1
|
Narain Singh D, Pandey P, Shankar Singh V, Kumar Tripathi A. Evidence for high-risk pollutants and emerging microbial contaminants at two major bathing ghats of the river Ganga using high-resolution mass spectrometry and metagenomics. Gene 2025; 933:148991. [PMID: 39389327 DOI: 10.1016/j.gene.2024.148991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An efficient wastewater treatment plant is imperative to limit the entry of emerging pollutants (EPs) and emerging microbial contaminants (EMCs) in the river ecosystem. The detection of emerging EPs in aquatic environments is challenging due to complex sample preparation methods, and the need for sophisticated accurate analytical tools. In Varanasi (India), the river Ganga holds immense significance as a holy river but is consistently polluted with municipal (MWW) and hospital wastewater (HWW). We developed an efficient method for untargeted detection of EPs in the water samples using High-resolution mass spectrometry (HRMS), and identified 577 and 670 chemicals (or chemical components) in the water samples from two major bathing ghats, Assi Ghat (AG) and Dashashwamedh Ghat (DG), respectively. The presence of EPs of different categories viz chemicals from research labs, diagnostic labs, lifestyle and industrial chemicals, toxins, flavor and food additives indicated the unsafe disposal of MWW and HWW or inefficient wastewater treatment plants (WWTPs). Besides, shotgun metagenomic analysis depicted the presence of bacteria associated with MWW viz Cloacibacterium normanse, Sphaerotilus natans (sewage fungi), E. coli, and Prevotella. Also, the presence of human pathogens Arcobacter, Polynucleobacter, Pseudomonas, Klebsiella, Aeromonas, Acinetobacter, Vibrio, and Campylobacter suggests the discharge of HWW. EPs are linked to the development, and transmission of antimicrobial resistance (AMR). Occurrence of antibiotic resistance genes (ARGs), plasmid-borne β-lactamases, aminoglycoside transferases, and ARGs associated with integrons, transposons and plasmids viz mcr-3 gene that confer resistance to colistin, the last resort of antibiotics confirmed the presence of emerging microbial contaminants. Subsequent genome reconstruction studies showed the presence of uncultivable ARB and transmission of ARGs through horizontal gene transfer. This study can be used to monitor the health of aquatic bodies as well as the efficiency of WWTPs and raise an urgent need for efficient WWTPs to safeguard the river, Ganga.
Collapse
Affiliation(s)
- Durgesh Narain Singh
- BioNEST-BHU, INNORESTECH FOUNDATION, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Parul Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vijay Shankar Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Peng H, He Y, Li T, Peng X. Acyclovir contamination in environment: Occurrence, transformation, toxicity, risk, and evaluation as a pharmaceutical indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177412. [PMID: 39510279 DOI: 10.1016/j.scitotenv.2024.177412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Acyclovir (ACV), a widely used antiviral medication effective against herpes simplex viruses (HSV), is raising concern due to its pervasive presence in global water and the associated potential risks. ACV can undergo transformation under varying conditions, leading to the generation of diverse transformation products that may exhibit heightened toxicity. This review aims to present a comprehensive overview of the environmental impact of ACV. We compile data on ACV concentrations in different water sources worldwide to shed light on its global prevalence. The levels of ACV detected in both wastewater and natural water sources generally remain at low concentrations, typically in the range of ng L-1 level. ACV poses minimal threats to aquatic organisms and humans in comparison to its transformation products, and conventional wastewater treatment methods utilizing biological processes can reduce ACV concentrations, yet only achieve transformation rather than complete elimination of risks, as the intermediates often demonstrate elevated toxicity levels and increased persistence. Additionally, perspectives are proposed to inspire future research on risk assessment of ACV, its intermediates and other pharmaceuticals. Given the challenges in keeping pace with the proliferation of chemical varieties, prioritizing and optimizing risk assessment methodologies is imperative. To this end, the suitability of ACV indicators is evaluated by summarizing data across diverse water bodies.
Collapse
Affiliation(s)
- Haoxian Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Wissbroecker KB, Zmuda AJ, Karumanchi H, Niehaus TD. Biochemical and genomic evidence for converging metabolic routes of metformin and biguanide breakdown in environmental Pseudomonads. J Biol Chem 2024; 300:107935. [PMID: 39476966 DOI: 10.1016/j.jbc.2024.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024] Open
Abstract
Metformin is commonly used to lower blood glucose levels and is one of the most widely used pharmaceuticals worldwide. Typical doses are high (0.5-2.0 g day-1) and the majority travels through the digestive system unabsorbed and enters the wastewater system. Metformin is not removed by standard wastewater treatments and eventually enters freshwater systems, where it can form N-chloro-derivatives that are toxic to fish and human cells. Thus, metformin is one of the most prevalent anthropogenic pollutants worldwide and there has been considerable interest in finding ways to remove it. We recently isolated Pseudomonads capable of growing on metformin as the sole nitrogen source. We identified candidate genes involved in metformin breakdown through genomic analyses informed by feeding studies. One candidate, a pair of genes that are located on ∼80kb extra-genomic plasmids, was shown to encode a heteromeric Ni-dependent hydrolase that converts metformin to guanylurea and dimethylamine. Metforminase activity of these gene products is now well established as our results confirm three recently published independent studies. Our isolated Pseudomonads also grow on biguanide, suggesting the existence of an additional breakdown enzyme. Another candidate gene located on the ∼80kb plasmids was shown to encode an aminohydrolase that converts biguanide to guanylurea. Biguanide may arise through successive N-demethylations of metformin or come from other sources. Our results suggest that the recent evolution of metforminase and biguanide hydrolase enzymes allow Pseudomonads to convert either metformin or biguanide to guanylurea, which can be assimilated by existing pathways.
