1
|
Sun X, Tian S, You L, Huang X, Su JQ. UV-aging reduces the effects of biodegradable microplastics on soil sulfamethoxazole degradation and sul genes development. J Environ Sci (China) 2025; 150:422-431. [PMID: 39306417 DOI: 10.1016/j.jes.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 10/01/2024]
Abstract
In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.
Collapse
Affiliation(s)
- Xuecong Sun
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lelan You
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Deng W, Wang Y, Liu W, Wang Z, Liu J, Wang J. Molecular-level insights into the leachates released from ultraviolet-aged biodegradable and conventional commercial microplastics and their mechanism of toxicity toward Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177167. [PMID: 39477110 DOI: 10.1016/j.scitotenv.2024.177167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Understanding the harmful effects of microplastics (MPs) and their derivatives is a priority in environmental study. However, the characteristics and toxic effects of leachates from MPs at the molecular-level remain unclear. Herein, two conventional commercial MPs [polystyrene (PS) and polyethylene (PE)] and two biodegradable commercial MPs [polylactic acid (PLA) and polybutylene adipate-co-terephthalate/PLA (PBAT/PLA)] were subjected to leaching under ultraviolet-irradiation, and their leachates were investigated. The results showed that the surface morphology of MPs increased in roughness after ultraviolet-irradiation treatment, especially for biodegradable MPs, meanwhile, the particle size of four MPs decreased in various degrees. The biodegradable MPs released several times more dissolved organic matter (DOM) and nano-plastic particles than conventional MPs. Fourier transform ion cyclotron resonance mass spectrometry revealed that lignin-like substances were the predominant component of MP-DOM, followed by protein- and tannin-like substances. The molecular composition and characteristics of the DOM varied significantly among MPs. Transcriptomic analysis showed that 737 and 1259 genes, respectively, were differentially expressed in Chlorella pyrenoidosa in PLA- and PBAT/PLA-MP leachate-treated groups compared with controls, more than in the PS (352) and PE (355) groups. These findings, verified by physiological and histopathological analyses, indicate that the leachates from the biodegradable MPs induced more damage to Chlorella pyrenoidosa than those from the conventional MPs. This is mainly attributed to far more DOM and nano-plastic particles containing in leachates of biodegradable MPs than these of conventional MPs. This study deepens our comprehension of the potential hazards of MP-leachates, and promotes the prudent use and disposal of plastic products.
Collapse
Affiliation(s)
- Wenbo Deng
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yajing Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Zihan Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinzhao Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
3
|
Feng Y, Duan J, Yang C, Zou Q, Chen Z, Pu J, Xiang Y, Chen M, Fan M, Zhang H. Microplastics and benthic animals reshape the geochemical characteristics of dissolved organic matter by inducing changes in keystone microbes in riparian sediments. ENVIRONMENTAL RESEARCH 2024; 262:119806. [PMID: 39151559 DOI: 10.1016/j.envres.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Dissolved organic matter (DOM) in riparian sediments plays a vital role in regulating element cycling and pollutant behavior of river ecosystems. Microplastics (MPs) and benthic animals (BAs) have been frequently detected in riparian sediments, influencing the substance transformation in river ecosystems. However, there is still a lack of systematic investigation on the effects of MPs and BAs on sediment DOM. This study investigated the impact of MPs and BAs on the geochemical characteristics of DOM in riparian sediments and their microbial mechanisms. The results showed that MPs and BAs increased sediment DOC concentration by 34.24%∼232.97% and promoted the conversion of macromolecular components to small molecular components, thereby reducing the humification degree of DOM. Mathematical model verified that the changes of keystone microbes composition in sediments were direct factors affecting the characteristics of DOM in riparian sediment. Especially, MPs tolerant microbes, including Planctomicrobium, Rhodobacter, Hirschia and Lautropia, significantly increased DOC concentration and decreased humification degree (P < 0.05). In addition, MPs and BAs could also influence keystone microbes in sediments by altering the structure of microbial network, thereby indirectly affecting DOM characteristics. The study demonstrates the pollution behavior of MPs in river ecosystems and provides a basis for protecting the ecological function of riparian sediments from MPs pollution.
Collapse
Affiliation(s)
- Yuanyuan Feng
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jinjiang Duan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qingping Zou
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ziwei Chen
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
4
|
Zhou J, Feng W, Brown RW, Yang H, Shao G, Shi L, Gui H, Xu J, Li FM, Jones DL, Zamanian K. Microplastic contamination accelerates soil carbon loss through positive priming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176273. [PMID: 39278478 DOI: 10.1016/j.scitotenv.2024.176273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The priming effect, i.e., the changes in soil organic matter (SOM) decomposition following fresh organic carbon (C) inputs is known to influence C storage in terrestrial ecosystems. Microplastics (particle size <5 mm) are ubiquitous in soils due to the increasing use and often inadequate end-of-life management of plastics. Conventional polyethylene and bio-degradable (PHBV) plastics contain large amounts of C within their molecular structure, which can be assimilated by microorganisms. However, the extent and direction of the potential priming effect induced by microplastics is unclear. As such, we added 14C-labeled glucose to investigate how background polyethylene and PHBV microplastics (1 %, w/w) affect SOM decomposition and its potential microbial mechanisms in a short-term. The cumulative CO2 emission in soil contaminated with PHBV was 42-53 % higher than under Polyethylene contaminated soil after 60-day incubation. Addition of glucose increased SOM decomposition and induced a positive priming effect, as a consequence, caused a negative net soil C balance (-59 to -132 μg C g-1 soil) regardless of microplastic types. K-strategists dominated in the PHBV-contaminated soils and induced 72 % higher positive priming effects as compared to Polyethylene-contaminated soils (160 vs. 92 μg C g-1 soil). This was attributed to the enhanced decomposition of recalcitrant SOM to acquire nitrogen. The stronger priming effect associated in PHBVs can be attributed to cooperative decomposition among fungi and bacteria, which metabolize more recalcitrant C in PHBV. Moreover, comparatively higher calorespirometric ratios, lower substrate use efficiency, and larger enzyme activity but shorter turnover time of enzymes indicated that soil contaminated with PHBV release more energy, and have a more efficient microbial catabolism and are more efficient in SOM decomposition and nutrient resource uptake. Overall, microplastics, (especially bio-degradable microplastics) can alter biogeochemical cycles with significant negative consequences for C sequestration via increasing SOM decomposition in agricultural soils and for regional and global C budgets.
Collapse
Affiliation(s)
- Jie Zhou
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wenhao Feng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Robert W Brown
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Haishui Yang
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guodong Shao
- Geo-Biosphere Interactions, Department of Geosciences, Faculty of Sciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lingling Shi
- Geo-Biosphere Interactions, Department of Geosciences, Faculty of Sciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China
| | - Feng-Min Li
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kazem Zamanian
- Institute of Soil Science, Leibniz University of Hanover, 30419 Hanover, Germany
| |
Collapse
|
5
|
Sun Y, Xu Z, He M, Alessi DS, Tsang DCW. Unlocking the solution-phase molecular transformation of biochar during intensive rainfall events: Implications for the long-term carbon cycle under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176708. [PMID: 39383956 DOI: 10.1016/j.scitotenv.2024.176708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The unclear turnover of soluble and solid phases of biochar during increasingly severe climate change (e.g., intensive rainfall) raised questions about the carbon stability of biochar in soil. Here, we present an in-depth analysis of the molecular-level transformations occurring in both the soluble and solid phases of biochar subjected to prolonged wet-dry cycles with simulated rainwater. Biochar properties, including surface functionality and carbon texture, greatly affected the transformation route and led to a distinct stability variation. The rich alkyl -CH3 on the low-temperature biochar (450 °C) was oxidized to hydroxymethyl -CH2OH or formyl -CHO, and the ester -COOC- or peptide -CONHC- bonds were fragmented in the meantime, causing the release of protein- or lipid-like organic carbon and the declined carbon stability (Æ, tested by H2O2 oxidation, from 60.1% to 53.2%). After a high-temperature (750 °C) pyrolysis process, only oxidation of the surface -OH with limited bond breaking occurred after rainwater elution, presenting a marginal composition difference with constant stability. However, the fragile carbon nature of biochar, caused by CO2 activation, led to enhanced fragmentation, oxidation, and hydration, resulting in the release of tannin-like organic carbon, which compromised the carbon storage (Æ decreased from 81.2% to 73.0%). Our findings evaluated the critical transformation of biochar during intensive rainfall, offering crucial insights for designing sustainable biochar and achieving carbon neutrality.
Collapse
Affiliation(s)
- Yuqing Sun
- School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mingjing He
- Deloitte China, 88 Queensway, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
6
|
Li H, Shen M, Wang Y, Liu B, Li M. Research advances of biodegradable microplastics in wastewater treatment plant: Current knowledge and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175614. [PMID: 39163932 DOI: 10.1016/j.scitotenv.2024.175614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Plastic and microplastic pollution in the environment has become a significant global concern. Biodegradable plastics (BPs), as environmentally friendly alternatives to conventional plastics, have also emerged as a crucial topic of global discussion. The successful application of BPs appears to offer a solution to the potential ecological risks posed by conventional plastics. However, BPs have negative impacts on the ecological environment and human health. BPs can gradually degrade into biodegradable microplastics (BMPs) in the environment. Wastewater treatment plants (WWTPs) have become an undeniable source and sink of microplastics. With the production and application of BPs, BMPs will inevitably enter WWTPs. This paper reviews the pollution status, degradation behavior of BMPs, and their potential impact on wastewater treatment performance. The focus is on the environmental behavior of BMPs in wastewater treatment systems. The influences of BMPs on microbial communities, sludge treatment, and disposal are thoroughly discussed. The results indicate that BMPs are more easily decomposed into micro/nanoplastics and release additives compared to conventional microplastics. The effects of BMPs on microbial communities and wastewater treatment depend on their characteristics. The numerous oxygen-containing functional groups on the surface of BMPs enable them to serve a dual purpose as transport media and potential sources of environmental pollutants. Finally, in light of existing knowledge gaps, suggestions and prospects for future research on BMPs are proposed.
