcystin-leucine arginine. ENVIRONMENTAL TOXICOLOGY 2023; 38:343-358. [PMID: 36288207 DOI: 10.1002/tox.23691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Environmental cyanotoxin exposure may be a trigger of testicular cancer. Activation of PI3K/AKT/mTOR signaling pathway is the critical molecular event in testicular carcinogenesis. As a widespread cyanotoxin, microcystin-leucine arginine (MC-LR) is known to induce cell malignant transformation and tumorigenesis. However, the effects of MC-LR on the regulatory mechanism of PI3K/AKT/mTOR pathway in seminoma, the most common testicular tumor, are unknown. In this study, mouse spermatogonia cell line (GC-1) and nude mice were used to investigate the effects and mechanisms of MC-LR on the malignant transformation of spermatogonia by nude mouse tumorigenesis assay, cell migration invasion assay, western blot, and cell cycle assay, and so forth. The results showed that, after continuous exposure to environmentally relevant concentrations of MC-LR (20 nM) for 35 generations, the proliferation, migration, and invasion abilities of GC-1 cells were increased by 120%, 340%, and 370%, respectively. In nude mice, MC-LR-treated GC-1 cells formed tumors with significantly greater volume (0.998 ± 0.768 cm3 ) and weight (0.637 ± 0.406 g) than the control group (0.067 ± 0.039 cm3 ; 0.094 ± 0.087 g) (P < .05). Furthermore, PI3K inhibitor Wortmannin inhibited the PI3K/AKT/mTOR pathway and its downstream proteins (c-MYC, CDK4, CCND1, and MMP14) activated by MC-LR. Blocking PI3K alleviated MC-LR-induced cell cycle disorder and malignant proliferation, migration and invasive of GC-1 cells. Altogether, our findings suggest that MC-LR can induce malignant transformation of mouse spermatogonia, and the PI3K/AKT/mTOR pathway-mediated cell cycle dysregulation may be an important target for malignant proliferation. This study provides clues to further reveal the etiology and pathogenesis of seminoma.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Wei J, Pengji Z, Zhang J, Peng T, Luo J, Yang F. Biodegradation of MC-LR and its key bioactive moiety Adda by Sphingopyxis sp. YF1: Comprehensive elucidation of the mechanisms and pathways. WATER RESEARCH 2023; 229:119397. [PMID: 36459892 DOI: 10.1016/j.watres.2022.119397] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) are harmful to the ecology and public health. Some bacteria can degrade MCs into Adda, but few can destroy Adda. Adda is the key bioactive moiety of MCs and mainly contributes to hepatotoxicity. We had previously isolated an indigenous novel bacterial strain named Sphingopyxis sp. YF1 that can efficiently degrade MCs and its key bioactive moiety Adda, but the mechanisms remained unknown. Here, the biodegradation mechanisms and pathways of Adda were systematically investigated using multi-omics analysis, mass spectrometry and heterologous expression. The transcriptomic and metabolomic profiles of strain YF1 during Adda degradation were revealed for the first time. Multi-omics analyses suggested that the fatty acid degradation pathway was enriched. Specifically, the expression of genes encoding aminotransferase, beta oxidation (β-oxidation) enzymes and phenylacetic acid (PAA) degradation enzymes were significantly up-regulated during Adda degradation. These enzymes were further proven to play important roles in the biodegradation of Adda. Simultaneously, some novel potential degradation products of Adda were identified successfully, including 7‑methoxy-4,6-dimethyl-8-phenyloca-2,4-dienoic acid (C17H22O3), 2-methyl-3‑methoxy-4-phenylbutyric acid (C12H16O3) and phenylacetic acid (PAA, C8H8O2). In summary, the Adda was converted into PAA through aminotransferase and β-oxidation enzymes, then the PAA was further degraded by PAA degradation enzymes, and finally to CO2 via the tricarboxylic acid cycle. This study comprehensively elucidated the novel MC-LR biodegradation mechanisms, especially the new enzymatic pathway of Adda degradation. These findings provide a new perspective on the applications of microbes in the MCs polluted environment.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Zhou Pengji
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
42
|
Weiss MB, Médice RV, Jacinavicius FR, Pinto E, Crnkovic CM. Metabolomics Applied to Cyanobacterial Toxins and Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:21-49. [PMID: 37843804 DOI: 10.1007/978-3-031-41741-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The biological and chemical diversity of Cyanobacteria is remarkable. These ancient prokaryotes are widespread in nature and can be found in virtually every habitat on Earth where there is light and water. They are producers of an array of secondary metabolites with important ecological roles, toxic effects, and biotechnological applications. The investigation of cyanobacterial metabolites has benefited from advances in analytical tools and bioinformatics that are employed in metabolomic analyses. In this chapter, we review selected articles highlighting the use of targeted and untargeted metabolomics in the analyses of secondary metabolites produced by cyanobacteria. Here, cyanobacterial secondary metabolites have been didactically divided into toxins and natural products according to their relevance to toxicological studies and drug discovery, respectively. This review illustrates how metabolomics has improved the chemical analysis of cyanobacteria in terms of speed, sensitivity, selectivity, and/or coverage, allowing for broader and more complex scientific questions.