Collapse
Affiliation(s)
- Katie B Wissbroecker
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony J Zmuda
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Harsheeth Karumanchi
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas D Niehaus
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
4
|
Zhang Z, Shi H, Zhang K, An R, Wang C, Wang P, Chan SA, Song Y, Dai J, Zhao Y. Transcriptome-Guided Characterization of the Environmental Toxicity of Metformin: Disruption of Energy Homeostasis and Inhibition of Embryonic Development of Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17580-17591. [PMID: 39319773 DOI: 10.1021/acs.est.4c05052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Metformin has been widely detected in aquatic ecosystems, yet the knowledge of its impact on aquatic organisms, particularly at environmentally relevant concentrations, remains limited. In the present study, we characterized the developmental toxicity of metformin in zebrafish, utilizing a transcriptome-guided toxicological assessment framework. Transcriptomic analysis conducted at metformin concentrations within the μg/L range revealed significant disruptions in biological processes associated with nucleotide, hydrocarbon, and amino acid metabolism, suggesting a significant disturbance in energy homeostasis. This observation was corroborated by energy-targeted metabolomic analysis, wherein a considerable number of metabolites involved in purine metabolism, pyrimidine metabolism, and the citrate cycle displayed significant alterations. Notably, most intermediates in the citrate cycle such as acetyl-CoA exhibited remarkable decreases. Additionally, our study identified significant impediments in zebrafish embryonic development, including decreased yolk extension progress, spontaneous contraction and body length, and increased yolk sac area and yolk/while body lipid content ratio, at metformin concentrations as low as 0.12 μg/L. Furthermore, the disruption of energy homeostasis by metformin was observed to persist into adulthood even after a prolonged recovery period. The present findings highlighted the disruptive effects of metformin on energy homeostasis and embryonic development in teleost at environmentally relevant concentrations, thereby prompting a reevaluation of its environmental risk to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Ziyu Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruiqi An
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shen-An Chan
- Agilent Technologies Incorporated Company, Shanghai 200240, China
| | - Yue Song
- Agilent Technologies Incorporated Company, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Chatkon A, Haller KJ, Haller JP. Substitutional/positional disorder of biguanide and guanylurea in the structure of a decavanadate complex [(Bg)(HV 10O 285-)] 0.4[(HGU +)(V 10O 286-)] 0.6(H 2Met 2+) 2(H 3O +)·8H 2O. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:456-466. [PMID: 39221976 DOI: 10.1107/s2052520624006929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
A hydrated salt of decavanadate containing diprotonated metforminium(2+) (H2Met2+), hydronium (H3O+) and either neutral biguanide (Bg) or monoprotonated guanylurea (HGU+) exhibits a previously seen complex charge-stabilized hydrogen-bonded network [Chatkon et al. (2022). Acta Cryst. B78, 798-808]. Charge balance is achieved in two ways through substitutional disorder: a 0.6 occupied HGU+ cation is paired with a V10O286- anion, and a 0.4 occupied neutral Bg molecule is paired with a HV10O285- anion, with the remaining charge in both cases balanced by two H2Met2+ dications and one H3O+ monocation. Bg/HGU+ moieties exhibit bifurcated N-H...O hydrogen bonding to the H3O+ cation and are substitutionally/positionally disordered along with the H3O+ cation about an inversion center. The HGU+ V10O286- synthon seen in the previous study occurs again. Bg exhibits bifurcated hydrogen bonding from two amino groups to two rows of cluster O atoms running diagonally across the equatorial plane of the HV10O285- anion with a return hydrogen bond from the cluster H atom to the imino N atom of the Bg. Thus, a Bg...cluster synthon similar to the HGU+...cluster synthon previously reported is found. The disordered moieties occupy spaces with excess volume in the 3-D network structure. Interestingly, when the crystallographic unit cell of the current compound, whose X-ray data was collected at 100 K, is compared with that of a previous compound exhibiting the same supramolecular framework, unit-cell parameter c does not shorten as a and b expectantly do because of the lower data collection temperature. The lack of contraction on unit-cell parameter c is possibly due to the supramolecular structure.
Collapse
Affiliation(s)
- Aungkana Chatkon
- Chemistry Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, 30000, Thailand
| | - Kenneth J Haller
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Joseph P Haller
- Home School, PO Box 43, Chom Surong, Nakhon Ratchasima, 30001, Thailand
| |
Collapse
|
6
|
Sinn M, Riede L, Fleming JR, Funck D, Lutz H, Bachmann A, Mayans O, Hartig JS. Metformin hydrolase is a recently evolved nickel-dependent heteromeric ureohydrolase. Nat Commun 2024; 15:8045. [PMID: 39271653 PMCID: PMC11399263 DOI: 10.1038/s41467-024-51752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The anti-diabetic drug metformin is one of the most widely prescribed medicines in the world. Together with its degradation product guanylurea, it is a major pharmaceutical pollutant in wastewater treatment plants and surface waters. An operon comprising two genes of the ureohydrolase family in Pseudomonas and Aminobacter species has recently been implicated in metformin degradation. However, the corresponding proteins have not been characterized. Here we show that these genes encode a Ni2+-dependent enzyme that efficiently and specifically hydrolyzes metformin to guanylurea and dimethylamine. The active enzyme is a heteromeric complex of α- and β- subunits in which only the α-subunits contain the conserved His and Asp residues for the coordination of two Ni2+ ions in the active site. A crystal structure of metformin hydrolase reveals an α2β4 stoichiometry of the hexameric complex, which is unprecedented in the ureohydrolase family. By studying a closely related but more widely distributed enzyme, we find that the putative predecessor specifically hydrolyzes dimethylguanidine instead of metformin. Our findings establish the molecular basis for metformin hydrolysis to guanylurea as the primary pathway for metformin biodegradation and provide insight into the recent evolution of ureohydrolase family proteins in response to an anthropogenic compound.