Collapse
Affiliation(s)
- Haokai Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Bohao Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Mingyu Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| |
Collapse
|
7
|
Cheng Z, Hu Q, Guo H, Ma Q, Zhou J, Wang T, Zhu L. Long-term straw return enhanced the chlorine reactivity of soil DOM: Highlighting the molecular-level activity and transformation trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175485. [PMID: 39147061 DOI: 10.1016/j.scitotenv.2024.175485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Chemical properties and molecular diversity of dissolved organic matter (DOM) in agricultural soils are important for soil carbon dynamics and chlorine activity. Yet the chlorine reactivity of soil DOM at the molecular level under agricultural management practices remains unidentified. Here, we investigated the chlorine reactivity of soil DOM under long-term straw return and the molecular activities and transformations during chlorination. The 9-year straw return enhanced the chlorine reactivity of soil DOM, leading to increases in the production of traditional disinfection byproducts (DBPs) and decreases in the formation of emerging high molecular weight DBPs. C17HnOmCl1-2 and C22HnNmOzCl were the highest relative abundances of emerging DBPs. The emerging DBPs were primarily generated through chlorine substitution reactions, with their precursors exhibiting higher H/Cwa (1.47) and O/Cwa (0.41) ratios under straw return. The molecular transformation ability and inactive molecules of soil DOM under long-term straw return were reduced after chlorination, resulting in increased DOM instability. Chlorination led to a shift in the thermodynamic processes of soil DOM molecules from thermodynamically limited to thermodynamically favorable processes, and lignin-like compounds displayed higher potentials for transformation into protein/amino sugar-like compounds. C19H26O6 was identified as a sensitive formula for tracing chlorine reactivity under straw return, and a network illustrating the generation of DBPs from C19H26O6 was established. Overall, these results highlighted the strong chlorine reactivity of soil DOM under long-term straw return.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300385, China.
| |
Collapse
|
8
|
Liu S, Huang J, Shi L, He W, Zhang W, Li E, Zhang C, Pang H, Tan X. Interaction of Pb(II) with microplastic-sediment complexes: Critical effect of surfactant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124815. [PMID: 39182819 DOI: 10.1016/j.envpol.2024.124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In this study, the impact of surfactants on the adsorption behavior of Pb(II) onto microplastics-sediment (MPs-S) complexes was investigated. Firstly, virgin polyamide (VPA) and polyethylene (VPE) were placed in Xiangjiang River sediment for six months to conduct in-situ aging. The results indicated that the biofilm-developed polyamide (BPA) and polyethylene (BPE) formed new oxygen-containing functional groups and different biofilm species. Furthermore, the adsorption capacity of Pb(II) in sediment (S) and MPs-S complexes was in the following order: S > BPA-S > VPE-S > VPA-S > BPE-S. The addition of sodium dodecyl benzenesulfonate (SDBS) promoted the adsorption of Pb(II), and the adsorption amount of Pb(II) increased with the higher concentration of SDBS, while adding cetyltrimethylammonium bromide (CTAB) showed the opposite result. The adsorption process of MPs-S complexes to Pb(II) was dominated by chemical adsorption, and the interaction between MPs-S complexes and Pb(II) was multilayer adsorption involving physical and chemical adsorption when the surfactants were added. Besides, the pH exerts a significant effect on Pb(II) adsorption in different MPs-S complexes, and the highest adsorption amount occurred at pH 6. Noteworthy, CTAB promoted the adsorption ability of Pb(II) when the exogenous FA was added. The binding characteristic of sediment endogenous DOM components and Pb(II) was influenced by the addition of MPs and surfactants. Finally, it confirmed that adsorption mechanisms mainly involve electrostatic and hydrophobic interaction. This study provides a new perspective to explore the environmental behaviors of Pb(II) by MPs and sediments with the addition of surfactants, which was conducive to evaluating the ecological risks of MPs and heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Lixiu Shi
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
9
|
Wang SX, Yao W, Yang CX, He WL, Li J, Huang BC, Jin RC. The nexus between aeration intensity and organic carbon capture in contact-stabilization process: Insights from molecular structure transition of dissolved organic matters. WATER RESEARCH 2024; 268:122769. [PMID: 39536641 DOI: 10.1016/j.watres.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Traditional energy-intensive pollution control pattern poses great challenges to the sustainable development of urban cities, necessitating the implementation of more compact and cost-effective biological treatment technology. High-rate contact stabilization (HiCS) process can effectively capture low-concentration organic carbon matters from municipal wastewater. However, the role of dissolved oxygen (DO) concentration at stabilization phase-a critical determinant of carbon capture efficiency-remains poorly understood, thus hindering its operation optimization and application. This work investigated the impact of DO content at the stabilization phase on the effluent quality and carbon capture efficiency of HiCS process from the perspectives of sludge dissolved organic matter (DOM) composition and microbial metabolism activity changes. The results showed that optimal carbon capture efficiency (52.1 %) and the lowest effluent chemical oxygen demand concentration were achieved at a DO concentration of 1 mg/L. Elevated DO levels would increase the aromaticity of DOM in sludge, rendering it more recalcitrant to microbial degradation. In addition, higher DO concentration induced a metabolic shift towards endogenous respiration among the microbial community, leading to the increased release of DOM and microbial metabolites, which in turn deteriorated the effluent quality. The findings of this work highlight the necessity of controlling appropriate aeration intensity when applying HiCS in practical application, to both effectively minimize organic carbon mineralization and operational energy consumption while without sacrificing pollutant removal performance.
Collapse
Affiliation(s)
- Shi-Xu Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Wei Yao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Chao-Xi Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Wen-Long He
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Jing Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
10
|
Ren D, Yang B, Wang Y, Wang J. Molecular-level insight into the role of soil-derived dissolved organic matter composition in regulating photochemical reactivity. WATER RESEARCH 2024; 268:122765. [PMID: 39541853 DOI: 10.1016/j.watres.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Soil-derived dissolved organic matter (DOM) links soil and water carbon pools and is an important source of photochemically produced reactive intermediates (PPRIs) in aquatic environments. Despite its importance, the variations in photochemical reactivity of soil-derived DOM molecules in producing PPRIs across broad geographical regions, and the factors driving these variations, remain unclear. Herein, we resolved the apparent quantum yields (Φ(PPRIs)) of hydroxyl radicals (•OH), singlet oxygen (1O2), and excited triplet-state DOM (3DOM*) for irradiated DOM from 22 representative soil reference materials in China, and linked them to soil pH, mineral weathering degree, and DOM characteristics. Generally, the average Φ(PPRIs) values of the soil-derived DOM followed the order of Φ(3DOM*) (1.67× 10-2) > Φ(1O2) (1.47× 10-2) > Φ(•OH) (7.31× 10-5). The DOM from less weathered soils showed higher Φ(•OH) and Φ(3DOM*) and comparable Φ(1O2) than that from more weathered soils. The differences were mainly regulated by the abundance of humic-, lignin-, tannin-, and aromatic-like compounds, as indicated by the correlation and random forest model analyses. Partial least squares and multiple linear regression analyses identified DOM molecular weight, nominal oxidation state of carbon, and soil chemical index of alteration as effective predictors of •OH yields. Soil chemical index of alteration emerged as a prioritized predictor of 3DOM* yields, while the electron-donating capacity and humic-like compound content of the soil-derived DOM were effective predictors of 1O2 yields. This study advances our understanding of how mineral weathering processes regulate the photochemical reactivity of soil-derived DOM in the aquatic environment across wide geographical regions.
Collapse
Affiliation(s)
- Dong Ren
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Ma X, Wei Z, Wang X, Li C, Feng X, Shan J, Yan X, Ji R. Microplastics from polyvinyl chloride agricultural plastic films do not change nitrogenous gas emission but enhance denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135758. [PMID: 39244981 DOI: 10.1016/j.jhazmat.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Liang L, Tang Z, Jiang Y, Ding C, Tang M, Zhi Y, Xu X, Fang F, Guo J, Zhu D, Yang C. Impacts of the coexistence of polystyrene microplastics and pesticide imidacloprid on soil nitrogen transformations and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123054. [PMID: 39467461 DOI: 10.1016/j.jenvman.2024.123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The pollution of agricultural soils by microplastics (MPs) and pesticides has attracted significant attention. However, the combined impact of MPs and pesticides on soil nitrogen transformation and microbial communities remains unclear. In this study, we conducted a 28-day soil incubation experiment, introducing polystyrene microplastics (PS-MPs) at concentrations of 0.1% and 10% (w/w) and pesticide imidacloprid at concentrations of 0.1 mg/kg and 1.0 mg/kg. Our aim was to investigate the individual and combined effects of these pollutants on nitrogen transformations and microbial communities in agricultural soils. Imidacloprid accelerated the decline in soil pH, while PS-MPs slowed the process. Imidacloprid hindered soil nitrification and denitrification processes, however, the presence of PS-MPs mitigated the inhibitory effects of imidacloprid. Based on microbial community and functional annotation analyses, this is mainly attributed to the different effects of PS-MPs and imidacloprid on soil microbial communities and the expression of key nitrogen transformation-related genes. Variance partitioning analysis and partial least squares path modeling analyses revealed that PS-MPs and imidacloprid indirectly influenced the microbial community structure, primarily through changes in soil pH. This study elucidates the mechanism through which the combined stress of MPs and pesticides in agricultural soils influence soil nitrogen transformation and microbial communities. The findings offer valuable insights for the systematic evaluation of the ecological risks posed by the coexistence of these pollutants.