Collapse
Affiliation(s)
- Márcio Barczyszyn Weiss
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Rhuana Valdetário Médice
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Fernanda Rios Jacinavicius
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, Division of Tropical Ecosystem Functioning, University of São Paulo, Piracicaba, Brazil
| | - Camila Manoel Crnkovic
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
43
|
Breidenbach JD, French BW, Gordon TT, Kleinhenz AL, Khalaf FK, Willey JC, Hammersley JR, Mark Wooten R, Crawford EL, Modyanov NN, Malhotra D, Teeguarden JG, Haller ST, Kennedy DJ. Microcystin-LR aerosol induces inflammatory responses in healthy human primary airway epithelium. ENVIRONMENT INTERNATIONAL 2022; 169:107531. [PMID: 36137425 DOI: 10.1016/j.envint.2022.107531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms plague bodies of freshwater globally. These blooms are often composed of outgrowths of cyanobacteria capable of producing the heptapeptide Microcystin-LR (MC-LR) which is a well-known hepatotoxin. Recently, MC-LR has been detected in aerosols generated from lake water. However, the risk for human health effects due to MC-LR inhalation exposure have not been extensively investigated. In this study, we exposed a fully differentiated 3D human airway epithelium derived from 14 healthy donors to MC-LR-containing aerosol once a day for 3 days. Concentrations of MC-LR ranged from 100 pM to 1 µM. Although there were little to no detrimental alterations in measures of the airway epithelial function (i.e. cell survival, tissue integrity, mucociliary clearance, or cilia beating frequency), a distinct shift in the transcriptional activity was found. Genes related to inflammation were found to be upregulated such as C-C motif chemokine 5 (CCL5; log2FC = 0.57, p = 0.03) and C-C chemokine receptor type 7 (CCR7; log2FC = 0.84, p = 0.03). Functionally, conditioned media from MC-LR exposed airway epithelium was also found to have significant chemo-attractive properties for primary human neutrophils. Additionally, increases were found in the concentration of secreted chemokine proteins in the conditioned media such as CCL1 (log2FC = 5.07, p = 0.0001) and CCL5 (log2FC = 1.02, p = 0.046). These results suggest that MC-LR exposure to the human airway epithelium is capable of inducing an inflammatory response that may potentiate acute or chronic disease.
Collapse
Affiliation(s)
| | - Benjamin W French
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Tamiya T Gordon
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Andrew L Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Fatimah K Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; College of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - James C Willey
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | | | - R Mark Wooten
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Erin L Crawford
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Nikolai N Modyanov
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Justin G Teeguarden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Steven T Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - David J Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
44
|
Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins (Basel) 2022; 14:toxins14050350. [PMID: 35622596 PMCID: PMC9145844 DOI: 10.3390/toxins14050350] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 01/02/2023] Open
Abstract
Microcystins are natural hepatotoxic metabolites secreted by cyanobacteria in aquatic ecosystems. When present at elevated concentrations, microcystins can affect water quality aesthetics; contaminate drinking water reservoirs and recreational waters; disrupt normal ecosystem functioning; and cause health hazards to animals, plants, and humans. Animal and human exposures to microcystins generally result from ingesting contaminated drinking water or physically contacting tainted water. Much research has identified a multitude of liver problems from oral exposure to microcystins, varying from hepatocellular damage to primary liver cancer. Provisional guidelines for microcystins in drinking and recreational water have been established to prevent toxic exposures and protect public health. With increasing occurrences of eutrophication in freshwater systems, microcystin contamination in groundwater and surface waters is growing, posing threats to aquatic and terrestrial plants and agricultural soils used for crop production. These microcystins are often transferred to crops via irrigation with local sources of water, such as bloom-forming lakes and ponds. Microcystins can survive in high quantities in various parts of plants (roots, stems, and leaves) due to their high chemical stability and low molecular weight, increasing health risks for consumers of agricultural products. Studies have indicated potential health risks associated with contaminated fruits and vegetables sourced from irrigated water containing microcystins. This review considers the exposure risk to humans, plants, and the environment due to the presence of microcystins in local water reservoirs used for drinking and irrigation. Additional studies are needed to understand the specific health impacts associated with the consumption of microcystin-contaminated agricultural plants.
Collapse
|
45
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|