Collapse
Affiliation(s)
- M Sinn
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
| | - L Riede
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J R Fleming
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - D Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - H Lutz
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - A Bachmann
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - O Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - J S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
7
|
Kang Q, Zhang B, Cao Y, Song X, Ye X, Li X, Wu H, Chen Y, Chen B. Causal prior-embedded physics-informed neural networks and a case study on metformin transport in porous media. WATER RESEARCH 2024; 261:121985. [PMID: 38968734 DOI: 10.1016/j.watres.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
This study introduces a novel approach to transport modelling by integrating experimentally derived causal priors into neural networks. We illustrate this paradigm using a case study of metformin, a ubiquitous pharmaceutical emerging pollutant, and its transport behaviour in sandy media. Specifically, data from metformin's sandy column transport experiment was used to estimate unobservable parameters through a physics-based model Hydrus-1D, followed by a data augmentation to produce a more comprehensive dataset. A causal graph incorporating key variables was constructed, aiding in identifying impactful variables and estimating their causal dynamics or "causal prior." The causal priors extracted from the augmented dataset included underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate coefficient α, and transport system scale. Their moderate impact on the transport process has been quantitatively evaluated (normalized causal effect 0.0423, -0.1447 and -0.0351, respectively) with adequate confounders considered for the first time. The prior was later embedded into multilayer neural networks via two methods: causal weight initialization and causal prior regularization. Based on the results from AutoML hyperparameter tuning experiments, using two embedding methods simultaneously emerged as a more advantageous practice since our proposed causal weight initialization technique can enhance model stability, particularly when used in conjunction with causal prior regularization. amongst those experiments utilizing both techniques, the R-squared values peaked at 0.881. This study demonstrates a balanced approach between expert knowledge and data-driven methods, providing enhanced interpretability in black-box models such as neural networks for environmental modelling.
Collapse
Affiliation(s)
- Qiao Kang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Yiqi Cao
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xing Song
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xudong Ye
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Hongjing Wu
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Yuanzhu Chen
- School of Computing, Queen's University, Kingston, ON, K7L 2N8, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada.
| |
Collapse
|
8
|
Choi S, Lee W, Son H, Lee W, Choi Y, Yeom H, Seo C, Lee H, Lee Y, Lim SJ, Chae SH, Park HK, Hong SW, Kim YM, Lee Y. Occurrence, removal, and prioritization of organic micropollutants in four full-scale wastewater treatment plants in Korea. CHEMOSPHERE 2024; 361:142460. [PMID: 38821128 DOI: 10.1016/j.chemosphere.2024.142460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the occurrence, removal rate, and potential risks of 43 organic micropollutants (OMPs) in four municipal wastewater treatment plants (WWTPs) in Korea. Results from two-year intensive monitoring confirmed the presence of various OMPs in the influents, including pharmaceuticals such as acetaminophen (pain relief), caffeine (stimulants), cimetidine (H2-blockers), ibuprofen (non-steroidal anti-inflammatory drugs- NSAIDs), metformin (antidiabetics), and naproxen (NSAIDs) with median concentrations of >1 μg/L. Some pharmaceuticals (carbamazepine-anticonvulsants, diclofenac-NSAIDs, propranolol-β-blockers), corrosion inhibitors (1H-benzotriazole-BTR, 4-methyl-1H-benzotriazole-4-TTR), and perfluorinated compounds (PFCs) were negligibly removed during WWTP treatment. The OMP concentrations in the influents and effluents were mostly lower in August than those of other months (p-value <0.05) possibly due to wastewater dilution by high precipitation or enhanced biodegradation under high-temperature conditions. The anaerobic-anoxic-oxic process (A2O) with a membrane bioreactor exhibited higher OMP removal than other processes, such as A2O with sedimentation or the conventional activated sludge process (p-value <0.05). Pesticides (DEET and atrazine), corrosion inhibitors (4-TTR and BTR), and metformin were selected as priority OMPs in toxicity-driven prioritization, whereas PFCs were determined as priority OMPs given their persistence and bioaccumulation properties. Overall, our results contribute to an important database on the occurrence, removal, and potential risks of OMPs in Korean WWTPs.
Collapse
Affiliation(s)
- Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Woorim Lee
- Environment and Energy Research Laboratory, Research Institute of Industrial Science and Technology (RIST), Pohang, Gyeongbuk, 37673, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hoonsik Yeom
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Changdong Seo
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Hyejin Lee
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Yujin Lee
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Seung Ji Lim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong Ki Park
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Borreca A, Vuilleumier S, Imfeld G. Combined effects of micropollutants and their degradation on prokaryotic communities at the sediment-water interface. Sci Rep 2024; 14:16840. [PMID: 39039186 PMCID: PMC11263610 DOI: 10.1038/s41598-024-67308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the dissipation and effects on procaryotic communities of metformin (antidiabetic drug), metolachlor (agricultural herbicide), and terbutryn (herbicide in building materials). These contaminants were introduced individually or as a mixture (17.6 µM per micropollutant) into laboratory microcosms mimicking the sediment-water interface. Metformin and metolachlor completely dissipated within 70 days, whereas terbutryn persisted. Dissipation did not differ whether the micropollutants were introduced individually or as part of a mixture. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in both sediment and water. Prokaryotic community variations were mainly driven by matrix composition and incubation time. Micropollutant exposure played a secondary but influential role, with pronounced effects of recalcitrant metolachlor and terbutryn within the micropollutant mixture. Antagonistic and synergistic non-additive effects were identified for specific taxa across taxonomic levels in response to the micropollutant mixture. This study underscores the importance of considering the diversity of interactions between micropollutants, prokaryotic communities, and their respective environments when examining sediment-water interfaces affected by multiple contaminants.