Collapse
Affiliation(s)
- Luntao Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zichao Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yanxue Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chen Ding
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Miaoyi Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaowei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Dong Zhu
- A Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Cuilan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
13
|
Yan Z, Chen Y, Su P, Liu S, Jiang R, Wang M, Zhang L, Lu G, Yuan S. Microbial carbon metabolism patterns of microplastic biofilm in the vertical profile of urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122422. [PMID: 39243653 DOI: 10.1016/j.jenvman.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Pengpeng Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Wang J, Song M, Lu M, Wang C, Zhu C, Dou X. Insights into effects of conventional and biodegradable microplastics on organic carbon decomposition in different soil aggregates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124751. [PMID: 39151783 DOI: 10.1016/j.envpol.2024.124751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The impacts of microplastics on soil ecological functions such as carbon recycling and soil structure maintenance have been extensively focused. However, the mechanisms underlying the impacts of microplastics on soil carbon transformation and soil microbial community at soil aggregate scale have not been clarified yet. In this work, the effects and action mechanisms of traditional microplastic polypropylene (PP) and degradable microplastic polylactic acid (PLA) on carbon transformation in three sizes of soil aggregates were investigated. The results showed that both PP and PLA promoted CO2 emission, and the effect depended on the type and content of microplastics, and the size of soil aggregates. Changes in soil carbon stocks were mainly driven by changes in organic carbon associated with macroaggregates. For macroaggregates, PP microplastics decreased soil organic carbon (SOC) as well as dissolved organic carbon (DOC). These changes were reversed in microaggregates and silt and clay. Interestingly, PLA increased the SOC, DOC and CO2 emissions in bulk soil and all three aggregates with a dose-effect response. These changes were associated with soil microbes, functional genes and enzymes associated with the degradation of labile and recalcitrant carbon fractions. Furthermore, PP and PLA reduced bacterial community diversities and shifted bacterial community structures in both the three aggregates and in bulk soil. Alterations of functional genes induced by microplastics were the key driving factors of their impacts on carbon transformation in soil aggregates. This research opened up a new insight into the mechanisms underlying the impacts of microplastics on soil carbon transformation, and helped us make rational assessments of the risks and the disturbances of microplastics on soil carbon cycling.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Minghua Song
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Mengnan Lu
- Beijing Langxinming Environmental Technology Co. Ltd., 16 W 4th Ring Middle Road, Haidian District, Beijing, 100080, China
| | - Chunmei Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Chenying Zhu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiaomin Dou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
15
|
Gong K, Peng C, Hu S, Xie W, Chen A, Liu T, Zhang W. Aging of biodegradable microplastics and their effect on soil properties: Control from soil water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136053. [PMID: 39395391 DOI: 10.1016/j.jhazmat.2024.136053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
The ecological risks of biodegradable microplastics (BMPs) to soil ecosystems have received increasing attention. This study investigates the impacts of polylactic acid microplastics (PLA-MPs) and polybutylene adipate terephthalate microplastics (PBAT-MPs) on soil properties of black soil (BS) and fluvo-aquic soil (FS) under three water conditions including dry (Dry), flooded (FL), and alternate wetting and drying (AWD). The results show that BMPs exhibited more evident aging under Dry and AWD conditions compared to FL condition. However, BMPs aging under FL condition induced more substantial changes in soil properties, especially dissolved organic carbon (DOC) concentrations, than under Dry and AWD conditions. BMPs also increased the humification degree of soil dissolved organic matter (DOM), particularly in BS. Metagenomic analysis of PBAT-MPs treatments showed different changes in microbial community structure depending on soil moisture. Under Dry conditions, PBAT-MPs enhance the ammonium-producing process of soil microbial communities. Genes related to N nitrification and benzene degradation were enriched under AWD conditions. In contrast, PBAT-MPs do not change the abundance of genes related to the N cycle under FL conditions but significantly reduce genes related to benzene degradation. This reduction in benzene degradation genes under FL condition might potentially slow down the degradation of PBAT-MPs, and could lead to temporary accumulation of benzene-related intermediates. These findings highlight the complex interactions between BMPs, soil properties, and microbial communities, emphasizing the need for comprehensive evaluations of BMPs' environmental impacts under varying soil water conditions.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Yu H, Liu H, Yang K, Xi B, Tan W. Differential carbon accumulation of microbial necromass and plant lignin by pollution of polyethylene and polylactic acid microplastics in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124504. [PMID: 38968987 DOI: 10.1016/j.envpol.2024.124504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The wide microplastics (MPs) occurrence affects soil physicochemical and biological properties, thereby influencing its carbon cycling and storage. However, the regulation effect of MPs on soil organic carbon (SOC) formation and stabilization remains unclear, hindering the accurate prediction of carbon sequestration in future global changes under continuous MP pollution. Phospholipid fatty acids, amino sugars and lignin phenols were used in this study as biomarkers for microbial community composition, microbial necromass and plant lignin components, respectively, and their responses to conventional (polyethylene; PE) and biodegradable (polylactic acid; PLA) MPs were explored. Results showed PLA MPs had positive effects on soil microbial biomass, while the positive and negative effects of PE MPs on microbial biomass varied with MP concentration. PE and PLA MPs increased microbial necromass contents and their contribution to SOC, mainly due to the increase in fungal necromass. On the contrary, PE and PLA MPs reduced lignin phenols and their contribution to SOC, mainly owing to the reduction in vanillyl-type phenols. The response of microbial necromass to PLA MPs was higher than that to PE MPs, whereas the response of lignin phenols was the opposite. MPs increased SOC level, with 83%-200% and 50%-75% of additional SOC in PE and PLA treatments, respectively, originating from microbial necromass carbon. This finding indicates that the increase in SOC pool in the presence of MPs can be attributed to soil microbial necromass carbon, and MPs increased capacity and efficacy of microbial carbon pump by increasing microbial turnover and reducing microbial N limitation. Moreover, the increase in amino sugars to lignin phenols ratio in PE treatment was higher than that in PLA treatment, and the increase in SOC content in PLA treatment was higher than that in PE treatment, indicating a high possibility of SOC storage owing to PLA MPs.
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Resources and Environment Engineering, Mianyang Teachers' College, Mianyang, 621000, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Haixia Liu
- School of Resources and Environment Engineering, Mianyang Teachers' College, Mianyang, 621000, China
| | - Ke Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
17
|
Huang D, Dong H, Li X, Li L, Deng J, Xiao J, Dong J, Xiao S. Transformation of dissolved organic matter leached from biodegradable and conventional microplastics under UV/chlorine treatment and the subsequent effect on contaminant removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135994. [PMID: 39357355 DOI: 10.1016/j.jhazmat.2024.135994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The ultraviolet (UV)/chlorine process has been widely applied for water treatment. However, the transformation of microplastic-leached dissolved organic matter (MP-DOM) in advanced treatment of real wastewater remains unclear. Here, we investigated alterations in the photoproperties of MP-DOM leached from biodegradable and conventional microplastics (MPs) and their subsequent effects on the degradation of sulfamethazine (SMT) by the UV/chlorine process. Spectroscopy was used to assess photophysical properties, focusing on changes in light absorption capacity, functional groups, and fluorescence components, while photochemical properties were determined by calculating the apparent quantum yields of reactive intermediates (ΦRIs). For photophysical properties, our findings revealed that the degree of molecular structure modification, functional group changes, and fluorescence characteristics during UV/chlorine treatment are closely linked to the type of MPs. For photochemical properties, the ΦRIs increased with higher chlorine dosages due to the formation of new functionalities. Both singlet oxygen (1O2) and hydroxyl radicals (•OH) formation were strongly correlated with excited triplet state of DOM (3DOM*) in the UV/chlorine treatment. Additionally, we found that the four types of MP-DOM inhibit the degradation of SMT and elucidated the mechanisms behind this inhibition. We also proposed degradation pathways for SMT and assessed the ecotoxicity of the resulting intermediates. This study provides important insights into how the characteristics and transformation of MP-DOM affect contaminant degradation, which is critical for evaluating the practical application of UV-based advanced oxidation processes (UV-AOPs).
Collapse
Affiliation(s)
- Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xing Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
18
|
Li C, Wang C, Liu L. Effects of Microplastics and Organic Fertilizer Regulation on Soil Dissolved Organic Matter Evolution. TOXICS 2024; 12:695. [PMID: 39453115 PMCID: PMC11511232 DOI: 10.3390/toxics12100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
Microplastics are pollutants of global concern nowadays. However, the effects of microplastics addition to soil as a carbon source and the combined effects of microplastics and organic fertilizer on soil-dissolved organic matter (DOM) evolution are still unclear. This study focused on the evolution of DOM in soil with the addition of microplastics and investigated the variations in the content and composition of DOM in unfertilized and fertilized soil with different particle sizes of microplastics. It was observed that the TOC concentration of the soil DOM in the treatment with organic fertilizer and microplastics increased more (129.97-161.43 mg kg-1) than that in the treatment with microplastics alone (117.17-131.87 mg kg-1) and was higher than that in the original soil (95.65 mg kg-1). According to the humic acid relative abundance in DOM after 40 days of incubation, the humic acid relative abundance in DOM of the soil samples with microplastics and organic fertilizers addition was found to be higher than that in those with microplastic addition alone, reaching more than 80% in a short time. In conclusion, the TOC concentration of the soil DOM increased with the addition of microplastics, and the increase was more pronounced when organic fertilizers and microplastics were added together. Moreover, the soil humification increased to a higher level in the short term with the combined addition of microplastics and organic fertilizers, which was maintained during the long-term incubation process.
Collapse
Affiliation(s)
- Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| | - Chunhai Wang
- Tianjin High-Quality Agricultural Products Development Demonstration Center, Tianjin 301508, China;
| | - Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| |
Collapse
|
19
|
Gong K, Liu T, Peng C, Zhao Z, Xu X, Shao X, Zhao X, Qiu L, Xie W, Sui Q, Zhang W. Water-dependent effects of biodegradable microplastics on arsenic fractionation in soil: Insights from enzyme degradation and synchrotron-based X-ray analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135275. [PMID: 39053062 DOI: 10.1016/j.jhazmat.2024.135275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The abundance of biodegradable microplastics (BMPs) is increasing in soil due to the widespread use of biodegradable plastics. However, the influence of BMPs on soil metal biogeochemistry, especially arsenic (As), under different water regimes is still unclear. In this study, we investigated the effects of two types of BMPs (PLA-MPs and PBAT-MPs) on As fractionation in two types of soils (black soil and fluvo-aquic soil) under three water regimes including drying (Dry), flooding (FL), and alternate wetting and drying (AWD). The results show that BMPs had limited indirect effects on As fractionation by altering soil properties, but had direct effects by adsorbing and releasing As during their degradation. Enzyme degradation experiments show that the degradation of PLA-MPs led to an increased desorption of 4.76 % for As(III) and 15.74 % for As(V). Synchrotron-based X-ray fluorescence (μ-XRF) combined with micro-X-ray absorption near edge structure (μ-XANES) analysis show that under Dry and AWD conditions, As on the BMPs primarily bind with Fe hydrated oxides in the form of As(V). Conversely, 71.57 % of As on PBAT-MP under FL conditions is in the form of As(III) and is primarily directly adsorbed onto its surface. This study highlights the role of BMPs in soil metal biogeochemistry.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ziyi Zhao
- International Elite Engineering School, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linlin Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Zhou W, Huang D, Chen S, Wang G, Li R, Xu W, Lei Y, Xiao R, Yin L, Chen H, Li F. Microplastic dilemma: Assessing the unexpected trade-offs between biodegradable and non-biodegradable forms on plant health, cadmium uptake, and sediment microbial ecology. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135240. [PMID: 39079302 DOI: 10.1016/j.jhazmat.2024.135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Despite extensive substitution of biodegradable plastics (BPs) for conventional plastics (CPs), research on their environmental ecological consequences as microplastics (MPs) is scarce. This study aimed to fill this gap by investigating the impacts of six prototypical MPs (categorized into BMPs and CMPs) on plant growth, cadmium (Cd) translocation, and bacterial communities in contaminated sediments. Results showed both BMPs and CMPs hindered plant development; yet interestingly, BMPs provoked more pronounced physiological and biochemical changes alongside increased oxidative stress due to reactive oxygen species accumulation. Notably, most MP types promoted the absorption of Cd by plant roots potentially via a "dilution effect". BMPs also induced larger shifts in soil microbial metabolic functions compared to CMPs. Ramlibacter was identified as a key biomarker distinguishing BMPs from CMPs, with link to multiple N metabolic pathways and N assimilation. This study offers novel insights into intricate biochemical mechanisms and environmental chemistry behaviors underpinning MP-Cd interactions within the plant-microbe-sediment system, emphasizing BMPs' higher potential ecological risks based on their significant effects on plant health and microbial ecology. This work contributes to enhancing the comprehensive understanding of their ecological implications and potential threats to environmental security.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Sha Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
21
|
Niu Z, Chen C, Ruan Q, Duan Y, Liu S, Chen D. Plant Root Secretion Alleviates Carbamate-Induced Molecular Alterations of Dissolved Organic Matter. TOXICS 2024; 12:654. [PMID: 39330581 PMCID: PMC11435816 DOI: 10.3390/toxics12090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Studying the interaction between pesticide contamination in the plant system and the dissolved organic matter (DOM) composition is important to understand the impact of pesticides and plants on the ecological function of DOM. The present study investigated the effects of DOM on the bioaccumulation and biotransformation of carbamates in plants, carbamate exposure on DOM composition, and plant root secretion on the interaction between DOM and carbamates. The concentrations of carbamates and their metabolites in living cabbage plants were continuously tracked through an in vivo analytical method. The presence of DOM was found to reduce the highest bioconcentrations and shorten the time it took to reach the highest bioaccumulated amounts of isoprocarb and carbofuran in plants, while it showed no significant effect on the uptake behavior of carbaryl. DOM profiling results indicated that carbamate exposure substantially decreased the number and molecular diversity of DOM. Notably, plant root secretion alleviated carbamate-induced DOM molecular alterations by inducing a higher turnover rate of DOM compared to that in the uncontaminated group, highlighting the role of plants in mitigating the effects of exogenous pesticide exposure on DOM composition and maintaining DOM molecular homeostasis.
Collapse
Affiliation(s)
- Zihan Niu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Qijun Ruan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Yingming Duan
- China College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shuqin Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| |
Collapse
|
22
|
Pan J, Zhang S, Qiu X, Ding L, Liang X, Guo X. Molecular Weights of Dissolved Organic Matter Significantly Affect Photoaging of Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13973-13985. [PMID: 39046080 DOI: 10.1021/acs.est.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The fate of ubiquitous microplastics (MPs) is largely influenced by dissolved organic matter (DOM) in aquatic environments, which has garnered significant attention. The reactivity of DOM is reported to be greatly regulated by molecular weights (MWs), yet little is known about the effects of different MW DOM on MP aging. Here, the aging behavior of polystyrene MPs (PSMPs) in the presence of different MW fulvic acids (FAs) and humic acids (HAs) was systematically investigated. Under ultraviolet (UV) illumination, O/C of PSMPs aged for 96 h surged from 0.008 to 0.146 in the lower MW FA (FA<1kDa) treatment, suggesting significant PSMP aging. However, FA exhibited a stronger effect on facilitating PSMP photoaging than HA, which can be attributed to the fact that FA<1kDa contains more quinone and phenolic moieties, demonstrating a higher redox capacity. Meanwhile, compared to other fractions, FA<1kDa was more actively involved in the increase of different reactive species yields by 50-290%, including •OH, which plays a key role in PSMP photoaging, and contributed to a 25% increase in electron-donating capacity (EDC). This study lays a theoretical foundation for a better understanding of the environmental fate of MPs.
Collapse
Affiliation(s)
- Jianrui Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shilong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Wang Z, Kong Y, Cao X, Liu N, Wang C, Li X, Xing B. Co-photoaging inhibited the heteroaggregation between polystyrene nanoplastics and different titanium dioxide nanoparticles. WATER RESEARCH 2024; 259:121831. [PMID: 38810346 DOI: 10.1016/j.watres.2024.121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Heteroaggregation between nanoplastics (NPs) and titanium dioxide nanoparticles (TiO2NPs) determines their environmental fates and ecological risks in aquatic environments. However, the co-photoaging scenario of NPs and TiO2NPs, interaction mechanisms of TiO2NPs with (aged) NPs, as well as the dependence of their heteroaggregation on TiO2NPs facets remain elusive. We found the critical coagulation concentration (CCC) of polystyrene nanoplastics (PSNPs) with coexisting RTiO2NPs was 1.9 - 2.2 times larger than that with coexisting ATiO2NPs, suggesting a better suspension stability of PSNPs+RTiO2NPs. In addition, CCC of TiO2NPs with coexisting photoaged PSNPs (APSNPs) was larger 1.7 - 2.2 times than that with PSNPs coexisting, indicating photoaging inhibited their heteroaggregation due to increasing electrostatic repulsion derived from increased negative charges on APSNPs and the polymer-derived dissolved organic carbon. Coexisted TiO2NPs promoted oxidation of PSNPs with the action of HO· and O2·- under UV light, leading to inhibited heteroaggregation. Moreover, Van der Waals and Lewis-acid interaction dominated the formation of primary heteroaggregates of PSNPs-TiO2NPs (ESE = ‒2.20 ∼ ‒2.78 eV) and APSNPs-TiO2NPs (ESE = ‒3.29 ∼ ‒3.67 eV), respectively. The findings provide a mechanistic insight into the environmental process of NPs and TiO2NPs, and are significant for better understanding their environmental risks in aquatic environments.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu Kong
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Ning Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
24
|
Wang S, Feng R, Hu K, Hu X, Qu Q, Mu L, Wen J, Ma C. Polystyrene microplastics facilitate formation of refractory dissolved organic matter and reduce CO 2 emissions. ENVIRONMENT INTERNATIONAL 2024; 190:108809. [PMID: 38878654 DOI: 10.1016/j.envint.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 08/28/2024]
Abstract
Microplastics, as a type of anthropogenic pollution in aquatic ecosystems, affect the carbon cycle of organic matter. Although some studies have investigated the effects of microplastics on dissolved organic matter (DOM), the impact of alterations in the chemical properties of microplastics on refractory DOM and carbon release remains unclear. Here, we observed that microplastic treatments (e.g., polystyrene, PS) altered the composition and function of microbial community, notably increasing the abundance of microbial families involved in consuming easily degradable organic matter. During the process in which microbial community decomposed organic matter into DOM, PS underwent surface oxidation. The oxidized PS aggregated with DOM and microorganisms through electrostatic interactions and chemical bonds. Moreover, these interactions between oxidized PS and microbial community affect the utilization of organic matter, resulting in a significant decrease in CO2 emissions. Specifically, total CO2 emissions decreased by approximately 23.76 % with 0.1 mg/L PS treatment and by 44.97 % with 10 mg/L PS treatment compared to those in PS-free treatments over the entire reaction. These findings underscored the significance of the chemical properties of PS in the interactions among DOM and microorganisms, emphasizing the potential impact of PS microplastics on the carbon cycle in ecosystems.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Kai Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Li Mu
- Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China.
| | - Jingyu Wen
- Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
25
|
Liang R, Zhang C, Zhang R, Li Q, Liu H, Wang XX. Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174899. [PMID: 39043299 DOI: 10.1016/j.scitotenv.2024.174899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Biodegradable mulch residues contribute significantly to the presence of microplastics in soil ecosystems. The environmental impact of microplastics, especially biodegradable microplastics (bio-MPs), on soil and plants is of increasing concern. In this study, the responses of five crop species potted in soil treated with different mass concentrations of bio-MPs were assessed for one month. The shoot and root biomasses of cabbages and strawberries were inhibited by bio-MPs treatment. There was little variation in the growth indicators of identical plants with the addition of different mass concentrations of bio-MPs; however, a significant difference was observed among different plants with the addition of the same concentration of bio-MPs. The detrimental effects of bio-MPs were more pronounced in strawberries and cabbages than in the other plant species. Moreover, bio-MPs can affect the availability of soil nutrients and enzyme activities. Structural equation modeling showed that changes in soil properties may indirectly affect plant growth and nutrient uptake when exposed to bio-MPs. This study provides a theoretical basis for understanding the ecological effects of biodegradable mulch films.