Collapse
Affiliation(s)
- Adrien Borreca
- Institut Terre Et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000, Strasbourg, France
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre Et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
10
|
Li T, Xu ZJ, Zhang ST, Xu J, Pan P, Zhou NY. Discovery of a Ni 2+-dependent heterohexameric metformin hydrolase. Nat Commun 2024; 15:6121. [PMID: 39033196 PMCID: PMC11271267 DOI: 10.1038/s41467-024-50409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The biguanide drug metformin is a first-line blood glucose-lowering medication for type 2 diabetes, leading to its presence in the global environment. However, little is known about the fate of metformin by microbial catabolism. Here, we characterize a Ni2+-dependent heterohexameric enzyme (MetCaCb) from the ureohydrolase superfamily, catalyzing the hydrolysis of metformin into guanylurea and dimethylamine. Either subunit alone is catalytically inactive, but together they work as an active enzyme highly specific for metformin. The crystal structure of the MetCaCb complex shows the coordination of the binuclear metal cluster only in MetCa, with MetCb as a protein binder of its active cognate. An in-silico search and functional assay discover a group of MetCaCb-like protein pairs exhibiting metformin hydrolase activity in the environment. Our findings not only establish the genetic and biochemical foundation for metformin catabolism but also provide additional insights into the adaption of the ancient enzymes toward newly occurred substrate.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhi-Jing Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Shu-Ting Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Piaopiao Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
11
|
Perez AV, Gaitan-Oyola JA, Vargas-Delgadillo DP, Castillo JJ, Barbosa O, Fernandez-Lafuente R. Synthesis and Characterization of Cross-Linked Aggregates of Peroxidase from Megathyrsus maximus (Guinea Grass) and Their Application for Indigo Carmine Decolorization. Molecules 2024; 29:2696. [PMID: 38893568 PMCID: PMC11173754 DOI: 10.3390/molecules29112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
We present the synthesis of a cross-linking enzyme aggregate (CLEAS) of a peroxidase from Megathyrsus maximus (Guinea Grass) (GGP). The biocatalyst was produced using 50%v/v ethanol and 0.88%w/v glutaraldehyde for 1 h under stirring. The immobilization yield was 93.74% and the specific activity was 36.75 U mg-1. The biocatalyst surpassed by 61% the free enzyme activity at the optimal pH value (pH 6 for both preparations), becoming this increase in activity almost 10-fold at pH 9. GGP-CLEAS exhibited a higher thermal stability (2-4 folds) and was more stable towards hydrogen peroxide than the free enzyme (2-3 folds). GGP-CLEAS removes over 80% of 0.05 mM indigo carmine at pH 5, in the presence of 0.55 mM H2O2 after 60 min of reaction, a much higher value than when using the free enzyme. The operational stability showed a decrease of enzyme activity (over 60% in 4 cycles), very likely related to suicide inhibition.
Collapse
Affiliation(s)
- Angie V. Perez
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Jorge A. Gaitan-Oyola
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Diana P. Vargas-Delgadillo
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - John J. Castillo
- Grupo de Investigación en Bioquímica y Microbiología, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Oveimar Barbosa
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus Cantoblanco UAM-CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
12
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
13
|
Vu TD, Luong DT, Ho TT, Nguyen Thi TM, Singh V, Chu DT. Drug repurposing for regenerative medicine and cosmetics: Scientific, technological and economic issues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:337-353. [PMID: 38942543 DOI: 10.1016/bs.pmbts.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Regenerative medicine and cosmetics are currently two outstanding fields for drug discovery. Although many pharmaceutical products for regenerative medicine and cosmetics have received approval by official agencies, several challenges are still needed to overcome, especially financial and time issues. As a result, drug repositioning, which is the usage of previously approved drugs for new treatment, stands out as a promising approach to tackle these problems. Recently, increasing scientific evidence is collected to demonstrate the applicability of this novel method in the field of regenerative medicine and cosmetics. Experts in drug development have also taken advantage of novel technologies to discover new candidates for repositioning purposes following computational approach, one of two main approaches of drug repositioning. Therefore, numerous repurposed candidates have obtained approval to enter the market and have witnessed financial success such as minoxidil and fingolimod. The benefits of drug repositioning are undeniable for regenerative medicine and cosmetics. However, some aspects still need to be carefully considered regarding this method including actual effectiveness during clinical trials, patent regulations, data integration and analysis, publicly unavailable databases as well as environmental concerns and more effort are required to overcome these obstacles.