Collapse
Affiliation(s)
- Rong Liang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China
| | - Hongquan Liu
- College of Urban and Rural Construction, Hebei Agricultural University, Baoding 071002, People's Republic of China
| | - Xin-Xin Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China; College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China.
| |
Collapse
|
26
|
Liu X, Fang L, Gardea-Torresdey JL, Zhou X, Yan B. Microplastic-derived dissolved organic matter: Generation, characterization, and environmental behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174811. [PMID: 39032736 DOI: 10.1016/j.scitotenv.2024.174811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Microplastics (MPs) represent a substantial and emerging class of pollutants distributed widely in various environments, sparking growing concerns about their environmental impact. In environmental systems, dissolved organic matter (DOM) is crucial in shaping the physical, chemical, and biological processes of pollutants while significantly contributing to the global carbon budget. Recent findings have revealed that microplastic-derived dissolved organic matter (MP-DOM) constitutes approximately 10 % of the DOM present on the ocean surface, drawing considerable attention. Hence, this study's primary objective is to explore, the generation, characterization, and environmental behaviors of MP-DOM. The formation and characteristics of MP-DOM are profoundly influenced by leaching conditions and types of MPs. This review delves into the mechanisms of the generation of MP-DOM and provides an overview of a wide array of analytical techniques, including ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy, used to assess the MP-DOM characteristics. Furthermore, this review investigates the environmental behaviors of MP-DOM, including its impacts on organisms, photochemical processes, the formation of disinfection by-products (DBPs), adsorption behavior, and its interaction with natural DOM. Finally, the review outlines research challenges, perspectives for future MP-DOM research, and the associated environmental implications.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
27
|
Wang Q, Li X, Zhou K, Li Y, Wang Y, Zhang G, Guo H, Zhou J, Wang T. Mechanisms of conjugative transfer of antibiotic resistance genes induced by extracellular polymeric substances: Insights into molecular diversities and electron transfer properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135181. [PMID: 39003806 DOI: 10.1016/j.jhazmat.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) has become a critical threat to public health. Activated sludge, rich in extracellular polymeric substances (EPS), is an important pool of ARGs. In this study, mechanisms of conjugation transfer of ARGs induced by EPS, including tightly bound EPS (TBEPS), soluble EPS (SEPS), and loosely bound EPS (LBEPS), were explored in terms of molecular diversities and electron transfer properties of EPS. Conjugation transfer frequency was increased by 9.98-folds (SEPS), 4.21-folds (LBEPS), and 15.75-folds (TBEPS) versus the control, respectively. Conjugation-related core genes involving SOS responses (9 genes), membrane permeability (18 genes), intercellular contact (17 genes), and energy metabolism pathways (13 genes) were all upregulated, especially in the presence of TBEPS. Carbohydrates and aliphatic substances in SEPS and LBEPS were contributors to ARG transfer, via influencing reactive oxygen species (ROS) formation (SEPS) and ROS and adenosine triphosphate (ATP) production (LBEPS). TBEPS had the highest redox potential and greatest lability and facilitated electron transfer and alternated respiration between cells, thus promoting ARG transfer by producing ATP. Generally, the chemical molecular characteristics and redox properties of EPS facilitated ARG transfer mainly by influencing lipid peroxidation and ATP, respectively.
Collapse
Affiliation(s)
- Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Keying Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
28
|
Zhu Z, Cao X, Wang K, Guan Y, Ma Y, Li Z, Guan J. The environmental effects of microplastics and microplastic derived dissolved organic matter in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173163. [PMID: 38735318 DOI: 10.1016/j.scitotenv.2024.173163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Currently, microplastics (MPs) have ubiquitously distributed in different aquatic environments. Due to the unique physicochemical properties, MPs exhibit a variety of environmental effects with the coexisted contaminants. MPs can not only alter the migration of contaminants via vector effect, but also affect the transformation process and fate of contaminants via environmental persistent free radicals (EPFRs). The aging processes may enhance the interaction between MPs and co-existed contaminants. Thus, it is of great significance to review the aging mechanism of MPs and the influence of coexisted substances, the formation mechanism of EPFRs, environmental effects of MPs and relevant mechanism. Moreover, microplastic-derived dissolved organic matter (MP-DOM) may also influence the elemental biogeochemical cycles and the relevant environmental processes. However, the environmental implications of MP-DOM are rarely outlined. Finally, the knowledge gaps on environmental effects of MPs were proposed.
Collapse
Affiliation(s)
- Zhichao Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Kezhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yujie Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yuqi Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhuoyu Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
29
|
Zhao S, Rillig MC, Bing H, Cui Q, Qiu T, Cui Y, Penuelas J, Liu B, Bian S, Monikh FA, Chen J, Fang L. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17415. [PMID: 39005227 DOI: 10.1111/gcb.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC- UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Caalonia, Spain
| | - Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padua, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, Liberec, Czech Republic
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
30
|
Yu S, Tang S, Lv J, Li F, Huang Z, Zhao L, Cao D, Wang Y. High throughput identification of carbonyl compounds in natural organic matter by directional derivatization combined with ultra-high resolution mass spectrometry. WATER RESEARCH 2024; 258:121769. [PMID: 38759284 DOI: 10.1016/j.watres.2024.121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Carbonyl compounds are important components of natural organic matter (NOM) with high reactivity, so that play a pivotal role in the dynamic transformation of NOM. However, due to the lack of effective analytical methods, our understanding on the molecular composition of these carbonyl compounds is still limited. Here, we developed a high-throughput screening method to detect carbonyl molecules in complex NOM samples by combining chemical derivatization with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). In six different types of dissolved organic matter (DOM) samples tested in this study, 20-30 % of detected molecules contained at least one carbonyl group, with relative abundance accounted for 45-70 %. These carbonyl molecules displayed lower unsaturation level, lower molecular weight, and higher oxidation degree compared to non-carbonyl molecules. More importantly, the measured abundances of carbonyl molecules were consistent with the results of 13C nuclear magnetic resonance (NMR) analysis. Based on this method, we found that carbonyl molecules can be produced at DOM-ferrihydrite interface, thus playing a role in shaping the molecular diversity of DOM. This method has broad application prospects in screening carbonyl compounds from complex mixtures, and the same strategy can be used to directional identification of molecules with other functional groups as well.
Collapse
Affiliation(s)
- Shiyang Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Tang
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Feifei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zichun Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
31
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Zhong S, Liu R, Yue S, Wang P, Zhang Q, Ma C, Deng J, Qi Y, Zhu J, Liu CQ, Kawamura K, Fu P. Peatland Wildfires Enhance Nitrogen-Containing Organic Compounds in Marine Aerosols over the Western Pacific. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10991-11002. [PMID: 38829627 DOI: 10.1021/acs.est.3c10125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Peatland wildfires contribute significantly to the atmospheric release of light-absorbing organic carbon, often referred to as brown carbon. In this study, we examine the presence of nitrogen-containing organic compounds (NOCs) within marine aerosols across the Western Pacific Ocean, which are influenced by peatland fires from Southeast Asia. Employing ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in electrospray ionization (ESI) positive mode, we discovered that NOCs are predominantly composed of reduced nitrogenous bases, including CHN+ and CHON+ groups. Notably, the count of NOC formulas experiences a marked increase within plumes from peatland wildfires compared to those found in typical marine air masses. These NOCs, often identified as N-heterocyclic alkaloids, serve as potential light-absorbing chromophores. Furthermore, many NOCs demonstrate pyrolytic stability, engage in a variety of substitution reactions, and display enhanced hydrophilic properties, attributed to chemical processes such as methoxylation, hydroxylation, methylation, and hydrogenation that occur during emission and subsequent atmospheric aging. During the daytime atmospheric transport, aging of aromatic N-heterocyclic compounds, particularly in aliphatic amines prone to oxidation and reactions with amine, was observed. The findings underscore the critical role of peatland wildfires in augmenting nitrogen-containing organics in marine aerosols, underscoring the need for in-depth research into their effects on marine ecosystems and regional climatic conditions.
Collapse
Affiliation(s)
- Shujun Zhong
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Scientific Research Academy of Guangxi Environment Protection, Nanning, Guangxi Zhuang Autonomous Region 530022, China
| | - Rui Liu
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Siyao Yue
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Zhang
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Chao Ma
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junjun Deng
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jialei Zhu
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
33
|
Wang J, Jia M, Zhang L, Li X, Zhang X, Wang Z. Biodegradable microplastics pose greater risks than conventional microplastics to soil properties, microbial community and plant growth, especially under flooded conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172949. [PMID: 38703848 DOI: 10.1016/j.scitotenv.2024.172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
34
|
Chu WC, Gao YY, Wu YX, Liu FF. Biofilm of petroleum-based and bio-based microplastics in seawater in response to Zn(II): Biofilm formation, community structure, and microbial function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172397. [PMID: 38608889 DOI: 10.1016/j.scitotenv.2024.172397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Microplastic biofilms are novel vectors for the transport and spread of pathogenic and drug-resistant bacteria. With the increasing use of bio-based plastics, there is an urgent need to investigate the microbial colonization characteristics of these materials in seawater, particularly in comparison with conventional petroleum-based plastics. Furthermore, the effect of co-occurring contaminants, such as heavy metals, on the formation of microplastic biofilms and bacterial communities remains unclear. In this study, we compared the biofilm bacterial community structure of petroleum-based polyethylene (PE) and bio-based polylactic acid (PLA) in seawater under the influence of zinc ions (Zn2+). Our findings indicate that the biofilm on PLA microplastics in the late stage was impeded by the formation of a mildly acidic microenvironment resulting from the hydrolysis of the ester group on PLA. The PE surface had higher bacterial abundance and diversity, with a more intricate symbiotic pattern. The bacterial structures on the two types of microplastics were different; PE was more conducive to the colonization of anaerobic bacteria, whereas PLA was more favorable for the colonization of aerobic and acid-tolerant species. Furthermore, Zn increased the proportion of the dominant genera that could utilize microplastics as a carbon source, such as Alcanivorax and Nitratireductor. PLA had a greater propensity to harbor and disseminate pathogenic and drug-resistant bacteria, and Zn promoted the enrichment and spread of harmful bacteria such as, Pseudomonas and Clostridioides. Therefore, further research is essential to fully understand the potential environmental effects of bio-based microplastics and the role of heavy metals in the dynamics of bacterial colonization.
Collapse
Affiliation(s)
- Wang-Chao Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuan-Yuan Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yu-Xin Wu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
35
|
Wang Y, Zhao C, Lu A, Dong D, Gong W. Unveiling the hidden impact: How biodegradable microplastics influence CO 2 and CH 4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134294. [PMID: 38669928 DOI: 10.1016/j.jhazmat.2024.134294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Biodegradable plastics promise eco-friendliness, yet their transformation into microplastics (bio-MPs) raises environmental alarms. However, how those bio-MPs affect the greenhouse gases (GHGs) and volatile organic compounds (VOCs) in soil ecosystems remains largely unexplored. Here, we investigated the effects of diverse bio-MPs (PBAT, PBS, and PLA) on GHGs and VOCs emission in typical paddy or upland soils. We monitored the carbon dioxide (CO2) and methane (CH4) fluxes in-situ using the self-developed portable optical gas sensor and analyzed VOC profiles using a proton-transfer reaction mass spectrometer (PTR-MS). Our study has revealed that, despite their biodegradable nature, bio-MPs do not always promote soil GHG emissions as previously thought. Specifically, PBAT and PLA significantly increased CO2 and CH4 emissions up to 1.9-7.5 and 115.9-178.5 fold, respectively, compared to the control group. While PBS exhibited the opposite trend, causing a decrease of up to 39.9% for CO2 and up to 39.9% for CH4. In addition, different types of bio-MPs triggered distinct soil VOC emission patterns. According to the Mann-Whitney U-test and Partial Least Squares Discriminant Analysis (PLS-DA), a recognizable VOC pattern associated with different bio-MPs was revealed. This study claims the necessity of considering polymer-specific responses when assessing the environmental impact of Bio-MPs, and providing insights into their implications for climate change.
Collapse
Affiliation(s)
- Yihao Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunjiang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anxiang Lu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Daming Dong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wenwen Gong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
36
|
Zhang T, Wang M, Han Y, Liu J, Zhang Z, Wang M, Liu P, Gao S. Particle sizes crucially affected the release of additives from tire wear particles during UV irradiation and mechanical abrasion. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134106. [PMID: 38552399 DOI: 10.1016/j.jhazmat.2024.134106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
In the environment, tire wear particles (TWPs) could release various additives to induce potential risk, while the effects of particle size on the additive release behavior and ecological risk from TWPs remain unknown. This study investigated the effects and mechanisms of particle sizes (>2 mm, 0.71-1 mm, and <0.1 mm) on the release behavior of TWPs additives under mechanical abrasion and UV irradiation in water. Compared to mechanical abrasion, UV irradiation significantly increased the level of additives released from TWPs. Especially, the additive releasing characteristics were critically affected by the particle sizes of TWPs, manifested as the higher release in the smaller-size ones. After 60 d of UV irradiation, the concentration of antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) reached 10.79 mg/L in the leachate of small-sized TWPs, 2.78 and 5.36 times higher than that of medium-sized and large-sized TWPs. The leachate of the small-sized TWPs also showed higher cytotoxicity. •OH and O2•- were identified as the main reactive oxygen species (ROS), which exhibited higher concentrations and dramatic attack on small-sized TWPs to cause pronounced fragmentation and oxidation, finally inducing the higher release of additives. This paper sheds light on the crucial effects and mechanism of particle sizes in the release behavior of TWPs additives, provides useful information to assess the ecological risk of TWPs.
Collapse
Affiliation(s)
- Taishuo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mingjun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yingxuan Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingxuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
37
|
Tao M, Li W, Zhou X, Li Y, Song H, Wu F. Effects of microplastics on the structure and function of bacterial communities in sediments of a freshwater lake. CHEMOSPHERE 2024; 356:141880. [PMID: 38570049 DOI: 10.1016/j.chemosphere.2024.141880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
As an emerging pollutant, microplastics (MPs) cause widespread concern around the world owing to the serious threat they pose to ecosystems. In particular, sediments are thought to be the long-term sink for the continual accumulation of MPs in freshwater ecosystems. Polyethylene (PE) and polyethylene terephthalate (PET) have been frequently detected with large concentration variations in freshwater sediments from the lower reaches of the Yangtze River, one of the most economically developed regions in China, characterized by accelerated urbanization and industrialization, high population density and high plastics consumption. However, the impact of PE and PET on the sedimental bacterial community composition and its function has not been well reported for this specific region. Herein, PE and PET particles were added to freshwater sediments to assess the effects of different MP types on the bacterial community and its function, using three concentrations (500, 1500 and 2500 items/kg) per MP and incubations of 35, 105 and 175 days, respectively. This study identified a total of 68 phyla, 211 classes, 518 orders, 853 families and 1745 genera. Specifically, Proteobacteria, Chloroflexi, Acidobacteriota, Actinobacteriota and Firmicutes were the top five phyla. A higher bacterial diversity was obtained in control sediments than in the MP-treated sediments. The presence of MPs, whether PET or PE, had significant impact on the bacterial diversity, community structure and community composition. PICRUSt2 and FAPOTAX predictions demonstrated that MPs could potentially affect the metabolic pathways and ecologically functional groups of bacteria in the sediment. Besides the MP-related factors, such as the type, concentration and incubation time, the physicochemical parameters had an effect on the structure and function of the bacterial community in the freshwater sediment. Taken together, this study provides useful information for further understanding how MPs affect bacterial communities in the freshwater sediment of the lower reaches of the Yangtze River, China.
Collapse
Affiliation(s)
- Miaomiao Tao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weibin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yanan Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haiya Song
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fan Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
38
|
Liu L, Yang X, Ellam RM, Li Q, Feng D, Song Z, Tang J. Evidence that co-existing cadmium and microplastics have an antagonistic effect on greenhouse gas emissions from paddy field soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133696. [PMID: 38341889 DOI: 10.1016/j.jhazmat.2024.133696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Accumulation of microplastics (MPs) and cadmium (Cd) are ubiquitous in paddy soil. However, the combined effects of MPs and Cd on physiochemical and microbial mechanisms in soils and the attendant implications for greenhouse gas (GHG) emissions, remain largely unknown. Here, we evaluated the influence of polylactic acid (PLA) and polyethylene (PE) MPs on GHG emissions from Cd-contaminated paddy soil using a microcosm experiment under waterlogged and drained conditions. The results showed that PLA significantly increased CH4 and N2O emission fluxes and hence the global warming potential (GWP) of waterlogged soil. Soils treated with MPs+Cd showed significantly reduced GWP compared to those treated only with MPs suggesting that, irrespective of attendant consequences, Cd could alleviate N2O emissions in the presence of MPs. Conversely, the presence of MPs in Cd-contaminated soils tended to alleviate the bioavailability of Cd. Based on a structural equation model analysis, both the MPs-derived dissolved organic matter and the soil bioavailable Cd affected indirectly on soil GHG emissions through their direct influencing on microbial abundance (e.g., Firmicutes, Nitrospirota bacteria). These findings provide new insights into the assessment of GHG emissions and soil/cereal security in response to MPs and Cd coexistence that behaved antagonistically with respect to adverse ecological effects in paddy systems.
Collapse
Affiliation(s)
- Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinzuo Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rob M Ellam
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center/Weifang University of Science and Technology, Weifang 262700, Shandong, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
39
|
Deng W, Wang Y, Wang Z, Liu J, Wang J, Liu W. Effects of photoaging on structure and characteristics of biofilms on microplastic in soil: Biomass and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133726. [PMID: 38341883 DOI: 10.1016/j.jhazmat.2024.133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Understanding of the environmental behaviors of microplastics is limited by a lack of knowledge about how photoaging influences biofilm formation on microplastics in soil. Here, original microplastics (OMPs) and photoaged-microplastics (AMPs) were incubated in soil to study the effect of photoaging on formation and characteristics of biofilm on the poly (butylene succinate) microplastics. Because photoaging decreased the hydrophobicity of the microplastic, the biomass of biofilm on the OMPs was nearly twice that on the AMPs in the early stage of incubation. However, the significance of the substrate on biomass in the biofilm declined as the plastisphere developed. The bacterial communities in the plastisphere were distinct from, and less diverse than, those in surrounding soil. The dominant genera in the OMPs and AMPs plastispheres were Achromobacter and Burkholderia, respectively, indicating that photoaging changed the composition of the bacterial community of biofilm at the genus level. Meantime, photoaging decreased the complexity and stability of the plastisphere bacterial community network. Results of Biolog ECO-microplate assays and functional prediction from amplicons showed that photoaging treatment enhanced the carbon metabolic capacity of the microplastic biofilm. This study provides new insights into the formation of plastispheres in soil.