Collapse
Affiliation(s)
- Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Duc Tri Luong
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Tien Ho
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-My Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
14
|
Dong L, Li S, Huang J, Li WJ, Ali M. Co-occurrence, toxicity, and biotransformation pathways of metformin and its intermediate product guanylurea: Current state and future prospects for enhanced biodegradation strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171108. [PMID: 38395159 DOI: 10.1016/j.scitotenv.2024.171108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Accumulation of metformin and its biotransformation product "guanylurea" are posing an increasing concern due to their low biodegradability under natural attenuated conditions. Therefore, in this study, we reviewed the unavoidable function of metformin in human body and the route of its release in different water ecosystems. In addition, metformin and its biotransformation product guanylurea in aquatic environments caused certain toxic effects on aquatic organisms which include neurotoxicity, endocrine disruption, production of ROS, and acetylcholinesterase disturbance in aquatic organisms. Moreover, microorganisms are the first to expose and deal with the release of these contaminants, therefore, the mechanisms of biodegradation pathways of metformin and guanylurea under aerobic and anaerobic environments were studied. It has been reported that certain microbes, such as Aminobacter sp. and Pseudomonas putida can carry potential enzymatic pathways to degrade the dead-end product "guanylurea", and hence guanylurea is no longer the dead-end product of metformin. However, these microbes can easily be affected by certain geochemical cycles, therefore, we proposed certain strategies that can be helpful in the enhanced biodegradation of metformin and its biotransformation product guanylurea. A better understanding of the biodegradation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of the emerging contaminants of concern, metformin and guanylurea in the near future.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Life Science, Jiaying University, Meizhou, China
| | - Jie Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
15
|
Jin H, Xu X, Liu R, Wu X, Chen X, Chen D, Zheng X, Zhao M, Yu Y. Electro-oxidation of Ibuprofen using carbon-supported SnO x-CeO x flow-anodes: The key role of high-valent metal. WATER RESEARCH 2024; 252:121229. [PMID: 38324989 DOI: 10.1016/j.watres.2024.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.
Collapse
Affiliation(s)
- Huachang Jin
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaozhi Xu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Renlan Liu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaobo Wu
- Ecological Environment Protection Administrative Law Enforcement Team of Rui'an City, Wenzhou, Zhejiang 325035, China
| | - Xueming Chen
- College of Environmental and Resources Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dongzhi Chen
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xiangyong Zheng
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Zhao
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yang Yu
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
16
|
Tassoulas LJ, Rankin JA, Elias MH, Wackett LP. Dinickel enzyme evolved to metabolize the pharmaceutical metformin and its implications for wastewater and human microbiomes. Proc Natl Acad Sci U S A 2024; 121:e2312652121. [PMID: 38408229 PMCID: PMC10927577 DOI: 10.1073/pnas.2312652121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
Metformin is the first-line treatment for type II diabetes patients and a pervasive pollutant with more than 180 million kg ingested globally and entering wastewater. The drug's direct mode of action is currently unknown but is linked to effects on gut microbiomes and may involve specific gut microbial reactions to the drug. In wastewater treatment plants, metformin is known to be transformed by microbes to guanylurea, although genes encoding this metabolism had not been elucidated. In the present study, we revealed the function of two genes responsible for metformin decomposition (mfmA and mfmB) found in isolated bacteria from activated sludge. MfmA and MfmB form an active heterocomplex (MfmAB) and are members of the ureohydrolase protein superfamily with binuclear metal-dependent activity. MfmAB is nickel-dependent and catalyzes the hydrolysis of metformin to dimethylamine and guanylurea with a catalytic efficiency (kcat/KM) of 9.6 × 103 M-1s-1 and KM for metformin of 0.82 mM. MfmAB shows preferential activity for metformin, being able to discriminate other close substrates by several orders of magnitude. Crystal structures of MfmAB show coordination of binuclear nickel bound in the active site of the MfmA subunit but not MfmB subunits, indicating that MfmA is the active site for the MfmAB complex. Mutagenesis of residues conserved in the MfmA active site revealed those critical to metformin hydrolase activity and its small substrate binding pocket allowed for modeling of bound metformin. This study characterizes the products of the mfmAB genes identified in wastewater treatment plants on three continents, suggesting that metformin hydrolase is widespread globally in wastewater.
Collapse
Affiliation(s)
- Lambros J. Tassoulas
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Joel A. Rankin
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Mikael H. Elias
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Lawrence P. Wackett
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
17
|
He Y, Jin H, Ju F. Toxicological effects and underlying mechanisms of chlorination-derived metformin byproducts in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167281. [PMID: 37758144 DOI: 10.1016/j.scitotenv.2023.167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Chlorination-derived byproducts of the emerging contaminant metformin, such as (3E)-3-(chloroimino)-N,N-dimethyl-3H-1,2,4-triazol-5-amine (3,3-CDTA) and N-cyano-N,N-dimethylcarbaminmidic chloride (NCDC), occur in global waters and are toxic to organisms, from bacteria to mice. However, the mechanisms underlying their toxicity remain unknown. Here, we explored the toxicological effects and potential molecular mechanisms of 3,3-CDTA and NCDC at milligram concentrations, using Escherichia coli as a model organism. Compared with metformin (>300 mg/L), 3,3-CDTA and NCDC exerted stronger toxicity to E. coli, with a 4-h half maximal inhibitory concentration of 2.97 mg/L and 75.7 mg/L, respectively. Both byproducts disrupted E. coli cellular structures and components, decreased membrane potential and adenosine triphosphate (ATP) biosynthesis, and led to excessive reactive oxidative species (ROS), as well as the ROS-scavenging enzymes superoxide dismutase and catalase. Proteomic analysis and molecular docking supported these biomarker responses in the byproduct-treated E. coli, and indicated potential damage to DNA/RNA processes, while also provided novel insights into the toxicological and detoxified-byproduct effects at the proteome level. The toxicity-related events of NCDC and 3,3-CDTA included membrane disruption, oxidative stress, and abnormal protein expression. This study is the first to examine the toxicological effects of chlorination-derived metformin byproducts in E. coli and the associated pathways involved; thereby broadening our understanding regarding the toxicity and transformation risks of metformin throughout its entire life process.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Hui Jin
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Research Centre for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
18
|
Battaglin W, Bradley P, Weissinger R, Blackwell B, Cavallin J, Villeneuve D, DeCicco L, Kinsey J. Changes in chemical occurrence, concentration, and bioactivity in the Colorado River before and after replacement of the Moab, Utah wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166231. [PMID: 37586530 DOI: 10.1016/j.scitotenv.2023.166231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Long-term (2010-19) water-quality monitoring on the Colorado River downstream from Moab Utah indicated the persistent presence of Bioactive Chemicals (BC), such as pesticides and pharmaceuticals. This stream reach near Canyonlands National Park provides critical habitat for federally endangered species. The Moab wastewater treatment plant (WWTP) outfall discharges to the Colorado River and is the nearest potential point-source to this reach. The original WWTP was replaced in 2018. In 2016-19, a study was completed to determine if the new plant reduced BC input to the Colorado River at, and downstream from, the outfall. Water samples were collected before and after the plant replacement at sites upstream and downstream from the outfall. Samples were analyzed for as many as 243 pesticides, 109 pharmaceuticals, 20 hormones, 51 wastewater indicator chemicals, 20 metals, and 8 nutrients. BC concentrations, hazard quotients (HQs), and exposure activity ratios (EARs) were used to identify and prioritize contaminants for their potential to have adverse biological effects on the health of native and endangered wildlife. There were 22 BC with HQs >1, mostly metals and hormones; and 23 BC with EARs >0.1, mostly hormones and pharmaceuticals. Most high HQs or EARs were associated with samples collected at the WWTP outfall site prior to its replacement. Discharge from the new plant had reduced concentrations of nutrients, hormones, pharmaceuticals, and other BC. For example, all 16 of the hormones detected at the WWTP outfall site had maximum concentrations in samples collected prior to the WWTP replacement. The WWTP replacement had less effect on instream concentrations of metals and pesticides, BC whose sources are less directly tied to domestic wastewater. Study results indicate that improved WWTP technology can create substantial reductions in concentrations of non-regulated BC such as pharmaceuticals, in addition to regulated contaminants such as nutrients.
Collapse
|
19
|
Elizalde-Velázquez GA, Herrera-Vázquez SE, Gómez-Oliván LM, García-Medina S. Health impact assessment after Danio rerio long-term exposure to environmentally relevant concentrations of metformin and guanylurea. CHEMOSPHERE 2023; 341:140070. [PMID: 37689151 DOI: 10.1016/j.chemosphere.2023.140070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The antidiabetic drug metformin (MET) and its metabolite guanylurea (GUA) have been frequently and ubiquitously detected in surface water. Consequently, there has been a consistent rise in studying the toxicity of MET and GUA in fish over the past decade. Nonetheless, it is noteworthy that no study has assessed the harmful effects both compounds might trigger on fish blood and organs after chronic exposure. Taking into consideration the data above, our research strived to accomplish two primary objectives: Firstly, to assess the effect of comparable concentrations of MET and GUA (1, 40, 100 μg/L) on the liver, gills, gut, and brain of Danio rerio after six months of flow-through exposure. Secondly, to compare the outcomes to identify which compound prompts more significant oxidative stress and apoptosis in organs and blood parameter alterations. Herein, findings indicate that both compounds induced oxidative damage and increased the expression of genes associated with apoptosis (bax, bcl2, p53, and casp3). Chronic exposure to MET and GUA also generated fluctuations in glucose, creatinine, phosphorus, liver enzymes, red and white blood count, hemoglobin, and hematocrit levels. The observed biochemical changes indicate that MET and GUA are responsible for inducing hepatic damage in fish, whereas hematological alterations suggest that both compounds cause anemia. Considering GUA altered to a more considerable extent the values of all endpoints compared to the control group, it is suggested transformation product GUA is more toxic than MET. Moreover, based on the above evidence, it can be inferred that a six-month exposure to MET and GUA can impair REDOX status and generate apoptosis in fish, adversely affecting their essential organs' functioning.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico. https://orcid.org/0000-0002-7248-3449
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
20
|
Arni LA, Hapiz A, Jawad AH, Abdulhameed AS, ALOthman ZA, Wilson LD. Fabrication of magnetic chitosan-grafted salicylaldehyde/nanoclay for removal of azo dye: BBD optimization, characterization, and mechanistic study. Int J Biol Macromol 2023; 248:125943. [PMID: 37482164 DOI: 10.1016/j.ijbiomac.2023.125943] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Herein, a novel nanohybrid composite of magnetic chitosan-salicylaldehyde/nanoclay (MCH-SAL/NCLA) was hydrothermally synthesized for removal of azo dye (acid red 88, AR88) from simulated wastewater. Response surface methodology combined with the Box-Behnken design (RSM-BBD) was applied with 29 experiments to assess the impact of adsorption variables, that include A: % NCLA loading (0-50), B: MCH-SAL/NCLA dose (0.02-0.1 g/100 mL), C: pH (4-10), and time D: (10-90 min) on AR88 dye adsorption. The highest AR88 removal (75.16 %) as per desirability function was attained at the optimum conditions (NCLA loading = 41.8 %, dosage = 0.06 g/100 mL, solution pH = 4, and time = 86. 17 min). The kinetic and equilibrium adsorption results of AR88 by MCH-SAL/NCLA reveal that the process follows the pseudo-first-order and Temkin models. The MCH-SAL/NCLA composite has a maximum adsorption capacity (173.5 mg/g) with the AR88 dye. The adsorption of AR88 onto the MCH-SAL/NCLA surface is determined by a variety of processes, including electrostatic, hydrogen bonding, n-π, and n-π interactions. This research revealed that MCH-SAL/NCLA can be used as a versatile and efficient bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
21
|
Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 2023; 19:460-476. [PMID: 37130947 PMCID: PMC10153049 DOI: 10.1038/s41574-023-00833-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/04/2023]
Abstract
Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.