Collapse
Affiliation(s)
- Wenbo Deng
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yajing Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zihan Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinxian Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Wenjuan Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
40
|
Xiang Y, Rillig MC, Peñuelas J, Sardans J, Liu Y, Yao B, Li Y. Global Responses of Soil Carbon Dynamics to Microplastic Exposure: A Data Synthesis of Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5821-5831. [PMID: 38416534 PMCID: PMC10993418 DOI: 10.1021/acs.est.3c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) contamination presents a significant global environmental challenge, with its potential to influence soil carbon (C) dynamics being a crucial aspect for understanding soil C changes and global C cycling. This meta-analysis synthesizes data from 110 peer-reviewed publications to elucidate the directional, magnitude, and driving effects of MPs exposure on soil C dynamics globally. We evaluated the impacts of MPs characteristics (including type, biodegradability, size, and concentration), soil properties (initial pH and soil organic C [SOC]), and experimental conditions (such as duration and plant presence) on various soil C components. Key findings included the significant promotion of SOC, dissolved organic C, microbial biomass C, and root biomass following MPs addition to soils, while the net photosynthetic rate was reduced. No significant effects were observed on soil respiration and shoot biomass. The study highlights that the MPs concentration, along with other MPs properties and soil attributes, critically influences soil C responses. Our results demonstrate that both the nature of MPs and the soil environment interact to shape the effects on soil C cycling, providing comprehensive insights and guiding strategies for mitigating the environmental impact of MPs.
Collapse
Affiliation(s)
- Yangzhou Xiang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Matthias C Rillig
- Institut für Biologie, Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Freie Universität Berlin, Berlin D-14195, Germany
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecolog Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
41
|
Huang D, Ding L, Wang S, Ding R, Qiu X, Li J, Hua Z, Liu S, Wu R, Liang X, Guo X. Metabolomics reveals how spinach plants reprogram metabolites to cope with intense stress responses induced by photoaged polystyrene nanoplastics (PSNPs). JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133605. [PMID: 38286052 DOI: 10.1016/j.jhazmat.2024.133605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
While land-based sources have been recognized as significant long-term sinks for micro- and nanoplastics, there is limited knowledge about the uptake, translocation, and phytotoxicity of nanoplastics (NPs) in terrestrial environments, especially aged NPs. In this study, we investigated the impact of aged polystyrene nanoplastics (PSNPs) on the uptake, physiology, and metabolism of spinach. Our findings revealed that both pristine and aged PSNPs can accumulate in the roots and subsequently translocate to the aboveground tissues, thereby influencing numerous key growth indicators in spinach plants. A more pronounced impact was observed in the treatment of aged PSNPs, triggering more significant and extensive changes in metabolite levels. Furthermore, alterations in targeted pathways, specifically aminoacyl-tRNA biosynthesis and phenylpropanoid biosynthesis, were induced by aged PSNPs, while pristine PSNPs influenced pathways related to sulfur metabolism, biosynthesis of unsaturated fatty acids, and tryptophan metabolism. Additionally, tissue-specific responses were observed at the metabolomics level in both roots and leaves. These results highlight the existence of diverse and tissue-specific metabolic responses in spinach plants exposed to pristine and aged PSNPs, providing insights into the mechanisms of defense and detoxification against NP-induced stress.
Collapse
Affiliation(s)
- Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuhua Wang
- College of Resources and Environmental Science, Quanzhou Normal University, 398 Donghai Road, Quanzhou 362000, China
| | - Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengdong Hua
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shasha Liu
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
42
|
Chen J, Sun T, Yang P, Peng S, Yu J, Wang D, Zhang W. Inhibitory effect of microplastics derived organic matters on humification reaction of organics in sewage sludge under alkali-hydrothermal treatment. WATER RESEARCH 2024; 252:121231. [PMID: 38324988 DOI: 10.1016/j.watres.2024.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Alkali-hydrothermal treatment (AHT) of sewage sludge is often used to recover value-added dissolved organic matters (DOM) enriched with artificial humic acids (HA). Microplastics (MPs), as emerging contaminants in sewage sludge, can leach organic compounds (MP-DOM) during AHT, which potentially impact the characteristics of thermally treated sludge's DOM. This study employed spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) to explore the impacts of MPs on DOM composition and transformation during AHT. The biological effects of DOM were also investigated by hydroponic experiments. The results showed that the leaching of MP-DOM led to a substantial increase in DOC content of DOM of thermally treated sludge. Conversely, the HA content significantly decreased in the presence of MPs, resulting in a decline of plant growth facilitation degree. FT-ICR-MS analysis revealed that the reduction in HA content was characterized by a notable decline in the abundance of O6-7 and N1-3O6-7 molecules. Reactomics results indicated that the leaching of MP-DOM inhibited the Maillard reaction but bolstered oxidation reactions. The inhibition of Maillard reaction, resulting in a decrease in crucial precursors (dicarbonyl compounds, ketoses, and deoxyglucosone), was responsible for the decrease of HA content. The primary mechanism responsible for inhibiting the Maillard reaction was the consumption of reactive amino reactants through two pathways. Firstly, the leaching of organic acids in MP-DOM caused decrease of sludge pH, leading to the protonation of amino groups. Secondly, the lipid-like compounds in MP-DOM underwent oxidation (-2H+O), producing fatty aldehydes that consumed the reactive amino reactants. These discoveries offer enhanced insights into the specific contribution of MPs to the composition, transformation, bioactivity of DOM during AHT process.
Collapse
Affiliation(s)
- Jun Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Siwei Peng
- Datang Environment Industry Group Co., Ltd, Haidian District, Beijing 100097, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang university, Hangzhou 310058, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
43
|
Hou Z, Mo F, Zhou Q, Xie Y, Liu X, Zheng T, Tao Z. Key Role of Vegetation Cover in Alleviating Microplastic-Enhanced Carbon Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319346 DOI: 10.1021/acs.est.3c10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Microplastics (MPs) are considered to influence fundamental biogeochemical processes, but the effects of plant residue-MP interactions on soil carbon turnover in urban greenspaces are virtually unknown. Here, an 84-day incubation experiment was constructed using four types of single-vegetation-covered soils (6 years), showing that polystyrene MP (PSMP) pollution caused an unexpectedly large increase in soil CO2 emissions. The additional CO2 originating from highly bioavailable active dissolved organic matter molecules (<380 °C, predominantly polysaccharides) was converted from persistent carbon (380-650 °C, predominantly aromatic compounds) rather than PSMP derivatives. However, the priming effect of PSMP derivatives was weakened in plant-driven soils (resistivity: shrub > tree > grass). This can be explained from two perspectives: (1) Plant residue-driven humification processes reduced the percentage of bioavailable active dissolved organic matter derived from the priming effects of PSMPs. (2) Plant residues accelerated bacterial community succession (dominated by plant residue types) but slowed fungal community demise (retained carbon turnover-related functional taxa), enabling specific enrichment of glycolysis, the citric acid cycle and the pentose phosphate pathway. These results provide a necessary theoretical basis to understand the role of plant residues in reducing PSMP harm at the ecological level and refresh knowledge about the importance of biodiversity for ecosystem stability.
Collapse
Affiliation(s)
- Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Xie
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueju Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
44
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
45
|
Chen Y, Yan Z, Zhou Y, Zhang Y, Jiang R, Wang M, Yuan S, Lu G. Dynamic evolution of antibiotic resistance genes in plastisphere in the vertical profile of urban rivers. WATER RESEARCH 2024; 249:120946. [PMID: 38043355 DOI: 10.1016/j.watres.2023.120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) can vertically transport in the aquatic environment due to their aging and biofouling, forming distinct plastisphere in different water layers. However, even though MPs have been regarded as hotspots for antibiotic resistance genes (ARGs), little is known about the propagation and transfer of ARGs in plastisphere in waters, especially in the vertical profile. Therefore, this study investigated the dynamic responses and evolution of ARGs in different plastisphere distributed vertically in an urbanized river. The biofilm biomass in the polylactic acid (PLA) plastisphere was relatively higher than that in the polyethylene terephthalate (PET), showing depth-decay variations. The ARGs abundance in plastisphere were much higher than that in the surrounding waters, especially for the PLA. In the vertical profiles, the ARGs abundance in the PET plastisphere increased with water depths, while the highest abundance of ARGs in the PLA mostly appeared at intermediate waters. In the temporal dynamic, the ARGs abundance in plastisphere increased and then decreased, which may be dominated by the MP types at the initial periods. After long-term exposure, the influences of water depths seemed to be strengthened, especially in the PET plastisphere. Compared with surface waters, the microbiota attached in plastisphere in deep waters showed high species richness, strong diversity, and complex interactions, which was basically consistent with the changes of nutrient contents in different water layers. These vertical variations in microbiota and nutrients (e.g., nitrogen) may be responsible for the propagation of ARGs in plastisphere in deep waters. The host bacteria for ARGs in plastisphere was also developed as water depth increased, leading to an enrichment of ARGs in deep waters. In addition, the abundance of ARGs in plastisphere in bottom waters was positively correlated with the mobile genetic elements (MGEs) of intI1 and tnpA05, indicative of a frequent horizontal gene transfer of ARGs. Overall, water depth played a critical role in the propagation of ARGs in plastisphere, which should not be ignored in a long time series. This study provides new insights into the dynamic evolution of ARGs propagation in plastisphere under increasing global MPs pollution, especially in the vertical profile.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yixin Zhou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
46
|
Liu S, Huang J, He W, Shi L, Zhang W, Li E, Zhang C, Pang H. Impact of polyamide microplastics on riparian sediment structures and Cd(II) adsorption: A comparison of natural exposure, dry-wet cycles, and freeze-thaw cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133589. [PMID: 38271876 DOI: 10.1016/j.jhazmat.2024.133589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) accumulation in sediments has posed a huge threat to freshwater ecosystems. However, it is still unclear the effect of MPs on riparian sediment structures and contaminant adsorption under different hydrological processes. In this study, three concentrations of polyamide (PA) MPs-treated sediments (0.1%, 1%, and 10%, w/w) were subjected to natural (NA) exposure, dry-wet (DW) cycles, and freeze-thaw (FT) cycles. The results indicated that PA MPs-added sediment increased the micro-aggregates by 10.1%-18.6% after FT cycles, leading to a decrease in aggregate stability. The pH, OM, and DOC of sediments were significantly increased in DW and FT treatments. In addition, the increasing concentration of PA MPs showed an obvious decrease in aromaticity, humification, and molecular weight of sediment DOM in FT treatments. Also, high level of MPs was more likely to inhibit the formation of humic-like substances and tryptophan-like proteins. For DW and FT cycles, 0.1% and 1% PA MPs-treated sediments slightly increased the adsorption capacity of Cd(II), which may be ascribed to the aging of MPs. Further correlation analysis found that DW and FT altered the link between DOM indicators, and aggregate stability was directly related to the changes in sediment organic carbon. Our findings revealed the ecological risk of MPs accumulating in riparian sediments under typical hydrological processes.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lixiu Shi
- College of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
47
|
Owusu SM, Adomako MO, Qiao H. Organic amendment in climate change mitigation: Challenges in an era of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168035. [PMID: 37907110 DOI: 10.1016/j.scitotenv.2023.168035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
As a global strategy for mitigating climate change, organic amendments play critical roles in restoring stocks in carbon (C) depleted soils, preserving existing stocks to prevent further soil organic carbon (SOC) loss, and enhancing C sequestration. However, recent emerging evidence of a significant proportion of micro- and nanoplastics (M/NPs) occurrence in most organic substrates (e.g., compost manure, farmyard manure, and sewage sludge) compromises its role in climate change mitigation. Given the predicted surge of soil M/NPs proliferation in the coming years, we argued whether organic amendment remains a reliable climate change mitigation strategy. Toxicity effects of M/NPs influx within the soil matrix disrupt plants and their associated key microbial taxa responsible for crucial biogeochemical processes and restructuring of SOC, leading to increasing emissions of potent greenhouse gases (GHGs, e.g., CO2, CH4, and N2O) that feedback to aggravate the rapidly changing climate. Here, we summarize evidence based on literature that the discovery of M/NPs in organic substrates compromises its role in the climate change mitigation strategy. We briefly discuss the overview of synthetic fertilizers and their impact on SOC and atmospheric emissions. We discuss the role of organic amends in climate change mitigation and the emergence of M/NPs in it. We discuss M/NPs-induced damages to SOC and subsequent emissions of GHGs. We briefly highlight management approaches to clean organic substrates of M/NPs to improve their use in agrosystems and provide recommendations for future research studies. We found that organic amendment plays pivotal role in modulating the biotic and abiotic drivers responsible for climate mitigation. However, M/NPs in organic amendments weaken the regulatory mechanisms of organic amendments in plant-soil systems. We conclude that organic amendments of soils are critical for restoring SOC and mitigating the rapidly changing climate; yet, the discovery of M/NPs in organic substrates put their usage in a dilemma.