Collapse
Affiliation(s)
- Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
22
|
Richards LA, Guo S, Lapworth DJ, White D, Civil W, Wilson GJL, Lu C, Kumar A, Ghosh A, Khamis K, Krause S, Polya DA, Gooddy DC. Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121626. [PMID: 37054870 DOI: 10.1016/j.envpol.2023.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The presence and distribution of emerging organic contaminants (EOCs) in freshwater environments is a key issue in India and globally, particularly due to ecotoxicological and potential antimicrobial resistance concerns. Here we have investigated the composition and spatial distribution of EOCs in surface water along a ∼500 km segment of the iconic River Ganges (Ganga) and key tributaries in the middle Gangetic Plain of Northern India. Using a broad screening approach, in 11 surface water samples, we identified 51 EOCs, comprising of pharmaceuticals, agrochemicals, lifestyle and industrial chemicals. Whilst the majority of EOCs detected were a mixture of pharmaceuticals and agrochemicals, lifestyle chemicals (and particularly sucralose) occurred at the highest concentrations. Ten of the EOCs detected are priority compounds (e.g. sulfamethoxazole, diuron, atrazine, chlorpyrifos, perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate, thiamethoxam, imidacloprid, clothianidin and diclofenac). In almost 50% of water samples, sulfamethoxazole concentrations exceeded predicted no-effect concentrations (PNECs) for ecological toxicity. A significant downstream reduction in EOCs was observed along the River Ganga between Varanasi (Uttar Pradesh) and Begusarai (Bihar), likely reflecting dilution effects associated with three major tributaries, all with considerably lower EOC concentrations than the main Ganga channel. Sorption and/or redox controls were observed for some compounds (e.g. clopidol), as well as a relatively high degree of mixing of EOCs within the river. We discuss the environmental relevance of the persistence of several parent compounds (notably atrazine, carbamazepine, metribuzin and fipronil) and associated transformation products. Associations between EOCs and other hydrochemical parameters including excitation emission matrix (EEM) fluorescence indicated positive, significant, and compound-specific correlations between EOCs and tryptophan-, fulvic- and humic-like fluorescence. This study expands the baseline characterization of EOCs in Indian surface water and contributes to an improved understanding of the potential sources and controls on EOC distribution in the River Ganga and other large river systems.
Collapse
Affiliation(s)
- Laura A Richards
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK.
| | - Shuaizhi Guo
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Debbie White
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Wayne Civil
- Environment Agency, National Laboratory Service, Starcross, Devon, EX6 8FD, UK
| | - George J L Wilson
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Chuanhe Lu
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Kieran Khamis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; LEHNA - Laboratoire D'ecologie des Hydrosystemes Naturels et Anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
23
|
Lertxundi U, Domingo-Echaburu S, Barros S, Santos MM, Neuparth T, Quintana JB, Rodil R, Montes R, Orive G. Is the Environmental Risk of Metformin Underestimated? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37256706 DOI: 10.1021/acs.est.3c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain
| | - Saioa Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - Susana Barros
- CIIMAR/CIMAR_LA - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal
| | - Miguel Machado Santos
- CIIMAR/CIMAR_LA - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR_LA - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Jose Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 28029, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856
| |
Collapse
|
24
|
Arni LA, Hapiz A, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Jawad AH. Design of separable magnetic chitosan grafted-benzaldehyde for azo dye removal via a response surface methodology: Characterization and adsorption mechanism. Int J Biol Macromol 2023:125086. [PMID: 37247708 DOI: 10.1016/j.ijbiomac.2023.125086] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
In this study, a magnetic chitosan grafted-benzaldehyde (CS-BD/Fe3O4) was hydrothermally prepared using benzaldehyde as a grafting agent to produce a promising adsorbent for the removal of acid red 88 (AR88) dye. The CS-BD/Fe3O4 was characterized by infrared spectroscopy, surface area analysis, scanning electron microscopy-energy dispersive X-ray, vibrating sample magnetometry, powder X-ray diffraction, CHN elemental analysis, and point of zero charge (pHPZC). The Box-Behnken design (BBD) was adopted to study the role of variables that influence AR88 dye adsorption (A: CS-BD/Fe3O4 dose (0.02-0.1 g), B: pH (4-10), and time C: (10-90 min)). The ANOVA results of the BBD model indicated that the F-value for the AR88 removal was 22.19 %, with the corresponding p-value of 0.0002. The adsorption profiles at equilibrium and dynamic conditions reveal that the Temkin model and the pseudo-first-order kinetics model provide an adequate description of the isotherm results, where the maximum adsorption capacity (qmax) with the AR88 dye was 154.1 mg/g. Several mechanisms, including electrostatic attraction, n-π interaction, π-π interaction, and hydrogen bonding, regulate the adsorption of AR88 dyes onto CS-BD/Fe3O4 surface. As a result, this research indicates that the CS-BD/Fe3O4 can be utilized as an effective and promising bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
25
|
Baby JN, Akila B, Chiu TW, Sakthinathan S, V AS, Zealma B A, George M. Deep Eutectic Solvent-Assisted Synthesis of a Strontium Tungstate Bifunctional Catalyst: Investigation on the Electrocatalytic Determination and Photocatalytic Degradation of Acetaminophen and Metformin Drugs. Inorg Chem 2023; 62:8249-8260. [PMID: 37202345 DOI: 10.1021/acs.inorgchem.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we propose a modified solid-state approach for the sustainable preparation of a SrWO4 bifunctional catalyst using thymol-menthol-based natural deep eutectic green solvents (NADESs). Various spectroscopic and morphological techniques analyzed the as-synthesized SrWO4 particles. Acetaminophen (ATP) and metformin (MTF) were selected as the model drug compounds. The electrochemical detection and photocatalytic degradation of ATP and MTF upon ultraviolet-visible (UV-vis) light irradiation in the presence of as-prepared SrWO4 particles as an active catalyst are examined. The present study displayed that the proposed catalyst SrWO4 has enhanced catalytic activity in achieving the optimum experimental conditions, and linear ranges of ATP = 0.01-25.90 μM and MTF = 0.01-25.90 μM, a lower limit of detection (LOD) value (ATP = 0.0031 μM and MTF = 0.008 μM), and higher sensitivity toward ATP and MTF determination were obtained. Similarly, the rate constant was found to be k = ATP = 0.0082 min-1 and MTF = 0.0296 min-1 according to the Langmuir-Hinshelwood model, benefitting from the excellent synergistic impact of the SrWO4 catalyst toward the photocatalytic degradation of the drug molecule. Hence, this work offers innovative insights into the applicability of the as-prepared SrWO4 bifunctional catalyst as an excellent functional material for the remediation of emerging pollutants in water bodies with a recovery range of 98.2-99.75%.
Collapse
Affiliation(s)
- Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
- Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Balasubramanian Akila
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Annie Zealma B
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
26
|
Li T, Xu ZJ, Zhou NY. Aerobic Degradation of the Antidiabetic Drug Metformin by Aminobacter sp. Strain NyZ550. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1510-1519. [PMID: 36624085 DOI: 10.1021/acs.est.2c07669] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metformin is becoming one of the most common emerging contaminants in surface and wastewater. Its biodegradation generally leads to the accumulation of guanylurea in the environment, but the microorganisms and mechanisms involved in this process remain elusive. Here, Aminobacter sp. strain NyZ550 was isolated and characterized for its ability to grow on metformin as a sole source of carbon, nitrogen, and energy under oxic conditions. This isolate also assimilated a variety of nitrogenous compounds, including dimethylamine. Hydrolysis of metformin by strain NyZ550 was accompanied by a stoichiometric accumulation of guanylurea as a dead-end product. Based on ion chromatography, gas chromatography-mass spectrometry, and comparative transcriptomic analyses, dimethylamine was identified as an additional hydrolytic product supporting the growth of the strain. Notably, a microbial mixture consisting of strain NyZ550 and an engineered Pseudomonas putida PaW340 expressing a guanylurea hydrolase was constructed for complete elimination of metformin and its persistent product guanylurea. Overall, our results not only provide new insights into the metformin biodegradation pathway, leading to the commonly observed accumulation of guanylurea in the environment, but also open doors for the complete degradation of the new pollutant metformin.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zhi-Jing Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
27
|
Martinez-Vaz BM, Dodge AG, Lucero RM, Stockbridge RB, Robinson AA, Tassoulas LJ, Wackett LP. Wastewater bacteria remediating the pharmaceutical metformin: Genomes, plasmids and products. Front Bioeng Biotechnol 2022; 10:1086261. [PMID: 36588930 PMCID: PMC9800807 DOI: 10.3389/fbioe.2022.1086261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonas mendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today.
Collapse
Affiliation(s)
- Betsy M. Martinez-Vaz
- Department of Biology and Biochemistry Program, Hamline University, St. Paul, MN, United States
| | - Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Rachael M. Lucero
- Program in Chemical Biology and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B. Stockbridge
- Program in Chemical Biology and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Ashley A. Robinson
- Department of Biology and Biochemistry Program, Hamline University, St. Paul, MN, United States
| | - Lambros J. Tassoulas
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
28
|
Chaignaud P, Gruffaz C, Borreca A, Fouteau S, Kuhn L, Masbou J, Rouy Z, Hammann P, Imfeld G, Roche D, Vuilleumier S. A Methylotrophic Bacterium Growing with the Antidiabetic Drug Metformin as Its Sole Carbon, Nitrogen and Energy Source. Microorganisms 2022; 10:2302. [PMID: 36422372 PMCID: PMC9699525 DOI: 10.3390/microorganisms10112302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/31/2023] Open
Abstract
Metformin is one of the most prescribed antidiabetic agents worldwide and is also considered for other therapeutic applications including cancer and endocrine disorders. It is largely unmetabolized by human enzymes and its presence in the environment has raised concern, with reported toxic effects on aquatic life and potentially also on humans. We report on the isolation and characterisation of strain MD1, an aerobic methylotrophic bacterium growing with metformin as its sole carbon, nitrogen and energy source. Strain MD1 degrades metformin into dimethylamine used for growth, and guanylurea as a side-product. Sequence analysis of its fully assembled genome showed its affiliation to Aminobacter niigataensis. Differential proteomics and transcriptomics, as well as mini-transposon mutagenesis of the strain, point to genes and proteins essential for growth with metformin and potentially associated with hydrolytic C-N cleavage of metformin or with cellular transport of metformin and guanylurea. The obtained results suggest the recent evolution of the growth-supporting capacity of strain MD1 to degrade metformin. Our results identify candidate proteins of the enzymatic system for metformin transformation in strain MD1 and will inform future research on the fate of metformin and its degradation products in the environment and in humans.
Collapse
Affiliation(s)
- Pauline Chaignaud
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Christelle Gruffaz
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Adrien Borreca
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
- Institut Terre et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000 Strasbourg, France
| | - Stéphanie Fouteau
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université d’Evry, Université Paris-Saclay, CEDEX, 91057 Evry, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FR 1589 CNRS, CEDEX, 67084 Strasbourg, France
| | - Jérémy Masbou
- Institut Terre et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000 Strasbourg, France
| | - Zoé Rouy
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université d’Evry, Université Paris-Saclay, CEDEX, 91057 Evry, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FR 1589 CNRS, CEDEX, 67084 Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000 Strasbourg, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université d’Evry, Université Paris-Saclay, CEDEX, 91057 Evry, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|