Collapse
Affiliation(s)
- Samuel Mensah Owusu
- Schoo of Business, Jinggangshan University, Qingyuan District, Ji'an City 343009, Jiangxi, China.
| | - Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hu Qiao
- Schoo of Business, Jinggangshan University, Qingyuan District, Ji'an City 343009, Jiangxi, China
| |
Collapse
|
48
|
Qiu X, Ma S, Pan J, Cui Q, Zheng W, Ding L, Liang X, Xu B, Guo X, Rillig MC. Microbial metabolism influences microplastic perturbation of dissolved organic matter in agricultural soils. THE ISME JOURNAL 2024; 18:wrad017. [PMID: 38365242 PMCID: PMC10811734 DOI: 10.1093/ismejo/wrad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
An estimated 258 million tons of plastic enter the soil annually. Joining persistent types of microplastic (MP), there will be an increasing demand for biodegradable plastics. There are still many unknowns about plastic pollution by either type, and one large gap is the fate and composition of dissolved organic matter (DOM) released from MPs as well as how they interact with soil microbiomes in agricultural systems. In this study, polyethylene MPs, photoaged to different degrees, and virgin polylactic acid MPs were added to agricultural soil at different levels and incubated for 100 days to address this knowledge gap. We find that, upon MP addition, labile components of low aromaticity were degraded and transformed, resulting in increased aromaticity and oxidation degree, reduced molecular diversity, and changed nitrogen and sulfur contents of soil DOM. Terephthalate, acetate, oxalate, and L-lactate in DOM released by polylactic acid MPs and 4-nitrophenol, propanoate, and nitrate in DOM released by polyethylene MPs were the major molecules available to the soil microbiomes. The bacteria involved in the metabolism of DOM released by MPs are mainly concentrated in Proteobacteria, Actinobacteriota, and Bacteroidota, and fungi are mainly in Ascomycota and Basidiomycota. Our study provides an in-depth understanding of the microbial transformation of DOM released by MPs and its effects of DOM evolution in agricultural soils.
Collapse
Affiliation(s)
- Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Sirui Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jianrui Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qian Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Wei Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Baile Xu
- Institut für Biologie, Freie Universität Berlin, Berlin 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| |
Collapse
|
49
|
Zhang H, Huang Y, An S, Wang P, Xie C, Jia P, Huang Q, Wang B. Mulch-derived microplastic aging promotes phthalate esters and alters organic carbon fraction content in grassland and farmland soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132619. [PMID: 37757559 DOI: 10.1016/j.jhazmat.2023.132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Agricultural plastic mulch is a major microplastics (MPs) source in terrestrial ecosystems. However, knowledge about the aging characteristics of mulch-derived MPs entering natural and agricultural soils and their effects on phthalate esters (PAEs) and organic carbon fractions is still limited. Black (contains black masterbatches) and white polyethylene (PE) and biodegradable (Bio, Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC+PBAT)) mulch-derived MPs, at 0.3% (w/w) dose, were added to grassland and farmland soils for eight-week incubation. Microplastic (MP) aging degree was explored by quantifying the carbonyl index (CI). The soil PAEs and organic carbon fractions were also analyzed. After incubation, black and white PE-MP aged greater in farmland than in grassland. PAEs accumulated highest in PE-MP treatment (5.27-6.41 mg kg-1) followed by Bio-MP (1.88-2.38 mg kg-1). Soil organic carbon (SOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) were reduced by 5.3%-8.2%, 31.8%-41.6%, and 39.7%-63.0%, dissolved organic carbon (DOC) was increased by 10.1%-27.6% in grassland containing MP compared to control. MPs' aging degree promoted PAEs content or altered nutrients, then regulated soil microbial biomass and extracellular enzyme activity directly or indirectly, ultimately affecting SOC. ENVIRONMENTAL IMPLICATION: Microplastics are persistent environmental pollutants that gradually undergo surface aging in response to extracellular enzymes secreted by microorganisms. As microplastics age, their surface roughness and functional groups change; thus, organochemical contaminants gradually leach out. Therefore, this study analyzed the aging of mulch film-derived microplastics under the action of diverse microorganisms in farmland and grassland soils and the effect on plasticizer and organic carbon fractions. The results proved that polyethylene microplastic aging degree was highest in farmland soil. Besides, biodegradable microplastic caused lower contamination of phthalate esters than polyethylene, but they affected soil carbon balance in grassland and farmland soils. STATEMENT OF ENVIRONMENTAL IMPLICATION: This study highlights that MPs affect organic carbon fractions by influencing the PAEs, available nutrients, and extracellular enzyme activity.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China.
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pan Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Penghui Jia
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Qian Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Baorong Wang
- College of Grassland Agriculture, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
50
|
Chen M, Cao M, Zhang W, Chen X, Liu H, Ning Z, Peng L, Fan C, Wu D, Zhang M, Li Q. Effect of biodegradable PBAT microplastics on the C and N accumulation of functional organic pools in tropical latosol. ENVIRONMENT INTERNATIONAL 2024; 183:108393. [PMID: 38118212 DOI: 10.1016/j.envint.2023.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Microplastics (MPs) pollution is becoming an emerging global stressor for soil ecosystems. However, studies on the impacts of biodegradable MPs on soil C sequestration have been mainly based on bulk C quantity, without considering the storage form of C, its persistency and N demand. To address this issue, the common poly (butylene adipate-co-terephthalate) (PBAT) was used as the model, and its effects on soil functional organic pools, including mineral-associated (MAOM), particulate (POM) and dissolved organic matter (DOM), were investigated from the novel coupled perspective of C and N stocks. After adding PBAT-MPs, the contents of soil POM-C, DOM-C, and MAOM-C were increased by 546.9 %-697.8 %, 54.2 %-90.3 %, and 13.7 %-18.9 %, respectively. Accordingly, the total C increased by 116.0 %-191.1 %. Structural equation modeling showed that soil C pools were regulated by PBAT input and microbial metabolism associated with C and N enzymes. Specifically, PBAT debris could be disguised as soil C to promote POM formation, which was the main pathway for C accumulation. Inversely, the MAOM-C and DOM-C formation was attributed to the PBAT microbial product and the selective consumption in DOM-N. Random forest model confirmed that N-activated (e.g., Nitrospirae) and PBAT-degrading bacteria (e.g., Gemmatinadetes) were important taxa for soil C accumulation, and the key enzymes were rhizopus oryzae lipas, invertase, and ammonia monooxygenase. The soil N accumulation was mainly related to the oligotrophic taxa (e.g., Chloroflexi and Ascomycota) associated with aggregate formation, decreasing the DOM-N by 46.9 %-84.3 %, but did not significantly change the total N storage and other N pools. Collectively, the findings highlight the urgency to control the nutrient imbalance risk of labile N loss and recalcitrant C enrichment in POM to avoid the depressed turnover rate of organic matter in MPs-polluted soil.
Collapse
Affiliation(s)
- Miao Chen
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Ming Cao
- Agro-Tech Extension and Service Center of Sanya, Sanya 572000, Hainan, China
| | - Wen Zhang
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Xin Chen
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Huiran Liu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ziyu Ning
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Licheng Peng
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Changhua Fan
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Dongming Wu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China.
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| |
Collapse
|